
Some Control and Observation Issues in 

Cellular Automata

Samira El Yacoubi
Théo Plénet 

IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
ESPACE-DEV, Univ. Montpellier, IRD, Montpellier, France 

Sara Dridi

University of Setif, Setif, Algeria

Franco Bagnoli

Dept. Physics and Astronomy and CSDC, University of Florence
via G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy also INFN, sez. Firenze

Laurent Lefèvre
Clément Raïevsky

Univ. Grenoble Alpes, Grenoble INP, Institute of Engineering Univ. 
Grenoble Alpes, LCIS, 26000 Valence, France 

This  review  article  focuses  on  studying  problems  of  observability  and
controllability  of  cellular  automata  (CAs)  considered  in  the  context  of
control theory, an important feature of which is the adoption of a state-
space  model.  Our  work  first  consists  in  generalizing  the  obtained
results  to  systems  described  by  CAs  considered  as  the  discrete  counter-
part  of  partial  differential  equations,  and  in  exploring  possible
approaches  to  prove  controllability  and  observability.  After  having
introduced  the  notion  of  control  and  observation  in  cellular  automata
models, in a similar way to the case of discrete-time distributed param-
eter  systems,  we  investigate  these  key  concepts  of  control  theory  in  the
case of complex systems. For the controllability issue, the Boolean class
is particularly studied and applied to the regional case, while the observ-
ability  is  approached  in  the  general  case  and  related  to  the  recon-
structibility problem for linear or nonlinear CAs. 
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Introduction1.

Controllability  and  observability  are  among  the  most  prominent  and
main  considered  issues  in  control  theory.  They  were  introduced  by
Kalman and well studied during the second half of the last century. A
wide  variety  of  works  related  to  controllability  and  observability  of
distributed  parameters  systems  (DPS)  has  been  achieved  [1].  The
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study  of  these  notions  on  DPS  via  the  structure  of  actuators  (inputs)
and  sensors  (outputs)  was  the  subject  of  intense  research  activity
[1,  2].  The  traditional  and  most-used  models  in  these  studies  are
based on a set of partial differential equations (PDEs) for the descrip-
tion  of  system  input–output  dynamics.  Whereas  controllability  con-
cerns  the  ability  to  steer  the  processes  so  as  to  bring  them  toward
desired  profiles  through  specific  actions,  observability  deals  with  the
ability to reconstruct the initial system state, taking into account a suf-
ficient  knowledge  of  the  system  dynamics  based  on  specified  output
measurements.  These  two  major  concepts  have  already  been  studied
for continuous systems described by PDEs as reported in the literature
[1,  3,  4].  In  the  case  of  deterministic  linear  systems  analysis,  the  so-
called  Kalman  condition  [5,  6]  is  essential  and  has  been  widely  used
to  obtain  the  main  characterization  results  regarding  the  choice  of
actuator/sensor  structures,  locations,  number  and  types  (mobile  or
fixed). See, for example, [1, 7] and the references therein.

The  aim  of  this  paper  is  to  summarize  some  recent  advances  in
controllability  and  observability  of  systems  described  by  cellular
automata  (CAs),  considered  as  the  discrete  counterpart  of  PDEs,  and
explore other suitable approaches to prove controllability and observ-
ability  for  such  systems.  CAs  are  widely  used  mathematical  models
for  studying  dynamical  properties  of  discrete  systems  and  constitute
very  promising  tools  for  describing  complex  natural  systems  in  terms
of local interactions [8–10]. 

CAs are the simplest models of spatially extended systems that may
provide a good description for complex phenomena. They are discrete
dynamical  systems  where  space  and  time,  as  well  as  states  related  to
physical  quantities,  are  all  discrete.  Evolution  is  governed  by  a  set  of
simple local and microscopic transition rules that may exhibit a com-
plex  behavior.  In  the  macroscopic  limit  (i.e.,  after  space  and  time
coarse  graining),  CAs  can  reproduce  the  same  phenomena  usually
modeled  with  PDEs.  A  wide  range  of  applications  in  biology,
chemistry,  physics  and  ecology  was  successfully  developed  using  the
cellular  automaton  (CA)  paradigm  as  reported  in  the  large  dedicated
literature [11–13]. 

Since  CA  models  were  so  far  considered  as  autonomous  systems,
the  idea  was  first  to  introduce  the  notion  of  control  and  observation
in these models, in a similar way as was previously done for discrete-
time distributed parameter systems, in order to be able to study some
concepts  of  control  theory  related  to  inputs  and  outputs  [14].  We
then  started  to  study  the  two  key  and  most  popular  concepts  of  con-
trol  theory,  namely  controllability  and  observability,  in  the  case  of
complex systems modeled by CAs. 

For the controllability problem, we focused on a particular case of
the  so-called  regional  controllability.  In  the  context  of  distributed
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parameter systems, the term regional has been used to refer to control
problems in which the desired state is only defined, and may be reach-
able, on some portion of the domain. In many physical problems, the
regional controllability is naturally chosen in order to shape a natural
phenomenon  just  in  a  subregion  of  the  whole  domain.  The  case  of
Boolean CAs has been particularly examined to investigate the bound-
ary  regional  controllability  [15].  It  consists  in  considering  objective
functions  defined  on  a  subregion  of  the  domain  and  exerting  control
actions  on  the  boundary  of  the  target  region.  This  problem  has  been
dealt  with  using  several  tools:  namely  the  Kalman  theorem,  Markov
chains and graph theory [16, 17]. The extension to nonlinear CAs has
also been studied in these works. 

For  the  problem  of  observability,  we  assume  that  the  studied  sys-
tem is autonomous and we apply the tools mentioned to prove observ-
ability  as  a  dual  notion  of  controllability.  Where  in  controllability
analysis  the  state  of  the  system  has  to  be  steered  to  a  desired  value
using  an  unknown  input  signal  with  minimal  energy,  in  the  case  of
observability  we  seek  to  observe  through  a  given  output  signal  the
maximum energy of the unknown state of the system. The first  results
were  obtained  for  affine  CAs  and  a  rank  condition  for  observability
was proved in [18]. This condition is reminiscent of deterministic lin-
ear systems theory. Several criteria to assess the observability and the
reconstructibility  of  CAs  were  formulated  according  to  the  choice  of
sensor  structures,  locations  and  types  (mobile  or  fixed).  Some  exam-
ples  were  given  to  illustrate  the  theoretic  results.  The  nonlinear  case
as well as the probabilistic case is currently under investigation. 

Controllability of Cellular Automata2.

Introduction to Distributed Parameters Systems2.1

Several  phenomena  exhibit  spatially  distributed  behavior  and  are  dis-
tributed parameter systems (DPS) where the state variables depend on
time  and  space  and  describe  the  system’s  behavior  in  terms  of  inputs
and outputs that also depend on space and time.

Although  DPS  are  more  common  in  industry,  their  applications
have been expanded to include biological, ecological or economic sys-
tems and are becoming extremely related to the study of complex sys-
tems.  Depending  on  the  application,  various  representations  of  DPS
can  be  considered  with  different  input  and  output  structures.  The
usual  form  they  take  is  based  on  a  state-space  representation
described  as  a  set  of  PDEs  that  provide  detailed  descriptions  of  the
internal behavior of the system. 
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The mathematical description of DPS is usually given by three oper-
ators:  A  describing  the  dynamics,  B  and  C  determining  how  the  con-
trols act on the system and how it is observed. 

 z′(t)  Az(t) +Bu(t); 0 < t < T 

 z0  z0 ∈ DA 
(1)

and augmented by the output equation:

y(t)  Cz(t). (2)

Two  key  concepts  for  analyzing  such  systems  are  controllability
and observability, which are studied through operators B and C. The
controllability concerns the ability to steer the system from any initial
state  to  any  desired  state  by  acting  on  inputs  that  are  involved  in  the
operator  B.  Whereas,  the  observability  deals  with  the  capability  to
reconstruct  the  initial  state  of  the  system,  taking  into  account  suffi-
cient knowledge of the system’s dynamics through certain output mea-
surements according to the operator C. 

The  problem  of  controllability  of  DPS  has  been  widely  studied  in
recent years [1]. Various types of controllability have been considered
for DPS: exact, weak or regional [19, 20]. The regional case was intro-
duced  by  Zerrik  et  al.  [4]  as  a  special  case  of  output  controllability
[19, 21]. It consists in achieving an objective only on a region ω of the
spatial  domain  on  which  the  governing  partial  differential  system  is
considered.  This  regional  idea  appears  naturally  in  many  real-world
dynamical  systems,  when  studying  a  natural  phenomenon  only  in  a
specific  area.  This  concept  has  been  widely  developed  and  interesting
results have been proved, in particular, the possibility to reach a state
on an internal subregion or on a part of the boundary of the domain
when  some  specific  actions  are  exerted  on  the  system,  in  its  domain
interior  or  on  its  boundaries.  CA  models  are  particularly  suitable  for
simulating  natural  phenomena  that  are  usually  highly  nonlinear  and
better  described  in  terms  of  discrete  units  rather  than  by  means  of
PDEs  [11,  22–24].  The  CA  approach  has  been  recently  promoted  for
the study of control problems on spatially extended systems for which
the  classical  approaches  cannot  be  used.  The  addressed  question:  can
we  consider  CAs  as  a  possible  alternative  to  DPS  for  modeling  and
analysis of spatially extended systems? 

Discrete-Time Distributed Parameters Systems Statement by 

Means of Cellular Automaton Formalism
2.2

CAs are spatially extended systems that are widely used for modeling
various  problems  ranging  from  physics  to  biology,  engineering,
medicine,  ecology  and  economics.  An  ultimate  understanding  of  such
systems gives us the ability to control them in order to achieve desired
behavior.
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Definition 1.  A  CA  is  classically  defined  by  a  quadruple

  ℒ, , , f where

◼ ℒ  is  a  d-dimensional  lattice  of  cells  c  that  are  arranged  depending  on

space dimension and cell shape. In the infinite case, ℒ  ℤd. 

◼   denotes  a  discrete  state  set.  It  is  a  finite  commutative  ring  given

by    0, 1, …, k - 1  in  which  the  usual  operations  use  modular

arithmetic. 

◼  is a mapping that defines the cell’s neighborhood. 

The neighborhood is usually given by: 

 :ℒ⟶ℒn

c ⟶(c)  {c′ ∈ ℒ c′ - ci ≤ r}

where  ci, i ∈ 1, ∞  indicates  the  sum  and  the  maximum,  respec-

tively,  of  the  absolute  value  of  the  components  of  cell  c  (for  d  2,

c′ - c1  ci
′ - ci + cj

′ - cj and c′ - c∞  maxci
′ - ci, cj

′ - cj.

◼ f  is a transition function that can be defined by: 

f : n ⟶ 

st((c)) ⟶ st+1(c)  f(st((c))

where  st(c)  designates  the  c  cell  state  at  time  t  and

st((c))  {st(c
′), c′ ∈ (c)} is the state of the neighborhood.

In the linear case, f(x1, …, xn)  ∑i1
n aixi, where the sum is taken

modulo k. In the affine case, f(x1, …, xn)  ∑i1
N aixi + c. 

We can also have cases in which the function f  is linear only for a
certain set of variables. As we shall see, for control purposes, the case
of peripherally linear CAs is particularly interesting, for which 

f(x1, …, xn)  a1x1 + h(x2, …, xn-1) + anxn,

where h is an arbitrary function (linear or nonlinear).

In order to consider CAs in the context of DPS, a description in the
form of a state equation is necessary. 

New State Equation2.2.1

Consider  the  case  ℒ  ℤd,  (d ≥ 1)  and  introduce  a  metric  over

X  ℤd
 as:

dδ(x, y)  

c∈ℤd

δ(x(c), y(c))

2c∞
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where δ :⨯ → 0, 1 is defined by:

δ(i, j) 
 0  if i  j 

 1  if i ≠ j 

The set X  ℒ
 equipped with the distance dδ  is a compact metric

space and the global dynamics F 

F : X ⟶ X

s ⟶ F(s)

is continuous according to the topology induced by dδ. 

Proposition 1. [14] 

◼ The  compact  configurations  set  X  defines  the  state  space  of  the
autonomous CA. 

◼ The  sequence  of  continuous  global  maps  Fi  defined  as  the  ith  iteration
under F plays the same role as the semi-group, usually denoted by (Φt),

generated by the operator A. 

In  a  way  similar  to  discrete-time  DPS,  the  evolution  of  an
autonomous  CA  starting  from  a  given  initial  configuration  s0  can  be

defined in terms of the global dynamics by the state equation: 

st+1  Fst

s0 ∈ X

In the linear case, the operator F is simply a circulant band matrix
J (of width n), 

st+1  Jst,

where the matrix sum-product is taken modulo k. In the affine case,

st+1  Jst +C.

Control and Observation in Cellular Automata  2.2.2

The  CA  model  will  be  completed  by  control  and  measurement  func-
tions.  For  the  control  aspects,  it  is  done  via  inputs  (actuators)  that
have a spatial structure (number, spatial location and distribution).

Let us consider the following general hypothesis. 

◼ ℒ  ℤd is a cellular domain whose elements c  i1, …, id.

◼ IT  0, 1, …, T is a discrete time horizon.

◼ ℒp  is a subdomain that defines  the region of the lattice ℒ where the CA

is excited. It contains p cells that may be connected or not. 
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◼ The control operator G that defines  the way the control excites the CA
through the cells of ℒp is given by: 

G :  ⟶ ℤd

u ⟶ Gu

where  U  ℓ2ℒp,   u : ℒp⟶ ∑c∈ℒp
u2(c) < ∞  is  the  control

space.
G is an operator that transforms the physical actions u to a realiza-

tion Gu in the state space. Its action on cell c is denoted as gc(u). 

◼ The  CA  is  then  considered  as  a  controlled  system,  defined  by  the  local
transition function: 
st+1(c)  f (st((c))) + gc(ut)

where again the sum is taken modulo k. Considering for simplicity the
Boolean  case,  this  means  that  where  gc(u)  is  one,  the  actions  of  the  fc
are reversed, and where gc(u) is zero, it is not modified.

◼ The corresponding state equation is: 

st+1  Fst +Gut, t ∈ IT

s0 ∈ X.

◼ The observation problem can be considered by duality where an obser-
vation space and a global observation operator have to be defined. 

For  Im  0, 1, …, Tm  and    ℓ2ℒq, ,  the  observation  space

consists of all bounded measurements made in ℒq ⊂ ℒ and is given by a

measurement  variable  (output)  denoted  by  θ : Im⟶  that  defines  the

measurement at time t. The global observation operator H defined by: 

H : ℤd
⟶ 

s ⟶ Hs

associates a measurement to each configuration s.

◼ This leads to a complete description of CAs in terms of inputs and out-
puts where the state equation is augmented with 

θt  Hst, t ∈ Im

and then defines the so-called distributed CA.

◼ The  obtained  CA  statement  is  very  close  to  the  usual  discrete-time  dis-
tributed parameter systems formulation augmented by the output func-
tion. 

The  problem  that  we  want  to  address  here  is  that  of  forcing  the
appearance  of  a  given  pattern  inside  a  region  by  imposing  a  suitable
set of values onto some specific  sites that could be in the lattice or in
its boundary. 
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The  idea  is  to  explore  different  formalisms  and  approaches,  some
of which are specific to PDEs, that can prove the regional controllabil-
ity of CAs, focusing on Boolean CAs. 

Regional Controllability of Cellular Automata: Kalman Condition2.3

Let us recall the classical Kalman rank condition [5] as stated for the
finite dimensional systems:

Definition 2.  The  controllability  matrix  related  to  equation  (1)  is  a
matrix of dimension n⨯nm defined by: 

Mc  B, AB, …, An-1B. (3)

The  determination  of  the  matrix  gives  information  about  whether
the  system  is  controllable  or  not.  We  have  the  following  theorem
(Kalman condition): 

Theorem 1.  Equation  (1)  is  controllable  if  and  only  if  the  controllabil-
ity matrix is of full rank; in other words: 

rank(Mc)  n. (4)

This was generalized to CAs and allowed to prove the regional con-
trollability. 

Definition 3. Let us consider: 

◼ A CA defined  on a discrete lattice ℒ with state set  and described by a
transition function f

◼ ω ⊂ ℒ

◼ sω the restriction to ω of the CA configuration s

◼ ω  {s : ω → }

The  CA  is  said  to  be  regionally  controllable  if  for  a  given  sd ∈ ω

there  exists  a  control  sequence  u  (u0, …, uT-1)  with  ui ∈   such

that:

sT  sd on ω

where  sT  is  the  final  configuration  at  time  T  and    is  the  control

space.

Special Case of Boolean Cellular Automata2.3.1

Let  us  consider  a  Boolean  CA  defined  on  a  lattice  ℒ  that  is  assumed
to  be  finite  and  composed  of  N  interior  cells  and  two  boundary  cells
where the actions will be exerted, denoted by cl and cr for the left and

right boundary cells, respectively. We are interested in finding the suit-
able  sequences  of  controls  acting  on  the  boundary  of  the  lattice,

ul
0, ul

1, …, ul
T-1 and ur

0, ul
r, …, ur

T-1, so as to steer the system from
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a given initial state s0 to a desired configuration sd on the subregion ω

at a given time T, such that sT(ci)  sd(ci), ∀ ci ∈ ω. The desired con-

figuration  sd  is  assumed  to  be  reachable  in  the  evolution  of  the

CA�rule.
In  the  following,  to  make  notation  more  clear,  we  will  indicate

with the symbol ⊕ the sum modulo two. 
The state equation for linear Boolean CAs is 

 st+1  Jst ⊕But; 0 < t < T 

 s0 ∈ X 

where

◼ J  is  the  circulant  band  matrix,  each  line  of  which  contains  the  coeffi-
cients a1, …, an in the positions corresponding to the neighborhood . 

◼ B is an n⨯2 matrix that represents the control operator. 

◼ ut  ul
t, ur

t   is  the  control  matrix  at  time  t  consisting  of  a  two-compo-

nent vector in this particular case. 

Theorem 2. Kalman condition for controllability. 

A  one-dimensional  linear  CA  is  regionally  controllable  via  bound-
ary actions if and only if: 

Rank(Mc)  RankB JB J2B…JT-1B  T  N - 1.

Where T is the time horizon, N is the size of the CA lattice and J is
the Jacobian matrix. 

Proof. Let s0  be the initial configuration  of . Assume that the CA is

regionally  controllable  in  ω1  by  acting  on  cl  such  as  ω1 ⊂ ω  and

ω1  ω - {cl},  then  a  sequence  of  control  ul
t, ur

t  exists  such  as

t  0, …T - 1. By using 

st+1  Jst ⊕But (5)

it follows that 

s1  Js0 ⊕Bul
0

s2  Js1 ⊕Bul
1

s2  JJs0 ⊕Bul
0 ⊕Bul

1

s2  J2s0 ⊕ JBul
0 ⊕Bul

1

s3  Js2 ⊕Bul
2

s3  JJ2s0 ⊕ JBul
0 ⊕Bul

1 ⊕Bul
2

s3  J3s0 ⊕ J2Bul
0 ⊕ JBul

1 ⊕Bul
2.
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Therefore: 

sT  JTs0 + B JB J2B…JT-1Bul
T-1 ul

T-2…ul
0
tr
.

We define the controllability matrix Mc:

B JB J2B…JT-1B.

We get the regional controllability when

Rank(Mc)  T.

For peripheral linear CAs, we also know that in order to be able to
change any state of region ω1  {c1, c2, …, cN} from one boundary cl
(if the CA is left-linear), the time T  should equal N - 1 [25], where N
is the size of the CA. Hence, we can get that: 

Rank(Mc)  T  N - 1.

Now  suppose  Rank(Mc)  T  N - 1  where  Rank(Mc) 

dim(Image(Mc)); then for each initial configuration  s0, we can associ-

ate a desired configuration sd. Hence the proof. □ 

Remark 1.  It  is  difficult  to  develop  algorithms  to  decide  whether  a
generic  rule  is  controllable.  But  for  linear  rules  or  peripherally  linear
ones (that depend linearly on a peripheral site), this can be done itera-
tively: the least external site can control a site in the target region, flip-
ping  its  value  if  wrong.  And  then  this  can  be  repeated  for  all  sites  to
be controlled. 

Figure 1. Control  of  the  region  ω  by  applying  the  control  on  one  boundary

c1. The change in the initial condition on the controlled cell c1  will be propa-

gated to the cell c4 at time T  3.

Example 1. Consider  the  elementary  cellular  automaton  (ECA)
rule�150.  We  suppose  that  we  act  only  on  the  left  boundary  cell  of  a
region  ω  {c10, …, c30}  and  show  that  there  exists  a  sequence  of

controls u  ucl
0 , …, ucl

T-1 that steers the system in ω from the initial

configuration  to  a  desired  one  constituted  of  ones,  sd  1, …, 1  at

time T  39.
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(a) (b)

Figure 2.  The evolution of CA rule 150 (a) with and (b) without  the applica-
tion of the left boundary controls. 

Alternative Methods to Kalman Condition for Regional 
Controllability of Cellular Automata

2.4

The  notion  of  controllability  was  identified  by  Kalman  as  one  of  the
central properties determining system behavior. His simple rank condi-
tion  is  prevalent  in  the  analysis  of  linear  systems.  In  this  section,  we
aim at exploring new approaches to prove the regional controllability
of CAs in more general cases.

Markov Chains Approach for Controllability 2.4.1

The  first  method  comes  from  the  idea  that  CAs  and  Markov  chain
modeling  are  of  great  interest  when  merged  and  applied  in  practical
situations. The evolution of all possible configurations of a probabilis-
tic CA can be written as a Markov chain. Since deterministic CAs are
limit  cases  of  probabilistic  ones,  they  also  can  be  seen  as  particular

Markov  chains.  A  Markov  chain  such  that  for  some  t,  Mj > 0  for  all
i, j is said to be regular, and this implies that any configuration  can be
reached  by  any  configuration  in  time  t.  The  evolution  of  a  controlled
CA  can  be  seen  as  a  Markov  chain  where  the  states  are  the  possible
configurations  of  region  ω.  Two  CA  configurations  restricted  to  the
target region ω, s0 ω  and s1 ω  are related to each other if there exists

a boundary control l, r such that ps0, s1
 1, where ps0, s1

 denotes the

probability for jumping from s0  to s1  in one step. In that way, the so-

called  transition  matrix  can  be  constructed  in  order  to  describe  and
analyze a Markov chain.

Example 2. Consider  the  CA  rule  150  and  its  transition  matrix  and
associated graph, as shown in Figure 3. 
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(a) (b)

Figure 3. (a) The transition matrix 150 for ω  3. (b) Graph of 150.

Theorem 3. A CA (linear or nonlinear) is regionally controllable if and

only if there exists a power of matrix T
 such that all the components

are strictly positive. 

Graph Theory Approach for Regional Controllability of Cellular 
Automata

2.4.2

Markov  chains  can  be  described  using  directed  graphs  where  the
nodes  represent  the  different  possible  states  and  the  edges  represent
the  probability  of  the  system  moving  from  one  state  to  the  other  in
the  next  time  instance.  The  graph  theory  seems  to  be  a  good  and
appropriate  tool  to  study  the  problem  of  regional  controllability  of
CAs.  We  give  the  important  characterization  result  in  terms  of  graph
theory.

Theorem 4. A CA is regionally controllable if and only if there exists a
t such that the graph associated to the transformation matrix t

 con-

tains  a  Hamiltonian  circuit;  that  is,  a  circuit  of  a  graph  G  V, AR

is  a  simple  directed  path  of  G  that  includes  every  vertex  exactly
once [17]. 

Observability and Reconstructibility of Cellular Automata3.

Introduction to Observability and Reconstructibility3.1

Observability, as defined by Kalman [5, 6], allows us to determine if a
system is observable by one or more sensors, that is, if it is possible to
reconstruct  the  state  of  the  system  based  on  the  measurements  of
these sensors. This criterion makes it possible to choose and place effi-
ciently the different sensors needed for the observation. Once the sen-
sors  are  placed  so  that  they  can  observe  the  system,  it  is  necessary  to
build  the  observer,  an  entity  that  estimates  the  state  of  the  system
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from the measurements of the sensors. As the observability criterion is
verified, we know that such an observer exists.

The  estimated  state  of  the  system,  denoted  z,  is  constructed  from
the  y  measurements  taken  by  the  sensors  and  from  the  dynamics  of
the physical system. Its mathematical description is similar to the aug-
mented  definition  (equations  (1)  and  (2))  of  the  physical  system
except  for  the  addition  of  an  output  error  feedback  via  the  observer
operator L. The estimated state dynamics satisfy therefore 

 z

(t)  Az(t) +Ly(t) - y(t) +Bu(t); 0 < t < T

 y(t)  Cz(t) 

 z0  z0 ∈ DA. 

(6)

The L operator represents the process by which the estimated state
converges  toward  the  state  of  the  system;  the  way  it  is  constructed
influences the performance or the robustness of the observer. 

In  most  studies,  observability,  and  by  extension  all  the  aspects
related to observation, are studied through controllability by the prin-
ciple of duality that binds one to the other [5]. In this section, we will
pay  particular  attention  to  the  use  of  observation  for  monitoring  and
estimation of initial state for complex systems modeled by CAs, specif-
ically  autonomous  CAs,  that  is,  those  that  are  not  controlled

(∀ t ∈ 0, T, u(t)  0).  In  the  following,  we  present  separately  our

study on CA monitoring and CA initial state estimation. The first con-
sists  of  determining  the  current  state  of  the  system,  while  the  second
focuses  on  finding  out  the  initial  state.  These  two  notions  are  called,
respectively,  reconstructibility  and  observability  [26].  The  latter  is
stronger  than  the  former  because  if  the  initial  state  can  be  estimated,
then  it  is  possible  to  compute  the  current  state  from  this  initial  state.
Reconstructibility is rarely addressed in the study of linear continuous-
time  invariant  (LTI)  systems  or  continuous-time  DPS  because  of  its
equivalence to observability (which is not valid any longer for discrete-
time  systems;  see  [27]).  It  is,  however,  starting  to  be  investigated  in
the case of the Boolean control network [26, 28]. 

Observability and Reconstructibility of Cellular Automata3.2

CAs  are  mathematical  models  where  time,  space  and  state  are  dis-
crete. This total discretization prevents the direct use of the observabil-
ity  and  controllability  results  of  continuous-time  control  theory,  or
even  discrete-time-only  control  theory.  Indeed,  the  existence  and
uniqueness  of  an  inverse  requires  the  state  space  to  be  a  field  (in  the
mathematical  sense).  To  build  a  finite  (or  Galois)  field  from  only  a
finite  number  of  possible  state  values  requires  this  number  to  be
prime.  On  the  other  hand,  the  finiteness  of  the  state  values  makes  it
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possible  to  use  discrete  mathematics  results  such  as,  for  instance,
those  from  graph  theory.  The  behavior  of  the  system  can  be  repre-
sented in the form of a graph, called a configuration  graph, that links
the different possible states of the system [29]. This discrete approach
to observability and controllability is recent in control theory, but not
in  computer  science  nor  in  applied  mathematics.  There  are  numerous
methods of state reconstruction, but they are not based on observabil-
ity and reconstructibility criteria.

From  Section  2.2.2  given  the  global  dynamics  (F)  and  observation
(H)  operators,  a  sequence  of  output  Θ  around  a  time  horizon  T  can
be reconstructed from the initial state, through some extended observ-
ability (or Gramian) operator: 

ΘT : s0 ↦ {θ0, θ1, …, θT-1}  Hs0, HFs0, …, HFT-1s0 (7)

where  ΘT  represents  the  T  first  outputs  of  the  initial  configuration

s0 ∈ X.  Plenet  et  al.  [29]  proposed  a  definition  for  the  observability

and  reconstructibility  that  can  both  be  mathematically  linked  to  the
property of injectivity of the output sequence ΘT.

Definition 4. Observability and reconstructibility. 

Let  A  be  a  CA  with  a  global  transition  function  F  and  an  output
sequence ΘT; then the two following propositions hold:

◼ A is observable 
⟺ ∀ s0

′ , s0
′′ ∈ X, ΘT(s0

′ )  ΘT(s0
′′)⟹s0

′  s0
′′. 

◼ A is reconstructible
⟺ ∀ s0

′ , s0
′′ ∈ X, ΘT(s0

′ )  ΘT(s0
′′)⟹FT(s0

′ )  FT(s0
′′).

From Definition  4, it is clear that both can be used to reconstruct a
configuration  from the measurements, as every output sequence is the
result  of  only  one  configuration.  Moreover,  each  proposition  deals
with  a  specific  configuration:  the  observability  deals  with  the  initial
configuration  (s0),  whereas  the  reconstructibility  deals  with  the  cur-

rent  configuration  (st  FT(s0)).  In  addition,  observability  is  stronger

than  reconstructibility,  as  sT  can  be  calculated  from  s0;  thus  the

observability must be assessed before the reconstructibility. 
The observability of CAs is scarcely studied, even for systems with

stationary  sensors.  The  following  sections  present  two  methods  to
determine  CA  observability:  a  function-based  method  and  a
configuration-based  method.  In  the  first,  the  algebraic  properties  of
the  transition  function  (local  or  global)  are  studied  to  derive  observ-
ability  properties.  In  the  second,  the  discrete  aspect  of  CAs  is
combined  with  the  notion  of  relationship  between  the  automata  con-
figurations to get information about the observability of the CA. The
function-based method has the advantage of a linear complexity with
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the number of cells, since each cell has a finite  number of states. Con-
versely,  the  configuration-based  method  has  exponential  complexity,
since  the  number  of  configurations  depends  on  the  number  of  cells

and the number of states (e.g., a Boolean CA with N cells has 2N  pos-
sible configurations). 

Observability of Cellular Automata: Kalman Condition3.2.1

This  section  presents  a  function-based  method  to  determine  observ-
ability  for  affine  CAs  through  the  affine  property  of  the  transition
function.  It  relies  on  the  Kalman  condition  presented  in  Theorem  1,
and  on  the  controllability/observability  duality.  A  CA  is  said  to  be
affine  if its F transition function is affine;  that is, it uses only addition
and  multiplication  by  constants.  The  transition  function  can  then  be
expressed with a linear map and a constant vector.

Definition 5. Affine CAs. 

If  a  CA  and  an  output  operator  are  affine,  then  F  (respectively  H)
can be written in the form of a linear map plus a constant, which can

in turn be written as a matrix A and a constant η  F0 (respectively

C and γ  H0). The evolution of the CA can therefore be written as: 

st+1  F  Ast + η

θt Cst + γ

s0 ∈ X.

(8)

Definition 6. The  output  sequence  ΘT  is  also  an  affine  map  composed

with  OT  the  observability  matrix  (the  dual  of  the  controllability

matrix Mc presented in Definition 2) and ΓT a constant vector

ΘT 

 θ0 

 θ1 

 … 

 θT-1 



 C0 

 CA 

 … 

 CAT-1
 

OT

s0 +

 γ 

 CJ0η + γ 

 … 

 CJT-2η + γ 

ΓT

 OTs0 + ΓT (9)

with Jt  ∑k0
t Ak.

The Kalman rank condition for the observability of an affine  CA is
the following: 

Theorem 5. Kalman rank condition. 

An affine CA F, observed by an affine output operator H, is observ-
able under a time horizon T, if and only if OT is full rank. 

This  Kalman  rank  condition  is  usually  used  for  continuous  and
discrete  LTI  systems  and  was  extended  to  affine  CAs  [18,  29].  A
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corollary  is  also  given,  allowing  the  reconstruction  of  the  initial  state
from  the  measurements  by  inverting  (or  pseudo  inverting)  the  full
rank matrix OT. 

Corollary 1.  If  the  Kalman  criterion  is  verified,  then  it  is  possible  to
recover the initial state by inverting the observability matrix: 

x0  OT
† (YT - ΓT). (10)

Theorem 5 and Corollary 1 are applicable for an observable system
but  can  be  extended  in  the  case  of  a  reconstructible  system  with  the
following theorem and corollary. 

Theorem 6. Reconstructibility condition. 

An affine  CA F, observed by an affine  output operator H, is recon-
structible if and only if there exists a finite time horizon T such that: 

kerOT ⊂ ker AT. (11)

Corollary 2. If the reconstructibility criterion is verified,  then it is possi-
ble to find a matrix R such that: 

xT  R(YT - Γ) + JT-1η. (12)

These  two  theorems  and  corollaries  allow  us  to  assess  the  observ-
ability  and  reconstructibility  only  for  affine  CAs.  This  class  of
automata  is  in  fact  quite  small.  For  instance,  among  Wolfram’s  256
elementary CA, only 16 are affine:  the eight additive rules (0, 60, 90,
102,  150,  170,  204,  240)  and  their  complementary  rules  (255,  195,
165, 153, 105, 85, 51, 15). Therefore, a second method has been pro-
posed to investigate observability and reconstructibility of CA control
systems. It is presented hereafter. 

Observability of Cellular Automata: Configuration Relation3.2.2

This  configuration-based  method  makes  use  of  a  binary  relation
representation  of  the  F,  H  and  Θ  operators,  respectively  denoted  ℛF,

ℛH and ℛΘ. 

Definition 7.  The  transition  binary  relation  ℛF  associated  to  the  global

transition function F is defined as: 

ℛF  (s0, s1) s0, s1 ∈ X and s1  F(s0). (13)

The  binary  relation  can  be  represented  in  the  form  of  a  matrix
called a logical matrix. 

Definition 8.  The  logical  matrix  M  associated  to  a  binary  relation
ℛ ∈ X⨯Y is defined as: 

Mi,j 
1 xi, yj ∈ ℛ

0 else.
(14)
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This  binary  relation  representation  allows  us  to  assess  the  observ-
ability  and  reconstructibility  of  all  kinds  of  CAs,  independently  of
their  algebraic  nature.  From  Definition  4,  it  is  clear  that  the  observ-
ability  and  the  reconstructibility  are  related  to  the  injectivity  of  ΘT.

This  property  can  be  studied  through  the  relation  ℛΘ  for  the  observ-

ability and ℛΘTF
-T  (constructed from ℛΘ  and the converse of ℛFT ) for

the  reconstructibility.  This  results  in  the  following  theorem  using  the
logical matrices of such relations: 

Theorem 7.  A  CA  is  observable  (reconstructible)  if  the  logical  matrix
related to the binary relation ℛΘ (ℛΘTF

-T ) has at most one nonzero ele-

ment per column. 

These  logical  matrices  have  very  few  nonzero  elements,  making  it
possible  to  use  sparse  matrices  to  represent  them  numerically.  This
reduces not only the memory allocation but also the algorithmic com-
plexity for the assessment of observability and reconstructibility. 

The  main  problem  with  this  method  is  the  exponential  increase  in
the  number  of  configurations  in  relation  with  the  number  of  cells.
Even  when  the  algorithms  used  to  evaluate  observability  are  opti-
mized, the exponential complexity coming from the number of config-
urations  makes  this  method  less  efficient  when  the  particular  case  of
affine CAs is investigated. 

Observation of Distributed Parameters Systems through 

Mobile Sensors
3.3

In  the  case  of  “classic”  observation  problems,  only  the  sensors’  types
are chosen according to the natures of the output variables to be mea-
sured  and  the  state  variables  to  be  observed  (e.g.,  a  displacement,
velocity  or  force  for  a  mechanical  system).  But  for  spatially  dis-
tributed  systems,  the  position  of  the  sensors  also  becomes  a  crucial
problem  in  the  design  of  the  observer.  The  placement  of  sensors
remains,  even  today,  a  major  concern  in  many  areas  such  as  water
networks,  forest  fire  detection  and  telemonitoring  of  human  physio-
logical  data.  Sensor  placement  is  often  related  to  the  wireless  sensor
network  (WSN)  research  area  [30,  31],  which  studies  strategies  to
place sensors to get optimal information about an observed system.

The  main  difference  with  our  approach,  based  on  control  theory
and observation, is that WSNs do not seek to reconstruct the state of
the  system  using  its  dynamics.  Sensor  placement  is  carried  out  using
different  algorithmic  methods  such  as  genetic  algorithms  [32]  and
Bayesian optimization. In these studies, the sensors are generally con-
sidered  fixed.  This  reduces  their  performance  for  the  observation  of
spatially distributed systems. Indeed, the use of mobile sensors makes
it  possible  to  obtain  observability,  whereas  stationary  sensors  would
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have failed [29]. However, this poses new problems such as the calcu-
lation  of  sensor  trajectories,  which  is  still  under  investigation.  Some
researchers  are  directly  studying  the  problem  of  observability  with
mobile  sensors.  Demetriou  et  al.  [34,  35]  and  Hussein  et  al.  [36]  are
considering  networks  of  mobile  actuators  and/or  sensors.  Related
problems occurred when mobile sensors (or actuators) are considered,
such  as  obstacle  avoidance  or  formation  coordination  to  get  maxi-
mum  coverage.  Such  problems  are  intensively  investigated,  indepen-
dently  from  the  observation  problem.  For  instance,  among  the  many
different  existing  methods  to  handle  collision  avoidance  for  mobile
sensors, we can cite the predictive control approach [37] or the poten-
tial field approach [38]. 

As  the  sensors  are  moving  in  space,  the  cells  they  observe  change
through  time.  The  output  operator  C  therefore  becomes  time  depen-
dent  (it  may  then  be  denoted  C(t)).  The  observability  criteria  become
time dependent and it is therefore necessary to evaluate the observabil-
ity  for  all  the  different  sensor  trajectories.  The  two  observability
conditions  presented  in  Section  3  can  both  be  assessed  with  mobile
sensors  but  for  only  one  trajectory  at  a  time.  They  can  be  used  as  a
constraint  in  constrained  trajectory  planning  to  find  a  mobile  sensor
trajectory that respects observability and other constraints external to
the observability problem, such as obstacle avoidance. This trajectory
planning  can  be  carried  out  either  prior  to  system  deployment  or  in
real time. 

Discussion4.

Controllability  and  observability  are  two  fundamental  properties  that
characterize the behavior of a given system and determine the relation-
ships  between  state  and  input  and  output  variables.  As  the  real
physical systems become more and more complex, the need to design
controllers  and  observers  for  complex  nonlinear  systems  is  real.  The
study of controllability of linear systems was first  performed in detail
by  Kalman  and  his  collaborators  in  [6].  The  first  part  of  this  paper
discussed  an  analog  of  the  Kalman  controllability  rank  condition  for
systems  described  by  cellular  automata  (CAs)  considered  as  the  dis-
crete  counterpart  of  partial  differential  equations  (PDEs).  It  also
explored  some  alternative  approaches  to  this  condition  that  could
work  for  linear  and  nonlinear  CAs.  The  paper  focused  on  the  special
case  of  regional  controllability  of  Boolean  one-dimensional  CAs.  A
necessary  and  sufficient  condition  for  regional  controllability  of  CAs
was  proved  through  original  approaches  such  as  Markov  chains  and
graph theory.

This work can be extended in many tracks that can explore in par-
ticular  the  case  of  non-Boolean  CAs  and  the  highly  nonlinear  CAs.

408 S. El Yacoubi, T. Plénet, S. Dridi, F. Bagnoli, L. Lefèvre and C. Raïevsky

Complex Systems, 30 © 2021



The  case  of  large  lattice  size  is  also  to  be  considered.  The  examples
considered  concerned  only  a  very  limited  number  of  cells  because  of
the  enormous  computational  cost  generated  in  terms  of  spatial  and
temporal  complexity.  The  control  obtained  is  generally  not  unique  at
this  stage,  and  the  problem  of  optimality  will  be  addressed  later.  A
first  problem  of  regional  controllability  in  minimum  time  is  currently
under study. 

Another  perspective  concerns  the  investigation  of  more  adequate
algorithms for the calculation of preimages that could be of low com-
plexity, depending on the dimensions of the lattice. 

For the observability issue, two methods for assessing observability
and reconstructibility were presented. The first, using the Kalman con-
dition, only applies to affine  CAs, while the second allows us to study
nonlinear  CAs,  but  its  exponential  complexity  makes  it  difficult  to
use.  Several  approaches  can  be  considered  to  reduce  the  algorithmic
complexity  linked  to  the  calculation  of  observability  and  recon-
structibility. The first  would be a new function-based method but for
nonlinear  CAs.  Previous  strategies  already  used  in  the  case  of  linear
continuous-time  invariant  (LTI)  systems,  such  as  the  use  of  lineariza-
tion  or  the  use  of  nonlinear  Jacobians,  could  be  considered.  The  sec-
ond method to make observability and reconstructibility computation
tractable  on  CAs  with  a  large  number  of  cells  is  to  use  multiple
observers.  Each  of  these  smaller  and  simpler  observers  is  then  in
charge  of  the  observation  of  a  part  of  the  whole  cellular  automaton
(CA).  The  limited  number  of  possible  configurations  for  each
observed region of the CA implies a dimensional reduction, making it
tractable  to  determine  observability  or  reconstructibility  on  these
parts of the CA. For example, with a Boolean controller of 1000 cells,

there  are  21000  configurations.  If  this  automata  is  observed  by  10
observers of 100 cells, then we must evaluate 10 times the observabil-

ity  for  2100  configurations.  However,  a  new  notion  of  observability
will still have to be defined  to account for these distributed observers
in  order  to  ensure  that  the  local  observability  of  the  local  observers
can be combined to obtain the observability of the whole system. 

The  use  of a  mobile  sensor  network  not only  ensures  observability
where  static  sensors  would  have  failed,  but  also  makes  the  topology
of  the  observation  network  dynamic  and  allows  the  sensors  to  focus
on  a  specific  part  of  the  system.  However,  the  use  of  mobile  sensors
coupled with the distributed observers requires strong coordination of
the sensors. These two criteria make it extremely complex to calculate
trajectories  under  constraints  using  the  classical  methods  of  control
theory.  One  approach  for  improvement  would  be  to  use  a  notion
already  well  studied  in  computer  science:  the  multi-agent  systems
(MAS)  paradigm.  The  agents  (here  observers  and  sensors)  are
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autonomous  and  communicate  with  each  other.  Each  agent  would
calculate its own trajectory according to the constraints (observability
and other) and the information exchanged between the agents. In the
same  way  that  the  distributed  observer  manages  to  reduce  the  com-
plexity  of  the  observability  calculation  by  distributing  the  task
between several entities, the use of MAS produces the same effect but
with respect to the trajectory calculation. The organization of the net-
work  and  the  communications  between  agents  will  have  to  be  care-
fully  designed  to  ensure  global  observability  of  the  system  based  on
local computations by the agents. 

It  should  be  noted  that  the  controllability  and  observability  prob-
lems  were  considered  separately  in  this  paper.  For  controllability
issues,  we  assumed  that  the  state  of  the  system  can  be  measured
at�each  time,  and  for  observability  problems,  the  system  is  supposed
to  be  autonomous.  The  global  objective  of  considering  a  complete
state  equation  with  control  and  observation  will  be  investigated  in
future work. 
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