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Abstract. In this paper a Matlab solver for constrained nonlinear equations is presented. The code, called
STRSCNE, is based on the affine scaling trust-region method STRN, recently proposed by the authors. The
approach taken in implementing the key steps of the method is discussed. The structure and the usage of STRSCNE
are described and its features and capabilities are illustrated by numerical experiments. The results of a comparison
with high quality codes for nonlinear optimization are shown.
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1. Introduction

We consider the problem of the numerical solution of bound-constrained nonlinear systems.
It is standard to express these problems as

F(x)=0, xeQ, (1.1)
where F(x) = (F;(x), ..., F,(x))T and
Q={xeR"s.t.] <x <u} (1.2)

The vectors [ € (RU —00)" and u € (R U co)" are specified lower and upper bounds
on the variables such that €2 has a nonempty interior. We assume that F is continuously
differentiable in an open set X C R” containing the n-dimensional box 2.

Problems consisting of a nonlinear system F'(x) = 0, nonlinear inequality constraints
and, possibly, variable bounds can be stated as (1.1) by introducing bounded slack variables.
It is important to note that the formulation (1.1) allows to remove discontinuities when the
mapping F is not defined in the whole space R".
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Nazionale” and Gruppo Nazionale per il Calcolo Scientifico.
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Frequently, systems of the form (1.1) result from different areas of scientific and engi-
neering computations. For example, they arise when F(x) = 0 models a real life problem
but not all the solutions of the model have physical meaning or when solutions which are
expected to lie in a specific area have to be sought. In these cases, suitable bounds (1.2) can
be fruitfully imposed. Significative nonlinear systems with naturally positive solutions can
be found in the study of concentration of a chemical species, dimension of mechanical link-
ages, etc. [10, 21]. Also, there is a frequent need to deal with bound-constrained nonlinear
systems in chemical process modeling and in the steady-state simulation [4, 5, 24, 25].

It is worth noting that a possible approach to (1.1) consists in reformulating it as a
bound-constrained nonlinear least-squares problem:

. ! 2
min fx) = min EIIF(X)Ilz- (1.3)

Nonlinear least-squares problems have been a fruitful area of study [7, 12, 18, 23] and
many reliable and efficient software packages designed for these problems can be em-
ployed to solve the reformulated problem (1.3). Major numerical software libraries such
as NAG [22] and the Matlab Optimization Toolbox [20] contain robust solvers for bound-
constrained nonlinear least-squares problems.

Nevertheless, well known important differences between nonlinear systems and opti-
mization induce to study adequate algorithms for solving (1.1) in its original form. The
recent activity in this area is documented, among the others, in [15, 16, 19, 26] where
effective algorithms for (1.1) are given. These methods fit in the wide class of globally
convergent Newton-like methods. In particular, [15, 16, 19] are based on the linesearch ap-
proach while a trust-region approach is employed in [26]. All these methods are supported
by theoretical convergence analysis and illustrative computational tests show their good
numerical performance. Nevertheless, we are not aware of public domain software based
on the algorithms given in [15, 16, 19, 26].

Recently, the authors generalized the trust-region strategy for unconstrained systems
of nonlinear equations to bound-constrained systems and proposed in [1] a new reliable
method for the numerical solution of (1.1). This method, named STRN (Scaled Trust-
Region Newton) method, handles the bounds in a general and reliable way and generates
feasible iterates only. Thus, it avoids infeasible solutions and can deal with problems where
F is not defined outside €2. Theoretical results ensure that the method exhibits global and
locally fast convergence properties. More precisely, in [1] it is shown that the convergence
of the STRN method to a solution of (1.1) does not depend in a critical way on the choice
of the initial guess and the ultimate rate of convergence to a solution within €2 is quadratic.

The STRN method is especially well suited for small and medium size problems and has
been successfully used in the solution of various type of representative constrained systems.
In particular, a large number of real-life problems was used to test its efficiency, robustness
and reliability [1, 2]. In [1] a comparison with the methods proposed in [15] and [19] was
carried out, too. The obtained results indicate that our method compares very well with such
procedures.

The purpose of this paper is to give a well developed iterative algorithm based on the
STRN method and describe its implementation in aMatlab solver called STRSCNE (Scaled
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Trust-Region Solver for Constrained Nonlinear Equations). This solver is freely accessible
through the web site: http://ciro.de.unifi.it/STRSCNE. With STRSCNE we intend
to provide a theoretically well-founded solver that could be a valid tool for the numerical
solution of (1.1).

The simplest usage of STRSCNE requires only a minimal description of the given problem
and a specification of the level of accuracy required. A finite difference approximation to
the Jacobian of F is provided by the code, freeing the user from computing the derivatives
of F. However, if the Jacobian of F is available in analytic form, the user can provide
the code to compute it. Several different output levels may be requested by the user. The
convergence history of the algorithm and a variety of diagnostic information allow the user
to be safeguarded against unsatisfactory approximations of the required solution.

Features and capabilities of STRSCNE have been tested by extensive numerical exper-
iments on a number of representative real life problems. Here, we summarize the results
obtained in the numerical solution of a set of bound-constrained nonlinear systems mod-
eling physical phenomena. A comparison with high-quality software for constrained non-
linear least-squares problem have been performed, too. To this end, the well-known codes
LSQNONLIN [20], EO4UNF [22] and our code are tested on the same set of problems. The
efficiency, robustness and reliability of the considered solvers are compared by using cri-
teria which are independent on the programming language used. Test results are presented
and analyzed. They indicate that STRSCNE turns out to be a competitive solver for bound
constrained nonlinear systems.

The organization of the paper is as follows. In Section 2 we explain the key steps of our
method and discuss their implementations. Section 3 presents the feature and the usage of the
STRSCNE code. In Section 4 we give a brief account of the codes used in the comparative
study and in Section 5 we show and discuss the results of the numerical experimentation.

1.1. Some notations

The subscript k is used as index for a sequence and when clear from the context, the argument
of amapping is omitted. Thus, for any function F, the notation Fj is used to denote F(x;) and
the i-th component of x; is denoted by x;,. The Euclidean norm of x € R" is denoted by || x||
and V f(x) is the gradient of the merit function f = % | F(x)|?, ie. Vf(x)=F'(x)T F(x),
where F’(x) is the Jacobian of F. Further, v(x) denotes the vector function with components
vi(x),i =1,...,n given by

vi(x)=x; —u; iIf(Vf(x)); <0 andu; < oo
vi(x)=x; —; if(Vf(x)); >0 andl; > —o0
vi(x) = —1 if (Vf(x)); <0 andu; = o0
vi(x)=1 if (Vf(x)); >0 andl; = —o0

(1.4)

and D(x) is the diagonal scaling matrix such that

D(x) = diag(Jvi(x)| 72, [ua0) 72 o (o) 7). (1.5)
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Note that although D(x) may be undefined on the boundary of , D(x)~! can be extended
continuously to it. We will denote this extension as a convention by D(x)~! for all x € Q.
We remark that if Q = R", D(x) is the identity matrix. Further, we write in#(2) for the
interior of 2. Finally, the symbol €, is used to denote the machine epsilon provided by the
Matlab function eps.

2. The algorithm and its implementation

The algorithm implemented in the STRSCNE code is based on the STRN method given in
[1]. The method generates a sequence of iterates {x;} belonging to the interior of €2 and
employs the merit function f. Ateach iteration, the following main steps must be performed.
First, a search direction is found by solving a suitable elliptical trust-region subproblem.
Then, a step along this direction is attempted and a trial point is obtained. An acceptance
mechanism is used to decide if the trial point should be retained as the next iterate and a
standard trust-region updating strategy completes the iteration step.

The convergence behaviour of the STRN method was investigated in [1]. The main
convergence results can be summarized by the following theorem.

Theorem 2.1. Let {x;} be the sequence generated by the STRN method, r > 0 and
L = U,in {x € Q|llx — x|l < r}. Assume that F' is Lipschitz continuous in L and
| F'(x)|| is bounded above on L. Then,
o if {xi} is bounded, then all its limit points are stationary points for the problem (1.3);
o if {x;} is bounded and there exists an isolated limit point x* such that F'(x*) is invertible
and F(x*) = 0, then
(a) || F¢]l = 0and x;, — x*;
(b) if the limit point x* € int(R2), then x;, — x* g-quadratically.

In the sequel we will give a detailed description of the key steps of the method and we
will sketch the implemented algorithm.

2.1. Computing a trial step

Let x; € int(€2) be the current iterate. In order to determine x|, a trial step py is computed
by solving the following elliptical trust-region subproblem

mpin{mk(p) SN Depll = Al 2.1

Here Ay is the trust-region size, Dy = D(x;) is the diagonal scaling matrix given in (1.5)
and my(p) is the quadratic model for the merit function f:

1 1 1
mi(p) = S IF{p+ Fl* = Equn2 + F'Flp+ EpTFk/TFk’p

1
=fi+Vip+ EPTFIETFIZP-
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We remark that the Newton step p;’ given by
Fpy = —F, (2.2)

solves (2.1) if Ay is large enough that || Dy pi | < Ay is verified.

On the other hand, if || Dy p,[(v || > A, we compute an approximate solution of (2.1) pro-
ceeding in the following way. First, we rescale the variable p so that the trust-region is
spherical in the scaled variable. In fact, by defining p = Dy p and substituting it in (2.1),
we obtain

R T L S G S N
minsiu(p) = fi + VA D p+ 35" (D D) b 23)
subjectto || pll < Ag.
From [7, Lemma 6.4.1], this problem is solved by
~ 1 T o = -1,
pr(w) = —(Dy ' F"FD" + ul)” D'V fi, (2.4)

for the unique & > 0 such that || pr(w)|| = Ag, unless || px(0)]] < Ay in which case the
solution of (2.3) is px(0). Note that p;(0) = ka,iv and denote p;(0) as ﬁ,’:’.

If Y1 = IIDep |l > Ax, we compute an approximate solution of (2.3) by using
the dogleg method ([23]). Following this strategy, the curved trajectory pi(u), 4 > 0 is
approximated with a path consisting of two segments. The first segment runs from the origin
to the unconstrained minimizer pj of /1, (p) along the steepest descent direction D, 'V fi:

o peval

= v fi. 2.5)
O EpevAP T

Su

while the second one connects p} to ﬁ,iv . The dogleg method approximates the solution py
to (2.3) by computing the minimizer of the model /71; along this path. Namely,

o { ADIV S|V il B = Ax
P+ —w(py — pY) otherwise,
where  is the positive solution of the following scalar quadratic equation
~u - N
|5+ = w(B = 5" = Af (2.6)
Finally, in order to come back in the original space and to compute an approximate solution
pr of (2.1), we simply put py = D ! 5. Note that for small values of Ay, the direction of

Pr 1s the scaled steepest descent direction d; given by

dy = =D’V fi. (2.7)
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The above discussion is summarized as follows.

Procedure 1. Let p,iv , V fr, Dy, Ay be given.
1. If | Depp || < Ay then
set px = p;¥ and stop.
2. Compute pj by (2.5).
3. If || p]| > Ay then
set pr = kD 'V fi/ID'Y fil
else
set py = Dipy
compute  solving (2.6) and set Py = pi + (1 — w)(PY — pY).
4. Put py = D,:lf)k.

2.2.  Accepting the step and updating the trust-region
Once we have computed a trial step py, we look for the next iterate x;; moving from x

along py. To ensure that x;4 stays within €2, we first compute the stepsize A(py) along py
to the boundary, i.e.

00 if @ =R"
Mpi) = min A if @ C R
where
li — Xk, U; — X, .
max -, —— ifpy, #0
A= Dk; Dk; :
00 if pr, =0

If AM(pr) > 1, then x; + py is within 2; otherwise, a step-back along p; is necessary to stay
within Q2. Namely, we consider the temptative iterate

Xe+1 = X + a(pr), (2.8)
where the trial step «(py) is defined by

o )_{Pk if A(pr) > 1 (2.9)
PEO= 1 maxt0, 1 — lpelA(pipe otherwise '

and 6 € (0, 1) is a fixed constant independent of k.

Itis standard in a trust-region framework, to seek for a new iterate that lies within the trust-
region and gives a sufficient reduction in the model. The sufficient reduction is quantified
in terms of the Cauchy point py, i.e. the minimizer of m; along the scaled steepest descent
direction d; given by (2.7), subject to satisfy the trust-region bound, i.e.

pi = wdi = =DV fi. (2.10)
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where 1, = argmin,~o{m(tdy) : ||t Didr|l < Ax} (see [23]). It can be easily derived ([23,
p. 70]) that t; has the following form

DIV |
%, = min L2 szH - f’“ } @.11)
|E D2V £ 1DV e
Then, we test if the step a(py) satisfies the following condition:
m(0) — my(a(pr))
¢ _ > B, 2.12
pk(pk) mk(O) —mk(a(pli)) - ﬂl ( )

where B € (0, 1) is a given constant.

Specifically, condition (2.12) guarantees that the step a(py) gives a sufficient reduction
in the quadratic model m; with respect to the Cauchy point p;. We remark that the solution
of the trust-region subproblem (2.1) satisfies (2.12) but if a step-back is performed, i.e.
a(pr) # Pk, (2.12) is not guaranteed to hold.

To complete our rule for accepting the step a(pi), we impose a good agreement be-
tween the model function m; and the objective function f testing the following additional
condition:

fG) — fOo + a(pr)

f _
Pi (pr) = me©) — mea(pe) > B, (2.13)

where 8, € (0, 1] is a given constant.

Conditions (2.12) and (2.13) are forced as follows. If (2.12) does not hold, we leave the
current p; and set py = p;. Then, we proceed as in the classical trust-region strategies.
Namely, if condition (2.13) holds, x; 4+ a(py) is the next iterate. Otherwise, the trial step
ao(py) is rejected, the trust-region size is decreased by setting

Ay = min{o A, a2 | Dra(p)ll}, (2.14)

for some o, oy such that 0 < o; < @y < 1 and a new trial step is computed by using
Procedure 1.

The above trial-step acceptance mechanism does not break down, i.e. an acceptable
a(py) is determined within a finite number of reductions of the trust-region size (see [1,
Lemma 3.4)).

Once the step o(py) is accepted, the trust-region radius is updated according to standard
rules. Itis well known that if the trust-region radius is too small compared with the agreement
between the model and the merit function, the method misses an opportunity to take a
substantial improvement in the estimate of the solution. Therefore, at the end of each
iteration, we test the following condition

fG) — fOox + a(pr) > Bs, (2.15)
my(0) — my(o(pr))

p,‘f (pe) =

where B3 € (0, 1] is a given constant such that 8, < 3 < 1.
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If (2.15) holds, we allow possible increasing in the radius of the trust-region and we
set

Ags1 = max{A, 2|| Dra(pi)ll},

otherwise the trust-region radius is kept the same.

2.3.  The implemented algorithm

In the previous subsections we provided a detailed description of the major points to be
addressed in the implementation of our method and now we give the algorithm that is the
core of the STRSCNE code.

Algorithm: The Scaled Trust-Region Solver

o Inizialization:
Given xg € int(2), Ag > 0,0 € (0,1),0 <a; < < 1,
B1,€(0,1],0< B < B3 < 1.
eFork=20,1,...do:

1. Compute Fy.
Check for convergence.
Compute the matrix Dy by using (1.5).
Compute the matrix F}.
Compute p,f’ by solving the linear system (2.2).
Repeat
6.1. Compute an approximate solution py of (2.1) by using Procedure 1.
6.2. Compute 7; by (2.11) and the Cauchy point p; from (2.10).
6.3. Compute a(py) and a(py) by using (2.9).
6.4. Compute p;(py) from (2.12).
6.5. If p;(pr) < B1 then set p; = py.
6.6. Set A} = Ay and decrease Ay using (2.14).
6.7. Compute ,o,{ (pr) from (2.13).
Until o (pi) = B2
7. Set Xip1 = X + a(pr), A = AL
8.1f o/ (pi) = B3 then

set Agy = max{Ay, 2|| Dra(pi)ll}

AN

else
set Agr1 = Ag.

In our implementation convergence is declared when the following condition is met:
| Fit1ll < atol 4+ rtoll Fyll, (2.16)

where atol and rtol are user supplied tolerances.
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On the other hand, failure is declared if one of the following situations occurs:

Failure (1): a maximum number of iterations maxit are performed.
Failure (2): a maximum number of F-evaluations maxnf are performed.
Failure (3): the trust-region size is reduced below \/,,,.

Failure (4): the relative change in the function value satisfies

[ Fir1 — Fill < 100€p || Fi|l-
Failure (5): the norm of the scaled gradient of the merit function becomes very small, i.e.
ID'V fi| < 100,

Failure (6): the scaling matrix D; cannot be computed because an overflow would be
generated.

We remark that Failure 4 may indicate that the method did not manage to escape from a
local minimizer of the merit function which is not a solution of (1.1), Failure 5 indicates that
the sequence is approaching a minimum of f in 2 and Failure 6 occurs when the sequence
is approaching a bound.

It should be stressed that we have striven to make STRSCNE as simple as possible. The
simplest use of STRSCNE requires a minimal description of the problem: a user-supplied
function that evaluates F' and the vectors / and u that specify the lower and upper bounds.
Further, the user must supply the initial guess x, the stopping tolerances atol and rtol,
the maximum number of allowed iterations maxit and F-evaluations maxnf. Regarding
the initial trust-region radius, the user can supply a value for A or can adopt one of the
following choices:

Ag=1, or Ag=|Dy'Vfl.

The Jacobian matrix F’ can be either evaluated analytically by a user-supplied function
or approximated using finite-differences formula provided by the code. More precisely, in
the latter case, the Jacobian matrix F; is approximated as follows:

1 .
[F{]; ~ ;(F(xk +hjej))—F), j=1,...,n,
j
where [F}]; denotes the j-th column of F}, e; is the j-th vector of the canonic basis and

{,/_em if x;, =0
h; =

\/asign(xk/) max{|xk/ , ||xk||1/n} otherwise .

If the point x; + A je; is not feasible, the backward approximation

1
[Fl; ~ ;(F(xk —hjej) — Fp),
J

is used.
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We recall that the code performs one Jacobian evaluation at each iteration. Hence, if
the matrix F, is approximated by finite differences, n F-evaluations are required at each
iteration. At this regard, we remark that these functions evaluations are not taken into
account in the limit number maxnf of F-evaluations.

The algebraic linear systems are solved by using the left matrix divide arithmetic operator
provided by Matlab. This way, at each iteration, the specific algorithm employed to solve
the linear system exploits the structure of the coefficient matrix F}.

The STRSCNE code returns a termination flag that indicates success or failure of the
procedure. No matter how it stops, it returns the current iterate and an array containing the
following information:

the number of performed iterations;

the number of performed F-evaluations;

the 2-norm of the current value of F(x);

the 2-norm of the current value of the scaled gradient D~ (x)V f(x);
— the total number of reductions of the trust-region radius.

Moreover, the convergence history of the algorithm is produced and stored in a matrix.
For each iteration such matrix contains the 2-norm of the nonlinear residual Fj, the number
of trust-region radius reductions, the step back taken to stay feasible, and the ratio of two
successive nonlinear residuals.

Finally, the user can request further diagnostic information which includes the gradient
of f, the rank and the singular values of the Jacobian matrix at the final iterate. These
two latter quantities are computed using the Matlab functions rank and svd and can be
useful in case of Failures (4) and (5) to establish if the algorithm got stuck onto a minimum
of the merit function f. Further, such information can be used to investigate whether a
computed solution within €2 approximates an isolated zero of F. In practice, it may happen
that || F|| is small at an iterate x; that is not an approximation of a zero of F, but simply
an approximation of a minimum ¥ of f. In this situation ¥ can be wrongly considered as
a solution of (1.1); on the other hand, if ¥ € in#(2) and F(X) # 0, then F'(X¥) must be
singular.

We close this section indicating the fixed choices of the constants involved. After extensive
computational experiments we decided to set: = 0.99995, a; = 0.25, 5 = 0.5, 8; = 0.1,
B =0.25, B3 =0.75.

2.4.  Convergence to a solution on the boundary of 2

Let us consider the case in which problem (1.1) has a solution x* that lies on the boundary of
the feasible set. Theorem 2.1 states that if x* is a limit point of the sequence {x;} generated
by the STRN method and if F’(x*) is non singular, then {x; } converges to x*. Further, when
x* lies in the interior of €2 the local convergence rate is quadratic. If no assumptions on the
position of x* are made, local convergence properties of the STRN method are summarized
by the following result.
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Theorem 2.2. Let {x;} be the sequence generated by the STRN method, and & be such
that oz(p,{v) = {kpfcv. Assume that there exists a solution x* of (1.1) such that F'(x*) is
nonsingular. If the sequence {x;} generated by the STRN method converges to x* and
eventually p,iv solves (2.1) and satisfies (2.12) and (2.13), then

(a) If & is bounded away from zero, || F(xp)|| — 0 g-linearly.

®) If ¢ — 1, then x; — x* superlinearly.

(c) If eventually § = 1, then x; — x* quadratically.

The proof of this theorem can be found in [1]. From this result, it follows that local
quadratic convergence to a solution on the boundary of the box is not guaranteed. This must
be ascribed to the fact that eventually the Newton step p,]cv is not ensured to solve the trust-
region subproblem (2.1). Moreover, even if p ,’(V solves (2.1) it could be necessary to truncate
it in order to maintain strict feasibility, [1, 13]. This will prohibit fast local convergence
unless eventually the scaling produces a step a(p;) = ¢ p) such that ¢ goes to 1. In this
case, the convergence rate of {x;} is superlinear.

3. Overview of the codes used for the comparison

In order to assess the validity of STRSCNE, it was compared with high-quality codes for
the reformulated constrained nonlinear least-square problem (1.3). Specifically it was com-
pared with LSQNONLIN [20] and EO4UNF [22]. Since these solvers adopt complementary
approaches to bound-constrained nonlinear least-square problems, the obtained experimen-
tal results can be useful to assess whether our direct approach to (1.1) is competitive with
different approaches to the reformulated least square problems.

In this section we give a brief account of the codes employed in our comparative study.
For more details, we address the reader to the cited references.

The Matlab Optimization Toolbox ([20]) covers the problem of solving (1.3) by means
of the function LSQNONLIN. This code provides a large-scale algorithm and a medium-
scale algorithm and the former one is the default choice. Since the medium-scale algorithm
handles only the case 2 = R”, it will not be considered in the sequel.

The large-scale procedure LSQNONLIN exploits an elliptical subspace trust-region strat-
egy based on the interior Newton method proposed in [3]. It produces only points belonging
to the interior of 2. Letting x;, € int(€2), the iterative process searches for the next iterate
by computing an approximate solution to the trust-region subproblem

min{y(s) : 1 Disll = Ax}. (3.1
Here Ay is the trust-region size and ¥ (s) is the quadratic function
T 1 T IT 1/ . v
Yr(s) =V fis+ ES (Fk F, + Dy diag(V fi)J; Dk)s,

where J; is the Jacobian matrix at x; of the function |v(x)| given in (1.4). It is easy
to see that the unconstrained minimizer of 1y, i.e. the full Newton step s,ﬁv s
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satisfies
(D" F{ + diag(V f)J0)sy = —D;°V fi. (3.2)

Now, taking into account the special form of f and recalling that the solutions of problem
(1.1) solve the unconstrained nonlinear system

D2(x)V f(x) =0, (3.3)

s,?’ can be viewed as the step generated by a Newton-like method for this system. Specifically,
solving (3.3) by a Newton-like method where the Hessian matrix of f is approximated by
F,QT F|, gives rise to the linear system (3.2). Hence, we can conclude that LSQNONLIN
is based on a method that has some similarities with our approach but it is designed for
problem (3.3) instead of (1.1).

At each iteration, LSQNONLIN performs the following main steps. First, the Projected
Coniugate Gradient method is used to solve the linear system (3.2) and an approximation
to the Newton step ;' is computed. Then, instead of searching for the solution of the full
trust-region subproblem (3.1), a solution to (3.1) restricted to a two-dimensional subspace
is determined. The adopted two-dimensional subspace is spanned by the scaled gradient
D, 2V f, and the computed Newton step s,ﬁv . After computing the trust-region solution, this
vector is reflected by using the strategy proposed in [6].

The trust region solution, its reflection and the scaled gradient, possibly truncated as in
(2.9) to maintain strict feasibility, are exploited to define the trial step s;. Specifically, the
trial step is chosen as the step that gives the lower value of f. Finally, if the trial step gives a
reduction on f with respect to the current value f; according to (2.13), the step is accepted
otherwise it is rejected and the trust-region is shrunk.

LSQNONLIN terminates successfully either if the norm of the current step is less than
a prescribed tolerance, i.e.

IXk41 — Xell < €n, (3.4
or if the relative change in the function value satisfies

| Fiv1 — Fell < el Fell, (3.5)

or if the sequence {x;} is judged to have converged to a point that satisfies the first-order
optimality condition, i.e.

|07V 4l < e

and no negative curvature is detected.

EO4UNF is a FORTRAN77 code provided by the NAG library [22]. It is designed to min-
imize a smooth sum of squares of functions subject to constraints which may include simple
bounds, linear constraints and smooth nonlinear constraints. Namely, EO4UNF solves the
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following problem:

X

1 & n
Q]iRI} d(x) = 5 Z;(y,- — Fi(x))?, subjectto [ <{ Ax } <a, (3.6)
= c(x)
where y; are constants and F; : R” — R are nonlinear functions,i = 1, ..., m. Concerning

the constraints, A € RP*" is a constant matrix, ¢ : R” — RY is the nonlinear constraint
function, [ € (RU —00)"t7%4 fi € (RU 00)"t7*4 are specified lower and upper bounds. If
m = n and all the scalars y; are null, we have ¢ = f in (1.3). If, in addition, the matrix A and
the vector ¢ are empty, (3.6) reduces to (1.3). In the sequel we will focus on this particular
case.

EO4UNF is not designed for large and sparse problems since it treats all matrices as
dense. The code employs a sequential quadratic programming (SQP) method. The basic
structure of EO4UNF involves major and minor iterations. The major iterations generate
a sequence of iterates {x;} that is intended to converge to a point that satisfies the first-
order conditions for optimality of (3.6). At the k-th iteration, with x; € €2 at hand the
new iterate x4 is determined as xx4+; = Xx; + ap; where the steplength « is a non-
negative scalar and the search direction py is the solution of the quadratic programming
problem:

1 R
minV f(x)! p + EpTHkp, subjectto [ —x; < p < il — xy. (3.7)
p

The matrix Hy is the positive-definite approximation to the Hessian of f at x; computed
by the BFGS (Broyden-Fletcher-Godfart-Shanno) quasi-Newton approximation [12]. Since
solving a quadratic programming problem is itself an iterative procedure, the minor iterations
are the iterations performed to solve (3.7). In EO4UNF the method used for solving (3.7)
is an active set type procedure where a given initial working set is iteratively updated and
used to determine a descent direction for the quadratic problem (3.7). The obtained final
working set suggests an initial working set for the next quadratic problems. In practice,
this usually allows the subproblems to become optimal in only one minor iteration as a
solution is approached (see [11, 22]). After computing the search direction p;, the major
iteration proceeds by determining a steplength « that produces a sufficient decrease in the
merit function ¢.

EO4UNF terminates successfully if the sequence {x;} is judged to have converged and x;
is considered to satisfy the first-order optimality conditions for a minimum. Formally these
conditions are expressed by

k1 — xell < V/e3(1 A+ llxelD,

and

Ve rfill < Vel +max(l + || fill?, Vg fil),
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where €3 is a user-defined tolerance, Vg f (x) is the gradient of f with respect to the free
variables, i.e. to the components of x that are within the bounds, and Vp g f(x) is the
gradient of f projected on the feasible set with respect to the free variables.

4. Numerical results

This section summarizes the results of the numerical experimentation we carried out in order
to verify capabilities and features of STRSCNE. Numerical experiments were performed
on an HP9000 C200 workstation with epsilon machine €,, ~ 1071°,

We performed tests using 48 problems. In particular, 45 problems come from the extensive
library NLE [24] which is accessible through the web site: www.polymath-software.
com/library.

The NLE library provides a unifying source of problems for testing the performance of
numerical software. It contains over 70 real-life problems whose dimension ranges from a
single equation to 14 equations. All the problems arise from mathematical models related
to physical phenomena such as equations of state, chemical and phase equilibrium, pipeline
flow, flowsheeting, steady state material and energy balance on a reactor, reaction rate
equations and free energy minimization. For our numerical experiments we focused on
the solution of the 45 problems having dimension n > 2. Note that all these problems
have solutions belonging to the interior of 2. In [24] each problem is assigned with an
identification name. Such name is associated with the dimension of the problem and with
a progressive number. In the sequel, we will refer to these problems using these names.

In order to show the performance of the code on problems with solutions on the bound-
ary of 2, we solved several complementarity problems reformulated as systems of smooth
bound-constrained nonlinear equations, [27]. Here we report the results obtained on two
well-known complementarity problems, i.e. the Kojima-Shindo problem [8] whose dimen-
sion is n = 4 and the Problem 118 of the Hock-Schittkowski collection [14] whose dimen-
sionisn = 133. We denote them as KS and HS118 problem, respectively. We remark that the
given results are representative of the performed experiments on complementarity problems.

Finally, to show the numerical behavior of STRSCNE on larger problems, we applied
the code to a problem of dimension n = 451 denoted MNBVP (Mildly-Nonlinear BVP) and
given in [19, Problem 7].

The set of problems for testing the numerical performance of our code contains 48 prob-
lems whose dimension ranges from n = 2 to n = 451. The collected problems provided us
with various type of representative constrained systems. In fact, several nonlinear mappings
have discontinuities in the domain €2, show poor-scaling or ill-conditioning. Furthermore,
the set of tests includes systems with solution on the boundary of the feasible set, sys-
tems with both free and constrained variable components, systems with only lower (upper)
bounds, systems with variable components bounded both from above and below. We point
out that in the description of the problems given in [24], the specified constraints are of
physical nature. Then, the physical validity of the computed solutions is guaranteed by a
code that generates feasible iterates. Regarding problems Twoeq2, Twoeq3, Twoeq6 and
Twoeq8 we added suitable bounds in order to avoid discontinuities of the function defining
the nonlinear system.
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We remark that the NLE Library is designed to be a useful tool to access the reliability
and the robustness of nonlinear equations software. Then, known solutions are included in
the library for all problems and each problem is provided with several good and poor initial
guesses. Since our method requires strictly feasible starting points, we did not consider the
infeasible starting guesses. Further, initial guesses on the boundary of 2 were forced to lie
in Q perturbing the components on the bounds by a quantity of the order of ¢,,. Regarding
problems KS and HS118 we used the starting guesses xo = 107 (1,..., DT withy =0, 1,
2. Finally, problem MNBVP was solved starting from xo = [ 4+ 0.25y (u — 1) with y = 1, 2.5,
3. Summarizing, each problem gives rise to several tests and the total number of performed
tests is 161.

The results reported here are obtained running STRSCNE with the stopping tolerances
atol = 10~% and rtol = 0, and setting maxit = 1000 and maxnf = 1000. We did
not supply the analytical Jacobian F’. Therefore, derivatives were estimated by the finite-
differences approximations provided by the code.

Regarding the initial trust-region radius, we ran the code using both Ay = 1 and Ay =
D5V foll-

The results obtained with Ay = 1 appear in Table 1 where the problems are numbered
in progressive order from 1 to 48. For each problem we list the number NT of performed
tests and the number NS of tests successfully solved. Further, for successful runs we report
the average number AIT of performed iterations and the average number AFE of performed
F-evaluations. We remark that AFE does not include F'-evaluations required to approximate
the Jacobian matrix F’.

‘We make the following observations based on Table 1. On a total of 161 tests, the solver
successfully ended 127 times. Eight problems were solved starting from only one of the
given initial guesses and 30 problems were solved starting from all the used starting points.
STRSCNE failed in solving problems Sixeql and Sixeq4a which are classified as high
difficulty problems in the library. The first problem is seriously badly-scaled while in the
second one the function F has discontinuities within the feasible region.

Most of the problems were cheaply solved. At this regard, we remark that AFE is less
than or equal to 30 for 39 problems and exceeds 100 only four times. Note that AFE is
almost the same as AIT in most cases, i.e. the majority of the problems were solved with
a few reductions of the trust-region radius. In particular, we have AFE = AIT + k, with
1 <k <41 and k > 10 only in four cases.

Finally, we observe that the solver performs quite well also on problems KS and H3118.
This is remarkable since the solutions of these problems lie on the boundary of €2 and fast
convergence of the STRN method is guaranted only when the limit point of the generated
sequence belongs to the strict interior of 2. A closer look to the numerical behaviour of
the code reveals that the truncated Newton step is eventually taken. In practice, case b) of
Theorem 2.2 occured and local superlinear convergence was numerically detected for all
the runs except for HS118 with the initial guess x¢ = 10%(1, ..., DT, In this run, case a) of
Theorem 2.2 was detected.

The behaviour of STRSCNE was slightly affected by the choice of the initial trust-region
radius. Choosing Ag = || Dy 'V foll, STRSCNE solved 128 tests. The tests where NS and/or
AFE were subject to major modifications are presented in Table 2.
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Table 1. Performance of the STRSCNE code with Ag = 1.

Pb NT NS AIT AFE Pb NT NS AIT AFE
1. Twoeql 2 2 330 345 25. Sixeq2a 2 1 5
2. Twoeq2 4 2 8 9 26. Sixeq2b 2 1 5
3. Twoeq3 5 3 9 10 27. Sixeq2c 2 1 5
4. Twoeq4a 3 3 4 5 28. Sixeq3 4 2 10 12
5. Twoeq4b 3 3 4 29. Sixeq4a 3 0
6. Twoegba 4 4 5 7 30. Sixeq4b 4 3 344 385
7. Twoeqbb 4 4 6 8 31. Seveneql 3 3 21 30
8. Twoeq6 4 4 9 12 32. Seveneq2a 3 1 4 5
9. Twoeq7 4 4 7 9 33. Seveneq2b 3 3 71 78
10. Twoeq8 4 3 5 6 34. Seveneq3a 4 4 10
11. Twoeq9 4 4 308 344 35. Seveneq3b 3 2 10
12. Twoeql0 3 3 6 7 36. Seveneq4d 4 4 14 15
13. Threeql 4 4 22 28 37. Nineql 4 3 23 27
14. Threeq2 4 1 5 6 38. Teneqla 2 2 14 15
15. Threeqg3 4 4 10 11 39. Teneqlb 3 3 36 42
16. Threeqg4a 4 1 5 6 40. Teneqg2a 3 3 10 11
17. Threeq4b 4 4 7 9 41. Teneqg2b 3 3 14 15
18. Threegb 4 1 20 28 42. Teneqg3 2 2 5 6
19. Threeq6 4 4 104 145 43. 11leql 3 3 15 16
20. Threeq7 5 4 17 20 44. 13eql 2 2 16 22
21. Threeq8 1 1 6 7 45. 14eql 2 2 12 13
22. Foureql 5 5 9 12 46. KS 3 3 14 15
23. Fiveeql 4 2 10 11 47. HS118 3 3 55 56
24. Sixeql 4 0 48. MNBVP 3 3 19 20
Table 2. Significative results of the STRSCNE code with Ay = || Dal Vol
Pb NT NS AIT AFE Pb NT NS AIT AFE
3. Twoeq3 5 4 9 10 33. Seveneq2b 3 1 5
15. Threeq3 4 4 5 6 36. Seveneq4 4 4 5
18. Threegb 4 3 6 8 37. Nineql 4 4 65 71
19. Threeq6 4 4 72 110 43. 1leql 3 3 7 8
20. Threeq7 5 5 47 54 44. 13eql 2 2 7 8
22. Foureql 5 4 5 6 45. 14eql 2 2 140 174
28. Sixeq3 4 3 7 9 46. XS 3 1 38 42
30. Sixeq4b 4 3 7 7 47. HS118 3 3 14 15
31. Seveneql 3 3 48 56
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In what follows we compare the code under study with EO4UNF and LSQNONLIN
giving an account of their computational effort and robustness. In this analysis, runs
of STRSCNE associated to the choice A = 1 will be considered. We remark that,
since we do not compare the performance of the codes using runtime or storage require-
ments, the performed numerical comparison is not dependent on the programming language
used.

We ran EO4UNF and LSQNONLIN without providing the analytical Jacobian of F,
therefore the codes approximated the Jacobian F’ by using finite differences. Except for
the derivative approximations, all the presented results were obtained running the codes
with their default settings and stopping tolerances. For sake of comparison, a limit of 1000
F-evaluations were imposed for each test without taking into account F'-evaluations due to
derivative approximations.! Codes were considered to fail if 1000 F-evaluations were not
enough to satisfy the stopping criteria or if the computed solution is a minimum of f that
is not a zero of F.

Figure 1 displays the robustness of the compared codes. For each code we plot the
number NS of tests successfully solved as a function of the problem number. The dashed

O = N W &» 0 O

-1 =
Pb#

Figure 1. Performance, in terms of number of successfully solved tests, of all of the compared solvers.
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line represents the behaviour of an ideal solver that successfully solves all the tests while
the solid line shows the behaviour of the tested codes. It should be stressed that all the codes
failed in solving problems Sixeql and Sixeq4a starting from all the given initial guesses.
This confirms the fact that they are highly difficult problems. On the other hand, 42 tests
were successfully solved by all the codes and six problems were solved by all the codes for
all the supplied initial guesses.

To visualize the overall behaviour of the codes, we exploit the performance profile pro-
posed by Dolan and Moré [9]. In this approach, the profile of each code was measured
considering the ratio of its computational effort versus the best computational effort of all
of the codes. These profiles were introduced as an unifying tool for evaluating and com-
paring the performance of optimization software. Here we use the number of performed
function evaluations as a measure of the computational effort.

Specifically, for each test ¢ and solver s, let FE, ; denote the number of F-evaluations
required to solve test ¢ by solver s. Also, let FE; be the lowest number of F-evaluations
required by the three codes to solve test 7. Then, the ratio

FE;
rl,s = % 0
FE!

measures the performance on test ¢ by solver s with the best performance by any solver on
such test. Clearly, r; s > 1 and r, ; = 1 means that the solver s was the most convenient in
solving test ¢. Finally, for each code s the performance profile is defined as

no.of testss.t. r; y < T
T >0.

(1) =
(@) total no. of tests

Using this approach, there is no need to discard solver failures from the data. In fact, if
a code does not solve test #, r, ; is assigned a large number, say r,,. In our experiments
we have r; ; > 100 only in one case and setting r,, = 200 we capture the overall per-
formance of all the solvers. Figure 2 shows the performance profiles of the three codes
in the intervals [0,10] and [0,200]. From the values of m; (1), it is clear that STRSCNE
had the most wins, i.e. it solved about 67% of the tests with the greatest efficiency. If
we focus our attention on the ability of completing a run successfully we have again that
STRSCNE stands out. In particular, the performance profile of STRSCNE readily flattens
and our code has the ability to solve over 78% of the tests within a factor 5 of the best
solver.

Summarizing our comparative study, we used a large set of problems that occur in ap-
plications. The obtained results suggest that STRSCNE constitutes a powerful approach
for solving small bound-constrained nonlinear systems. It outperforms both in terms of
robustness and efficiency well known codes for solving problem (1.1) reformulated as a
bound-constrained least-square problem. Anyway, we are aware that our study cannot be
considered conclusive since the software packages used in our testing are regularly updated
and the performance of a particular solver may vary sensitively if non default options are
used.
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Figure 2. Performance profile.

Note

1. LSQNONLIN provides on exit the total number of performed F -evaluations, including those due to the Jacobian
approximations. In the presented results we adjusted for this by discounting the extra evaluations done for
approximating the Jacobian.
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