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Abstract: Automatic Traffic Sign Detection and Recognition (TSDR) provides drivers with critical
information on traffic signs, and it constitutes an enabling condition for autonomous driving. Misclas-
sifying even a single sign may constitute a severe hazard, which negatively impacts the environment,
infrastructures, and human lives. Therefore, a reliable TSDR mechanism is essential to attain a safe
circulation of road vehicles. Traffic Sign Recognition (TSR) techniques that use Machine Learning
(ML) algorithms have been proposed, but no agreement on a preferred ML algorithm nor perfect
classification capabilities were always achieved by any existing solutions. Consequently, our study
employs ML-based classifiers to build a TSR system that analyzes a sliding window of frames sam-
pled by sensors on a vehicle. Such TSR processes the most recent frame and past frames sampled
by sensors through (i) Long Short-Term Memory (LSTM) networks and (ii) Stacking Meta-Learners,
which allow for efficiently combining base-learning classification episodes into a unified and im-
proved meta-level classification. Experimental results by using publicly available datasets show
that Stacking Meta-Learners dramatically reduce misclassifications of signs and achieved perfect
classification on all three considered datasets. This shows the potential of our novel approach based
on sliding windows to be used as an efficient solution for TSR.

Keywords: traffic sign recognition; sliding windows; meta learning; deep learning; classification

1. Introduction

Intelligent transportation systems are nowadays of utmost interest for researchers and
practitioners as they aim at providing advanced and automatized functionalities, such as
obstacle detection, traffic sign recognition, car plate recognition, and automatic incident
detection or stopped vehicle detection systems. Particularly, Traffic Sign Detection and
Recognition (TSDR) systems aim at detecting (TSD) and recognizing (TSR) traffic signs from
images or frames sampled by sensors [1–3] installed on vehicles (e.g., webcams). Those
systems synergize with the human driver, who may misinterpret or miss an important
traffic sign, potentially leading to accidents that may generate safety-related hazards [4].
When integrated into intelligent vehicles [5,6], in terms of Advanced Driver-Assistance
Systems (ADAS) [2,7–9], TSDR can automatically provide drivers with actionable warnings
or even trigger reaction strategies (e.g., automatic reduction of speed, braking) that may be
crucial to avoid or reduce the likelihood of accidents [3,10].

Humans are expected to naturally miss or misinterpret a traffic sign occasionally
because of being distracted [11]. Similarly, to humans, TSDR systems are also subject to
error as they may misinterpret or miss a traffic sign. This could happen due to various
reasons, such as unsatisfactory road situations, imperfect traffic sign state, adverse environ-
mental conditions (e.g., foggy weather [12]) or imperfect analysis processes. Nevertheless,
researchers and practitioners are trying to minimize misclassifications at the automatic
TSDR side, which is expected to increase safety by providing drivers with accurate and
timely notifications.
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Available TSD systems can precisely extract areas of an image or a frame, which are
supposed to contain a traffic sign. Thereto, TSR systems that embed Machine Learning
(ML) algorithms [13–16], process features that are extracted from those images through
feature descriptors (e.g., Histogram of Oriented Gradients (HOG) [17], Local Binary Pat-
tern (LBP) [16] to recognize traffic sign categories [18,19]. Alternatively, deep learning
algorithms, such as AlexNet, googLeNet [20] can directly process images coming from
sensors and classify them according to internal representation learning processes, which are
orchestrated through multiple convolutional and fully connected layers. Throughout the
years, many studies tackled TSR [21–23] using different feature descriptors and ML-based
classifiers. Different combinations of such classifiers and features have been proven to gen-
erate heterogeneous classification scores [15,19,24–27] motivating the need for comparisons
to discover the optimal classifier for a given TSR problem [3,28,29].

Regardless of the outcomes of comparison studies, most of the existing solutions for
TSR process a single image or frame and output a classification result. Instead, vehicles
gradually approach traffic signs during their road trips, generating sequences of images:
the closer the vehicle is to the traffic sign, the better the quality of the image, even under
slightly different environmental conditions. Therefore, the problem of TSR naturally scales
to knowledge extraction from a set or sequence of images that potentially contain traffic
signs. Consequently, the classification process should not depend only on a single frame to
make a decision; instead, it should build on the knowledge acquired as the vehicle moves
forward, i.e., the sequence of images.

This study considers a sliding window of images to commit classification rather than
classifying frames individually. First, we process each image with the most effective single-
frame classifier for TSR: then, we combine classification scores assigned to images in the
sliding window to provide a unified and improved classification result. Such a combination
is performed by appropriate Meta-Learners [30], which suit model combination, and
therefore, show potential to be applied in such a context.

We conduct an experimental evaluation by processing three public datasets, namely,
(i) German Traffic Sign Recognition Benchmark (GTSRB) [31] (ii) BelgiumTSC [32], and
(iii) the Dataset of Italian Traffic Signs (DITS) [33], which report on sequences or unordered
sets of images of traffic signs. From each image, we extracted 12 different feature sets, which
use handcrafted features (HOG [17], LBP [16]), deep features (from AlexNet [34], ResNet-
18 [35]), and their combinations, to debate their impact in TSR. Those features were fed to
supervised classifiers as Decision Trees [36], Random Forests [37], k-th Nearest Neighbour
(K-NN, [13]), Linear Discriminant Analysis Classifier (LDA) [38], Support Vector Machines
(SVMs) [14], and AdaBoost [39]. We also exercised single-frame classifiers that do not rely
on feature descriptors as deep learners, namely Inceptionv3 [40], MobileNet-v2 [41] and
AlexNet [34]. We used the classifiers above both as single-frame classifiers and as base-level
learners of a Stacking meta-learner, which aggregates individual classification scores into
sliding windows. The meta-level classifier for Stacking was experimentally chosen out of
supervised (non-deep) classifiers, the Majority Voting [42] and Discrete Hidden Markov
Model (DHMM, [43]).

Additionally, we compare the classification performance of those meta-learners with
Long Short-Term Memory (LSTM) networks, which naturally deal with sequences of
data coming at different time instants. We trained those LSTM networks on the same
sliding windows of images processed through Stacking. Results show how single-frame
classifiers achieve 100% accuracy on the GTRSB, 99.72% on BelgiumTSC and 96.03% on
DITS datasets. Then, we applied our approach based on sliding windows by using LSTM
networks and stacking meta-learners, finding that both approaches greatly improve the
accuracy of TSR: particularly, specific stacking meta-learners achieved perfect accuracy
(i.e., no misclassifications at all) on the three datasets by using a sliding window of two or
three images.

Summarizing the contribution and novelty of the paper mainly lies in the following items:

• a deep literature review about ML-based TSR;
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• presentation of an approach based on sliding windows of frames to be processed either
by meta-learners or LSTM;

• an experimental campaign that relies on heterogeneous and public datasets of traffic
signs; and finally

• a discussion of results that clearly shows how a sliding window of at least two items,
deep base-level classifiers and K-NN as stacking meta-learner allow achieving perfect
TSR on all datasets considered in the study, dramatically improving the state of the art.

The rest of the paper is organized as follows: Section 2 elaborates on related works
and a review of existing TSR systems. Section 3 expands on our approach based on sliding
windows. Section 4 reports on our experimental setup and methodology, classifiers, and
feature sets to compare different TSR systems. Finally, Section 5 discusses and comments
on those experimental results, letting Section 6 conclude the paper.

2. Background on Traffic Sign Recognition
2.1. Classifiers for TSR

In the last decade, researchers, practitioners, and companies devised automatic TSR
systems to be integrated into ADAS. Amongst all the possible approaches, most TSR
systems rely on the same main blocks, namely: (i) Dataset creation/identification, (ii) pre-
processing (e.g., resizing, histogram equalization), (iii) Feature extraction and supervised
model learning, or (iv) model learning through deep classifiers (i.e., deep learners).

As depicted in Figure 1, these building blocks interact with each other sequentially.
Each image in the dataset is pre-processed to make feature extraction easier. These features
are then fed into the classifier, either for training or for testing (right of Figure 1) if the
model was already learned. Alternatively (see bottom left of Figure 1) we could rely
on deep learning algorithms, which—unlike traditional supervised classifiers—embed
representation learning, and therefore, do not require feature extraction.
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Figure 1. Block diagram of traffic sign recognition through deep learners or supervised classifiers.

Regardless of their type, classifiers output Probabilities of Traffic Sign categories (PTS),
or rather, assign probabilities belonging to any known class of traffic signs to each image.
The category of a traffic sign corresponds to the highest probability in PTS which defines
the predicted class of a given image.

2.2. Related Works on Single-Frame TSR

Feature extractors and supervised classifiers have been arranged differently to mini-
mize misclassifications in a wide variety of domains. Soni et al. [24] processed the Chinese
traffic sign dataset through SVM, trained on the HOG or LBP after Principal Component
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Analysis (PCA), reaching an accuracy of 84.44%. A similar setup was used by Manisha and
Liyanage [21], who achieved 98.6% accuracy on vehicles moving at 40–45 km/h. Moreover,
Matoš et al. [22] used an SVM trained on HOG features and achieved recognition of 93.75%
accuracy on the GTSRB dataset. The same dataset was used in [44], where Extreme Learn-
ing Machine (ELM) improved accuracy to 96%. Agrawal and Chaurasiya [45] extracted
HOG features from the traffic signs of the GTSRB dataset and applied PCA for the dimen-
sionality reduction to obtain an accuracy of 73.99%, 66.46%, 91.86% on denial, mandatory
and danger traffic sign categories. Similar studies as [15,46,47] processed the same datasets
with different feature sets and algorithms, obtaining similar scores.

Deep learners and the Viola–Jones framework allowed the authors of [8] to enhance
classification on the GTSRB dataset with up to 90% of accuracy. Li et al. [28] proposed a new
Convolutional Neural Network and trained on the GTSRB and BelgiumTSC datasets. The
proposed architecture achieved an accuracy of 98.1% and 97.4% on BelgiumTSC and GTSRB
datasets, respectively. In [48], the fifteen-layer WAF-LeNet network reached a detection
accuracy of 96.5% on GTSRB. The authors of [49] proposed an approach for TSDR using
SegU-Net and a modified Tversky loss function With L1-Constraint that achieved 94.60%
and 80.21% precision and recall, respectively, on the CURE-TSD dataset. Liu et al. [50]
proposed traffic sign recognition and detection approaches, which first extract the region
of interest and after verification of the traffic sign through an SVM classifier, it classifies
the traffic sign into traffic sign categories. The proposed approach achieves the highest
accuracy 94.81%.

Another study [51] used the Inceptionv3 model trained with transfer learning on the
BelgiumTSC dataset, obtaining an accuracy of 99.18%. In [52], the authors found that the
Tiny-YOLOv2 network is fast but outperformed by YOLOv2 or YOLOv3 deep learners.
While the authors of [53] introduced real time image enhancement CNN and achieved
an accuracy of 99.25% for the BelgiumTSC, 99.75% for GTSRB, and 99.55% for Croatian
Traffic Sign (rMASTIF). Authors of [54], developed a real time TSR by using the You Only
Look Once (YOLO) algorithm to train the model for Malaysian traffic sign recognition and
tested it on five types of warning traffic signs. In [55] authors propose a lightweight CNN
architecture for the recognition of the traffic sign GTSRB dataset, and they achieved 99.15%
accuracy. In one another study [56], a novel semi supervised classification technique is
adopted for TSR with weakly-supervised learning and self-training. An ensemble of CNN
was used for the recognition of the traffic signs and achieved higher than 99% accuracy
for the circular traffic signs of the German and BelgiumTSC datasets [57]. Lu et al. [58]
use multi-modal tree structure embedded multitask learning for the GTSRB dataset and
achieved an overall accuracy of 98.27%. In [59], the authors improved the VGG-16 deep
model by removing some redundant convolutional layers and adding Batch Normalization
and global average pooling layer to improve the performance of the network, while [60]
proposed a hybrid 2D-3D CNN. In [61], the authors proposed a traffic sign recognition
system that learns learning hierarchical features based on multi-scale CNNs. In one another
study [62], the authors proposed a real-time TSDR for Chinese and German roads. In [63]
authors proposed a robust custom feature extraction method and multilayer artificial neural
network for the recognition of traffic signs in real time.

Additionally, a few works perform classification depending on multiple frames. In
a study [64], authors considered the sequences of frames of the street view images and
achieved an 87.03% evaluation score, i.e., the ratio of true positive and true positive + false
positive + false negative. In another study, Yuan et al. [65] proposed a video based traffic
sign detection and recognition mechanism to fuse the result of all frames for final classi-
fication. They utilized a multi-class SVM with two different fusion strategies, i.e., equal
weighting and a scale based weighting scheme which achieved 99.48% accuracy on the
TS2010 dataset.

In the literature, there are many studies [66–69] focusing on single frame TSR, and
very few studies [64,65] that process multiple frames. According to our knowledge based
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on the literature review, there is no study available that considers the sliding windows
approach for traffic sign recognition.

2.3. Background on Comparative Studies

Only a few comparative studies have been proposed in the literature. For exam-
ple, Jo [15] trained different supervised classifiers on HOG features extracted from the
GTSRB dataset. Similarly, Schuszter [70] reported on experiments with the BelgiumTSC
dataset [32], where HOG features were extracted from images and then fed to the SVM to
classify one of the six basic traffic sign subclasses. Yang et al. [19] provide a comparison
of different classifiers, such as the K-NN, SVM, Random Forest and AdaBoost trained by
using combinations of features. This study reported the highest accuracy by using Random
Forest with the combination of LBP and HOG features. Another study [29] compared
traditional supervised classifiers and deep learning models on three datasets, i.e., GTSRB,
BelgiumTSC and DITS considering three broad categories of traffic signs, i.e., red circular,
blue circular and red triangular. Noticeably, both traditional supervised classifiers and
deep classifiers achieved perfect accuracy on GTSRB. Moreover, the authors of [18] trained
different classifiers for traffic sign recognition. They considered the GTSRB dataset and
extracted HOG features to train LDA and Random Forest. Additionally, they used the
committee of Convolutional Neural Networks (CNN) and multiscale-scale CNN. While
in the study [31] authors organized a competition to classify GTSRB dataset traffic signs.
These traffic signs were categorized by human and ML algorithms and an accuracy of
98.98% was achieved which is comparable to human performance on this dataset.

3. Sliding Windows to Improve TSR

TSR naturally fits the analysis of sequences of images being collected as the vehicle
approaches the traffic sign. Therefore, we organize a complex classifier that processes
sliding windows of frames

As shown in Figure 2, a sliding window of size s contains (i) the most recent frame
sampled by the sensors on the vehicle plus (ii) the s-1 most recent frames. The figure
represents how sliding windows of size s = 2 and s = 3 evolve as time passes by as the
vehicle approaches a speed limit sign. Intuitively, the closer the vehicle gets to the traffic
sign, the more visible and clearer the traffic sign gets. On the other hand, the sooner the
TSR correctly classifies a traffic sign, the better it is for the ADAS, e.g., it may provide more
time for emergency braking, whenever needed.
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3.1. Sliding Windows and Meta-Learning

Adopting sliding windows of s images calls for a rework of the TSR system. In
particular, classification should be carried out using s subsequent classifications, which
contribute to the final decision on the traffic sign. Those single-frame classifications for
subsequent frames have to be combined by utilizing an independent strategy that delivers
the result of this ensemble of single-frame classifiers.

Such a combination is usually orchestrated through meta-learning [30,71], which uses
knowledge acquired during base-learning episodes, i.e., meta-knowledge, to improve
classification capabilities. More specifically [72], a base-learning process starts feeding
images into one or more base classifiers to create meta-data at the first stage. Results
of those base learners, i.e., meta-data are provided alongside other features to the meta-
level classifier as input features, which in turn provides the classification result of the
whole meta-learner.

The paradigm of meta-learning can be adapted to TSR as shown in Figure 3. Let k
be the number of different categories of traffic signs (i.e., classes), and let s be the size of
the sliding window. Starting from the left of the figure, frames are processed by means of
single-frame base-level classifiers, which provide k probabilities PTSi = {ptsi1, . . . ptsik} to
classify each frame. Depending on the current time tj, we create a sliding window of at
most s×k items, namely swsj = {PTSj, PTSj-1, . . . PTSj-s-1}, which builds the meta-data to be
provided to the meta-level classifier. On the right side of Figure 3, the meta-level classifier
processes such meta-data and provides the k probabilities PTSfinal, which will constitute
the classification result of the whole sequence within the sliding window. As time moves
on, we will have newly captured images and the sliding window will process the most
recent s × k items. Note, that the sliding window swsj may contain less than s × k items
when j < s (e.g., the window of size 3 at time t2 in Figure 2). In those cases, the TSR system
will decide based on a single-frame classification of the most recent image.
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3.2. A Stacking Meta-Learner

The structure of the meta-learner we described previously is traditionally referred
to as Stacking. Stacking [73] builds a base-level of different classifiers as base learners.
Base-learners can be trained with the exact same training set or with different training
sets, mimicking Bagging [74]. Each of the n base-learners generates meta-features (PTSi,
1 ≤ i ≤ n in Figure 3) that are fed to another independent classifier, the meta-level classifier,
which calculates and delivers the final output (PTSfinal in Figure 3).

In our instantiation of the Stacker, we use the same base-level classifier, which can
either be a deep learner or a traditional supervised classifier but feed each base-learner with
a different image. The meta-level classifier is necessarily a supervised (non-deep) classifier
as it has to process numeric features contained in swsj rather than images.

3.3. Long Short-Term Memory Networks (LSTM)

As an alternative to stacking, we plan the usage of LSTM networks [75,76]. An LSTM
network is a Recurrent Neural Network that learns the long-term dependencies between
time steps of sequence data by orchestrating two layers. Those networks do not have a
meta-learning structure as a stacker: however, they perfectly fit the analysis of sliding
windows of traffic signs as they are intended to be used for the classification of sets or
sequences by directly processing multiple frames. The first layer contains a sequence of
inputs, which are then forwarded to the LSTM fully connected layer, and finally, the output
layer shows the classification result.

4. Methodology, Inputs and Experimental Setup

This section describes the methodology, inputs, and experimental setup to compare
single-frame classifiers and approaches built upon sliding windows, such as Stacking and
LSTM networks. Results will be presented, analyzed, and discussed in Section 5.

4.1. Methodology for a Fair Comparison of TSR Systems

We orchestrate our experimental methodology as follows:

• Datasets and Pre-processing. Images go through a pre-processing phase to resize
them to the same scale and enhance the contrast between background and foreground
through histogram equalization.

• Feature Extraction (Section 4.3). Then, each pre-processed image is analyzed to extract
features: these will be used with traditional supervised classifiers, while deep learners
will be directly fed with pre-processed images.

• Classification Metrics (Section 4.4). Before exercising classifiers, we select metrics to
measure the classification capabilities of ML algorithms which apply both to single-
frame classifiers and to others based on sliding windows.

• Single-Frame Classification. Both supervised (Section 4.5) classifiers and deep learn-
ers (Section 4.6) will be trained and tested independently, executing grid searches to
identify proper values for hyper-parameters.

• Sliding Windows with Stacking Meta-Learners (Section 4.7). Results of single-frame
classifiers will then be used to build Stacking learners as described in Section 3.2 and
by adopting different meta-level classifiers.

• Sliding Windows with LSTM (Section 4.8). Furthermore, sliding windows will be
used to exercise LSTM networks as described in Section 3.3.

Exercising such methodology with its inputs required approximately 6 weeks of exe-
cution. The experiments were conducted on an Intel(R) Core (TM) i5-8350U CPU@1.7 GHz
1.9 GHz running MATLAB. MATLAB implementations of Deep Learners also use our
NVIDIA Quadro RTX 5000 GPU.
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4.2. TSR Datasets and Traffic Sign Categories

We conducted extensive research to identify commonly used labeled datasets report-
ing on sequences of traffic signs with overlapping categories. We selected three public
datasets which report on sequences of images of traffic signs, namely: (i) the BelgiumTSC
dataset [32], (ii) the GTSRB dataset [31], and (iii) the DITS [33]. Details about their structure
and the categories of traffic signs are in Tables 1 and 2, respectively.

Table 1. Details of the three datasets used in this study.

Dataset Train Images Test Images Images per
Sequence

Training
Sequences

Test
Sequences

GTSRB 39210 12570 30 1307 419

DITS 7500 1159 15 500 123

BelgiumTSC 4581 2505 3 1527 835

Table 2. Categorization of Traffic Signs into 9 categories based on their shape, color, and content.

Category 1 2 3 4 5 6 7 8 9

Traffic
Signs
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examples of traffic signs for each category of traffic sign contained in this dataset. Im-
portantly, the rectangular traffic signs we mapped into category 8 in the table do not ap-
pear in the GTSRB dataset but appear in other datasets considered in this study. 

4.2.2. BelgiumTSC Dataset 
The BelgiumTSC dataset [32] is another dataset of traffic signs which was extensively 

used in the last decade [32,70]. The BelgiumTSC contains eight categories of traffic signs, 
shown from category 1 to category 8 in Table 2. The dataset is smaller than the GTSRB: 
the BelgiumTSC contains only 2362 sets of three images taken with different cameras from 
different viewpoints. It follows that this dataset reports triple images for each traffic sign 
which are all taken at the same time and thus are not time- ordered: this requires a dedi-
cated discussion that we expand on in Section 5.4. 

4.2.3. Dataset of Italian Traffic Signs Dataset 
The Dataset of Italian Traffic Signs (DITS) dataset is considered more challenging 

than others in the literature [33] as it contains traffic signs images that were taken under 
non-optimal lighting conditions, e.g., day, night-time, foggy weather. The DITS contains 
623 sequences containing a varying, time-ordered, number of frames. We point out that 
DITS is the only dataset in this study that contains all the nine categories of traffic signs 
reported in Table 2 and as such, it provides a complete view of all potential traffic signs. 
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4.2.1. German Traffic Signs Recognition Benchmark Dataset

The German Traffic Signs Recognition Benchmark (GTSRB [31]) dataset is widely
used in the literature [15,18,19,31] as it reports on images of traffic signs belonging to eight
categories with heterogeneous illumination, occlusion and distance from the camera. The
dataset contains sequences of 30 images for each traffic sign, which were gathered as the
vehicle was approaching it. The authors made available 1307 training and 419 testing
sequences of images for a total of 51,780 images contained in the dataset. Table 2 depicts
examples of traffic signs for each category of traffic sign contained in this dataset. Impor-
tantly, the rectangular traffic signs we mapped into category 8 in the table do not appear in
the GTSRB dataset but appear in other datasets considered in this study.

4.2.2. BelgiumTSC Dataset

The BelgiumTSC dataset [32] is another dataset of traffic signs which was extensively
used in the last decade [32,70]. The BelgiumTSC contains eight categories of traffic signs,
shown from category 1 to category 8 in Table 2. The dataset is smaller than the GTSRB:
the BelgiumTSC contains only 2362 sets of three images taken with different cameras
from different viewpoints. It follows that this dataset reports triple images for each traffic
sign which are all taken at the same time and thus are not time- ordered: this requires a
dedicated discussion that we expand on in Section 5.4.

4.2.3. Dataset of Italian Traffic Signs Dataset

The Dataset of Italian Traffic Signs (DITS) dataset is considered more challenging
than others in the literature [33] as it contains traffic signs images that were taken under
non-optimal lighting conditions, e.g., day, night-time, foggy weather. The DITS contains
623 sequences containing a varying, time-ordered, number of frames. We point out that
DITS is the only dataset in this study that contains all the nine categories of traffic signs
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reported in Table 2 and as such, it provides a complete view of all potential traffic signs.
The dataset contains 500 training sequences and 123 testing sequences of varying lengths
as summarized in Table 1.

4.3. Feature Descriptors

In this study, we extract features from images by means of handcrafted, i.e., HOG, LBP
and deep, i.e., AlexNet and ResNet, feature descriptors, as described below.

• Histogram of Oriented Gradients (HOG) mostly provides information about key
points in images. The process partitions an image into small squares and computes
the normalized HOG histogram for each key point in each square [17].

• Local Binary Patterns (LBP) encode local textures [16] by partitioning each image
into non-overlapping cells. Then, LBP isolates local binary patterns and uses small
gray-scale discrepancies to identify specific features. Its behavior is invariant to the
monotonic transformation of grayscale.

• AlexNet Features (AFeat) are extracted through a pre-trained AlexNet [34], composed
of five convolutional layers and three fully connected layers. Convolutional layers are
basically extracting deep features from RGB images of size 227 × 227. We extract a
feature vector of 4096 items by fetching data at the fully connected layer “fc7”.

• ResNet Features (RFeat) are extracted from a ResNet-18 [35], a convolutional neural
network with 18 hidden layers. Convolutional layers are extracting deep features
from RGB images of size 224 × 224 Similarly to AlexNet, we extract 512 features by
extracting data at the global average pooling layer “pool5”.

In addition, we combine hand-crafted and deep feature descriptors that are con-
sequently fed simultaneously to classifiers: couples as {HOG ∪ LBP}, {AFeat ∪ HOG},
{AFeat ∪ LBP}, {RFeat ∪ HOG}, {RFeat ∪ LBP}, {AFeat ∪ RFeat}, and triples of
{AFeat ∪ HOG ∪ LBP} and {RFeat ∪ HOG ∪ LBP}.

4.4. Classification Metrics

The performance of classifiers for TSR is usually compared by means of classification
metrics. These metrics are mostly designed for binary classification problems, but they
can be adapted also to measure multi-class classification performance. Amongst the many
alternatives, TSR mostly relies on accuracy [77,78], which measures the overall correct
and incorrect classifications. Correct classifications reside in the diagonal of the confusion
matrix, whereas any other item of the confusion matrix is counted as a misclassification.

It should be noticed that this is a quite conservative metric for TSR as it considers all
misclassifications at the same level. Instead, we may not be too worried about misclassifying
an informative sign (e.g., Category 8 in Table 2) with a stop sign, whereas the opposite
represents a very dangerous event. That being said, for ease of comparison with existing
studies, we calculate accuracy according to its traditional formulation, thus considering
each misclassification as equally harmful.

4.5. Traditional Supervised Classifiers and Hyper-Parameters

Traditional Supervised classifiers process features extracted from images. Amongst
the many alternatives, we summarize below those algorithms that frequently appear in
most studies about TSR.

• K Nearest Neighbors (K-NN) algorithm [13] classifies a data point based on the class
of its neighbors, or rather other data points that have a small Euclidean Distance with
respect to the novel data point. The size k of the neighborhood has a major impact on
classification, and therefore, needs careful tuning, which is mostly achieved through
grid or random searches.

• Support Vector Machines (SVMs) [14], instead, separate the input space through
hyperplanes, whose shape is defined by a kernel. This allows performing either linear
or non-linear (e.g., radial basis function RBF kernel) classification. When SVM is used
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for multi-class classification, the problem is divided into multiple binary classification
problems [79].

• Decision Tree provides a branching classification of data and is widely used to ap-
proximate discrete functions [36]. The split of internal nodes is usually driven by the
discriminative power of features, measured either with Gini or Entropy Gain. Training
of decision trees employs a given number of iterations and a final pruning step to
limit overfitting.

• Boosting (AdaBoostM2) [39] ensembles combine multiple (weak) learners to build a
strong learner by weighting the results of individual weak learners. Those are created
iteratively by building specialized decision stumps that focus on “hard” areas of
input space.

• Linear Discriminant Analysis (LDA) is used to find out the linear combination of
features that efficiently separates different classes by distributing samples into the
same type of category [38]. This process uses a derivation of Fisher discriminant to fit
multi-class problems.

• Random Forests [37] build ensembles of Decision Trees, each of them trained with a
subset of the training set extracted by random sampling with replacement of examples.

Each supervised algorithm has its own set of hyper-parameters. To such an extent, we
identified the following parameter values to exercise grid searches.

• K-NN with different values of k, i.e., different odd values of k from 1 to 25. Addi-
tionally, we observe that DITS contains nine categories of traffic signs: therefore, we
disregard the usage of k = 9 to further avoid ties.

• SVM: we used three different kernels: Linear, RBF and Polynomial (quadratic), leaving
other parameters (e.g., nu) as default.

• Decision Tree: we used the default configuration of MATLAB which assigns MaxNum-
Splits = training sample size 1, with no depth limits on decision trees.

• Boosting: we created boosting ensembles with AdaBoostM2 by building 25, 50, 75,
and 100 trees (decision stumps) independently.

• Random Forest: we build forests of 25, 50, 75, or 100 decision trees.
• LDA: we Trained LDA using different discriminants, namely: pseudo-linear, diag-

linear, diag-quadratic, and pseudo-quadratic.

4.6. Deep Learners and Hyper-Parameters

Deep learners may be either built from scratch or more likely—by adapting existing
models to a given problem through transfer learning (i.e., knowledge transfer). Through
transfer learning, we fine tune the fully connected layers of the deep model, letting all con-
volutional layers remain unchanged. Commonly used deep learners for the classification
of images and object recognition are below.

• AlexNet [34] is composed of eight layers, i.e., five convolutional layers and three fully
connected layers that were previously trained on the ImageNet database [80], which
contains images of 227 × 227 pixels with RGB channels. The output of the last fully
connected layer is provided to the SoftMax function, which provides the distribution
of overall categories of images.

• InceptionV3 is a deep convolutional neural network built by 48 layers that were
trained using the ImageNet database [80], which includes images (299× 299 with RGB
channels) belonging to 1000 categories. InceptionV3 builds on (i) the basic convolu-
tional block, (ii) the Inception module and finally (iii) the classifier. A 1x1 convolutional
kernel is used in the Inceptionv3 model to accelerate the training process by decreasing
the number of feature channels; further speedup is achieved by partitioning large
convolutions into small convolutions [40].

• MobileNet-v2 [41] embeds 53 layers trained on ImageNet database [80]. Differently
from others, it can be considered a lightweight and efficient deep convolutional neural
network with fewer parameters to tune for mobile and embedded computer vision
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applications. MobileNet-v2 embeds two types of blocks: the residual block and a
downsizing block, with three layers each.

Those deep learners can be tailored to TSR through transfer learning. Fully connected
layers are trained on defined categories of traffic signs with different learning rates (LR) to
fine-tune the models which are already trained on the ImageNet database of 1000 categories.
Additionally, we employ data augmentation to avoid model overfitting; this was conducted
through X and Y translation with a random value between [−30, 30] and scale range within
a range [0.7, 1].

The hyper-parameter learning rate controls how fast weights are updated in response
to the estimated errors, and therefore, controls both the time and the resources needed
to train a neural network. Choosing the optimal learning rate is usually a tricky and
time-consuming task: learning rates that are too big may result in fast but unstable training,
while small learning rates usually trigger a heavier training phase which may even get stuck
without completing correctly. In our experiments, we varied learning rate as follows: {0.05,
0.01, 0.005, 0.001, 0.0005, 0.0001} for Inceptionv3 and MobileNet-v2, and {0.0001, 0.0005,
0.00001, 0.00005, 0.000005, 0.000001} for AlexNet, which resulted in very low accuracy when
using the same learning rates of the Inceptionv3 and MobileNet-v2. Noticeably, training a
deep classifier with the highest learning rate in the interval reduce the training time with
respect to using the smallest value in the interval (e.g., training Inceptionv3 with a learning
rate of 0.05 instead of using 0.0001).

We set a minimum batch size of 32, with 10 train epochs and stochastic gradient
descent with momentum (sgdm) optimizer for all the experiments on each dataset to
fine-tune the models for TSR. Furthermore, we used the loss function ‘crossentropyex’
at the classification layer and the fully connected weights and biases were updated with
a learning factor (different from learning rate) of 10. We had the weights vector size
associated with the last fully connected layers [Num_cat × 4096], [Num_cat × 1280], and
[Num_cat × 2048] for Alexnet, MobileNet-v2 and Inceptionv3 models, respectively, where
Num_cat represented the number of traffic sign categories in each dataset.

4.7. Stacking Meta-Level Learners

Stacking meta-learners orchestrate a set of base-learners, which provide meta-data to
the meta-level learner. In our study, we foresee the usage of different meta-level learners as
listed below.

• Majority Voting [42] commits the final decision based on the class the majority of
base-learners agree upon. This technique is not very sophisticated, albeit it was and
is widely used to manage redundancy in complex systems [81] and to build robust
machine learners [82].

• Discrete Hidden Markov Model (DHMM) [43]. For each class, a separate Discrete
HMM returns the probability of an image belonging to that class. The classification
result of the frames within the sliding window is given as input to all three DHMMs.
Each DHMM returns the likelihood of the sequence to a specific class. The higher the
likelihood to a specific class is decided as a final label for that specific sequence.

• Supervised Classifiers in Section 4.5. These classifiers can be employed as meta-level
learners as meta-data resembles a set of features coming from base-learning episodes.

The parameters we used to execute grid searches and train meta-level learners above
are as follows.

• Majority Voting: no parameter is needed.
• Each DHMM model was trained with 500 iterations.
• Supervised Classifiers: we used the same parameter values we already presented

in Section 4.5.
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4.8. Long-Short Term Memory (LSTM) Networks

LSTM networks are artificial recurrent neural networks, which efficiently process
sequences of images, and therefore, suit the classification of sequences of traffic signs.
LSTM networks are trained on all 12 feature sets in Section 4.3 independently considering
three different training functions or optimizers, i.e., ‘adam’, ‘sgdm’, and ‘rmsprop’ with a
learning rate of 0.001.

5. Results and Discussion

This section reports and discusses the results of our experimental campaign. We
split the results into two sub-sections: Section 5.1 describes the experimental results of
single-frame classifiers, while Section 5.2 reports on the results achieved by classifiers that
consider sliding windows of frames.

5.1. TSR Based on Single Frame

First, we elaborate on the classification performance of TSR systems that process
frames individually.

5.1.1. Highest Accuracy for Each Dataset

Figure 4 depicts a bar chart diagram reporting the highest accuracy achieved by
classifiers in each of the three datasets. It is clear from the blue solid bars in Figure 4 that
almost all classifiers give better performance on the GTSRB dataset compared to the other
two datasets, i.e., BelgiumTSC and DITS. All classifiers in the figure but Decision Tree and
LDA achieve perfect accuracy on the GTSRB dataset. The reason behind the high accuracy
may be the higher number of training samples and better image quality of the GTSRB
dataset compared to the other two datasets. Instead, SVM provides the highest accuracy of
95.94% in DITS, with LDA that comes close at 95.85%. Consequently, the highest accuracy
in each dataset is not always achieved by the same algorithm, despite K-NN, SVM and
LDA performing better overall compared to other supervised classifiers.
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Figure 4. Highest accuracy achieved by traditional supervised classifiers on each dataset.

5.1.2. Impact of Feature Descriptors

Table 3 further elaborates on the impact of features on accuracy scores achieved by
supervised classifiers on each dataset. Supervised classifiers achieve perfect accuracy with
all feature descriptors on GTSRB. Instead, the combination of AFeat and RFeat builds a
feature descriptor that allows algorithms to achieve the highest accuracy of 95.94% for
DITS and 99.12% for BelgiumTSC. Additionally, AFeat and RFeat descriptors provide
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features that allow algorithms to reach higher accuracy. By using just a single feature
descriptor AFeat always achieves the highest accuracy on all three datasets, while the
second highest accuracy is achieved by RFeat. Instead, using only LBP, HOG or their
combination generates accuracy scores that are lower than potential alternatives. Moreover,
it is worth noticing how combining feature descriptors provides features that increase the
classification performance of supervised classifiers, such as: from 95.51% to 95.94% in DITS,
and from 98.84% to 99.12% in BelgiumTSC.

Table 3. Highest accuracy achieved using different feature descriptors on each dataset (bold high-
lighted values represent the highest achieved accuracy across each dataset).

Feature Descriptor (s) GTSRB DITS BelgiumTSC

AFeat 100.00 95.51 98.84

RFeat 100.00 94.13 97.76

LBP 100.00 79.98 93.49

HOG 100.00 87.92 96.24

HOG ∪ LBP 100.00 88.26 96.56

AFeat ∪ RFeat 100.00 95.94 99.12

AFeat ∪ HOG 100.00 95.68 98.96

AFeat ∪ LBP 100.00 95.85 98.96

RFeat ∪ HOG 100.00 95.51 98.72

RFeat ∪ LBP 100.00 95.85 98.80

AFeat ∪ HOG ∪ LBP 100.00 95.42 98.88

RFeat ∪ HOG ∪ LBP 100.00 95.34 98.84

5.1.3. Results of Deep Classifiers

We explore the results of the deep classifiers considered in this study with the aid
of Table 4, which shows accuracy scores achieved by those classifiers for different learn-
ing rates.

MobileNet-v2 achieves the highest accuracy out of the three deep learners for the
GTSRB dataset with a learning rate of 0.001, whereas a learning rate of 0.00005 maximizes
the accuracy scores of AlexNet on the BelgiumTSC dataset. Instead, the learning rate of
0.0001 allows InceptionV3 to reach the maximum accuracy of 96.03% for the DITS dataset,
outperforming MobileNet-v2 and AlexNet, which instead achieves the highest accuracy
in the BelgiumTSC dataset with a learning rate of 0.0005. Interestingly, whereas accuracy
scores for GTSRB do not vary a lot when using different learning rates, the choice of the
learning rate becomes of paramount importance when classifying DITS and BelgiumTSC
datasets. Particularly, the bottom of Table 4, the third column, shows a 14.97% accuracy
on the BelgiumTSC dataset using learning rates of 0.05 and 0.005, which is a very poor
achievement. For these learning rates, the training process was unstable, with weights that
were updated too fast and ended up with a classifier that has semi-random classification
performance. Unfortunately, we could not identify a single deep classifier that outperforms
others in all three datasets.

5.2. TSR Based on Sliding Windows

This section elaborates on the classification performance of TSR systems that process a
sliding window of multiple frames.

5.2.1. Meta Learning with Traditional Base Classifiers

Table 5 reports scores achieved by stacking meta-learners built using (i) the three
traditional supervised classifiers that performed better in Section 5.1.1 as base learners, and
(ii) different meta-level learners, such as K-NN, SVM, LDA, Decision Tree, Majority Voting,
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Boosting, Random Forest and DHMM. The GTSRB dataset does not appear in Table 5 since
single-frame traditional classifiers alone already achieved perfect classification. The table
reports the highest accuracy scores achieved by each stacking meta-level classifier by using
different combinations of base-learners (K-NN, SVM, LDA) and window sizes of two and
three items.

Table 4. Accuracy achieved by deep learners for each of the three datasets with varying learn-
ing rates (bold highlighted values represent the highest achieved accuracy across each dataset by
deep classifiers).

InceptionV3 MobileNet-v2 AlexNet

LR Acc LR Acc LR Acc

G
T

SR
B

0.01 96.62 0.01 96.11 0.0001 95.98
0.05 93.56 0.05 93.38 0.0005 94.92

0.001 96.95 0.001 99.35 0.00001 94.86
0.005 97.06 0.005 96.42 0.00005 95.64
0.0001 96.81 0.0001 96.83 0.000001 95.83
0.0005 98.03 0.0005 96.65 0.000005 96.07

D
IT

S

0.01 80.06 0.01 93.52 0.0001 87.40
0.05 80.67 0.05 85.93 0.0005 86.45

0.001 88.17 0.001 94.99 0.00001 95.51
0.005 84.98 0.005 88.78 0.00005 92.06
0.0001 96.03 0.0001 95.77 0.000001 92.23
0.0005 91.88 0.0005 95.94 0.000005 95.16

B
el

gi
um

T
SC

0.01 89.58 0.01 97.16 0.0001 99.24
0.05 14.97 0.05 94.49 0.0005 92.57

0.001 98.12 0.001 98.72 0.00001 99.52
0.005 14.97 0.005 94.73 0.00005 99.72
0.0001 99.64 0.0001 99.24 0.000001 97.92
0.0005 99.68 0.0005 98.96 0.000005 99.24

Table 5. Results achieved using different meta-learners considering traditional classifiers as base
classifiers varying window size (WS). We bolded the highest achieved accuracy using different
combinations across each dataset and low accuracy achieved through AdaBoostM2 and Random
Forest are italicized in the 10th and 11th columns.

Dataset Base-Level
Classifier

Single Frame
Accuracy WS

Stacking Meta-Level Classifier

Majority
Voting K-NN SVM LDA Decision

Tree AdaBoostM2 Random
Forest DHMM

B
el

gi
um

T
SC

KNN 98.44
2

99.40 99.04 98.8 98.80 98.68 98.80 51.86 98.56
SVM 98.88 99.52 99.64 99.76 98.68 99.64 99.28 98.80 99.04
LDA 99.12 99.64 99.40 99.28 99.28 98.32 98.92 97.84 99.40

KNN 98.44
3

99.40 99.40 99.04 98.92 98.44 98.32 63.47 98.20
SVM 98.88 99.52 99.52 99.64 99.40 98.56 14.97 99.28 98.80
LDA 99.12 99.64 99.64 99.40 98.2 99.28 97.96 98.32 98.80

D
IT

S

KNN 95.25
2

97.56 97.56 97.56 96.75 97.56 97.56 82.93 96.75
SVM 95.94 96.75 97.56 98.37 97.56 95.12 31.71 95.12 95.93
LDA 95.85 98.37 98.37 97.56 97.56 98.37 95.93 96.75 96.75

KNN 95.25
3

99.00 99.00 99.00 99.00 99.00 99.00 85.00 98.00
SVM 95.94 99.00 100.00 99.00 99.00 97.00 36.00 97.00 96.00
LDA 95.85 99.00 100.00 98.00 100.00 99.00 98.00 99.00 98.00

Overall, LDA as a base-level classifier with a K-NN meta-level classifier is the preferred
choice (bolded values in Table 5) on DITS and on BelgiumTSC with a sliding window of
three items. Instead, using ensembles of Decision Trees as AdaBoost and Random Forests
sparingly gives very low accuracy scores (see italicized numbers in the 10th and 11th
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columns of Table 5), showing that those two classifiers do not always adequately play the
role of a meta-level classifier for a stacker.

Results for DITS in Table 5 show that using a sliding window of three items generally
improves accuracy with respect to using a sliding window of only two items. A sliding
window of three items allowed stacking meta-learners, which used K-NN or LDA as meta-
level classifiers to reach perfect accuracy (100%) on the DITS dataset using either LDA or
SVM as base-learners. This result was largely expected: the more information is available
(i.e., wider sliding window), the fewer misclassifications we expect from a given classifier.

Instead, we obtained maximum accuracy for the BelgiumTSC by using a sliding win-
dow of two items, whereas using three items often degrades classification performance. At
a first glance, this result is counter-intuitive with respect to previous discussions. However,
the reader should note that the BelgiumTSC dataset reports on a set of images of the same
traffic signs which are captured with multiple input cameras without any temporal order.
Consequently, the sliding window for the BelgiumTSC contains images of the traffic sign
which are taken from different angles and may lead the meta-learner to lean towards
misclassifications rather than improving accuracy. In fact, for this dataset, there is no direct
relation between the size of the window and accuracy values, which instead turned out to
be evident for the other datasets.

5.2.2. Meta Learning with Base-Level Deep Classifiers

Table 6 has a structure similar to Table 5 but employs base-level deep classifiers to
build the stacking meta-learner, and also reports on all datasets as deep classifiers based
on a single frame but did not achieve perfect accuracy on any of the three datasets. Deep
base-level classifiers in conjunction with K-NN as a meta-level classifier achieved perfect
classification on all three datasets, as shown by bold values in Table 6. GTSRB turns out
to be the dataset that provides the higher average accuracy by using a different base and
meta-level classifiers. The highest achieved accuracies are highlighted in Table 6 with bold
typeset. It is very interesting to discuss that all three deep learning models (base-level
classifiers) with meta-level classifiers K-NN, LDA, Boosting and Random Forest give 100%
accuracy, while MobileNet-v2 achieves 100% accuracy with all meta-level classifiers for a
sliding window of size 2 or 3 on the GTSRB dataset. Inceptionv3 and MobileNetv2 with
meta-level classifiers (K-NN, AdaboostM2) achieve 100% accuracy on the DITS dataset
for sliding windows of size 2 and 3, respectively, While AlexNet base-level classifier with
Majority voting and K-NN as the meta-level classifier achieves 100% accuracy for both
sliding windows of size 2 & 3 on BelgiumTSC dataset.

Similarly, to Table 5, we observe that AdaboostM2 does not show up as a reliable
meta-level classifier as it provides very low accuracy for the BelgiumTSC with a sliding
window of three frames. All meta-level classifiers with base-level classifier Mobilenet-v2
achieve 100% accuracy on the GTSRB dataset, whose sequences contain 30 images of the
same traffic sign, and therefore, provide much information for the stacking classifier to
classify traffic signs as the window slides.

5.2.3. Results of LSTM Networks

Table 7 reports accuracy scores of LSTM networks on the BelgiumTSC and DITS
datasets with a sliding window of size 2 or 3. Similarly to Section 5.2.1, we omit the GTSRB
dataset since it is perfectly classified by single-frame traditional classifiers. We indepen-
dently trained the LSTM by using each of the 12 feature sets in Section 4.3, with different
window sizes (WS) and by using three different optimizers: adam, sgdm and rmsprop.

Table 7 reports the highest accuracy achieved by LSTM by using a given WS and
optimizer function. It is evident how the adam optimizer always allows achieving the
highest accuracy scores in both datasets and with different WS. Additionally, accuracy
is always higher when using a window of size 3 with respect to a window containing
only two items: this was expected for DITS, whose images are time-ordered, but it is also
verified for the BelgiumTSC, which does not have such ordering. Overall, the results of the
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LSTM are slightly lower than stacking meta-learners using traditional base-level classifiers
and clearly worse than stacking using deep base-level classifiers, which achieves perfect
accuracy on all datasets.

Table 6. Results achieved using different meta learners with deep learners as base classifiers with
varying window size (WS). We bolded the perfect classification (100% accuracy).

Dataset Base-Level
Classifier

Single Frame
Accuracy WS Majority

Voting K-NN SVM LDA Decision
Tree AdaBoostM2 Random

Forest DHMM

B
el

gi
um

T
SC

AlexNet 99.72
2

99.88 100.00 99.64 99.88 99.88 99.40 99.16 99.76
InceptionV3 99.68 99.88 99.88 99.64 99.88 99.52 99.88 99.64 99.64
MobileNetv2 99.24 99.52 99.88 99.64 99.04 99.64 99.52 98.68 99.64

AlexNet 99.72
3

100.00 100.00 99.28 99.88 99.88 99.76 99.76 99.28
InceptionV3 99.68 99.88 99.88 99.40 99.52 99.40 14.97 99.76 99.52
MobileNetv2 99.24 99.88 99.88 98.80 99.16 99.40 14.97 99.76 99.52

D
IT

S

AlexNet 95.51
2

96.75 97.56 97.56 97.56 96.74 96.74 96.74 98.37
InceptionV3 96.03 98.37 100.00 97.56 98.37 98.37 96.74 95.93 99.19
MobileNetv2 95.94 97.56 99.18 99.18 99.18 99.18 100.00 98.37 99.19

AlexNet 95.51
3

97.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00
InceptionV3 96.03 98.00 100.00 99.00 98.00 99.00 100.00 99.00 98.00
MobileNetv2 95.94 98.00 100.00 99.00 100.00 99.00 100.00 100.00 100.00

G
T

SR
B

AlexNet 96.07
2

97.37 100.00 99.76 100.00 98.09 100.00 100.00 98.09
InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76
MobileNetv2 99.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

AlexNet 96.07
3

0.9737 100.00 99.76 100.00 98.09 100.00 100.00 98.09
InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76
MobileNetv2 99.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 7. Accuracy of LSTM with window sizes 2 and 3.

Dataset WS
Optimizer

adam sgdm rmsprop

DITS 2 97.56 97.56 96.74
DITS 3 99.00 99.00 98.00

BelgiumTSC 2 99.40 99.16 99.16
BelgiumTSC 3 99.64 99.28 99.40

5.3. Comparing Sliding Windows and Single-Frame Classifiers

Independent analyses and discussions of results in Sections 5.1 and 5.2 provided interest-
ing findings concerning both traditional supervised and deep base-level classifiers and the
usage of sliding windows to improve the classification performance through meta-learning.

Traditional supervised classifiers, such as K-NN, SVM, AdaboostM2, and Random
Forests achieved a perfect classification of each image contained in the GTRSB dataset.
Moreover, we observed how combining deep features descriptor {AFeat ∪ RFeat} allowed
traditional classifiers to reach the highest accuracy in any of the three datasets, achieving
100%, 95.94%, 99.12% on the GTSRB, DITS and BelgiumTSC datasets, respectively. On the
other hand, deep classifiers outperform traditional classifiers on the DITS and BelgiumTSC
datasets but still cannot reach a perfect classification accuracy.

Noticeably, stacking meta-learners that take advantage of sliding windows achieve
perfect classification accuracy on all three datasets when using deep base-level classifiers
and K-NN as meta-level classifiers. These results show that orchestrating sliding windows
critically increases the classification performance compared to single frame classifiers.
Differently, LSTM networks achieve 97.56% and 99% of accuracy on the DITS dataset for
a sliding window of size 2 or 3, respectively, which is better than single frame classifier
performance, but still inferior with respect to stacking meta-learners.

Figure 5 compares the accuracy achieved by stacking meta-learners and LSTM net-
works by means of a bar chart. Base-level traditional supervised classifiers with stacking
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meta learners achieved 98.37% and 100% accuracy on the DITS dataset considering a slid-
ing window of two and three inputs, respectively, which is slightly higher than the LSTM
scores. A similar trend can be observed for the BelgiumTSC, while the GTSRB scores are
not reported in the chart as it does not require sliding windows to achieve perfect accuracy.
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5.4. In-Depth View of BelgiumTSC

Similarly, to the GTSRB and DITS, we observed perfect classification by using a
stacker with deep base-level classifiers also with the BelgiumTSC dataset, which contains
unordered sets of images rather than sequences. Consequently, our meta-learning strategy
proves to be beneficial even if images in the sliding window are not time-ordered.

However, Table 7 showed that a sliding window of three items performs poorly with
respect to using only two items, which may seem counterintuitive. Figure 6 shows one
of those cases in which using a window of two items is beneficial with respect to using
three items. The upper part of Figure 6 represents the process adopted for the classification
of a Diamond traffic sign (Category 7) when using a window of three images. All the
three images taken from different viewpoints are individually classified by the base-level
classifier AlexNet, which returns the probabilities PTS of belonging to all classes (see Base-
Classifier output in the figure). These three probability vectors (which match the PTSi in
Section 3.2) are fed to the meta-level classifier to commit the final decision. We observe that
PTS1 and PTS2 give almost a certain probability of belonging to class 7 (0.999), while PTS3
gives a higher probability for class 1 (i.e., stop traffic sign). With those results, the SVM
meta-learner decides that the traffic sign is a stop sign, ending up with a misclassification.
Clearly, the third image is taken from a different angle, has some blurring and makes the
meta-learner lean towards a misclassification rather than helping.

Instead, Figure 7 shows the process to classify the same inputs using a window of two
items. When {PTS1, PTS2} are provided as meta features to a meta-level classifier, the final
output shows a high likelihood of being a category 7 which is indeed a correct classification.
Meanwhile, providing {PTS2, PTS3} or {PTS1, PTS3} as meta features lead the stacker to
misclassify the set of images as a stop sign (category 1): the predicted final output is class 6
which is a wrong prediction. This enforces the conjecture that in this case using the third
image constitutes noise that causes misclassification.

5.5. Timing Analysis

This section expands on the time required for classification using the different setups
in this paper. Table 8 reports the average and standard deviation of time required for
(i) feature extraction, (ii) single-frame classification, and (iii) stacking meta-learning across
test images of three datasets.
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Figure 7. Instantiation of the Stacking-Meta learner with AlexNet Base-learner and SVM meta-level
learner, managing a sliding window of size 2 for the BelgiumTSC. The three frames we use as input
describe a Diamond sign (Category 7) which is misclassified using all three frames (Figure 6) but may
be classified correctly by using a shorter window.

Starting from feature extraction on the left of the table, it turns out that the extraction
of handcrafted features takes slightly less time compared to deep features. However, even
extracting deep features through ResNet-18 from a single image does not require on average
more than 0.04 s (roughly 40 ms). Instead, the time required for exercising single-frame TSR
classifiers varies a lot: traditional supervised classifiers need at most 200 ms to classify a
given input set, whereas deep classifiers need more than half a second to classify an image
with our hardware setup, depending on the number of layers of deep models. Indeed,
the reader should note that whereas deep classifiers embed feature extraction through
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convolutional layers, traditional classifiers have the prerequisite of feature extraction. In
fact, on the right of Table 8, we show that a TSR system that relies on AFeat ∪ RFeat features
(i.e., most useful ones according to Table 3) provided to an SVM classifier takes on average
0.1974 s to classify an image: this includes feature extraction and classification itself. A
perfect parallelization of the feature extractors cuts down this timing to 0.1756 and will be
easily achievable on basic multi-core systems.

Table 8. Time required for (left) feature extraction, (middle) exercising individual classifiers, and
(right) different TSR strategies, either sequential or parallel execution.

Feature Extractor Time in Seconds
Avg ± St. Dev

Individual
Classifier

Time in Seconds
Avg ± St. Dev

TSR Strategy
Average Time in Seconds

(Sequential) (Parallel)

HOG 0.0204 ± 0.0024 SVM 0.1344 ± 0.0364 Single-frame
(AFeat ∪ RFeat + SVM) 0.1974 0.1756

LBP 0.0196 ± 0.0023 KNN 0.1205 ± 0.0302 Single-frame
(InceptionV3) 1.4205 1.4205

AFeat 0.0218 ± 0.0023 LDA 0.1034 ± 0.0256 Stacking with WS = 2
(AFeat ∪ RFeat + SVM + KNN) 0.4036 0.3636

RFeat 0.0412 ±0.0034 InceptionV3 1.4205 ± 0.6613

MobileNetV2 0.6391 ± 0.2180 Stacking with WS = 2
(AlexNet + KNN) 0.5621 0.5621

AlexNet 0.3749 ± 0.1407 Stacking with WS = 2
(InceptionV3 + KNN) 1.6085 1.6085

Table 8 also shows the time needed to perform other TSR strategies we discussed in
this paper. Particularly, the third to sixth line on the right of the table show the time needed
to classify an image using a sliding window of two or three items with different base-levels
and meta-level learners. The time required for base-level learning equals single-frame
classification: only the most recent frame in the window is processed, whereas probabilities
assigned by classifiers to older frames are stored, and therefore, do not need to be re-
computed again. The table reports on different base-learners but always uses K-NN as the
meta-level learner, as this was the classifier that allowed reaching high scores in Section 5.2.
K-NN takes on average 0.188 to classify a sliding window of two items, (i.e., two PTS
vectors of 8/9 numbers each), and only slightly more time to process a sliding window of
three items.

Overall, we can observe how most TSR systems that embed sliding windows are
able to classify a new image in less than a second, whereas heavier deep learners make
classification time lean towards two seconds. We believe that such timing performance
albeit slower than using single-frame classifiers is still efficient enough to be installed
on a vehicle, which only rarely samples more than a frame per second for TSR tasks.
Nevertheless, using more efficient hardware, especially GPUs, could help in reducing, even
more, the time required for classification.

5.6. Comparison to the State of the Art TSR

Ultimately, we recap the accuracy scores achieved by studies we already referred to as
related works in Sections 2.2 and 2.3, to compare their scores with ours. Therefore, Table 9
summarizes those studies, the datasets they used, and the accuracy they achieved. At a
first glance, those studies conclude that their single-frame classifiers are often far from
perfect classification. In fact, even in this study, we observed that single-frame TSR in the
BelgiumTSC and DITS datasets cannot reach perfect accuracy (i.e., second-last row in the
table). Unfortunately, promising studies [64,65], which describe multi-frame classifiers, do
not rely on our datasets, and therefore, we cannot directly compare them.

To summarize, our experiment ended up achieving perfect classification on all datasets
thanks to sliding windows (see last row of Table 9), dramatically improving existing studies
on those datasets, for which perfect accuracy was hardly achieved by existing studies.
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Table 9. Comparison with state of the art approaches.

Studies Sequences of Frames
Achieved Accuracy (%)

GTSRB BelgiumTSC DITS

Stallkamp et al. [31] No 98.98

Atif et al. [29] No 100.00 99.80 99.31

Agrawal et al. [45] No * 77.43

Youssef et al. [33] No 95.00 98.20

Mathias et al. [1] No 97.83

Huang et al. [44] No * 95.56

Lin et al. [51] No * 99.18

Li et al. [28] No 97.40 98.10

Li and Wang [3] No 99.66

Zeng et al. [83] No 95.40
No 100.00 99.72 96.03Our Approach
Yes 100.00 100.00 100.00

Note: Accuracy values with * represent average accuracy across different classes of traffic signs no balanced
accuracy was provided.

6. Concluding Remarks

To conclude the paper, we report in this section the limitations to the validity of our
study, we summarize the findings and lessons learned in this paper and ultimately discuss
future works.

6.1. Limitations to Validity

We report here possible limitations to the validity and the applicability of our study.
These are not to be intended as showstoppers when considering the conclusions of this
paper. Instead, they should be interpreted as boundaries or possible future implications
which may impact the validity of this study.

6.1.1. Usage of Public Data

The usage of public image datasets and public tools to run algorithms was a prerequi-
site of our analysis, to allow reproducibility and to rely on proven-in-use data. However,
the heterogeneity of data sources and their potential lack of documentation may limit the
understandability of data. In addition, such datasets are not under our control; therefore,
possible actions, such as changing the way data is generated, are out of consideration. For
example, creating longer sequences of traffic signs or creating a time-sequenced version of
the BelgiumTSC is not possible at all.

6.1.2. Parameters of Classifiers

Each classifier relies on its own parameters. Finding the optimal values of parameters
is a substantial process that requires sensitive analyses and is directly linked with the
scenario in which the classifier is going to be exercised. When applying classifiers to
different datasets it is not always possible to precisely tune these parameters: instead,
in this study, we perform grid searches, which run a classifier with different parameter
values and choose the parameter that maximizes accuracy. This does not guarantee finding
the absolute optimum value of a parameter for a given classifier on a given dataset but
constitutes a good approximation [84].
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6.2. Lessons Learned

This section highlights the main findings and lessons learned from this study.

• We observed that classifying images in the DITS dataset is harder than classifying the
BelgiumTSC and GTSRB datasets as both base-level traditional supervised and deep
classifiers’ performances are low comparatively. This is mostly due to the amount of
training images and their quality, which is higher in the GTSRB compared to the other
two datasets.

• Combining feature descriptors allows for improving classification performance. Par-
ticularly, we found that the {AFeat ∪ RFeat} descriptor allows traditional classifiers to
maximize accuracy.

• Single-frame traditional supervised classifiers achieved perfect classification on the
GTSRB dataset, while on the BelgiumTSC and DITS they show a non-zero amount
of misclassifications. To the best of our knowledge, this result is due to the number
of training samples, which is higher in the GTSRB with respect to the BelgiumTSC
and DITS, and image quality, which again is better for the GTSRB. On the other hand,
we achieved 100% accuracy by adopting a sliding windows based TSR strategy on all
three considered datasets.

• There is no clear benefit in adopting deep classifiers over traditional classifiers for
single-frame classification as they show similar accuracy scores. Additionally, both are
outperformed, when using sliding windows for TSR.

• LSTM networks often, but not always, outperform single-frame classifiers but show
lower accuracy than stacking meta-learners in orchestrating sliding windows.

• A stacking meta-learner with deep base-level classifiers and K-NN as meta-level
classifier can perfectly classify traffic signs on all three datasets with any window size
WS ≥ 2.

• For datasets that contain sequences (time-series) of images, enlarging the sliding window
never decreases accuracy and, in most cases, raises the number of correct classifications.

• Deep learning models require more time compared to traditional supervised classifiers,
especially because there are many layers, e.g., InceptionV3.

• Sliding windows based classification takes more time compared to single-frame classi-
fiers but has remarkably higher classification performance across all three datasets.

• Overall, adopting classifiers that use a sliding window rather than a single-frame
classifier allows reducing misclassifications, consequently raising accuracy.

6.3. Current and Future Works

Our study showed how the adoption of a stacking meta-learner in conjunction with
sliding windows allows achieving perfect classification on the public GTSRB, BelgiumTSC
and DITS datasets. Those datasets contain images taken in different parts of the world and
mostly taken in semi-ideal lighting and environmental conditions. Therefore, they may not
completely represent what a real TSR system installed on a vehicle will face during its life.
As a result, we plan to explore the robustness of classifiers used in this study by injecting
different types of faults/perturbations in the captured images [85], tracking the likely
growth of misclassifications of individual classifiers. After this test, we plan to re-train
(either from scratch or through transfer learning) classifiers using both original images
from datasets and those faulty images. Furthermore, we plan to inject adversarial attacks
to traffic sign images and using them both (i) as a test set, to observe the degradation of
accuracy (if any) when processing corrupted frames, and (ii) during training, to learn a
more reliable model. We believe that this process will allow us to build robust classifiers
with very high accuracy, even when classifying faulty, adversarial, or corrupted images.
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