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Abstract

This paper investigates two important analytical properties of hyperbolic-polynomial penalized splines, HP-
splines for short. HP-splines, obtained by combining a special type of difference penalty with hyperbolic-
polynomial B-splines (HB-splines), were recently introduced by the authors as a generalization of P-splines.
HB-splines are bell-shaped basis functions consisting of segments made of real exponentials eαx, e−αx and
linear functions multiplied by these exponentials, xe+αx and xe−αx. Here, we show that these types of
penalized splines reproduce functions in the space {e−αx, xe−αx}, that is they fit exponential data exactly.
Moreover, we show that they conserve the first and second ‘exponential’ moments.

Keywords: Hyperbolic-polynomial splines, Penalized splines, Discrete penalty, P-splines, B-splines.

1. Introduction

This paper investigates the reproduction capabilities of hyperbolic-polynomial penalized splines. HP-
splines, were recently introduced in [1] as a generalization of the better known P-splines (see [2, 3]), and
combine a finite difference penalty with HB-splines, that piecewise consist of real exponentials and monomials
multiplied by these exponentials. Numerical examples show that the exponential nature of HP-splines may
turn out to be useful in applications when the data show an exponential trend [4].

The HP-splines we consider have segments in the four-dimensional space

E4,α := span{eαx, x eαx, e−αx, x e−αx}, α ∈ R, (1)

with the frequency α being an extra parameter to tune the smoother effects. Even though all details
concerning their definition and construction can be already found in [1], the analysis of their reproduction
capability is missing there. To fill the gap, here we show that these type of penalized splines reproduce
functions in the space {e−αx, xe−αx}, that is fit exponential data of the latter type exactly. We also show
that they conserve the first and second ‘exponential’ moments, showing that HP-splines are the natural
generalization of P-splines even with respect to reproduction and moment preservation.

Given the data points (xi, yi), i = 1, . . . ,m, x1 < · · · < xm, the uniform knot partition Ξ := {x1 :=
a = ξ1 < ξ2 · · · < ξn = b =: xm} with knots distance h, and denoting by {Bα0 , · · · , Bαn+1} a basis of the
spline space- called HB-splines- with segments in E4,α (see [5]), the HP-spline approximating the given data
is obtained by solving the minimization problem

min
a0,...,an+1

m∑
i=1

wi

yi − n+1∑
j=0

ajB
α
j (xi)

2

+ λ

n+1∑
j=2

(
(∆h,α

2 a)j

)2
, (2)
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where the minimum is with respect to the HP-spline coefficients a = (aj)
n+1
j=0 . The values (w1, . . . , wm) are

non-zero weights, ∆h,α
2 is the difference operator acting on functions and on sequences respectively as (see

[6] for this type of operators),

∆h,α
2 u = u(x)− 2e−αhu(x− h) + e−2αhu(x− 2h), with h > 0 the knots distance,

(∆h,α
2 a)j = aj − 2e−αhaj−1 + e−2αhaj−2, j ∈ Z,

and λ is a regularization parameter that can be set in several different ways, e.g. with the discrepancy
principle, the generalized cross-validation, or the L-curve method (see [7], for example).
It is not difficult to see that the HP-spline can be written as

shp(x) =

n+1∑
j=0

âjB
α
j (x), (3)

where â = (â0, . . . , ân+1)T ∈ R(n+2) is the solution of the linear system(
BαTWBα + λDh,α

2

T
Dh,α

2

)
a = BαTWy, (4)

where y = (y1, . . . , ym)T ∈ Rm, Bα ∈ Rm×(n+2) is the banded collocation matrix Bα := (Bαj (xi))
j=0,...,n+1
i=1,...,m ,

W is the diagonal matrix W := (diag(wi))i=1,...,m ∈ Rm×m and

Dh,α
2 =


1 −2e−αh e−2αh 0 · · · 0
0 1 −2e−αh e−2αh · · · 0
...

. . .
. . .

. . . · · ·
...

...
...

... 1 −2e−αh e−2αh

 ∈ Rn×(n+2).

Note that for α → 0 the space E4,α reduces to {1, x, x2, x3}, HB-splines reduce to cubic B-splines and

the difference operator ∆h,α
2 reduces to the standard forward second order difference operator acting on a

sequence a as (∆2 a)j = aj − 2aj−1 + aj−2. Therefore, for α = 0 HP-splines coincide with P-splines based
on classical cubic B-splines proposed by Eilers and Max (see their recent monograph [8]). From now on,
without loss of generality, we continue by assuming that W is the identity matrix.

P-splines are known to have a number of useful properties, essentially inherited from B-splines and from
the special type of penalty: they can fit polynomial data exactly, they can conserve the first two moments
of the data and show no boundary effects. The aim of this paper is to investigate similar reproduction
properties of HP-splines. As in the polynomial case, the HP-spline properties are essentially inherited from
HB-splines and this is why in Section 2 we first prove that HB-splines reproduce E4,α. Then, in Section 3,
we show that, whatever the value of the smoothing parameter λ, HP-splines fit exponential data exactly as
they reproduces E2,−α := {e−αx, xe−αx}. Moreover, we show that HP-splines conserve the first and second
‘exponential’ moments. Section 4 draws conclusion and highlights future works.

2. HB-splines and their reproduction properties

As shown in [9], in the ‘cardinal’ situation –corresponding to integer spline knots–, HB-splines can be
defined through convolution. For the spline space with segment in E4,α, starting with the first order B-spline

B1
α(x) = eαxχ[0,1](x), (5)

where χ[0,1] is the characteristic function with support [0, 1], the four order cardinal HB-spline supported
on [0, 4] is obtained as

B1
α =

(
B1
α ∗B1

α ∗B1
−α ∗B1

−α
)

with α = (α, α,−α,−α),

2



hence, for any integer k, the HB-spline supported in [k, k + 4] is obtained by translation as B1
α(· − k). In

case the knots are uniform but with a distance h 6= 1, the corresponding HB-splines are defined by dilation,

Bhα = B1
α(
·
h

) =
(
B1
α ∗B1

α ∗B1
−α ∗B1

−α
)

(
·
h

), (6)

and then translation. Alternatively, one can directly start with the scaled order-one HB-spline Bhα(x) =
e
α
h xχ[0,h](x) and use repeated convolution. In that case we see that when dealing with grid spacing h, the

frequency α is scaled into α
h , a fact that will also enter into the exponential reproduction discussion we are

going to make.

Concerning the HB-spline reproduction, we prove the following result.

Proposition 2.1. Let α = (α, α,−α,−α) be the vector of frequencies, and Bhαh the HB-spline with uniform
knots defined in (6) having support [0, 4h]. Then,

f =
∑
k∈Z

cfkB
h
αh(· − hk), for all f ∈ E4,α.

Proof. The starting point is [9, Proposition 2] that yields the particularly simple reproduction formulas for
the order-two HB-spline B1

α,α = B1
α ∗B1

α∑
k∈Z

eαkB1
α,α(x− k) = eαx,

∑
k∈Z

(k + 1)eαkB1
α,α(x− k) = xeαk,

providing, for tk = kh, the reproduction formula for eαx. In fact, from e
α
h x =

∑
k∈Z

e
α
h tkBhα,α(x− tk) we

arrive at
eαx =

∑
k∈Z

eα tkBhαh,αh(x− tk). (7)

Similarly,
∑
k∈Z(k + 1)eαkBα,α(x − k) = xeαk gives x

he
α
h x =

∑
k∈Z

(k + 1)e
α
h khBhα,α(x− hk) and hence the

reproduction formula for xeαx, which is

xeαx =
∑
k∈Z

(tk + h)eα tkBhαh,αh(x− tk). (8)

Next, we use the fact that the convolution product of Bh−αh,−αh with the functions f1(x) = eαx or f2(x) =
xeαx yields another exponential polynomial of the same type, that is

Bh−αh,−αh ∗ f1 = a0f1, and Bh−αh,−αh ∗ f2 = b0f1 + b1f2, with a0, b0, b1 ∈ R.

Therefore, since B1
α = B1

α,α ∗ B1
−α,−α and Bhαh = 1

h

(
Bhαh,αh ∗Bh−αh,−αh

)
, if we convolve both side of (7)

and (8) with Bh−αh,−αh, we arrive at

a0f1 =
∑
k∈Z

eα tkhBhαh(· − tk), and b0f1 + b1f2 =
∑
k∈Z

(tk + h)eα tkhBhαh(· − tk),

that are the reproduction formulas for Bhαh of a function in E2,α = {eαx, xeαx}. Similarly we prove the
reproduction of E2,−α = {e−αx, xe−αx} and therefore the reproduction of E4,α.
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3. HP-splines reproduction of E2,−α and moment preservation

Based on the HB-splines reproduction properties discussed in Proposition 2.1 in this section we show
the reproduction capabilities of HP-splines, independently to the value of the smoothing parameter λ.
Preliminarily, we provide the assumption we make on the HB-splines construction.

Assumptions 3.1. Let the data points (xi, yi), i = 1, . . . ,m, x1 < · · · < xm, be given together with
the uniform knots partition Ξ := {x1 := a = ξ1 < ξ2 · · · < ξn = b =: xm} (n < m) extended with the
uniform left and right extra knots ξ` = ξ1 + (` − 1)h, ` = −2,−1, 0, ξn+` = ξn + `h, ` = 1, 2, 3 where
h = (b− a)/(n− 1). Let {Bα0 , . . . , Bαn+1} be the spline basis with segments in E4,α consisting of the uniform
HB-splines Bα0 := Bhαh(· − ξ−2), with Bhαh as in (6), and its translates Bαj = Bα0 (· − jh), j = 1, · · · , n+ 1.

Proposition 3.2. Under Assumptions 3.1, if the data are taken from a function f ∈ E2,−α, i.e.,

yi = f(xi), i = 1, · · · ,m, with f ∈ E2,−α,

the HP-spline shp defined in (3) satisfies

shp(xi) = yi, i = 1, · · · ,m.

Proof. From Proposition 2.1 we know that HB-splines reproduce E2,−α meaning that there exists a sequence

of coefficients cfj , j = 0, · · · , n+ 1 satisfying

n+1∑
j=0

cfjB
α
j (x) = f(x), x ∈ [a, b], f ∈ E2,−α. (9)

Next, we observe that, that due to the locality of HB-splines in [a, b], for any selection of cf−2 and cf−1, the
expression (9) can be equivalently written as

n+1∑
j=−2

cfjB
α
j (x) = f(x) x ∈ [a, b], f ∈ E2,−α. (10)

With the notation â = (cf0 , · · · , c
f
n+1) assuming that the data are taken form a function f ∈ E2,−α, it is not

difficult to see that the solution of the linear system (4) is exactly â, since from (10) we have

yi =

n+1∑
j=−2

âjB
α
j (xi), i = 1, · · · ,m. (11)

Moreover, for x ∈ [a, b] and f ∈ E2,−α it follows that ∆h,α
2 f(x) = 0. But, due to the uniformity of the

knots we also have Bαj+`(x) = Bαj (x− `h) from which it follows that ∆h,α
2 Bαj (x) = Bαj (x)−2e−αhBαj+1(x)+

e−2αhBαj+2(x). In conclusion,

0 = ∆h,α
2 f(x) =

n+1∑
j=−2

âj∆
h,α
2 Bαj (x) =

n+1∑
j=0

(∆h,α
2 â)jB

α
j (x), (12)

where the last equality is because Bα−2, B
α
−1, B

α
n+2 and Bαn+3 are zero in [a, b]. Hence, if we use the linear

independence of HB-splines we arrive at (∆h,α
2 â)j = 0 for j = 0, · · · , n + 1, that is to

∑n+1
j=2 (∆h,α

2 a)2j = 0
which means that the model acts like non penalized regression and that the reproduction capabilities of the
HB-splines transfer to the HP-splines.
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Remark 3.3. It is important to remark that, even though HB-splines reproduce E4,α, Proposition 3.2 shows
that HP-splines reproduce E2,−α only. This limitation is due to the specific definition of the difference

operator acting as shown in (12). A model based on ∆h,−α
2 rather than ∆h,α

2 would reproduce E2,α.

Next, we show that HP-splines preserve the two ‘exponential’ moments

Proposition 3.4. Under Assumptions 3.1, denoting by ŷ = Bαâ the vector of predicted values with elements
ŷi = shp(xi), i = 1, · · · ,m, we have

m∑
i=1

e−αxi ŷi =

m∑
i=1

e−αxiyi, and

m∑
i=1

xie
−αxi ŷi =

m∑
i=1

xie
−αxiyi. (13)

Proof. To see (13), we start from the two equations defining the reproduction of E2,−α in [a, b]

n+1∑
j=0

cjB
α
j (x) = e−αx, and

n+1∑
j=0

djB
α
j (x) = xe−αx, with cj , dj ∈ R, (14)

and evaluate them at xi, i = 1, . . . ,m. Hence, for c = (c0, · · · , cn+1) and e = (e−αx1 , · · · , e−αxm) we have
the equivalence

n+1∑
j=0

cjB
α
j (xi) = e−αxi , i = 1, · · · ,m ⇔ Bαc = e, (15)

and, for d = (d0, · · · , dn+1) and xe = (x1e
−αx1 , · · · , xme−αxm), the equivalence

n+1∑
j=0

djB
α
j (xi) = xie

−αxi , i = 1, · · · ,m ⇔ Bαd = xe. (16)

Now, in consideration of the linear independence of the HB-splines, with the same reasoning done in Propo-
sition 3.2, from

0 = ∆h,α
2

(
e−αx

)
= ∆h,α

2

 n+1∑
j=−2

cjB
α
j (x)

 =

n+1∑
j=0

(∆h,α
2 c)jB

α
j (x), x ∈ [a, b], (17)

we can write
(∆h,α

2 c)j = 0, j = 2, . . . , n+ 1,

from which we conclude Dh,α
2 c = 0. Similarly,

0 = ∆h,α
2

(
xe−αx

)
= ∆h,α

2

 n+1∑
j=−2

djB
α
j (x)

 =

n+1∑
j=0

(∆h,α
2 d)jB

α
j (x), x ∈ [a, b],

implies
(∆h,α

2 d)j = 0, j = 2, . . . , n+ 1, (18)

and therefore Dh,α
2 d = 0. Next, for the predicted values ŷ = Bαâ, from (4), we have

(Bα)T (y −Bαâ) = λDh,α
2

T
Dh,α

2 â. (19)

Multiplication of both sides of (19) respectively by c and d yields

cT (Bα)T (y −Bαâ) = λ
(
Dh,α

2 c
)T

Dh,α
2 â,

5



and

dT (Bα)T (y −Bαâ) = λ
(
Dh,α

2 d
)T

Dh,α
2 â.

Now, since Dh,α
2 c = 0 and Dh,α

2 d = 0 using (15) and (16) we arrive at

eT (y − ŷ) = 0, and xeT (y − ŷ) = 0,

which are the vector versions of (13).

Remark 3.5. Note that the exponential moments (13), reduce to the classical moments preservation when-
ever α = 0 that is to

m∑
i=1

ŷi =

m∑
i=1

yi, and

m∑
i=1

xiŷi =

m∑
i=1

xiyi.

We conclude the paper with some figures showing the exponential-reproduction capabilities of HP-splines.
Figure 1 refers to data taken from the exponential functions e−x while Figure 2 to data from the function
x e−x. They display the graph of the HP-spline (black ‘−’ ) approximating the data for different selections
of α combined with different level of absolute Gaussian noise with zero mean and standard deviation σ, both
specified in the figure captions. The data sites (red ‘∗’ ) and the spline knots location (blue ‘�’ ) are also
given in the figures. The smoothing parameter is always λ = 1 since not relevant to our discussion. The
exact exponential fit is evident in absence of noise (left) while it is almost attained in case of a moderate
noise (middle) somehow shown also in case of a different selection of the frequency (right). For comparison,
the graph of the P-splines approximating the data is also given (magenta ‘−.’ ) together with the graph of
the function (blue ‘−−’ ).
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Figure 1: Function e−x. From left to right values of (α, σ): (−1, 0), (−1, 0.5 · 10−2), (−0.5, 0.5 · 10−2).
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Figure 2: Function xe−x. From left to right values of (α, σ): (−1, 0), (−1, 0.5 · 10−2), (−0.5, 0.5 · 10−2).
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4. Conclusions

This paper enriches the study of HP-splines, penalized hyperbolic-splines with segments in the space
E4,α consisting in the exponential polynomials {eαx, e−αx, xeαx, xe−αx}, where α is a real frequency. In
particular, it investigates two important analytical properties of HP-splines: that they exactly fit functions
in E2,−α and that they conserve the first and second ‘exponential’ moments, independently to the value of
the smoothing parameter λ. A few numerical examples of reproduction are shown. A dynamic selection
strategy of the parameter α, that certainly deserve more attention, is presently under investigation.
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