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Abstract

We prove a Harnack inequality for non-negative solutions of a parabolic equation having an anisotropic

slow diffusion. We study the propagation of support of solutions, through an iterative technique rem-

iniscent of De Giorgi’s method and through the investigation of particular embeddings in anisotropic

Sobolev spaces. At this point, we make an analysis of the natural scaling of the equation to reduce the

problem to a Fokker-Planck equation and construct a self-similar Barenblatt solution thanks to finite

speed of propagation. Then we exploit translation invariance to obtain positivity near the origin via

a self-iteration method and deduce a sharp anisotropic expansion of positivity. This eventually yields

a scale invariant Harnack inequality in an anisotropic intrinsic geometry, dictated by the powers of the

diffusion coefficients. Finally we show some consequences as Hölder continuity of solutions, Liouville-type

theorems and we formulate some open problems.
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1 Introduction

and Main Results

Curiosity can be a very fierce sentiment

- Joseph Conrad -

The Shadow Line

In the present work we study those properties of regularity that are owned by solutions to the model parabolic
anisotropic equation

ut −
N∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
= 0, (1.1)

which is satisfied in a suitable weak meaning in Ω × (0, T ), Ω ⊂⊂ RN for powers pi > 2, i ∈ {1, . . . , N}.
These kind of equations raised increasing interest in the last decades as they embody an interesting feature,
namely an anisotropic diffusion with orthotropic structure. Besides its inherent mathematical interest, the
latter is useful when modeling diffusion in materials such as earth’s crust or wood, where the velocity of
propagation of diffusion varies according to the different orthogonal directions. Evolutionary equations of
this type have been studied for more than fifty years, see for instance the paper [67] by Vishik. Moreover,
equation (1.1) appears already as an example of sum of monotone operators in the monographs [49], [62] and
[68]. Nevertheless, although the problem dates way back, the theory of regularity for this kind of operators
is still a widely open problem, that continues to challenge us as the time passes by. The motivations for this
uphill path are deep; indeed, they are related to the fact that it does not exist nowadays a unified regularity
theory for singular and degenerate isotropic p-Laplacean equations. We will clarify more precisely this point
when the correct intrinsic self-similar geometry of the equation (1.1) will be introduced.
From the mathematical point of view, the principal part in (1.1) arises as the Euler-Lagrange equation of
the energy functional

E(u) =
N∑
i=1

1

pi

ˆ
Ω

|∂iu|pi dx,

whose integrand F(∇u) is part of a more general class of functionals, called with non-standard growth, that
are of the type ˆ

Ω

F(∇u) dx, 1

C
(|z|p − 1) ≤ F(z) ≤ C(|z|q + 1), z ∈ RN ,

for some p < q, as opposed to the standard growth condition p = q. One can not expect the same regularity
to hold true in both cases, as shown by pioneering examples in [37, 51]. The theory of regularity for solutions
of the corresponding Euler-Lagrange elliptic equations is much more delicate and rich than the standard one.
Since then, literature on the elliptic regularity theory grew in considerable size. Even if this has not always
been the case, the general principle underlying to the theory is that most regularity results can be recovered
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when the power gap q − p in the non-standard growth condition is small. Since it would be impossible to
collect here all the contributions, we refer to the surveys [52] and [54, Section 6], for a general overview of
the subject and comprehensive bibliographic references.
While the non-standard elliptic theory matured, its parabolic counterpart became a research theme as well.
The delay in development was considerable, mainly because already the isotropic problem with pi ≡ p ̸= 2
presented great difficulties, solved in full generality only a decade ago through the work of DiBenedetto
and collaborators, see [29] and the literature therein. Nevertheless, parabolic equations with non-standard
growth were considered well before, giving birth to a large amount of results on existence, well-posedness,
L∞-estimates and diffusion analysis. For an extensive bibliography on this research, we refer to [4] and for
the theory of variational solutions to [52, Section 12] and the references therein.

Despite some partial results, however, the regularity theory for these parabolic anisotropic equations was
largely unknown, while the case of bounded and measurable coefficients is still completely open. In the
parabolic general case of non-standard growth the boundedness of spatial gradient has been investigated
in [10]. More recently, Lipschitz regularity under general assumptions has been proven in [12] for the case
pi = p, ∀i = 1, . . . , N , through the use of an iterative scheme of fine energy estimates and therefore using a
different method from ours. On the other hand in [34] existence of of self-similar solutions has been used to
study the asymptotic behaviour of the fast diffusion counterpart of (1.1). While these results have some point
in common with our study of Barenblatt solutions of (1.1), the equation in [34] falls within the framework of
fast diffusion, presenting features which in many respects are opposite to ours. Moreover, we aim at deriving
different qualitative properties of general non-negative solutions of (1.1): the Hölder continuity of solutions
as well as the validity of a suitable (necessarily intrinsic) parabolic Harnack estimates. The latter is precisely
the aim of our work.

INTRINSIC HARNACK INEQUALITY

Let u ≥ 0 be a local weak solution to (1.1) in Ω× [−T, T ] and suppose that

∀i = 1, . . . , N 2 < pi < p̄

(
1 +

1

N

)
p̄ :=

(
1

N

N∑
i=1

1

pi

)−1

< N

and u(0, 0) > 0. Then, there exist constants C1 ≥ 0, C3 ≥ C2 ≥ 1 depending only on N and the pi’s such that,

letting M = u(0, 0)/C1 it holds

1

C3
sup

Kρ(M)

u( · , −M2−p̄ (C2 ρ)
p̄) ≤ u(0, 0) ≤ C3 inf

Kρ(M)
u( · , M2−p̄ (C2 ρ)

p̄)

whenever M2−p̄ (C3 ρ)
p̄ < T and KC3 ρ(M) ⊆ Ω, being

Kr(M) :=
N∏
i=1

{
|xi| < M (pi−p̄)/pirp̄/pi/2

}
.

Let us make some comments on the statement, significance and proof of the previous theorem.

Intrinsic geometry.
A parabolic Harnack inequality for a non-homogeneous equation such as (1.1) cannot hold true with the
classical statement. This was first realised for the parabolic p-Laplacean equation

∂tu = ∆pu (1.2)

through an analysis of the so-called Barenblatt Fundamental solutions: a family of explicit solutions encom-
passing most of the features which distinguish the classical heat equation from (1.2). The correct formulation
of the Harnack inequality for (1.2) was first found in [22] when p ≥ 2, and for a fixed point (xo, to) ∈ ΩT ⊂ RN

such that u(xo, to) > 0, it has the intrinsic form

γ−1 sup
Kr(x0)

u

(
· , to −

(
C

u(xo, to)

)p−2

rp
)
≤ u(xo, to) ≤ γ inf

Kr(x0)
u

(
· , to +

(
C

u(xo, to)

)p−2

rp
)
, (1.3)

being C, γ > 0 constants independent of u and r, and for all radii r ∈ (0, 1) such that the intrinsic cylinders
(xo, to) + {K4ρ × (to − (C/u(xo, to))

p−2(4r)p, to − (C/u(xo, to))
p−2(4r)p) are contained in ΩT .
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Hence, a Harnack inequality for non-negative solutions of a nonlinear parabolic equation expresses a point-
wise control on the solution in a full spatial neighbourhood of a point, in terms of its value at that point.
The parabolic nature of the equation allows such a control to hold only after a positive (or negative) time
delay has passed. For the heat equation this waiting time depends only on the size of the region where we
seek for the lower bound, and it does not depend on the solution. On the other hand, for the parabolic
p-Laplacean equation (1.2), the waiting time (C/u(xo, to))

p−2rp depends on the value of the solution at the
chosen point: the word intrinsic refers mainly to this phenomenon.

In the case of (1.2), the value of the solution at the chosen point affects just the waiting time, while for
the anisotropic equation (1.1), it determines the full shape, or geometry, of the region where the control is
available. This can be observed in the definition of the intrinsic cubes Kr(M), where r plays the role of
an anisotropic radius, while M prescribes the anisotropic geometry. To justify the first statement, notice
that the Lebesgue measure of Kr(M) is always rN , regardless of M . Regarding the second, one can follow
the well-known principle that higher exponents give slower diffusion, so that lower values of M ≃ u(0, 0)
squeeze Kr(M) in directions of slower-than-average diffusion (pi − p̄ > 0) and stretch it in directions of
faster-than-average diffusion (pi− p̄ < 0). This combines singular and degenerate effects that do not allow us
to adopt DiBenedetto’s method of intrinsic scaling (see for instance the guidelines [32], [65], or the original
source [23]); because, roughly speaking, it results (at the present time) impossible to control in a unified
fashion the ratio of powers of levels as kpi and the diameters of level sets [u < k] when the behaviour is both
singular (faster-than-average) and degenerate (slower-than-average).

Assumptions.
The main condition required in the Harnack inequality is 2 < max{pi} < p̄(1 + 1/N). On one hand,
assumption pi > 2 for all i means that we are considering the slow diffusion regime. In this framework
solutions of (1.2) for p > 2 preserve compactness of the support forward in time (as opposed to what
happens for the heat equation). In the setting of the anisotropic equation (1.1), the support moves in
different directions with different speeds, as we will see in Section 5.1, and plays an important role in our
proof. The other condition pi < p̄ (1 + 1/N) requires that the powers pi are not too sparse, following the
above mentioned principle in problems with non-standard growth. Local boundedness holds in the larger
range pi < p̄ (1 + 2/N), but we are not aware of counterexamples if this condition is violated. It would be
interesting to know whether the Harnack inequality holds true also for pmax ∈ [p̄ (1+1/N), p̄ (1+2/N)) but, if
so, its proof likely requires different techniques than the ones employed here. The result however is not to be
expected when 1 < pi < 2N/(N + 1), because of the phenomenon of extinction in finite time (see discussion
(3-i) of Chap VII of [23]) proven in [5]. Fast diffusion regime is outside the scopes of our work but it let us
think that it may be possible that no Harnack inequality shall hold when pmax ∈ [p̄ (1 + 1/N), p̄ (1 + 2/N)),
because the relative diffusion process becomes too slow to expand the positivity.
A few comments on the constants Ci in the statement. The Harnack estimate is found by expanding positivity
in comparison with a Barenblatt solution, whose construction is abstract and we do not know if a uniqueness
theorem holds, up to translation and scaling. The constants depend on a lower bound on the Barenblatt
solution, hence, ultimately on the choice of the latter. They are thereby undetermined from the quantitative
point of view.
Finally, the number u(0, 0) is not a-priori well-defined for a weak solution. Its definition can be given in
case the origin is supposed to be a Lebesgue point of the function. However, we will see in Section 4 that
any solution to (1.1) under our assumptions possesses a semicontinuous representative, allowing us to give
a meaning to u(0, 0). This ambiguity in the choice will then be eliminated by the a-posteriori continuity of
the solution. Clearly, the theorem is meaningful only when u(0, 0) > 0.

Idea of the proof.
As already mentioned, our first task is to build a family of Barenblatt solutions. We find all the natural
scalings of (1.1) and construct a bijection between solutions of (1.1) and solutions of an anisotropic Fokker-
Plank equation (see e.g. [15] for a similar approach). We then seek for a stationary solution to the latter,
which is found through a fixed point argument and comparison principles. Here, the slow diffusion regime
plays a pivotal role in recovering sufficient compactness to apply Shauder fixed point theorem. Indeed we
use in a crucial way the controlled evolution of the support; this property is shown in Section 5.1, through
an iterative De Giorgi argument (see [21]). Let us note that we rely on a weak continuity result (Lemma
6.1, point 3) of independent interest, which we were not able to find in the literature.
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At this stage, the stationary solution to the Fokker-Plank equation is a rather irregular object of little
use. However, exploiting its correspondence to a Barenblatt self-similar solution to (1.1) and using a self-
iteration method based on comparison principles and translation invariance, we are able to prove a positive
lower bound in a small neighbourhood of the origin. Here is crucial that we have a stationary solution to the
Fokker-Planck equation. Transferring the bound to the Barenblatt solution, we find a quantitative expansion
of positivity rate for it.
We then proceed in a manner reminiscent of the proof in [22] of the Harnack inequality for (1.2), namely
finding a positivity set and then expanding it forward in time through comparison with Barenblatt solutions.
For the first step, we actually employ a simplification described in [27], which makes use of the so-called
Clustering lemma of [25]. We have to face two main difficulties: the intrinsic geometry of the problem,
contrary to what happens in most instances of the theory, involves not only the time variables but also,
and mainly, the spatial ones (in an anisotropic way). Secondly, even disregarding the geometry, the natural
intrinsic cubes as per Kρ(M) come from a quasi-metric rather than from a metric. To face the first difficulty
we heavily rely on the natural transformations leaving (1.1) invariant; for the second one, we prove a general
abstract version of the so-called Krylov-Safonov trick, of independent interest (Lemma 7.1).

Consequences of Harnack Inequality.
Following Moser’s original ideas, we use the Harnack inequality to prove that local weak solutions to (1.1)
are Hölder continuous. Moreover, we show that solutions to (1.1) in a strip RN × (−∞, T ) that are bounded
from below and bounded from above for a single time s < T are constant in the strip RN ×(−∞, s). Another
interesting rigidity result can be obtained when the solution u in the whole RN×R is bounded on a trajectory
that goes to infinity in time (see Theorem 8.4). Finally, we show in Theorem 8.15 an Harnack estimate that
holds true for all times, thus freeing time variable from being intrinsic.

The Cauchy problem and compact support propagation.
In order to find a self-similar solution to (1.1), we exploit an important correspondence between this solution
and the corresponding one of a Fokker Planck equation (see Section 3.1). Solving the Cauchy problem with
initial datum taken in L2 related to the Fokker Planck equation is therefore transformed into the resolution
of the Cauchy problemut −

∑N
i=1 ∂i

(
|∂iu|pi−2∂iu

)
= 0, in Ω× (0, T ), pi > 2,

u(x, 0) = u0(x), in L2(Ω).

(1.4)

Stated as it is, this problem suffers heavy non-uniqueness phenomena, even for smooth and compactly
supported initial data (see for instance Appendix A in [33]). A smaller class where the problem is well-posed
is the one of Lp-solutions, that are solutions with a proper directional Sobolev integrability in the whole
strip RN × (0, T ). We prove this assertion in Section 5.2 and we exploit the full power of the finite speed
of propagation for solutions to (1.4) in order to achieve an important consequence for the corresponding
solutions to the Fokker Planck equation. Indeed, these ones have a support which not only stays compact
along its evolution, but it shrinks when small initial datum and unitary mass are considered. This allows us
to use a fixed point theorem on a suitable topology.

Barenblatt solutions.
One of the main byproducts of our proof is the construction of a family of self-similar Barenblatt solutions for
(1.1) and the analysis on their basic properties. Self-similar solutions are by now a classical subject ([6]) and
have been extensively studied in various parabolic nonlinear frameworks, see e.g. [66, Ch. 16] and the therein
cited literature. Their role turned out to be pivotal in understanding the general behaviour of solutions and
has often been an important stepping-stone for treating more general equations and formulating sensible
statements on the general expected results: compare the classical works of Pini [60] and Hadamard [38],
later generalised in the linear measurable setting by Moser [58] or, in the singular/degenerate case, the first
works [22], [31] employing the Barenblatt solutions, generalised in [26].
An explicit form of Barenblatt solutions to equation (1.1) is still unknown at present, and their existence is
obtained through an abstract approach. This difficulty arises because the original method of G.I. Barenblatt
(see [6] and [18] for an easy proof) reduced the problem to the existence of solutions to a specific ODE, while
in our case this not possible due to the lack of radial symmetry. Naturally, we cannot assume any a-priori
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regularity and the method heavily relies on the identification of the natural scalings of (1.1), allowing to
formulate the right notion of self-similarity (see for instance [7], [8] for the original underlying ideas).

Comparison with previous results. Local boundedness of solutions of parabolic equations as (1.1) has
been first proved in [55] under the condition pmax < p̄ (1 + 2/N). Some early regularity results in the plane
are considered in [57], and regularity for parabolic problems with non-standard growth of p(x) type are
contained in [1, 3, 16]. The p(x) growth condition does not cover the simple equation (1.1) and we are not
aware of proofs of the Hölder continuity of solutions of the latter in general dimensions (see [11, Remark 1.4]
for a discussion of previous attempts), let alone of the Harnack inequality.
In the elliptic setting much more is known regarding the regularity of solutions of (1.1), or for more general
non-standard equations, see [52, Sections 5 and 6] for the relevant literature. The most up-to-date result for
(1.1) is in [11], where the Lipschitz regularity of its bounded solutions is proved for any choice of pi ≥ 2. The
Harnack inequality for non-standard elliptic problems has been the object of various works: [2, 9, 20, 59,
50, 40, 39, 63] focus on isotropic equations with non-standard growth of p(x)-type, while [53, 48] deal with
energies with Uhlenbeck structure and non-standard growth. However, none of the frameworks considered
therein cover the anisotropic equation (1.1): indeed, its Euler-Lagrange equation is degenerate/singular on
the union of the coordinate axes, while non-standard functionals of p(x)- or Uhlenbeck-type exhibit this
problem only at the origin.

Structure of the work.
In Section 2 we define the functional setting which is proper to give a definition of local weak solution.
Section 3 collects preliminary results, most of which are modifications of well-known theorems. The most
relevant part is subsection 3.1, where we set up the geometry related to the natural scaling of the equation.
Next in Section 4 we study the boundedness of solutions and the lower semicontinuity of supersolutions.
Moreover Section 5 is dedicated to those solutions to the Cauchy problem (1.4) which have a suitable global
integrability condition, called Lp-solutions. There we carry on an analysis of the propagation of the support
of solutions together with the existence of solutions to (1.4) when the initial datum is taken in L2. In Section
6 we build the Barenblatt solutions and we study their positivity set. Finally, Section 7 contains the proof of
the main theorem, split in several Propositions. A Section 8 is devolved to the consequences of the previous
one and the questions left open; while all those technicalities or simple/known facts omitted along the body
of the work for ease of readability, are collected in an Appendix in Section 9.
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Notation

- For N ∈ N positive real numbers {pi}i=1,...,N we will denote by p the vector p = (p1, p2, . . . , pN ).
Without loss of generality, we will suppose that the pis are ordered, i.e.

min
i
{pi} = p1 ≤ p2 ≤ · · · ≤ pN = max

i
{pi}.

The symbols

p̄ =

(
1

N

N∑
i=1

1

pi

)−1

, and p̄∗ =
Np̄

N − p̄
,

will be referred to as the harmonic mean of pi’s and the Sobolev exponent of the harmonic mean.
For a number i ∈ {1, . . . , N}, p̄i stands for p̄i = p̄(1 + i/N), most notably along the work we will
consider p̄1 = p̄(1 + 1/N) and p̄2 = p̄(1 + 2/N).

- The special exponents α, αi for i = 1, . . . , N are defined with

α =
N

N(p̄− 2) + p̄
, and αi =

(
1 + 2α

pi

)
− α =

1

pi

(
N(p̄− pi) + p̄

N(p̄− 2) + p̄

)
.

- We will use the symbols ∂i =
∂u
∂xi

, ∂t =
∂u
∂t for the i-th weak derivative and the time derivative; the

weak gradient will be denoted with Du.

- We will use the single notation
´
for the space variables, independently of how many variables we are

considering, leaving to differentials dx or dxj the duty to point the space variables in which we consider
the integration. On the other hand we will use the notation

´ ´
when we integrate along both space

and time, and −́−́
E
f = |E|−1

˜
E
f as usual denotes the weighted integral. When nothing is written,

the integral symbol refers to the whole N -space RN .

- For a function v and a number k ∈ R we define the truncations as (v − k)+ = max{(v − k), 0}, and
(v − k)− = max{−(v − k), 0}. Finally, when we write supE v or infE v we will always refer to the
essential supremum/infimum of the function in an euclidean set E.

- Given T > 0 and Ω ⊂ RN an open set, we let ΩT := Ω× (0, T ) and ST := RN × (0, T ). More generally
we will denote Sa,b = RN × (a, b) for numbers a < b, a, b ∈ R̄ and S∞ = RN × R+ = RN × (0,+∞).
If E ⊂ RN , we will write Ω ⊂⊂ E to consider an open bounded subset Ω of E that is compactly
contained in E. The parabolic boundary of ΩT is the set ΣT ∪ (Ω × {0}) with ΣT := ∂Ω × [0, T ] the
lateral boundary.

- We will denote by Kρ(y) the cube in RN of side ρ with center in y ∈ RN , and by Q−
1 the unitary

backward cylinder, i.e. Q−
1 =

∏N
i=1{|xi| < 1/2} × (−1, 0]. Analogous notation is adopted for centered

and forward unitary cylinders Q1, Q
+
1 . If xo ∈ RN , the set xo + Kρ(θ) will be referred to as the

anisotropic cube of radius ρ, “magnitude” θ and center xo, i.e.,

xo +Kρ(θ) =

{
x ∈ RN : |xi − xo,i| < θ

pi−p̄

pi ρ
p̄
pi , ∀i = 1 . . . , N

}
=

N∏
i=1

{
|xi − xo,i| < θ

pi−p̄

pi ρ
p̄
pi

}
.

If either θ = ρ or pi = p for all i = 1, . . . , N , then xo +Kρ(θ) = Kρ(xo).
For any ρ, θ > 0 and (xo, to) ∈ RN+1, we will consider the anisotropic cylinders as indicated below:

centered cylinders: (xo, to) +Qρ(θ) = (xo +Kρ(θ))× (to − θ2−p̄ρp̄, to + θ2−p̄ρp̄);

forward cylinders: (xo, to) +Q+
ρ (θ) = (xo +Kρ(θ))× [to, to + θ2−p̄ρp̄);

backward cylinders: (xo, to) +Q−
ρ (θ) = (xo +Kρ(θ))× (to − θ2−p̄ρp̄, to].

- A constant C is said to depend only on the data if it depends only on p and N .
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2 Anisotropic Sobolev Spaces

A natural definition of solution

Many persons who have not studied mathematics

confuse it with arithmetic and consider it a dry and arid science.

Actually, however, this science requires great fantasy.
-Sophia Kovalevskaya-

Too much Happiness, A. Munro

In this chapter we define those function spaces that are most natural for solutions to equation (1.1), i.e.
spaces of functions that have different degrees of summability along different directions. Once that the
natural functional setting is prepared, we give the definition of a local weak solution in a bounded domain,
local weak solution in a strip, local weak Lp-solution and finally we define what we mean by taking initial
datum in L2. Moreover we show that our definition of solution automatically guarantees the solution to be
continuous as a map t → u(·, t) ∈ L2(Ω). Next we refine the study of some important inequalities on the
previously defined anisotropic Sobolev spaces, both of elliptic and parabolic nature, following the lines of
[33], [41], [43], [64].

2.1 Functional setting

We introduce the natural elliptic and parabolic anisotropic spaces. Their common feature is the membership
of the weak directional derivative ∂iu to a different space Lpi for each i = 1, . . . , N . We define

W 1,p
o (Ω) := {u ∈W 1,1

o (Ω)| ∂iu ∈ Lpi(Ω)}, with norm ||u||W 1,p
o (Ω) :=

N∑
i=1

||∂iu||Lpi (Ω),

W 1,p
loc (Ω) := {u ∈W

1,1
loc (Ω)| ∂iu ∈ L

pi

loc(Ω)}, with norm ||u||1,p := ||u||L1(Ω) +

N∑
i=1

||∂iu||Lpi (Ω),

denoting with W 1,1
o (Ω) the space of functions belonging to W 1,1(Ω) which have zero traces on ∂Ω. It is

simple to verify that these are Banach spaces. In general, if V is a Banach space and V ′ its dual, we shall
consider solutions u of evolution equations where u ∈ Lp(0, T ;V ) for p ≥ 1, and the equation holds in the
space Lp′

(0, T ;V ′). With the respective norms

∥f∥Lp =

(ˆ T

0

∥f(s)∥pV ds
)1/p

, 1 < p <∞,

∥f∥L∞ = sup{∥f(s)∥V : s ∈ (0, T )},
(2.1)
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each Lp(0, T, V ) is a Banach space and moreover if V is separable and 1 ≤ p < ∞, then Lp(0, T ;V ) is
separable.

With this stipulations, we define the anisotropic parabolic spaces

Lp(0, T ;W 1,p
o (Ω)) := {u ∈ L1(0, T ;W 1,1

o (Ω))| ∂iu ∈ Lpi(0, T ;Lpi(Ω))},

Lp
loc(0, T ;W

1,p
o (Ω)) := {u ∈ L1

loc(0, T ;W
1,1
o (Ω))| ∂iu ∈ Lpi

loc(0, T ;L
pi

loc(Ω))},

Lp(0, T ;W 1,p(RN )) := {u ∈ L1(0, T ;W 1,1(RN ))| ∂iu ∈ Lpi(0, T ;Lpi(RN ))},

equipped respectively with norms (2.1). These spaces are in some sense the smallest request for a function to
be measurable, weakly differentiable and to satisfy the requested integrability on the directional derivatives.

2.2 Definitions of local weak solution

In this subsection we discuss the meaning of solution to the equation (1.1) and to the Cauchy Problem (1.4).
The main novelty is the consideration of local weak solutions also to the Cauchy Problem, that leads us to
different results on properties of solutions.

Definition 2.1. A function

u ∈ L2
loc(0, T ;L

2
loc(Ω)) ∩ L

p
loc(0, T ;W

1,p
loc (Ω))

is called a local weak solution to (1.1) in ΩT , if for almost every 0 < t1 < t2 < T and any compact set
K ⊂⊂ Ω the following integral equality holds true,

ˆ
K

uφdx

∣∣∣∣t2
t1

+

ˆ t2

t1

ˆ
K

(
− u ∂tφ+

N∑
i=1

|∂iu|pi−2∂iu ∂iφ

)
dxdt = 0, (2.2)

for all test function φ ∈ C∞
loc(0, T ;C

∞
o (K)). By a density and approximation argument this actually holds

for any test function of the kind

φ ∈W 1,2
loc (0, T ;L

2
loc(K)) ∩ Lp

loc(0, T ;W
1,p
o (K))

for any rectangular domain K ⊂⊂ Ω. Secondly, by a local weak solution to the equation (1.1) in RN × R+,
we mean a function

u ∈ L2
loc(R+;L

2
loc(RN )) ∩ Lp

loc(R+;W
1,p
loc (R

N ))

that for each choice of T > 0 and Ω ⊂⊂ RN is a weak local solution in ΩT in the meaning of previous
definition. Finally, by a Lp-solution, we will understand a local weak solution u such that u ∈ ∩Ni=1L

pi(ST ).

The boundary terms are attained within the meaning of the following Lebesgue’s point-limits for each i = 1, 2,

ˆ
K

u(x, ti)η(x, ti) dx =: lim
h↓0

ˆ ti+h

ti

ˆ
K

u(x, s)η(x, s) dxds.

Considered that u ∈ L1
loc(0, T ;L

2
loc(Ω)) by definition of local weak solution, for almost every point t ∈ (0, T )

it is possible to apply Lebesgue’s differentiation theorem and recover the limits above.
Nevertheless, by Proposition 2.1 equality (2.2) of Definition 2.1 is actually holding for every time 0 < t1 <
t2 < T and u ∈ C(0, T ;L2

loc(Ω)), so that the first two integrals in (2.2) are well- defined.

Definition 2.2. A local weak solution u to (1.1) is said to be a local weak solution to Cauchy Problem (1.4)
with initial datum u0 ∈ L2(Ω) if the initial values are attained in the following sense

lim
h↓0

ˆ
Ω

(
1

h

ˆ h

0

u(x, s) ds− u0(x)
)2

dx = 0. (2.3)
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We end this section by showing that Definition 2.1 can be equivalently stated by assuming a priori the
continuity of the law (0, T ) ∋ t→ u(·, t) ∈ L2

loc(Ω).

Proposition 2.1. If u ∈ L2
loc(0, T ;L

2
loc(Ω)) is a local weak solution to (1.1) then u ∈ Cloc(0, T ;L

2
loc(Ω)).

Proof. For u solution to the equation (1.1), let us fix 0 < t1 < t2 < T and K ⊂⊂ Ω. Let us call

D(t1, t2,K) = L2(t1, t2;L
2(K)) ∩ Lp(t1, t2;W

1,p(K)), and D(t1, t2,K) = (D(t1, t2,K))′,

and let us equip them with norms

∥u∥D(t1,t2,K) = ∥u∥L2(t1,t2;L2(K)) + ∥u∥Lp(t1,t2;W 1,p(K)) and

∥∂tu∥D(t1,t2,K) = sup

{ ˆ t2

t1

ˆ
K

(∂tu)φdxdt

∣∣∣∣ ||φ||D(t1,t2,K) ≤ 1

}
.

We interpret ∂tu as the bounded linear operator ∂tu : D(t1, t2,K)→ R that for each φ ∈ D(t1, t2,K) gives

ˆ t2

t1

ˆ
K

(∂tu)φdxdt =

ˆ
K

uφdx

∣∣∣∣t2
t1

−
ˆ t2

t1

u(∂tφ) dxdt = −
N∑
i=1

ˆ t2

t1

ˆ
K

|∂iu|pi−2∂iu∂iφdxdt, (2.4)

by the equation itself, with

∥∂tu∥D(t1,t2;K) = sup

{ˆ t2

t1

ˆ
K

(∂tu)φdxdt

∣∣∣∣ ||φ||D(t1,t2;K) ≤ 1

}
≤

N∑
i=1

||∂iu||pi−1
Lpi (t1,t2;Lpi (K), (2.5)

by Hölder inequality. Now we let a, b be numbers such that 0 < a < t1 < t2 < b < T and we extend u to be
a function defined by symmetry in (a, b) by

u(t1 − s, x) := u(t1 + s, x), and u(t2 + τ, x) := u(t2 − τ, x), ∀s ∈ [0, t1 − a], τ ∈ [0, b− t2],

therefore defining a = min{(t2−t1)/2, t1/2} and b = min{(t2−t1)/2, (T−t2)/2+t2}. Now we let η ∈ C∞
o (a, b),

0 ≤ η ≤ 1 be a cut-off function such that η ≡ 1 in [t1, t2] and we define ũ = ηu. This function satisfies

||∂tη||L∞(a,b) ≤ γ(a, b, t1, t2) = max{(t1 − a)−1, (b− t2)−1}, and ũ|(t1,t2) = u, and ũ(a) = ũ(b) = 0,

and similarly to u we have

ˆ t2

t1

ˆ
K

(∂tũ)φdxdt =

ˆ t2

t1

ˆ
K

uφ(∂tη)dxdt−
N∑
i=1

ˆ t2

t1

ˆ
K

η|∂iu|pi−2∂iu∂iφdxdt, (2.6)

so that we have the bound ∥∂tũ∥D(t1,t2,K) ≤ C∥u∥D(t1,t2,K) that implies the membership ∂tũ ∈ D(t1, t2,K).
This time, in comparison with (2.5), we used also the condition u ∈ L2(t1, t2, L

2(K)) on the first integral on
the right hand side, together with the boundedness of the derivative ∂tη, as soon as we have already fixed
time intervals (t1, t2) ⊂ (a, b). To further regularize ũ, we let 0 ≤ ϕ ∈ C∞

o (R) be a mollifier, i.e. a function
such that ˆ

R
ϕ(t) dt = 1, suppϕ ⊂ (−1, 1),

and for n ∈ N let us regularise ũ with ηn(t) := nϕ(nt) by setting

ũn(x, t) := ũ ∗ ηn =

ˆ
R
ũ(x, t− s)ηn(s) ds, ⇒ ũn ∈ C∞

o ((a, b),W 1,p
o (K)) and ũn →n→∞

L2(a,b;L2(K)) ũ.

Moreover it is simple to see that ũn → ũ in D(t1, t2,K), because regularisation has been performed only in
time. Therefore {ũn}n∈N is a Cauchy sequence in D(t1, t2,K). Usual properties of mollifiers give that

∂t(ũn) = (∂tũ) ∗ ηn, and ||ũn||L2(t1,t2;L2(K)) ≤ ∥ũ∥L2(t1,t2;L2(K)) .
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We show that ∂tũn ∈ D(t1, t2,K) by evaluating, through the properties above, the following quantity

ˆ t2

t1

ˆ
K

(∂τ ũn)(x, τ)φ(x, τ) dxdτ =

=

ˆ t2

t1

ˆ
K

(ˆ
R
∂τ (uη)(x, τ − s)ηn(s)φ(x, τ) ds

)
dxdτ ≤

(ˆ
R
ηn(s)ds

)
||∂tũ||D(t1,t2,K).

(2.7)

Thus, thanks to (2.5) and (2.6) also the membership ∂tũn ∈ D(t1, t2,K) can be deduced. Finally, thanks
to the condition ũn(a) = 0, the regularity in time of ũn and fundamental theorem of calculus, we write for
m,n ∈ N

||ũn(t)− ũm(t)||2L2(K)

2
= 0 +

ˆ t

a

∂t||ũn(s)− ũm(s)||L2(K) ds =

=

ˆ t

a

ˆ
K

(∂tũn − ∂tũm)(ũn − ũm) dxds

≤ 2∥∂tũn∥D(t1,t2,K) ∥ũn − ũm∥D(t1,t2,K) → 0.

when m,n → ∞, because ũn is a Cauchy sequence in D(t1, t2,K). The estimate being independent of
t ∈ (a, b), we can pass to the evaluation of the supremum of the left-hand side and infer that the sequence
{ũn}n∈N is a Cauchy sequence in C([a, b], L2(K)). By completeness it converges uniformly to a function
v ∈ C([a, b], L2(K)) but as already {ũn}n∈N → ũ in L2(a, b;L2(K)) by regularisation, we can identify v = ũ
and conclude the proof by remembering that ũ = u on (t1, t2).

Remark 2.1. Following the lines of ([62], Prop. 1.2 Chap. III), in Proposition 2.1 we proved a little bit more.
Indeed, we have shown that if u ∈ D(t1, t2,K) is such that ∂tu ∈ D(t1, t2,K) then u ∈ Cloc(0, T, L

2
loc(Ω)).

We end this section with a discussion on global extension of the equation up to time value T . Indeed, if we
know that u ∈ L2(0, T ;L2

loc(Ω)) ∩ Lp(0, T ;W 1,p
loc (Ω)), which is, if a local weak solution is globally integrable

in time, then Definition 2.1 is valid for all 0 ≤ t1 < t2 ≤ T . This comes as an application of estimates that
are global in time. By our integrability assumption, for almost every time t2 we have that u(·, t2) ∈ L2

loc(Ω)
so that the sequence {u(·, t2)}t2 is uniformly bounded in L2

loc(Ω), therefore admitting a subsequence weakly
convergent {u(·, t2)} ⇀ ū. The weak limit is identified by means of the equation, using the local definition
itself. Indeed, by definition for each φ ∈ C∞

o (Ω) independent of time

ˆ
Ω

ū(x)ϕ(x) dx←
ˆ
Ω

u(x, t2)φ(x) dx = −
ˆ
Ω

u(x, t1)φ(x) dx−
ˆ t2

t1

ˆ
Ω

N∑
i=1

|∂iu|pi−2∂iu ∂iφdxdt,

for t2 ↑ T . Again by global integrability, the energy term is continuous on time and the limit for t2 ↑ T is
achieved on the right. Thus the candidate ū is our new definition of u(·, T ).
Finally, in case u ∈ L2(0, T ;L2

loc(Ω)) ∩ Lp(0, T ;W 1,p
loc (Ω)) is globally integrable in time, the proof of Propo-

sition 2.1 gives us that u ∈ C([0, T ];L2(Ω)).

2.3 Anisotropic Embeddings

Next we recall the following anisotropic elliptic embedding. It consists in a Sobolev-type inequality derived
for powers of the function that are different in each coordinate direction.

Proposition 2.2 (Sobolev-Troisi embedding). Let Ω ⊆ RN be a rectangular bounded domain, p̄ < N and
αi > 0, i = 1, . . . , N . If we define

p∗α = p̄∗
α̃

N
, α̃ =

N∑
i=1

αi,

then there exists a constant C = C(N,p, α) > 0 such that for all u ∈W 1,p
0 (Ω) it holds

∥u∥Lp∗α (Ω) ≤ C
N∏
i=1

∥∂i|u|αi∥
1
α̃

Lpi (Ω). (2.8)
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Remark 2.2. The existence and boundedness in Lpi(Ω) of the directional Sobolev derivatives ∂i(|u|αi) is
part of the hypothesis of Proposition 2.2, being otherwise (2.8) vacuously true.

Proof. First we show the result for uλ = max{−λ,min{u, λ}}, and then by a dominated convergence argu-
ment we will end the proof by taking the limit for λ→∞. Moreover, by a monotone convergence argument
we suppose Ω bounded, being otherwise possible to approximate u by compactly supported functions.

STEP 1- Result (2.8) holds for truncated functions uλ.

Let uλ ∈W 1,p
o (Ω)∩L∞(Ω) and let us fix ũλ ∈ AC(li), i.e. a representative of uλ which is absolutely contin-

uous along any line li parallel to the coordinate axis xi. For x ∈ Ω, let lix be a line parallel to a coordinate
axis which joins x to a point y ∈ ∂Ω. We suppose the right hand side of (2.8) finite, being the inequality
otherwise trivial. Therefore the membership ∂i(|ũλ|αi) ∈ Lpi(Ω) implies again by AC characterisation of
Sobolev functions along lines Theorem 9.5 that |ũλ|αi ∈ AC(lix).

Now for powers si > 1, the functions vi = |ũλ|αi and vsii are absolutely continuous and satisfy

vsii (x) := (|ũ|αi)si = si

ˆ
lix

vsi−1
i (x+tei)|∂ivi|(x+tei) dt ≤ si

(ˆ
Ri

v
(si−1)pi

pi−1

i (x)dt

) pi−1

pi
(ˆ

Ri

|∂ivi|pi(x) dt

) 1
pi

,

(2.9)
by the fact that u(y) = 0 for LN−1-a.e. y ∈ ∂Ω, denoting with

ˆ
Ri

f(x) dt :=

ˆ
R
f(x+ tei) dt.

Now we take the product and successively the (N − 1)-th root of (2.9) to get

N∏
i=1

v
si

N−1

i ≤ C(si)
N∏
i=1

(ˆ
Ri

v
(si−1)pi

pi−1

i dt

) pi−1

(pi)(N−1)
(ˆ

Ri

|∂ivi|pi dt

) 1
(N−1)pi

. (2.10)

Furthermore we integrate (2.10) along xj , observing that the j-th integral in (2.10) is independent of xj , to
get ˆ

Rj

N∏
i=1

v
si

N−1

i dt ≤C
(ˆ

Rj

v
(sj−1)p′

j

j (x) dt

) 1
(N−1)p′

j

(ˆ
Rj

|∂jvj |pj dt

) 1
(N−1)pj

×

×
ˆ
Rj

[∏
i̸=j

(ˆ
Ri

v
(si−1)p′

i
i dt

) 1
p′
i
(N−1)

(ˆ
Ri

|∂ivi|pi dt

) 1
(N−1)pi

]
dt,

(2.11)

denoting with p′i = pi/(pi − 1) for all i ∈ {1, .., N}. In order to exchange product and integral signs, we use
the Hölder inequality (9.7) with r = 1 and∑

i̸=j

1

(N − 1)p′i
+

1

(N − 1)pi
= 1,

to get

ˆ
Rj

N∏
i=1

v
si

N−1

i dt ≤C
(ˆ

Rj

v
(sj−1)p′

j

j (x) dt

) 1
(N−1)p′

j

(ˆ
Rj

|∂jvj |pj dt

) 1
(N−1)pj

×

×
∏
i ̸=j

[(ˆ
Rj

ˆ
Ri

v
(si−1)p′

i
i dt

) 1
p′
i
(N−1)

(ˆ
Rj

ˆ
Ri

|∂ivi|pi dt

) 1
(N−1)pi

]
dt.

(2.12)

The whole procedure can be repeated for all j ∈ {1, .., N} to obtain

ˆ
RN

( N∏
i=1

v
si

N−1

i

)
dx ≤ C

N∏
i=1

(ˆ
RN

v
(si−1)p′

i
i dx

) 1
p′
i
(N−1)

(ˆ
RN

|∂ivi|pi dx

) 1
(N−1)pi

, (2.13)
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which is, by expliciting vi = |ũλ|αi ,

ˆ
RN

|ũλ|
∑ αisi

N−1 dx ≤ C
N∏
i=1

(ˆ
RN

|ũλ|αi(si−1)p′
i dx

) 1
p′
i
(N−1)

(ˆ
RN

|∂i|ũλ|αi |pi dx

) 1
(N−1)pi

. (2.14)

We set the powers of |ũλ| on the integral on the left and the first one on the right as the same. This results
in a system of N equations as follows, that can be solved for the only number p∗α, that is in symbols

{
αi(si − 1)pi/(pi − 1) = q =

∑N
i=1

αisi
N−1

∀i = 1, .., N,
⇒


q = p∗α =

(
Np̄
N−p̄

)∑N
i=1

αi

N ,

si = 1 +
p̄
∑

i αi

(N−p̄)

(
1

αip′
i

)
= 1 +

(
q

αip′
i

)
.

This proves (2.8) for uλ, by reabsorbing on the left the first term of the product on the right-hand side of
(2.14).

STEP2- Passage to the limit

This shows (2.8) for the dominated function |uλ| ≤ |u| ∈W 1,p(Ω), being

uλ =


λ almost everywhere in [u ≥ λ],
u almost everywhere in [−λ < u < λ],

−λ almost everywhere in [u ≤ −λ].

Now we apply the dominated convergence theorem for λ ↑ ∞ to take the limit in (2.8) and get

∥u∥Lp∗α (Ω) = lim
λ↑∞
∥uλ∥Lp∗α (Ω) ≤ lim

λ↑∞
C

N∏
i=1

∥∂i|uλ|αi∥
1
α̃

Lpi (Ω) = C

N∏
i=1

∥∂i|u|αi∥
1
α̃

Lpi (Ω),

owing last equality to the validity of the passage to the limit to each component of the product.

Remark 2.3. When αi ≡ 1 then p∗α = p̄∗ and we recover the classical inequality of Troisi [64],

||u||NLp̄∗ (Ω) ≤ C
N∏
i=1

||∂iu||Lpi (Ω). (2.15)

See also Remark 4 in [17] for a more general approach through Young’s functions.

Next result is a parabolic anisotropic Sobolev embedding.

Theorem 2.1. Let Ω ⊆ RN be a rectangular domain, p̄ < N , αi > 0 for i = 1, . . . , N and σ ∈ [1, p∗α].
For any number θ ∈ [0, p̄/p̄∗] define

q = q(θ,p, α) = θ p∗α + σ (1− θ).

Then there exists a constant C = C(N,p, α, θ, σ) > 0 such that

¨
ΩT

|u|q dx dt ≤ C T 1−θ p̄∗
p̄

(
sup

t∈[0,T ]

ˆ
Ω

|u|σ(x, t) dx

)1−θ N∏
i=1

(¨
ΩT

|∂i|u|αi |pi dx dt

) θ p̄∗
N pi

, (2.16)

for any u ∈ L1(0, T ;W 1,1
0 (Ω)).

Proof. For a.e. t ∈ [0, T ], we apply interpolation inequality (9.8) as

ˆ
Ω

|u|q(x, t) dx ≤
(ˆ

Ω

|u|σ(x, t) dx
)1−θ (ˆ

Ω

up
∗
α(x, t) dx

)θ
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and through (2.8) deduce

ˆ
Ω

|u|q(x, t) dx ≤ C
(ˆ

Ω

|u|σ(x, t) dx
)1−θ N∏

i=1

(ˆ
Ω

|∂i|u|αi |pi(x, t) dx

) θ p̄∗
N pi

.

If we set

γ0 = 1− θ, f0(t) =

ˆ
Ω

|u|σ(x, t) dx

and for i = 1, . . . , N

γi =
θ p̄∗

N pi
, r =

p̄

p̄∗
1

θ
≥ 1, fi(t) =

ˆ
Ω

|∂i|u|αi |pi(x, t) dx,

then it is possible to integrate in the t-variable along (0, T ) and use the generalised Hölder inequality (9.7)
in time, to get

ˆ T

0

N∏
i=0

fγi

i dt ≤ T 1− 1
r sup
t∈[0,T ]

fγ0

0

(ˆ T

0

N∏
i=1

fγi r
i dt

) 1
r

≤ T 1− 1
r sup
t∈[0,T ]

fγ0

0

N∏
i=1

(ˆ T

0

fi dt

)γi

,

as long as the exponents satisfy
N∑
i=1

r γi = 1, r ≥ 1, γi > 0.

Corollary 2.1. Let pi > 2 ∀i = 1, .., N and u ∈ L1(0, T ;W 1,1
0 (Ω)). Let us define p̄2 = p̄ (1 + 2/N). If

2 < p̄2 < p̄∗, then there is a constant C = C(N, pi) > 0 such that

ˆ T

0

ˆ
Ω

|u|p̄2 dxdt ≤ C
(
sup
[0,T ]

ˆ
Ω

|u|2dx+

ˆ T

0

ˆ
Ω

N∑
i=1

|∂iu|pi dxdt

)N+p̄
N

. (2.17)

Proof. It is sufficient to consider (2.16) with αi ≡ 1 for all i = 1, . . . , N , σ = 2, θ = p̄/p̄∗ and consequently
q = p̄2 = p̄(1+2/N). Next by estimating roughly from above each single integral term of (2.16) on the right
by the whole integral sum on the right of (2.17) we get the claim because (1−θ)+

∑
p̄/(Npi) = p̄/N+1.

Remark 2.4. In the isotropic case, previous Theorem 2.1 ensures an analogous local summability estimate
without the assumption that u vanishes outside Ω, just by adding an L1 term to the right-hand side. Unfor-
tunately, this is no longer true in the anisotropic setting. Indeed, let us suppose that u does not vanish on
∂Ω, αi ≡ 1 and let

η ∈ C∞
o (2Ω), 0 ≤ η ≤ 1, η(Ω) ≡ 1.

Let us apply Theorem 2.1 to (uη) to get

ˆ ˆ
ΩT

|u|q dxdt ≤ CT 1−θp̄∗/p̄

(
sup

t∈[0,T ]

ˆ
2Ω

|uη|σ(x, t) dx
)1−θ N∏

i=1

(ˆ T

0

ˆ
2Ω

|∂iuη|pi dxdt

) θp̄∗
Npi

≤ CT 1−θp̄∗/p̄

(
sup

t∈[0,T ]

ˆ
2Ω

|uη|σ(x, t) dx
)1−θ N∏

i=1

[ ˆ T

0

ˆ
2Ω

(
|∂iu|pi + |u|pi |∂iη|pi

)
dxdt

] θp̄∗
Npi

.

(2.18)

We observe that last integral on the right is not necessarily bounded: the function u may be not included in
LpN (Ω) (see for instance the counter-examples in [41], [43]). More precisely, under the previous assumptions
on the parameters, it may happen that Lp(0, T ;W 1,p

loc (RN )) ∩ L∞(0, T ;Lσ
loc(RN )) fails to be contained in

Lq(0, T ;Lq
loc(RN )) for q given above. In order to remove the zero boundary condition, one is either forced to

assume a-priori a suitable degree of summability, or to further constrain the location of the pis.

The following result deals with the problem mentioned in the previous remark when αi ≡ 1.
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Theorem 2.2. Let 1 ≤ p1 ≤ · · · ≤ pN , p̄ < N and for any σ ∈ [1, p̄∗] let the critical parabolic exponent be

p̄σ = p̄
(
1 +

σ

N

)
. (2.19)

Then the embedding

LpN (0, T ;LpN

loc(R
N )) ∩ Lp(0, T ;W 1,p

loc (R
N )) ∩ L∞(0, T ;Lσ

loc(RN )) ⊂ Lp̄σ (0, T ;Lp̄σ

loc(R
N )) (2.20)

holds true. Moreover, under the assumption

p̄σ > pN = max{p1, . . . , pN} (2.21)

we directly have
Lp(0, T ;W 1,p

loc (R
N )) ∩ L∞(0, T ;Lσ

loc(RN )) ⊂ Lp̄σ (0, T ;Lp̄σ

loc(R
N )).

Proof. By ordering of the pis and Hölder’s inequality we have

LpN (0, T ;LpN

loc(R
N )) ⊂ Lpi(0, T ;Lpi

loc(R
N )), ∀i = 1, . . . , N.

Indeed, for all K ⊂⊂ RN ,

ˆ T

0

ˆ
K

|u|pi dxdt ≤ (T |K|)
pN−pi

pN

(ˆ T

0

ˆ
K

|u|pN dxdt

) pi
pN

. (2.22)

Let K ⊂ K ′ be two arbitraty compact sets in RN and η ∈ C∞
c (RN ) a cuf-off function between them, i.e.

η|K ≡ 1, η|{RN−K′} = 0, 0 < η < 1, |Dη| ≤ C(η).

Let us apply previous Theorem 2.1 with αi ≡ 1, θ = p̄/p̄∗ to (u η). With the notations of our statement, it
holds q = p̄σ and we get

ˆ T

0

ˆ
K

|u|p̄σ dx dt ≤

(
sup

t∈[0,T ]

ˆ
K′
|u η|σ(x, t) dx

)1−θ N∏
i=1

(ˆ T

0

ˆ
K′
|∂i(u η)|pi dx dt

) p̄
N pi

.

The first factor on the right is finite by assumption, while for the other terms of the product on the right we
use (2.22) to get the following estimate

ˆ T

0

ˆ
K′
|∂i(u η)|pi dx dt ≤ C

ˆ T

0

ˆ
K′
|∂iu|pi + |u|pi dx dt <∞,

and the proof of embedding (2.20) is completed. Let us prove the second embedding under assumption
(2.21). On vectors q ∈ RN we consider the component-wise partial ordering

(q1, . . . , qN ) ≥ (r1, . . . , rN ) ⇔ qi ≥ ri for all i = 1, . . . , N.

By abuse of notation we will say that, for λ ∈ R it holds q ≥ λ to mean q ≥ (λ, . . . , λ). Define by recursion
the following sequence {pn}n∈N ∈ RN :{

p1 = (1, . . . , 1)

(pn+1)i = min{pi, qn},
qn :=

N + σ∑N
1 1/(pn)i

,

where we write (pn)i for the i-th component o the vector pn and we observe that qn is the critical parabolic
exponent (2.19) for the vector pn. We claim that if (2.21) holds, then there exists n̄ ∈ N such that

qn̄ ≥ pN . (2.23)
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Let us postpone the proof of (2.23) momentarily and show how this implies u ∈ LpN (0, T ;LpN

loc(RN )).
Consider the formula that we obtain from the previous discussion relatively to the vector pn,

ˆ T

0

ˆ
K

|u|q
n

dxdt ≤

(
sup

t∈[0,T ]

ˆ
K′
|u η|σ(x, t) dx

)1−θ N∏
i=1

(
C

ˆ T

0

ˆ
K′
|∂iu|(p

n)i + |u|(p
n)i dx dt

) pn

N (pn)i

.

(2.24)

For n = 1 inequality (2.24) ensures that u ∈ Lq1(0, T ;Lq1

loc(RN )). Suppose that u ∈ Lqn(0, T ;Lqn

loc(RN ))

for some qn ≤ pN . Then, since pn+1 ≤ p, Hölder’s inequality ensures u ∈ Lpn+1

(0, T ;W 1,pn+1

loc (RN )) and

the embedding (2.24) with vector pn+1 implies u ∈ Lqn+1

(0, T ;Lqn+1

loc (RN )). At each step, the embedding
improves the integrability of u. Therefore in a finite number n̄ of steps the claim (2.23) implies that
pn̄ = p = (p1, . . . , pN ) and we get u ∈ Lp̄σ (0, T ;Lp̄σ

loc(RN )) by the claim. Clearly, this process also proves
the second stated embedding.

- Proof of the Claim (2.23)-

Since qn is a fixed multiple of the harmonic mean of pn and q1 = (N + σ)/N ≥ 1 =: q0, it follows from

qn ≥ qn−1 ⇒ pn+1 ≥ pn ⇒ qn+1 ≥ qn

that {qn} is non-decreasing. Suppose there exists the smallest integer 1 ≤ h < N such that qn ≤ ph+1 for
all n ≥ 0, and let q = limn q

n ≤ ph+1. Then we infer

qn+1 =
N + σ∑h

1
1
pi

+ N−h
qn

⇒ q =
N + σ∑h

1
1
pi

+ N−h
q

⇔ q = rh,

where we defined for all k = 1, . . . , N

rk :=
k + σ∑k

1
1
pi

.

Notice that

rk ≤ pk+1 ⇔ k + σ

pk+1
≤

k∑
i=1

1

pi

so that, adding 1/pk+1 to both sides, rearranging and using the monotonicity of the pi, we get

rk ≤ pk+1 ⇒ rk+1 ≤ pk+2.

Since q = rh ≤ ph+1 by assumption, we eventually get by induction rN−1 ≤ pN , which is equivalent to say

pN ≥
N + σ∑N

1
1
pi

= p̄
(
1 +

σ

N

)
= p̄σ.

This contradicts (2.21), proving the claim (2.23) and the theorem.
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3 Basic properties of solutions

Poi piovve dentro a l’alta fantasia.

-Dante Alighieri-

Canto XVII Purgatorio, Divina Commedia.

In this section we make an analysis of the scaling properties of solutions to (1.1) and establish an important
correspondence of the latter with the solutions to a Fokker-Planck equation. The parametric scaling that
we employ is just one choice amongst many others which constitute the group of transformations of (1.1),
as G.I. Barenblatt defined for general equations in [7], [8]. This approach leads us to the definition of a
self-similar solution, a Barenblatt Fundamental Solution, and to the description of the self-similar geometry
where the equation can be naturally read.
Furthermore, we determine some particular and some more general energy estimates; we study conservation
of L1 and L2 mass, and we state a De Giorgi-type Lemma, which can be thought of as a sort of measure-
theoretical principle of maximum. Indeed, loosely speaking it states that if the relative measure of the set
where u is greater than a certain value is small enough, then u is above the half of that value in at least half
of the set itself.
On a successive step, we make a detailed analysis of the local clustering (following [25]) of solutions to (1.1),
that will be useful to find a lower bound for the solution u in an undetermined region of ΩT , that will be
the starting point for further expansion of positivity.
Finally we prove two comparison principles, one of local nature and the other of global nature, that can be
both read either for solutions to (1.1), or for solutions to the Fokker Planck equation.

3.1 Scaling properties of solutions.

Proposition 3.1. Let u be a solution to the equation (1.1) in ΩT , let M,ρ > 0 be two chosen parameters,
and define the parametric transformation

Tρ,M (x, t) =

(
M

pi−p̄

pi ρ
p̄
pi xi,M

2−p̄ρp̄t

)
. (3.1)

Then the transformed function

T (u)(x, t) =M−1u

(
Tρ,M (x, t)

)
=M−1u

(
M

pi−p̄

pi ρ
p̄
pi xi,M

2−p̄ρp̄t

)
(3.2)

is still a solution to (1.1) in T−1
ρ,M (ΩT ).
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Proof. If generally T (u) =M−1u

(
Lixi, T t

)
for a number L > 0, then

∂t

(
T u
)

=M−1T

(
∂tu(Lixi, T t)

)
, ∂i

(
T u
)

=M−1Li∂iu(Lixi, T t),

thus using the equation for u, the function T u satisfies

∂t

(
T u
)

=M−1T∂t

(
u(Lixi, T t)

)
=

N∑
i=1

Lpi

i M
1−pi∂i

(
|∂iu|pi−2∂iu

)
=

N∑
i=1

∂i

(
|∂iT u|pi−2∂iT u

)
.

We let

Li =M
pi−p̄

pi A
1
pi ,

to restore the homogeneity in the equation. In order to let T u satisfy the same equation we need

M−1T =M1−p̄A, ⇒ A = TM p̄−2,

and so the transformation is

T u =M−1u

(
M

pi−p̄

pi T
1
piM

p̄−2
pi xi, T t

)
=M−1u

([
Mpi−2T

] 1
pi

xi, T t

)
.

By taking T =M2−p̄ρp̄ we obtain the statement.

Remark 3.1. The proof shows that (3.2) is not the only invariant: we may as well consider for instance
T = 1 to get the function

v(x, t) =M−1u

(
M

pi−2

pi xi, t

)
.

Definition 3.1. We define the intrinsic anisotropic cube just by letting act the transformation (3.1) on the
space variables,

Kρ(M) =

N∏
i=1

{
|xi| < M

pi−p̄

pi ρ
p̄
pi

}
, (3.3)

and similarly the intrinsic anisotropic cylinders

Q−
ρ (M) := Tρ,M (Q−

1 ) =

N∏
i=1

{
|xi| < M

pi−p̄

pi ρ
p̄
pi

}
×
(
−M2−p̄ρp̄, 0

]
. (3.4)

The following property can be readily checked:

Tρ,θ(KR) = KRρ(Rθ), and Tρ,θ(Q
−
R) = Q

Rθ
Rρ. (3.5)

Remark 3.2. If u solves (1.1) in Q−
ρ (M), then T u solves (1.1) in Q−

1 . Vice-versa if u solves (1.1) in Q−
1

then T −1(u) =Mu

(
M

p̄−pi
pi ρ

− p̄
pi xi,M

p̄−2ρ−p̄t

)
solves (1.1) in Q−

ρ (M).

Proposition 3.2. Let u be a local weak solution to equation (1.1). The parametric transformations T u that
preserve the L1 norm of u are the corresponding to (3.2) for M = ρ−N , i.e.

Tρu = ρNu

(
ρ
N(

p̄−pi
pi

)+ p̄
pi xi, ρ

N(p̄−2)+p̄t

)
. (3.6)

Proof. The proof consists just in a change of variables:

ˆ
Tρ,M (K1)

T u(x, t)dx =M−1

ˆ
K1

u(y, s)dy

N∏
i=1

(
M

pi−p̄

pi ρ
p̄
pi

)−1

, (3.7)

and since
∏
M

pi−p̄

pi ρ
p̄
pi = ρN we obtain the statement.
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Remark 3.3. We observe that in the previous proposition we used an important geometric property of the
anisotropic cubes: for each M,ρ > 0 the total volume of the anisotropic cube is independent from the pis

|Kρ(M)| = ρN = ρN |K1|.

Definition 3.2. We say that a solution u to (1.1) is a self-similar solution if it satisfies Tρu = u for each
ρ > 0.

Now we consider the following continuous transformation

Φ(u) = w(x, t) = eαtu(eαitxi, e
t), and its inverse Φ−1(w) = u(x, s) = s−αw(s−αixi, log(s)), (3.8)

for

α =
N

N(p̄− 2) + p̄
, and αi =

(
1 + 2α

pi

)
− α. (3.9)

This continuous transformation brings formally solutions to the equation (1.1) in S1,∞ = RN × (1,+∞), into
solutions of the anisotropic Fokker-Planck type equation

wt =

N∑
i=1

∂i[(|∂iw|pi−2∂iw) + αiyiw], (x, t) ∈ RN × R+ =: S∞. (3.10)

For each fixed time t = log(ρ−[N(p̄−2)+p̄]), ρ > 0, we have that the transformation Φ is a parametric
transformation Tρ in a cube of unitary volume, preserving the L1-norm, as an easy calculation shows:

Φρ(u) = ρα[N(p̄−2)+p̄] u(ραi[N(p̄−2)+p̄] xi, 1) = ρNu(ρ[N(p̄−pi)+p̄]/pi xi, 1). (3.11)

This function is of the form (3.6), when computed at the time t = ρ−[N(p̄−2)+p̄]. Next we show the following
characterisation of L1-norm preserving self-similar solutions.

Proposition 3.3. Self-similar solutions to (1.1) in S1,∞ preserving the L1 norm, correspond to stationary
solutions to the Fokker-Planck equation (3.10), and vice-versa.

Proof. Firstly, we consider a self-similar solution u = T u to equation (1.1) in S1,∞ and we show that Φu = w
is a stationary solution to (3.10). We evaluate through Φ−1

Tρu = ρNu

(
ρ
N(

p̄−pi
pi

)+ p̄
pi xi, ρ

N(p̄−2)+p̄t

)
= t−αw

(
xi, log

(
ρN(p̄−2)+p̄t

))
= Φ−1u,

u = Φ−1w = t−αw

(
t−αixi, log(t)

)
,

so that

Tρu(·, 1) = u(·, 1), ∀ρ > 0 ⇐⇒ w

(
xi, log

(
ρN(p̄−2)+p̄

))
= w

(
xi, 1

)
∀ρ > 0.

So w is independent of time, and it is a solution to the stationary Fokker-Planck equation (3.10). Simi-
larly, any stationary solution to the Fokker-Planck equation corresponds to a self-similar solution to (1.1).
Choosing et = ρN(p̄−2)+p̄es in the equality w(xi, t) = eαtu(eαitxi, e

t) = eαsu(eαisxi, e
s) = w(xi, s) verifies

last assertion.

Definition 3.3. We will refer in the following to a self-similar solution to (1.1) in S1,∞ which preserves the
L1-norm, or equivalently to a solution to (1.1) corresponding to a stationary solution to the Fokker-Planck
equation (3.10), as a Barenblatt Fundamental solution, and we will denote it with B, in analogy with the
literature regarding the p-Laplacean1.

1Indeed the epithet Fundamental does not mean that solutions are represented by an integral convolution of B, but when

p → 2 the classic B function approaches the heat kernel. The original solution for the p-Laplacean equation can be found in [6].
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3.2 Energy Estimates

Next we provide the energy estimates of (1.1), that have to be read as a topological embedding only when the
right hand side is finite. This last condition may be deduced from Theorem 2.2 whenever max{p1, . . . , pN} <
p̄(1 + 2/N), being a local solution a priori in LpN (0, T ;LpN

loc(RN )).
As all arguments are of local nature, we will restrict our computation on the equation (1.1) with ΩT = Q−

1 .
The estimates that we are about to derive are invariant under the transformation T u. Then, an application of
transformation (3.1) will provide the corresponding estimate in general anisotropic intrinsic cylinder Q−

ρ (M).

Lemma 3.1. Let u be a local weak solution to equation (1.1) in Q−
1 . Then there exists a constant γ > 0

depending only on the data, such that if we denote with πi the projection into the i-th coordinate, for each
function of the form

C∞
o (Q1) ∋ η =

N∏
i=1

ηpi

i (xi, t) for ηi ∈ C∞
o

(
πi(K1)× (−1, 0]

)
, (3.12)

we have for all −1 < s < t < 0 the estimate

ˆ
K1

(u− k)2±ηdx
∣∣∣∣t
s

+

N∑
i=1

ˆ t

s

ˆ
K1

|∂i(u− k)±η|pi dxdτ

≤ γ
{ˆ t

s

ˆ
K1

(u− k)2±∂τη dxdτ +
N∑
i=1

ˆ t

s

ˆ
K1

|(u− k)±|pi η̂i|∂iηi|pi dxdτ

}
, being η̂i =

η

ηpi

i

.

(3.13)

Proof. Let uh be the Steklov average of u by formula (9.4) and let us choose in the formulation (9.13) the
test function φ := ±η (uh − k)± ∈W 1,2

loc (−1, 0;W 1,p
o (K1)), for η as in (3.12). This leads us to the equation

ˆ t2

t1

ˆ
K1

∂tuh φdx dt+

N∑
i=1

ˆ t2

t1

ˆ
K1

(|∂iu|pi−2∂iu)h ∂iφdx = 0, (3.14)

for all −1 < t1 < t2 < 0. The first integral term is estimated, for the chosen test function, as

ˆ t2

t1

ˆ
K1

∂tuh φdx dt =

ˆ t2

t1

ˆ
K1

∂t

(
±
(uh − k)2±

2

)
η dx dt

=

ˆ
K1

(uh − k)2±
2

η dx

∣∣∣∣t2
t1

−
ˆ t2

t1

ˆ
K1

(uh − k)2±
2

∂tη dx dt.

(3.15)

Here we let h ↓ 0 to recover the estimate (3.14) without Steklov averages. The limit is achieved for the
double integrals thanks to Dominated Convergence Theorem, while the terms that are yet evaluated on
times t1, t2, well-defined thanks to property (a2) of Proposition 9.6, converge by property (d) of Proposition
9.6. In order to perform this limit operation we use in a crucial way the statement of Proposition 2.1, that
u ∈ C(−1, 0;L2(Ω)). Then let us set η̂i = η/ηpi

i , which does not depend on xi, to estimate in the set
[(u− k)± > 0] ∩Q1 the quantities

N∑
i=1

ˆ t2

t1

ˆ
K1

(|∂iu|pi−2∂iu)h ∂i(±η(uh − k)±) dx→
N∑
i=1

ˆ t2

t1

ˆ
K1

|∂iu|pi−2∂iu · ∂i(±η (u− k)±) ≥

≥
ˆ t2

t1

ˆ
K1

{ N∑
i=1

|∂i(u− k)±η|pi − (u− k)±
N∑
i=1

|∂i(u− k)±|pi−1 |∂iη|
}
dx .

The last term is estimated through Young inequality by

(u− k)± |∂i(u− k)±|pi−1|∂iη| = pi(u− k)±|∂i(u− k)±|pi−1 ηpi−1
i |∂iηi| η̂i

≤ η̂i
(
ε ηpi

i |∂i(u− k)±|
pi + C(ε)(u− k)pi

± |∂iηi|pi
)
.

(3.16)
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Using the definition of η̂i we get

η̂i η
pi

i = η, η̂i |∂iηi|pi = |∂iη
1
pi |pi , (3.17)

therefore taking 0 < ε < 1/2 small enough we get in conclusion

N∑
i=1

ˆ t2

t1

ˆ
K1

|∂iu|pi−2∂iu ∂iη(u− k)± dx ≥

≥ 1

2

N∑
i=1

ˆ t2

t1

ˆ
K1

|∂i(u− k)±|pi η dx dt− C
ˆ t2

t1

N∑
i=1

ˆ
K1

(u− k)pi

± |∂iη
1
pi |pi dx dt.

(3.18)

and the claim follows inserting this last inequality and (3.15) into (3.14).

In the following Lemma we show that the energy inequalities (3.13) are invariant by transformations that
bring solutions to (1.1) into solutions to (1.1).

Lemma 3.2. Let u be a local weak solution to equation (1.1) in (xo, to)+Qρ(M). Then there exists a constant
γ > 0 depending only on the data such that if we denote with πi the projection into the i-th coordinate, for
each function of the form

C∞
o (((xo, to) +Qρ(M)) ∋ η =

N∏
i=1

ηpi

i (xi, t) for ηi ∈ C∞
o (πi(xo +Kρ(M))× (to − ρp̄M2−p̄, to]

we have, denoting with η̂i = η/ηpi

i , the following estimates for all times to − ρp̄M2−p̄ < s < t < to,

ˆ
Kρ(M)

(u− k)2±η(x, τ)dx
∣∣∣∣τ=t

τ=s

+

N∑
i=1

ˆ t

s

ˆ
Kρ(M)

|∂i(u− k)±|piη(x, τ) dxdτ

≤ γ
{ ˆ t

s

ˆ
Kρ(M)

(u− k)2±∂τη(x, τ) dxdτ +
N∑
i=1

ˆ t

s

ˆ
Kρ(M)

|(u− k)±|pi η̂i|∂iηi|pi dxdτ

}
.

(3.19)

Proof. The function T (u), specified by (3.2), solves (1.1) in Q−
1 . Then (3.13) are valid for T u giving for all

−1 < s < t < 0, every k̄ ∈ R the energy estimates (3.13). Now by the change of variables (3.1)-(3.2) again
on each integral and by redefining k/M = k̄ we have that [T u > k̄] = [u > k] for any k̄ ∈ R, we arrive to the
desired estimate. Here we show some insights.
Let T u satisfy the energy estimates

ˆ
K1

(T u− k̄)2±η dy
∣∣∣∣s2
s1

+
N∑
i=1

ˆ s2

s1

ˆ
K1

|∂i(T u− k̄)±|piη dyds ≤

γ

ˆ s2

s1

ˆ
K1

|(T u− k̄)±|2∂sη dyds+
N∑
i=1

ˆ s2

s1

ˆ
K1

|(T u− k̄)±|pi η̂i|∂iηi|pi dyds.

(3.20)

Now let us consider the change of variables

u(x, t) = T −1(T u)(y(x), s(t)) =MT u
(
M

p̄−pi
pi ρ

− p̄
pi xi,M

p̄−2ρ−p̄t

)
,

with the simple stipulations{
xi =M

pi−p̄

pi ρ
p̄
pi yi

t =M2−p̄ρp̄s,
and

{
∂xiu(x, s) = (M/ρ)p̄/pi∂yiT u(y, s)),
∂tu(x, t) =M p̄−1ρ−p̄∂sT u(y, s)).
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We observe that |dx(y)| =
∏
|dxi/dyi| = ρ−N and we evaluate each integral in (3.20) by

ˆ
K1

(T u− k̄)2±η dy
∣∣∣∣s2
s1

=

ˆ
Kρ(M)

(M−1u(x, t)− k̄)2±η(y(x), s(t)) (ρ−Ndx)

∣∣∣∣t2:=M2−p̄ρp̄s2

t1:=M2−p̄ρp̄s1

=M−2ρ−N

ˆ
Kρ(M)

(u(y, t)− k̄/M)2±η dx

∣∣∣∣t2
t1

,

and similarly

ˆ s2

s1

ˆ
K1

|∂yi
(T u− k̄)±|piη dyds =M−2ρ−N

ˆ t2

t1

ˆ
Kρ(M)

|∂xi
(u− k̄/M)±|piη dxdt.

ˆ s2

s1

ˆ
K1

|(T u− k̄)±|2∂sη dyds =M−2ρ−N

ˆ t2

t1

ˆ
Kρ(M)

|(u(y, t)− k̄/M)2±∂tη dxdt.

ˆ s2

s1

ˆ
K1

|(T u− k̄)±|pi η̂i|∂yi
ηi|pi dyds =M−2ρ−N

ˆ t2

t1

ˆ
Kρ(M)

|u(x, t)− k̄/M)±|pi η̂i|∂xi
ηi|pi dxdt.

A useful variant of the energy inequalities (3.13) is the following one. This time we prove them for general
intrinsic anisotropic cubes Kρ(M), in order to leave greater generality to function F on duty.

Lemma 3.3. Let F ∈ C2(R) be such that for some M > 0 and every t ∈ R,

|F ′| ≤M, 0 < F ′′(t) < M, F ′(t)pi/F ′′(t)pi−1 ≤Mtpi , ∀i ∈ {1, . . . , N}. (3.21)

If u is a local weak solution to (1.1) and η is of the form (3.12), compactly supported in some intrinsic cube
Kρ(M), and independent of t, then we have for any 0 < t1 < t2 < T the estimate

ˆ
Kρ(M)

F (u(x, t)) η(x) dx

∣∣∣∣∣
t2

t1

+

N∑
i=1

ˆ t2

t1

ˆ
Kρ(M)

F ′′(u) η |∂iu|pi dx dt ≤

γ

N∑
i=1

ˆ t2

t1

ˆ
Kρ(M)

|F ′(u)|piF ′′(u)1−pi |∂iη
1
pi |pi dx dt,

(3.22)

for a constant γ > 0 depending only on the data.

Proof. Along the proof we will omit the set of integration Kρ(M) as the functions considered are compactly
supported in such a set. Let uh be the Steklov average of u and let us test the equation (9.13) with
φ = F ′(uh) η, which is readily checked to be admissible since F ′ ∈ Lip(R) is bounded and

|∂iφ| ≤M |∂iη|+M |∂iuh| η.

Notice that |F (s)| ≤M |s|, hence F (uh(·, τ)) ∈ L1
loc(RN ) since uh(·, τ) ∈ L2

loc(RN ), so that we can compute

ˆ t2

t1

ˆ
∂tuhφdx dt =

ˆ t2

t1

ˆ
∂t
(
F (uh) η

)
dx dt =

ˆ
F (uh(x, t2)) η(x) dx−

ˆ
F (uh(x, t1)) η(x) dx

for any T > t2 > t1 > 0. Therefore we use the continuity of F, F ′, F ′′ and the boundedness assumptions
(3.21) to let h ↓ 0 in the resulting equation

ˆ
F (uh)(x, t)η(x) dx

∣∣∣∣t2
t1

+

N∑
i=1

ˆ t2

t1

ˆ {(
|∂iu|pi−2∂iu

)
h

[
F ′′(uh)(∂iuh)η + F ′(uh)∂iη

]}
dxdt = 0,
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an we end up with the following estimate

ˆ
F (u(x, t)) η(x) dx

∣∣∣∣t2
t1

+

N∑
i=1

ˆ t2

t1

ˆ
F ′′(u) η |∂iu|pi dx dt ≤

N∑
i=1

ˆ t2

t1

ˆ
|∂iu|pi−1 |F ′(u)| |∂iη| dx dt. (3.23)

Proceeding as in (3.16) and making use of (3.17) we can bound the right-hand side as

|∂iu|pi−1 |F ′(u)| |∂iη| = η̂i

(
|∂iu|pi−1 F ′′(u)

1− 1
pi ηpi−1

i

|F ′(u)|
F ′′(u)

1− 1
pi

|∂iηpi

i |
)

≤ 1

2
F ′′(u) η |∂iu|pi + C|F ′(u)|piF ′′(u)1−pi |∂iη

1
pi |pi ,

which, inserted into (3.23) gives us (3.22).

3.3 Conservation of Mass in L1 and L2

Let u be a local weak solution to the Cauchy problem (1.4) and suppose it has furthermore the better
integrability u ∈ ∩Ni=1L

pi(ST ). Then also its directional derivatives are bounded in Lpi(ST ) and the L2(RN )
norm of the function stays bounded in time. This is the content of next Proposition.

Proposition 3.4. Let u ∈ ∩Ni=1L
pi(ST ) solve the Cauchy problem (1.4) in ST , with initial datum u0 taken

in L2(RN ). Then we have

N∑
i=1

∥∂iu∥Lpi (ST ) ≤ ∥u0∥2, and ∥u(·, t)∥2 ≤ ∥u0∥2 ∀t ∈ [0, T ), (3.24)

and therefore the memberships u ∈ L∞(0, T ;L2(RN )), u ∈ Lp(0, T ;W 1,p(RN ) hold. Furthermore, for any
0 < t1 < t2 < T , ψ ∈ Lip([0, T ];R), ψ ≥ 0 and k ∈ R it holds

ˆ
RN

(u− k)2+(x, t)ψ(t) dx
∣∣∣∣t2
t1

+
1

C

N∑
i=1

ˆ t2

t1

ˆ
RN

|∂i(u− k)+|pi ψ dx dt ≤
ˆ t2

t1

ˆ
RN

(u− k)2+ |ψt| dx dt. (3.25)

Proof. To get (3.24) choose arbitrarily R > 0 and let 0 ≤ ηR ≤ 1 be as in (3.12) but independent on t, being
the product of ηR,i(xi) in separate variables, and such that

supp(ηR,i) ⊆ [−2R, 2R], ηR,i ≡ 1 on [−R,R], |∂iηR,i| ≤
C

R
. (3.26)

With such ηR, apply the (3.13) to both u and −u for k = 0, adding the corresponding inequalities2. Being
u solution to the Cauchy problem, we use (2.3) to let t1 → 0 and obtain the estimate

ˆ
RN

u2(x, t2)ηR dx+

N∑
i=1

ˆ t2

0

ˆ
RN

|∂iu|piηR dx ≤
ˆ
RN

u20 dx+

N∑
i=1

C

Rpi

ˆ t2

0

ˆ
RN

|u|pi dx dt.

We let R → +∞, apply Fatou’s lemma on the left-hand side, and observe that the last integral on the
right-hand side vanishes because u ∈ ∩Lpi(ST ), therefore proving (3.24). To prove (3.25), let us write (3.13)
in with φ = ηR ψ of separate variables, to get

ˆ
RN

(u− k)2+(x, t2) ηR(x)ψ(t2) dx+
1

C

N∑
i=1

ˆ t2

t1

ˆ
RN

∣∣∂i((u− k)+)∣∣pi
ηR ψdx dt ≤

ˆ
RN

(u− k)2+(x, t1) ηR(x)ψ(t1) dx+

ˆ t2

t1

ˆ
RN

(u− k)2+ ηR |ψt| dx dt+ C

N∑
i=1

ˆ t2

t1

ˆ
RN

(u− k)pi

+ |∂iηR,i ψ| dx dt.

Letting R→ +∞ cancels the last term on the right as before, while we apply Fatou on the terms on the left
hand-side and dominated convergence to the right, to obtain (3.25).

2Here use that u2
+ + u2

− = u2 and also with the exponent pi.
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Proposition 3.5. Let u ∈ ∩Ni=1L
pi(ST ) solve the Cauchy problem (1.4) in ST , with u0 ∈ L1(RN ) initial

datum taken within the meaning of L2(RN ). Then it holds

ˆ
RN

|u(x, t)| dx ≤
ˆ
RN

|u0| dx, ∀t ∈ [0, T ). (3.27)

Proof. Let η be as in (3.26) and define, for α > 0 to be determined later and ϵ ∈ (0, 1), the function

Fϵ(s) =

ˆ s

0

τ

(|τ |α + ϵ)
1
α

dτ,

so that
F ′
ϵ(s) =

s

(|s|α + ϵ)
1
α

, F ′′
ϵ (s) =

ϵ

(|s|α + ϵ)
1
α+1

> 0.

We then choose
α = (max{p1, . . . , pN} − 1)−1 > 0,

so that pi − 1 − 1
α ≤ 0 for all i = 1, . . . , N . With this choice, all the assumptions of the Lemma 3.3 are

satisfied with M > 1 big enough and ϵ ∈ (M−α, 1) and estimate (3.22) implies, by our choice,

ˆ
RN

Fϵ(u(x, t)) η(x, t) dx

∣∣∣∣t2
t1

≤C
N∑
i=1

ϵ1−pi

ˆ t2

t1

ˆ
RN

|u|pi(|u|α + ϵ)pi−1− 1
α |∂iη

1
pi |pi dx dt

≤ Cϵ

N∑
i=1

ˆ t2

t1

ˆ
RN

|u|pi |∂iη
1
pi |pi dx dt,

for any ϵ ∈ (0, 1) and Cϵ = C(Λ,p, ϵ) > 0. We use the fact that F is 1-Lipschitz, i.e. that Fϵ(s) ≤ |s|, to let

t1 → 0 in the previous estimate. Moreover as 0 ≤ η ≤ 1 and |∂iη
1
pi | ≤ C

R , we get

ˆ
RN

Fϵ(u(x, t2)) η(x, t2) dx ≤
ˆ
RN

|u0| dx+

N∑
i=1

Cϵ

Rpi

ˆ t2

0

ˆ
RN

|u|pi dx dt,

for all ϵ ∈ (0, 1) and R ≥ 1. Let first R → +∞ to cancel out the last term thanks to the hypothesis
u ∈ ∩Lpi(ST ) obtaining through Fatou’s Lemma

ˆ
RN

Fϵ(u(x, t2)) dx ≤
ˆ
RN

|u0| dx, ∀t2 ∈ [0, T ),

and since 0 ≤ Fϵ(s)↗ |s|, we obtain the conclusion by monotone convergence.

Remark 3.4. Results (3.24) and (3.27) above are valid until time T , i.e. if u is a local weak solution to the
Cauchy problem (1.4) and u ∈ ∩Ni=1L

pi(ST ) then

||u(x, T )||L1(RN ) ≤ ||u0||L1(RN ), ||u(x, T )||L2(RN ) ≤ ||u0||L2(RN ),

N∑
i=1

∥∂iu∥Lpi (ST ) ≤ ∥u0∥2.

As our definition of solution u is local, this doesn’t come as a natural fact, because each formulation of
solution and therefore of energy estimates includes a strictly contained interval of [0, T ]. This comes as a
consequence of the global integrability condition u ∈ ∩Ni=1L

pi(ST ) and the final discussion on Section 2.2.

We give here another approach to this extension. By the results of existence and uniqueness of next sections
3.6 and 5.2, we can solve the Cauchy problem for initial datum u0 ∈ L2(ST ) and obtain a solution ũ which
extends u in ST , thanks to the uniqueness implied by Proposition 3.7. Then, making use of estimates (3.24)
and (3.27) in ST+1 we can treat the value T → u(x, T ) as an internal value. This provides an alternative
statement of Propositions 3.4 and 3.5 where the estimate holds until and included time T .
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3.4 A De Giorgi Type-Lemma

We introduce in this Section a very useful De Giorgy-type Lemma, which again can be demonstrated at ease
for unitary cylinders, and then reinterpreted in the intrinsic geometry dictated by the equation by (3.6).
The proof of this Lemma is nowadays a classic in the context of degenerate and singular equations, and it is
proven for instance in ([27], Lemma 4.1) for the case of functions bounded from above. Therefore here we
prove it just for functions bounded from below by zero.

Lemma 3.4. Let u be a local weak solution to (1.1) such that ||u||L∞(Q−
1 ) ≤ 1. Then for every choice of

0 < a ≤ 1 there exist a number νa > 0 depending only on a itself and pi, N but not on u such that if

|[u ≥ a] ∩Q−
1 | ≤ νa|Q

−
1 | (3.28)

then

u ≤ 3

2
a, a.e. in Q−

1/2 =

N∏
i=1

{|xi| < (1/2)
p̄
pi } × (−(1/2)p̄, 0]. (3.29)

If moreover u is nonnegative in Q−
1 then

|[u ≤ a] ∩Q−
1 | ≤ νa|Q

−
1 |, ⇒ inf

Q−
1/2

u ≥ 1

2
a . (3.30)

Proof. We show only the first implication, i.e. (3.28)-(3.29), the other being similar. Let us define, for n ∈ N,

ρn =

(
1

2
+

1

2n+1

)
, kn = a

(
3

2
− 1

2n

)
, Qn = Kn × (−ρp̄n, 0] =

N∏
i=1

{|xi| < ρ
p̄
pi
n } × (−ρp̄n, 0]. (3.31)

We will apply (3.13) to (u − kn)+. We take the cut-off functions of the form ηn(x, t) =
∏N

i=1 η
pi

i,n(xi)ϕn(t),
with ηi,n ∈ C∞

o (πi(Kn)), ϕn ∈ C∞
o ((−ρp̄n, 0]) such that

ηi,n(xi) =


1, xi ∈ πi(Kn+1) = {|xi| < ρ

p̄
pi
n+1},

0, xi ∈
{
RN − πi(Kn)

}
= {|xi| < ρ

p̄
pi
n }c

and |∂iηi,n| ≤ 2n+1γ (3.32)

and

ϕn(t) =

{
1, t ≥ −ρp̄n+1,

0, t ≤ −ρp̄n
with |(ϕn)t| ≤ 2n+1γ. (3.33)

The energy inequality (3.13), with these stipulations, yields

sup
(−ρp̄

n,0]

ˆ
Kn

(u− kn)2+η dx+

N∑
i=1

ˆ ˆ
Qn

|∂i(u− kn)+|piη dxdt ≤

γ

{ˆ ˆ
Qn

(u− kn)2+ηt dxdt+
N∑
i=1

ˆ ˆ
Qn

|(u− kn)+|pi η̂i|∂iηi|pi dxdt

}
≤

≤ γ2n+1|[u > kn] ∩Qn|.

(3.34)

Now, combining the embedding (2.17), previous estimates and a touch of Hölder estimates, we have(
a

2n+1

)p̄2

|An+1| ≤
ˆ ˆ

Qn+1

|(u− kn+1)+|p̄2 dxdt ≤
ˆ ˆ

Qn

|(u− kn)+|p̄2η dxdt ≤

γ

(
sup

(−ρp̄
n,0]

ˆ
Kn

(u− kn)2+dx+

N∑
i=1

ˆ ˆ
Qn

|∂i(u− kn)+|pi dxdt

)N+p̄
N

≤ γ2(n+1)(N+p̄
N )|An|1+α, α = p̄/N,

(3.35)
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being An = [u > kn] ∩Qn. Now, by observing that |Qn| ≤ 2n+p̄|Qn+1| we get the iterative estimate(
a

2n+1

)p̄2 |An+1|
|Qn+1|

≤ γ2n(
N+p̄
N ) |An|1+α

|Qn|1+α
|Qn|

p̄
N , (3.36)

so that by denoting by Yn = |An|/|Qn| we get for a constant γ = γ(N, pi) > 1 the recursive inequality

Yn+1 ≤ γa−p̄22(N+p̄)nY 1+α
n . (3.37)

Thus by applying Lemma 9.3 with βi ≡ p̄/N for all i = 1, . . . , N , if

Y0 ≤
(
γ

ap̄2

)−N
p̄

2
− (N+p̄)N2

p̄2 =: νa (3.38)

we obtain the thesis (3.29) as n→∞.

Corollary 3.1. Let u be a local weak solution to (1.1) in such that ||u||L∞(ΩT ) ≤ M . Let (x, t) ∈ RN+1 be
a point and for ρ > 0 let (x, t) +Q−

ρ (M) ⊂ ΩT . Then for every choice of 0 < a ≤ 1 there exists a number
νa > 0 depending only on the data and a, but not on u, ρ such that if

|[u ≥ aM ] ∩ (x, t) +Q−
ρ (M)| ≤ νa|Q−

ρ (M)|, (3.39)

then

u ≤ 3

2
aM, a.e. in (x, t) +Q−

ρ/2(M). (3.40)

Moreover, if u is nonnegative in Q−
ρ (M) we have the counterpart for supersolutions:

|[u ≤ aM ] ∩ (x, t) +Q−
ρ (M)| ≤ νa|Q−

ρ (M)|, ⇒ inf
(x,t)+Q−

ρ/2
(M)

u ≥ a

2
M. (3.41)

Proof. If u is a local weak solution to (1.1) in such that ||u||L∞(ΩT ) ≤M , then T u is a local weak solution to

(1.1) in Q−
1 such that ||T u||L∞(Q−

1 ) ≤M . Furthermore, the measure theoretical information (3.39) translates

into (3.28) by the simple change of variables (y, s) = Tρ,M (x, t)

νaρ
N |Q−

1 | =νa|Q
−
ρ(M)| ≥

ˆ ˆ
(x,t)+Q−

ρ (M)

χ[u≥aM ](x) dx =

=

ˆ ˆ
Tρ,M (x,t)+Q−

1

χ[T u≥a](Tρ,M (x)) ρNd(Tρ,M (x)) = ρN |[T u(y, s) > a] ∩ (y, s) +Q−
1 |.

This is enough to infer from Lemma 3.4 that

T u ≤ 3a/2 in Q−
1 , ⇐⇒ u ≤ 3aM/2 in Q−

ρ (M).

3.5 Local Clustering Revisited

First we recall a classic Lemma from [25], that we prove in detail for convenience of the reader and for the
purpose of further inspection. Roughly it asserts that we can always find a point where positivity clusters.

Lemma 3.5. Let u ∈W 1,1(Kρ) satisfy for some constants γ > 0, α ∈ (0, 1) the two properties

||Du||L1(Kρ) ≤ γρ
N−1, and |[u > 1] ∩Kρ| ≥ α|Kρ|. (3.42)

Then for every choice of λ, ν̄ ∈ (0, 1) there exist a point y ∈ Kρ and a number ϵ = ϵ(λ, ν̄, γ, α,N) ∈ (0, 1)
such that

|[u > λ] ∩Kϵρ(y)| > (1− ν̄)|Kϵρ(y)| (3.43)
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Proof. Consider the function v(x) = u(x/ρ) ∈W 1,1(K1), so that (3.42) implies, as Dv = ρ−1Du,

||Dv||L1(K1) ≤ γ, and |[v > 1] ∩K1| ≥ α|K1|.

For n ∈ N we partition K1 into nN cubes Kj , with pairwise disjoint interiors and edge 1/n. We divide these
cubes into two finite subcollections K+ and K− by stating that K ∈ K+ if |[v > 1] ∩K| > (α/2)|K|, and
conversely K ∈ K− if converse inequality holds. We denote by #(K+) the number of cubes in K+. Let us
fix δ, λ ∈ (0, 1). We claim that the integer n can be chosen big enough, depending on λ, δ, α, γ,N such that
for some K ∈ K+ we have

|[v > λ] ∩K] ≥ (1− δ)|K|.

This would establish (3.43) when transforming back to u. So we have an alternative: or there exists a cube
K ∈ K+ where this measure information on the superlevel set is satisfied, or we have

|[v > λ] ∩K] < (1− δ)|K|, ∀K ∈ K+. (3.44)

From now on we proceed by reduction ad absurdum, to show that this hypothesis leads to a contradiction
with (3.42). Assumptions (3.42)-(3.44) imply for each K ∈ K+ the following estimates

|[v ≤ λ] ∩K| ≥ δ|K|, and |[v > (1 + λ)/2] ∩K| > |[v > 1] ∩K| > (α/2)|K|.

Let x ∈ [v ≤ λ] ∩K and y ∈ [v > (1 + λ)/2] ∩K be two Lebesgue points for v and let ṽ ∈ AC(lyx) be the
absolutely continuous representative of v along the line lyx connecting x with y. So we have

1− λ
2

=

(
1 + λ

2
− λ

)
≤ ṽ(y)− ṽ(x) =

ˆ |y−x|

0

Dṽ(x+ tn) · n dt, where n =
y − x
|y − x|

.

We integrate the previous inequality with respect to y along the set ṽ > (1 + λ)/2] ∩ K, estimating from
below the left-hand side by using the lower bound on the measure of such a set and from above the right
hand side by extending the integral over the whole K,

α(1− λ)
4

|K| ≤
(
1− λ
2

)
|[ṽ > (1 + λ)/2] ∩K| ≤

ˆ
K

ˆ |y−x|

0

Dṽ(x+ tn) · n dtdy =

ˆ
K

ˆ |y−x|

0

tN−1Dṽ(x+ tn) · n
|tn|N−1

dtdy.

Now we estimate the integral on the right in the following way. Let R(x,w) be the polar representation of ∂K
with pole at x, thus representing y = x+ sw, dy = sN−1dsdw, with normal vector w = (y− x)/|y− x| = n,
and observe that diam(K) = |K|1/NN1/2 to get

α(1− λ)
4

|K| ≤
ˆ
w=1

ˆ
R(x,w)

sN−1

(ˆ |sw|

0

tN−1 |Dṽ(x+ tw)|
|tw|N−1

dt

)
dsdw

=

ˆ diam(K)

0

tN−1

(ˆ
w=1

ˆ
R(x,w)

sN−1 |Dṽ(x+ sw)|
|sw|N−1

ds

)
dw

)
dt

≤ diam(K)N
ˆ
K

|Dṽ(z)|
|z − x|N−1

dz = NN/2|K|
ˆ
K

|Dṽ(z)|
|z − x|N−1

dz,

with a touch of Fubini’s Theorem on the first equality. Now we integrate with respect to x over the set
[ṽ ≤ λ] ∩K, again bounding from below the resulting left-hand side by the assumption on the measure of
such a set and extending on the right hand side the integral to the whole K, to obtain

αδ(1− λ)
4NN/2

|K| ≤ α(1− λ)
4

|[ṽ ≤ λ] ∩K| ≤
ˆ
K

ˆ
K

|Dṽ(z)|
|z − x|N−1

dzdx

≤
(
sup
z∈K

ˆ
K

dx

|z − x|N−1

)ˆ
K

|Dṽ(z)| dz ≤ γC(N)|K|1/N ,
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using the assumption (3.42) together with ||Dṽ||L1(K) = ||Dv||L1(K), and estimating for each z ∈ K the
Riesz potential by

ˆ
K

dx

|z − x|N−1
≤ wN

ˆ
R(x,n)

(ˆ diam(K)

0

sN−1−(N−1)ds

)
dn = C(N)diam(K) = C(N)|K|1/N ,

by enclosing K in a ball B2
√
N (z) of radius 2N1/2 centered at z, using polar coordinates and estimating

|z − x| = s. Summarizing, by assumptions (3.42)-(3.44) we have

||Dv||L1(K) ≥ C(N, γ, α, δ, λ)n1−N , ∀K ∈ K+. (3.45)

Moreover, the assumption (3.42) implies also

αnN |K| = α|K1| ≤
∑

Kj∈K+

|[v > 1] ∩Kj |+
∑

Ki∈K−

|[v > 1] ∩Ki|,

so that by definition of families K± we have

αnN ≤
∑

Kj∈K+

|[v > 1] ∩Kj |
Kj

+
∑

Ki∈K−

|[v > 1] ∩Ki|
Ki

< #(K+) +
α

2
(nN −#(K−)).

This implies

#(K+) >
α

α− 2
nN . (3.46)

Finally, as we are supposing that our estimates are valid for all K ∈ K+, we can sum estimate (3.45) over
K+ and use (3.46) to obtain

||Dv||L1(K1) ≥
∑

K∈K+

||Dv||L1(K) ≥ #(K+)C(N, γ, α, δ, λ)n1−N ≥ C(N, γ, α, δ, λ)n.

This condition leads us to a contradiction when n is chosen big enough.

Remark 3.5. We observe that if we have an information of the kind (3.42) for the truncated function
(u − 1)+, the result of the above Lemma would not be at our disposal for the function u. This information
can however be recovered when the truncation from below is at stake.

Corollary 3.2. Let u ∈W 1,1(Kρ) satisfy for some constants γ > 0, α ∈ (0, 1)

ˆ
Kρ

|D (u− 1)−| dx ≤ γρN−1 and |[u > 1] ∩Kρ| ≥ α|Kρ|. (3.47)

Then for every choice of λ, ν̄ ∈ (0, 1) there exists a point y ∈ Kρ and a number ϵ = ϵ(λ, ν̄, γ, α,N) ∈ (0, 1)
such that

|[u > λ] ∩Kϵρ(y)| > (1− ν̄)|Kϵρ(y)|. (3.48)

Proof. If u ∈W 1,1(Kρ), then for a > 0 the function ua := min{u, 1 + a} ∈W 1,1(Kρ) and we have trivially3

for each b ∈ [0, 1], ρ ∈ (0, 1) the equivalence of the two measures

|[u > b] ∩Kρ| = |[ua > b] ∩Kρ|. (3.49)

By monotonicity of the function a→
´
Kρ
|D (u− 1− a)−| dx we have

lim
a↓0

ˆ
Kρ

|D (u− 1− a)−| dx =

ˆ
Kρ

|D (u− 1)−| dx. (3.50)

3Indeed, if x ∈ [ua > b] then b < min{u, 1 + a} ≤ u, therefore implying one inequality. On the other hand, as b < 1 there

holds that if x ∈ [u > b] then the possibilities are either min{u, 1 + a} = 1 + a > b trivially or the claim itself.
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This means that we can choose an a ∈ (0, 1) close enough to zero such that the energy information of (3.47)
gives
ˆ
Kρ

|Dua| dx =

ˆ
Kρ

|D (u− 1− a)−| dx ≤ 2γρN−1, and |[ua > 1] ∩Kρ| = |[u > 1] ∩Kρ| ≥ α|Kρ|.

Consequently we apply Lemma 3.5 getting that for each λ, δ ∈ (0, 1) there exist a point y ∈ Kρ and a number
ϵ ∈ (0, 1) both not depending on a, and giving

|[ua > λ] ∩Kϵρ(y)| > (1− δ)|Kϵδ| ⇒ |[u > λ] ∩Kϵρ(y)| > (1− δ)|Kϵδ|. (3.51)

Proposition 3.6. Let ρ, θ > 0 be such that u ≥ 0 is a solution to (1.1) in Q−
ρ (θ)(x̄, t̄) = (x̄, t̄)+Q−

ρ (θ), and
such that for a, ν ∈ (0, 1) the following condition holds

|[u > aθ] ∩Q−
ρ (θ)(x̄, t̄)| > ν|Q−

ρ (θ)|, (3.52)

Then for every choice of λ̄, ν̄ ∈ (0, 1) there exist a point (ȳ, s̄) ∈ (x̄, t̄)+Tρ,θ(K1× (−1,−ν/4]) and a number
ϵ ∈ (0, 1) determined only by means of N, pi, ν, ν̄, a, λ̄ such that Kϵρ(θ)(ȳ) ⊂ Kρ and

|[u(·, s̄) > λ̄aθ] ∩Kϵρ(ϵθ)(ȳ)| > ν̄|Kϵρ(ϵθ)|. (3.53)

Proof. We write down the energy estimates (3.19) for (u − k)−, for k = aθ, over the pair of anisotropic
cylinders with same vertex

(x̄, t̄) +Q−
ρ/2(θ) ⊂ (x̄, t̄) +Q−

ρ (θ).

The non-negative, piece-wise smooth cut-off function η =
∏N

i=1 ηi(xi, t) is taken to be equal to 1 in the
smallest of these cylinders, vanishing outside the largest, and satisfying

0 ≤ ∂tηt ≤
2p̄γ

θ2−p̄ρp̄
, and |∂iηi| ≤

2p̄γ

θ(pi−p̄)/piρp̄/pi
.

These energy estimates give

N∑
i=1

ˆ ˆ
(x̄,t̄)+Q−

ρ/2
(θ)

|∂i(u− k)−|pidxdτ ≤ γ k
p̄

ρp̄
|Q−

ρ (θ)|, (3.54)

which can be rewritten for the transformed function

xi →
2

p̄
pi (xi − x̄i)

θ
pi−p̄

pi ρ
p̄
pi

, t→ 2p̄(t− t̄)
θ2−p̄ρp̄

, v =
1

k
u

(
x̄i + xi

(
kpi−p̄ρp̄

2p̄

) 1
pi

, t̄+
tk2−p̄ρp̄

2p̄

)
, (3.55)

transforming (x̄, t̄) +Q−
ρ/2(θ) in Q

−
1 = K1 × (−1, 0] and yielding by standard calculations

N∑
i=1

ˆ ˆ
Q−

1

|∂i(v − 1)−|pi dxdt ≤ γ, and |[v > 1] ∩Q−
1 | > ν. (3.56)

Now we claim that this two conditions imply that there exists a time level s̄ ∈ (−1,−ν/4] such that

N∑
i=1

ˆ
K1

|∂i(v − 1)−|pi dx ≤ 2γ/ν, and |[v(·, s̄) > 1] ∩K1| ≥ ν/2. (3.57)

PROOF OF THE CLAIM. Indeed, let us define the sets

T1 :=

{
t ∈ (−1, 0] :

N∑
i=1

ˆ
K1

|∂i(v − 1)−|pi(·, t) dx > 4γ/ν

}
, and
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T2 :=

{
t ∈ (−1, 0] : |[v(·, t) > 1] ∩K1| ≥ ν/2

}
.

From the definition of T1 and the first assumption we have

4γ

ν
|T1| ≤

N∑
i=1

ˆ 0

−1

ˆ
K1

|∂i(v − 1)−|pi(·, t) dxdt ≤ γ, ⇒ |T1| < ν/4.

On the other hand, by the definition of T2 we have

ν < |[v > 1] ∩Q−
1 | =

ˆ 0

−1

|[v(·, t) > 1] ∩K1| dt

=

ˆ
T2

|[v(·, t) > 1] ∩K1| dt+
ˆ
T c
2

|[v(·, t) > 1] ∩K1| dt ≤ |T2|+ ν/2, ⇒ |T2| > ν/2.

This proves the claim, because if we consider the partition of the interval (−1, 0] = (−1, −ν/4] ∪ (−ν/4, 0],
then T2 exceeds the second interval while T c

1 has full measure in the first one.

Subsequently, being in a unitary cube, using that pi > 2 and the Hölder inequality twice we get

ˆ
K1

|D(v(·, s̄)− 1)−|dx ≤
[ N∑

i=1

(
2γ

ν

) 2
pi
] 1

2

=: γν , and |[v(·, s̄) > 1] ∩K1| ≥ ν/2. (3.58)

Finally we can invoke Corollary 3.2 and obtain that for every λ̄, ν̄ ∈ (0, 1) there exists at least a point y ∈ K1

and a constant ϵ ∈ (0, 1) that can be determined a priori only in terms of γ, ν above such that

Kϵ(y) ⊂ K1, and |[(v(·, s)− 1)− > λ̄] ∩ |Kϵ(y)|)| > ν̄|Kϵ(y)|.

Returning to the original coordinates, this implies∣∣∣∣{1

k
u

(
x̄i + xi

(
kpi−p̄ρp̄

2p̄

) 1
pi

, t̄+ s
k2−p̄ρp̄

2p̄

)
> λ̄

}
∩Kϵ(ȳ)

∣∣∣∣ > ν̄|Kϵ(ȳ)|,

that is, by calling ȳ the center of Kϵ(y) in the transformed coordinates by ȳi = yi

(
kpi−p̄ρp̄

2p̄

) 1
pi

, by recalling

that k = aθ, and defining s̄ = t̄+ sk
2−p̄ρp̄

2p̄ , the obtained measure information is

|[u(·, s̄) > λ̄aθ] ∩K(ϵρ)(ϵθ)| > ν̄|K(ϵρ)(ϵθ)|, (3.59)

so that the statement can be obtained by suitably redefining the constants.

Previous Proposition 3.6 could be proven in a simpler way in the unitary cylinder. We preferred the general
case this time to show for once how to get the general estimate, and then pass to the estimate in the unitary
cylinder, by taking (x̄, t̄) = 0, ρ = 1 and θ = 1.

Lemma 3.6. Let u ≥ 0 be a local weak solution to (1.1) in Q−
1 , and suppose that for some ν̄ ∈ (0, 1) a > 0

it holds
|[u > a] ∩Q−

1 | > ν̄ |Q−
1 |. (3.60)

Then for every choice of λ, ν ∈ (0, 1) there exist ȳ ∈ K1, t̄ ∈ (−1,−ν̄/4] and ϵ ∈ (0, 1) determined only by
means of N,p, ν, ν̄, a and λ, such that ȳ +Kϵ ⊂ K1 and

|[u(·, t̄) > λa] ∩ (ȳ +Kϵ)| > ν̄ |Kϵ|. (3.61)
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3.6 Comparison Principles.

We consider in this Section the Cauchy problem for (1.1), namely{
∂tu =

∑N
i=1 ∂i(|∂iu|pi−2∂iu) weakly in ΩT ,

u(x, 0) = u0(x) strongly in L2(Ω),
(3.62)

and a similar one for the Fokker-Planck equation (3.10). We refer to Definition 2.2, for the meaning of
u(x, 0) = u0(x) in L

2(Ω). Given two local weak solutions u, v of this problem (3.62), classically we say that
u ≥ v on the parabolic boundary of ΩT if (u− v)+ ∈ Lp

loc(0, T ;W
1,p
0 (Ω)) and u0 ≥ v0.

This condition can be rephrased by requiring u(x, t) ≥ v(x, t) for LN−1-almost every (x, t) ∈ ΣT ∪ (Ω×{0}).
We begin with a classic statement of local nature.

Proposition 3.7. Let u, v be weak local solutions to the equation (1.1) in ΩT , satisfying u(x, t) ≥ v(x, t) in
the parabolic boundary ot ΩT . Then u ≥ v in ΩT .

Proof. We write (9.12) for u and v separately, in terms of the Steklov-averages, against the test function

[(v − u)h]+(x, t) =
[
1

h

ˆ t+h

t

(v − u)(x, τ)dτ
]
+

, for h ∈ (0, T ), t ∈ [0, T − h].

This function is admissible because of the hypothesis on the lateral boundary ΣT . Thus we have respectively

ˆ
Ω×{t}

∂t(uh)[(v − u)h]+(x, t)dx+

ˆ
Ω×{t}

N∑
i=1

(
|∂iu|pi−2∂iu

)
h

· ∂i[(v − u)h]+(x, t)dx = 0, (3.63)

ˆ
Ω×{t}

∂t(vh)[(v − u)h]+(x, t)dx+

ˆ
Ω×{t}

N∑
i=1

(
|∂iv|pi−2∂iv

)
h

· ∂i[(v − u)h]+(x, t)dx = 0. (3.64)

We subtract equation (3.63) from equation (3.64), obtaining

ˆ
Ω×{t}

∂t(vh − uh)[(v − u)h]+(x, t)dx = −
ˆ
Ω×{t}

N∑
i=1

(
|∂iv|pi−2∂iv − |∂iu|pi−2∂iu

)
h

· ∂i[(v − u)h]+(x, t)dx.

Now we integrate between 0 and t and use the properties of differentiability of Steklov averages, to get

ˆ
Ω

ˆ t

0

∂t

[
[(v − u)h]2+(x, s)

2

]
dxds = −

ˆ
Ω

ˆ t

0

N∑
i=1

(
|∂iv|pi−2∂iv − |∂iu|pi−2∂iu

)
h

· ∂i[(v − u)h]+(x, s) dxds,

and soˆ
Ω

[(v − u)h]2+(x, t) dx−
ˆ
Ω

[(v − u)h]2+(x, 0) dx =

= −2
ˆ
Ω

ˆ t

0

N∑
i=1

(
|∂iv|pi−2∂iv − |∂iu|pi−2∂iu

)
h

· ∂i[(v − u)h]+(x, s) dxds.

As h → 0, the second term on the left hand side tends to zero as (v − u)+(x, 0) = 0 by the hypothesis
on initial conditions along the set Ω × {0}, while as u, v ∈ C(0, T ;L2(Ω)) the property (d) of Proposition
9.6 applies. Hence the convergence of the Steklov averages and (9.1) yield for each t ∈ [0, T ) the following
estimateˆ

Ω∩[v(·,t)≥u(·,t)]
(v − u)2(x, t) dx =

= −2
ˆ ˆ

{Ω×(0,t)}∩[v≥u]

N∑
i=1

(
|∂iv|pi−2∂iv − |∂iu|pi−2∂iu

)
· ∂i(v − u)(x, s) dxds

≤ −2
N∑
i=1

γi ||∂iv − ∂iu||pi

Lpi (ΩT∩[v≥u]) ≤ 0.

(3.65)
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Next we provide a comparison principle for the class of Lp-solutions, that will be useful for next purposes.
This time higher integrability replaces the boundary datum on the lateral boundary to arrive to the same
conclusion.

Proposition 3.8. Let u, v ∈ ∩Ni=1L
pi(ST ) be two local weak solutions of (3.62) in ST , satisfying u(x, 0) ≥

v(x, 0) for x ∈ RN for initial data such that u(x, 0), v(x, 0) ∈ L2(ST ). Then u ≥ v in ST .

Proof. First notice that if u is an Lp solution to (3.62) in ST with u0 ∈ L2(RN ), then u ∈ Lp(0, T ;W 1,p
loc (RN )).

Indeed, by the energy estimate (3.13) with a linear test function 0 ≤ ηR = ηR(x) ≤ 1 vanishing on ∂BR and
such that η ≡ 1 on BR/2, we deduce that

N∑
i=1

ˆ T

0

ˆ
BR/2

|∂iu+|pi dxdt ≤ ||u0||2ST
+

N∑
i=1

γ

Rpi

ˆ T

0

ˆ
BR

|u+|pi dxdt ≤ ||u0||2ST
+

N∑
i=1

γ

Rpi
||u+||pi

Lpi (ST ) dxdt

is finite, and similarly for u− and v. Now we test the equation with

[(v − u)h]+(x, t)ζR(x),

being ζR a cut-off function between the balls BR and B2R, independent of time and such that |∂iζR| ≤ γ
R ,

0 ≤ ζR ≤ 1. So we have respectively, for the Steklov averages of u, v,

ˆ
BR×{t}

∂t(uh)[(v − u)h]+ dx+

N∑
i=1

ˆ
B2R×{t}

(
|∂iu|pi−2∂iu

)
h

∂i([(v − u)h]+ζR) dx ≤ 0,

and ˆ
BR×{t}

∂t(vh)[(v − u)h]+ dx+

N∑
i=1

ˆ
B2R×{t}

(
|∂iv|pi−2∂iv

)
h

∂i([(v − u)h]+ζR) dx ≤ 0.

Subtracting one equation from the other and by integrating between 0 and t, we reduce the integral to the
non-zero terms and we pass to the limit on h to get

ˆ
BR∩[v(·,t)≥u(·,t)]

(v − u)2(x, t) dx

≤
ˆ
BR∩[v(·,t)≥u(·,t)]

(v − u)2(x, t) dx−
ˆ
BR∩[v(·,0)≥u(·,0)]

(v − u)2(x, 0) dx+

+ γ

N∑
i=1

ˆ t

0

ˆ
B2R∩[v(·,s)≥u(·,s)]

(
|∂iv|pi−2∂iv − |∂iu|pi−2∂iu

)
∂i(v − u) dxds

≤
N∑
i=1

γ

R

ˆ t

0

ˆ
B2R∩[v(·,s)≥u(·,s)]

(|∂iv|pi−1 |u|+ |∂iv|pi−1v + |∂iu|pi−1 |v|+ |∂iu|pi−1 |u|) dxds

≤ γ

R

N∑
i=1

(
||∂iv||pi

Lpi (Qt,2R) + ||v||
pi

Lpi (ST ) + ||∂iu||
pi

Lpi (Qt,2R) + ||u||
pi

Lpi (ST )

)

≤ γ

R

N∑
i=1

(
||v||pi

Lpi (ST ) + ||u||
pi

Lpi (ST )

)
→ 0, when R→ +∞,

(3.66)
being Qt,2R = B2R×(0, t) and by using monotonicity of the operator joint with the use of Young’s inequality.

As a corollary, we have the following comparison principle for solutions to the Fokker-Planck equation.

Corollary 3.3. Let w1, w2 be Lp-solutions to the equation (3.10) satisfying w2(x, 0) ≥ w1(x, 0) for x ∈ RN

and w1(x, 0), w2(x, 0) ∈ L2(ST ). Then w2 ≥ w1 in ST .
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4 Global and local L∞-estimates

to semi-continuity and beyond

Even the official definitions are sometimes

of necessity very loose, corresponding to the well-known principle that,

in a formal theory, some terms must in strict logic be left undefined.

- L.J. Savage -

The Foundations of Statistics.

The following section is about the derivation of estimates on the essential supremum both of local weak
solutions to (1.4) in the strip ST = RN × (0, T ) and of local weak solutions u to (1.1). Both are proved
by De Giorgi iteration, using a combination of energy estimates, that provide us with a sort of reverse
Sobolev-Poincaré inequality, and the parabolic Sobolev-Poincaré embedding of Section 2. Their nested use
generates an iteration of integrals of a positive integrand over sub-level sets of u, eventually giving the result
by showing that the limit vanishes. Finally we use the local estimates obtained for the supremum of the
solution to generate a proof per absurdum of the lower semicontinuity of supersolutions, in a technique which
is reminescent of [44]. First we start by the annouced global estimate.

Theorem 4.1. Let p1 ≤ · · · ≤ pN , p̄ < N and u ∈ ∩Ni=1L
pi(ST ) solve the Cauchy problem (1.4) for

u0 ∈ L1(RN ) ∩ L2(RN ) attained within the meaning of Definition 2.2. Then:

1. If p̄2 > 2, then u ∈ L∞
loc(0, T ;L

∞(RN )) and for any q̃ ∈ [2, p̄2], θ > 0 the following estimate holds true

sup
t∈[θ,T ]

∥u(·, t)∥∞ ≤
C

θ
N+p̄
λq̃

(ˆ T

θ/2

ˆ
RN

|u|q̃ dx dt

) p̄
λq̃

, λq̃ = N (p̄− 2) + p̄ q̃. (4.1)

2. If p̄1 > 2, the following L1 − L∞ estimate holds true for any τ ∈ (0, T ]

∥u(·, τ)∥∞ ≤
C

τ
N
λ

∥u0∥
p̄
λ
1 , λ := λ1 = N(p̄− 2) + p̄. (4.2)

Proof. First we observe that λq ≥ λ2 > 0 for all q ≥ 2. The global condition u ∈ ∩Ni=1L
pi(ST ), together with

Corollary 2.1 and Proposition 3.4, implies that u ∈ Lp̄2(ST ) ∩ L2(ST ). Therefore, by interpolation,

u ∈ Lq(ST ), for all q ∈ [min{2, p1},max{p̄2, pN}].
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Let k > 0 to be determined, T > θ > 0 and define for any n ≥ 0

kn = k − k

2n
, θn = θ − θ

2n+1
, Sn = RN × [θn, T ], ψn(t) = min

{
1,

2n+2

θ
(t− θn)+

}
,

so that
ψn ≡ 0 on [0, θn], ψn ≡ 1 on [θn+1, T ], |∂t(ψn)| ≤ 2n+2/θ.

It is useful to observe that θn are increasing with n from θ/2 to θ, so that sets Sn are shrinking from
RN × [θ/2, T ] to RN × [θ, T ]. Now, since ψn(0) = 0, the energy estimate (3.25) reads

sup
t∈[θn,T ]

ˆ
RN

(u− kn)2+ dx+
1

C

N∑
i=1

¨
Sn

|∂i(u− kn)+|pi dx dt ≤ 2n+2

θ

¨
Sn

(u− kn)2+ dx dt. (4.3)

Choose q̃ ∈ [2, p̄2]. If An := {(x, t) ∈ Sn : u(x, t) ≥ kn}, Tchebichev’s inequality yields

¨
Sn

(u− kn−1)
q̃
+ dx dt ≥ (kn − kn−1)

q̃|An| =
kq̃

2n q̃
|An|,

⇒ |An| ≤
2q̃n

kq̃

¨
Sn

(u− kn−1)
q̃
+ dx dt,

(4.4)

so that, by Hölder’s inequality and the monotonicity of {Sn} we get

¨
Sn

(u− kn)2+ dx dt ≤
(¨

Sn

(u− kn)q̃+ dx dt
) 2

q̃

|An|1−
2
q̃ ≤ 2n(q̃−2)

kq̃−2

¨
Sn−1

(u− kn−1)
q̃
+ dx dt.

Therefore (4.3) becomes

sup
t∈[θn,T ]

ˆ
RN

(u− kn)2+ dx+
1

C

N∑
i=1

¨
Sn

|∂i(u− kn)+|pi dx dt ≤ C 2n (q̃−1)

θ kq̃−2

¨
Sn−1

(u− kn−1)
q̃
+ dx dt (4.5)

By Hölder inequality and (4.4)

¨
Sn

(u− kn)q̃+ dx dt ≤ |An|1−
q̃
p̄2

(¨
Sn

(u− kn)p̄2

+ dx dt

) q̃
p̄2

≤ C

(
2n q̃

kq̃

¨
Sn−1

(u− kn−1)
q̃
+ dx dt

)1− q̃
p̄2
(¨

Sn

(u− kn)p̄2

+ dx dt

) q̃
p̄2

.

Applying (2.16) for αi ≡ 1, σ = 2 and θ = p̄
p̄∗ gives q = p̄2 and thus by (4.5)

¨
Sn

(u− kn)p̄2

+ dx dt ≤ C

(
sup

t∈[θn,T ]

ˆ
(u− kn)2+(x, t) dx

)1− p̄
p̄∗ N∏

i=1

(¨
Sn

|∂i(u− kn)+|pi dx dt

) p̄
N pi

≤ C

(
2n (q̃−1)

θ kq̃−2

¨
Sn−1

(u− kn−1)
q̃
+ dx dt

)1+ p̄
N

.

Gathering together the previous two estimates, we obtain, for suitable b > 1,

¨
Sn

(u− kn)q̃+ dx dt ≤
C

(θ kq̃−2)
q̃
p̄2

(1+ p̄
N )

bn

kq̃ (1− q̃
p̄2

)

(¨
Sn−1

(u− kn−1)
q̃
+ dx dt

)(1+ p̄
N ) q̃

p̄2
+1− q̃

p̄2

.

Setting

Xn =

¨
Sn

(u− kn)q̃+ dx dt, α =
q̃

N + 2
, β =

q̃

p̄

N + p̄

N + 2
, γ =

q̃

p̄

N (p̄− 2) + p̄ q̃

N + 2
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we thus obtained the recursive inequality

Xn ≤
C

θβ kγ
bnX1+α

n−1 , n ≥ 1.

We use Lemma 9.3 with N = 1, to have that Xn → 0 provided X0 ≤ Cθ
β
α k

γ
α for a suitable constant C

depending only on the data. Choosing k such that equality holds we therefore get

sup
RN×[θ,T ]

u ≤ k =
C

θ
N+p̄
λq̃

(ˆ T

θ/2

ˆ
RN

uq̃+ dx dt

) p̄
λq̃

∀θ ∈ (0, T )

implying (4.1) (by considering −u as well). To prove (4.2), assume p̄1 ≥ 2 and choose q̃ ∈ [2, p̄1). The
function v(x, t) = u(x, t+θ) still solves the equation on ST−θ and is bounded there by the previous estimate.
Moreover v ∈ ∩Lpi(ST−θ) hence (4.1) holds, reading

sup
RN×[θ̃,T−θ]

|v| ≤ C

θ̃
N+p̄
λq̃

(ˆ T−θ

θ̃
2

ˆ
RN

|v|q̃ dx dt

) p̄
λq̃

∀θ̃ ∈ (0, T − θ).

In the latter inequality we set

θ̃ = θn =
T − θ
2n

, Mn = sup
RN×[θn,T−θ]

|v|.

These time levels θn are decreasing from T − θ to zero, so that the sets RN × [θn, T − θ] are increasing in
size, and as a consequence numbers Mn increase too. So we obtain

Mn ≤
C

θ
N+p̄
λq̃

n

(ˆ T−θ

θn+1

ˆ
RN

|v|q̃ dx dt

) p̄
λq̃

≤ C 2
n N+p̄

λq̃

(T − θ)
N+p̄
λq̃

(ˆ T−θ

0

ˆ
RN

|v| dx dt

) p̄
λq̃

M
(q̃−1) p̄

λq̃

n+1

By the boundedness of v we infer the boundedness of {Mn}, while

(q̃ − 1)
p̄

λq̃
< 1 ⇔ p̄ >

2N

N + 1
⇔ p̄1 > 2.

So, interpolation Lemma 9.2 with (q̃ − 1)p̄/λq̃ = 1− α and α = 1− (q̃ − 1)p̄/λq̃ provides the estimate

M0 ≤ C

 1

(T − θ)
N+p̄
λq̃

(ˆ T−θ

0

ˆ
RN

|v| dx dt
) p̄

λq̃

 1

1−(q̃−1)
p̄
λq̃

.

Writing the latter in terms of u and noting that

λq̃
(
1− (q̃ − 1)p̄/λq̃

)
= λ1,

we obtain

sup
RN

|u(·, T − θ)| ≤ C 1

(T − θ)
N+p̄
λ1

(¨
RN×[θ,T ]

|u| dx dt

) p̄
λ1

, ∀θ ∈ (0, T ).

Using Proposition 3.5 while setting τ := T − θ ∈ (0, T ) finally gives (4.2), with λ = λ1 by definition.

Another estimate of the essential supremum is the following, which instead is purely local and requires that
the pis are very close (in harmonic mean) to the biggest one pN . The estimate involves a sum weighted on
pis of the p̄2-norm of the sub-solution, taken in some suitable weird cylinders that we are about to describe.
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Lemma 4.1. Let
2 < p1 ≤ · · · ≤ pN and max{2, pN} < p̄2. (4.6)

We define for k > 0 the continuous and increasing functions

g(k) =

N∑
i=1

kpi−2, h(k) =

(
N∑
i=1

kpi−p̄2

)−1

, (4.7)

and for T ∈ R, M,λ > 0 the cylinder

Qλ,M =

N∏
i=1

[
−λ

1
pi , λ

1
pi

]
× [T −M λ,T ]. (4.8)

If u is a weak sub-solution to (1.1) in Qλ,M , then

∥u+∥L∞(Qλ/2,M ) ≤ g−1(1/M) + h−1

(
C
(
M −
ˆ
−
ˆ
Qλ,M

up̄2

+ dx
) p̄

N+p̄

)
. (4.9)

Proof. Define for any k > 0 and λ,M, T

kn = k − k

2n
, θn = T − M λ

2

(
1 +

1

2n

)
, rn,i =

λ
1
pi

2
1
pi

(
1 +

1

2n+m

)
,

Qn = Kn × [θn, T ] =

N∏
i=1

[−rn,i, rn,i]× [θn, T ],

where we choose m ∈ N so that Qn+1 ⊆ Qn ⊆ Qλ,M for all n ≥ 0 and formally Q∞ = Qλ/2,M . Construct
functions ηn ∈ C∞(Qn; [0, 1]) of the form (3.12) such that

ηn|∂pQn
≡ 0, ηn|Qn+1

≡ 1, |∂iη
1
pi
n | ≤

C 2n

λ
1
pi

, |∂t(ηn)| ≤
C 2n

M λ

Let us apply (3.19) to obtain

sup
t∈[θn,T ]

ˆ
Kn

(u− kn)2+ ηn(x, t) dx+

N∑
i=1

¨
Qn

∣∣∂i((u− kn)+ ηn)∣∣pi
dx dt

≤ C 2n

(
1

M λ

¨
Qn

(u− kn)2+ dx dt+
1

λ

N∑
i=1

¨
Qn

(u− kn)pi

+ dx dt.

)
.

Letting p0 = 2, An = {(x, t) ∈ Qn : u ≥ kn} and recalling (8.3), we use that p̄2 > pN to get for each
i ∈ {1, . . . , N} the estimate

¨
Qn

(u− kn)pi

+ dx dt ≤
(¨

Qn

(u− kn)p̄2

+ dx dt
) pi

p̄2 |An|1−
pi
p̄2 ≤ Cbn

kp̄2−pi

¨
Qn−1

(u− kn−1)
p̄2

+ dx dt, (4.10)

for some number b > 1, so that by the definition (4.7) we obtain

sup
t∈[θn,T ]

ˆ
Kn

(u− kn)2+ ηn(x, t) dx+

N∑
i=1

¨
Qn

∣∣∂i((u− kn)+ ηn)∣∣pi
dx dt

≤ C bn
(

1

M λkp̄2−2
+

1

λh(k)

)¨
Qn−1

(u− kn−1)
p̄2

+ dx dt.
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As {kn} and {θn} are increasing and ηn ≡ 1 on supp(ηn+1),

sup
t∈[θn+1,T ]

ˆ
Kn+1

(
(u− kn+1)+ηn+1

)2
(x, t) dx ≤ sup

t∈[θn,T ]

ˆ
Kn

(u− kn)2+ ηn(x, t) dx

≤ C bn
(

1

M λkp̄2−2
+

1

λh(k)

)¨
Qn−1

(u− kn−1)
p̄2

+ dx dt.

Again by the monotonicity of {kn} and {Qn} it holds
N∑
i=1

¨
Qn+1

∣∣∂i((u− kn+1)+ ηn+1

)∣∣pi
dx dt ≤ C bn+1

(
1

M λkp̄2−2
+

1

λh(k)

)¨
Qn

(u− kn)p̄2

+ dx dt

≤ C bn
(

1

M λkp̄2−2
+

1

λh(k)

)¨
Qn−1

(u− kn−1)
p̄2

+ dx dt

Therefore, applying (2.16) with αi ≡ 1, σ = 2, θ = p̄/p̄∗ and thus q = p̄2, we deduce, for some other constants
C, b ≥ 1, the recursive inequality

¨
Qn+1

(u− kn+1)
p̄2

+ dx dt ≤ C bn
(

1

M λkp̄2−2
+

1

λh(k)

)1+ p̄
N (¨

Qn−1

(u− kn−1)
p̄2

+ dx dt
)1+ p̄

N

Now if k is so large that
1

M kp̄2−2
≤ 1

h(k)
, ⇔ k ≥ g−1(1/M), (4.11)

then the previous iterative inequality reads

Xn+1 ≤ C bn
(

1

λh(k)

)1+ p̄
N

X
1+ p̄

N
n , n ≥ 0

where

Xn =

¨
Q2n

(u− k2n)p̄2

+ dx dt.

By Lemma 9.3 for N = 1, Xn → 0 whenever X0 ≤ C(λh(k))
N+p̄

p̄ and, taking account of (4.11), this in turn
implies that

sup
Qλ/2,M

u+ ≤ max

{
g−1(1/M), h−1

(
C

λ

(¨
Q0

up̄2

+ dx dt
) p̄

N+p̄

)}
.

Note that Q0 ⊆ Qλ,M and

|Qλ,M | =M λ

N∏
i=1

λ
1
pi =M λ

N+p̄
p̄ , (4.12)

so that being h monotone increasing h−1 is monotone increasing too and we obtain

sup
Qλ/2,M

u+ ≤ max

{
g−1(1/M), h−1

(
C
(
M −
ˆ
−
ˆ
Qλ,M

up̄2

+ dx dt
) p̄

N+p̄

)}
.

Using the estimate on the supremum given in previous Lemma 4.6, we can show that each weak local
supersolution to the equation when p̄ > NpN/(N + 2) has a lower-semicontinuous representative. We
will use the notion of Lebesgue points of u under p̄2 norm, that has to be considered within the suitable
weird cylinders of Lemma 4.6. Instead of repeating the proof of Lebesgue’s differentiation Theorem, using
Besicovitch covering result on balls, to define what is a Lebesgue point for u by approximating it in Lp̄2 -norm
on weird cylinders Qλ,M , we use an abstract framework. For each M ∈ N we define a proper distance distM
so that the space (ΩT ,L,distM ) is a doubling measure space, then we take the intersection of all Lebesgue
points for u through all such spaces, and finally chooseM > 0 such that the estimate (4.9) is small enough to
ensure semicontinuity of u for dist1-topology. Being semicontinuity a topological property, the representative
u is lower semicontinuous also in the classical topology.
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Corollary 4.1. Let (4.6) hold and u be a weak super-solution to (1.1) in ΩT . Then u has a lower semicon-
tinuous representative.

Proof. We recall that all the infima and suprema are taken in the essential sense. For any M ∈ N define a
metric in ΩT as

distM
(
(x, t), (x′, t′)

)
= max{M−1|t− t′|, |x1 − x′1|p1 , . . . , |xN − x′N |pN },

with corresponding balls Br,M . Observe that Br,M1
⊂ Br,M2

if M2 > M1. We will prove that for some
M ∈ N there is a distM -metric essential lower-semicontinuous representative of u. Let us fix an arbitrary
representative, which we will still denote by u. By (4.12), ΩT with the induced metric and the Lebesgue
measure is a locally doubling measure space. Therefore the set EM of Lebesgue points for u has full measure,
as well as E = ∩M∈NEM . We can therefore suppose that for any (x0, t0) ∈ E and for every M ∈ N

lim
r↓0
−
ˆ
−
ˆ
Br,M

|u(x, t)− u(x0, t0)|p̄2 dx dt = 0.

We claim that for any (x0, t0) ∈ E
u(x0, t0) ≤ lim

r→0
inf

Br,1(x0,t0)
u. (4.13)

Suppose by contradiction that for some ϵ > 0

u(x0, t0)− inf
Br,1(x0,t0)

u ≥ ϵ > 0 ∀r < r0 (4.14)

and consider the sub-solution v = u(x0, t0)− u to (1.1). Since g(0) = h(0) = 0, g and h are continuous and
increasing, we can choose M ≥ 1 such that

g−1(1/M) + h−1(C/M) < ϵ/2,

(C being the constant in (4.9)) and, being (x0, t0) ∈ EM , choose r(M) < r0 such that

B2r,M (x0, t0) ⊆ ΩT , −
ˆ
−
ˆ
B2r,M (x0,t0)

|u− u(x0, t0)|p̄2 dx dt ≤ 1

M
N+p̄

p̄

.

The previous Theorem (applied to v(x− x0, t)) then assures that

sup
Br,1(x0,t0)

u(x0, t0)− u ≤ sup
Br,M (x0,t0)

u(x0, t0)− u

≤ g−1(1/M) + h−1

(
C
(
M −
ˆ
−
ˆ
B2r,M (x0,t0)

(u− u(x0, t0))p̄2

+ dx dt
) p̄

N+p̄

)
≤ g−1(1/M) + h−1(C/M) < ϵ/2

contradicting (4.14). Finally, for (x0, t0) ∈ ΩT \ E we modify the representative forcing the equality in
(4.13).

Remark 4.1. The existence of a lower-semicontinuous representative can be proven also by use of Lemma
3.4, see for instance [47]. The use of Lemma 3.4 seems preferable for these situations when adding a constant
to a solution does not necessarily give another solution to the same equation.
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5 Properties and existence of Lp-solutions

the Cauchy problem with square-integrable data

Là, tout n’est qu’ordre et beauté,

Luxe, calme et volupté.

- Charles Baudelaire -

L’Invitation au Voyage

The present chapter is entirely devoted to the study of well-posedness and finite speed of propagation for the
class of Lp(ST ) solutions, defined in Definition (2.1) to be local weak solutions which are globally integrable,
together with their directional derivatives. The interesting feature of anisotropic equation (1.1) relatively to
the isotropic counterpart (1.2) is that the support evolves compactly on each direction xi with a different
(finite) speed, dictated by the quantity (N(p̄− pi) + p̄). This exponent is always positive in the range of pis
that is under interest for the Harnack inequality to hold, which is 2 < pN < p̄1. In order to show finite speed
of propagation (see for instance [33]) we use the general energy estimates of Section 3 with a proper choice
of test functions that eliminate the contribute of initial datum. These are then combined with the parabolic
embedding of Section 2, which allows us to perform the De Giorgi integral iteration when estimating terms
as ∂i(|u|αi). The initial step of iteration can be recovered thanks to the use of conservation of mass (3.27)
and global boundedness (4.1).
Further we study the existence and uniqueness of solutions to the Cauchy problem (1.4) in ST with initial
datum taken in L2(RN ), through a limit process along a sequence of expanding problems ([23] Chap VI
Sect.12, or [19]). As we look for local weak solutions, we need to recover the convergence in L2 of initial
data that are not prescribed by the assumption. This can be done by a precise use of Aubin-Lions theorem,
and the identification of the energy term is then achieved by means of Minty’s trick ([56]).

5.1 Finite speed of propagation

In this Section we suppose u ∈ ∩Ni=1L
pi(0, T ;Lpi

loc(RN )). As long as max{p1, . . . , pN} < p̄2, this directly
follows from the condition of being a weak solution together with Theorem 2.2, as by Hölder’s inequality

Lpi(0, T ;Lpi

loc(R
N )) ⊆ L∞(0, T ;L2

loc(RN )) ∩ Lp̄2(0, T ;Lp̄2

loc(R
N )), ∀i = 1, . . . , N.
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Theorem 5.1. Let us suppose that for all i ∈ {1, . . . , N} we have the condition

2 < pi ≤ pN < p̄1 = p̄

(
1 +

1

N

)
< N + 1. (5.1)

Let u ∈ ∩Ni=1L
pi(ST ) be a local weak solution to Cauchy problem (1.4) in ST with

u0 ∈ L2(RN ), ∅ ≠ supp(u0) ⊆ [−R0, R0]
N = KR0 .

Then the support of u evolves with the law

supp(u(·, t)) ⊆
N∏
j=1

[−Rj(t), Rj(t)], (5.2)

for any t < T , where

Rj(t) = 2R0 + Ct
N (p̄−pj)+p̄

λ pj ∥u0∥
p̄(pj−2)

λpj

1 , λ = N(p̄− 2) + p̄. (5.3)

Proof. Since 2 < pN < p̄1, second point of Theorem 4.1 applies, ensuring (4.2). Choose µ ∈ (0, 1) and for
any ϵ > 0 apply (3.22) with

Fϵ(s) =

ˆ s

0

τ (τ2 + ϵ2)
µ−1
2 dτ, F ′′

ϵ (s) =
µ s2 + ϵ2

(s2 + ϵ2)
3−µ
2

> 0.

All the assumptions of Lemma 3.3 hold true, except the boundedness of F ′, which however is not necessary
being u bounded on ST \ St, t > 0 by (4.2). Using

µ(s2 + ϵ2)
µ−1
2 ≤ F ′′

ϵ (s), |F ′
ϵ(u)|pi |F ′′

ϵ (u)|1−pi ≤ |u|pi(u2 + ϵ2)
µ−1
2

for i = 1, . . . , N , we get for all 0 < t1 < t2 < T and η of the form (3.12)

ˆ
RN

Fϵ(u(x, t)) η(x) dx

∣∣∣∣t2
t1

+µ

N∑
i=1

ˆ t2

t1

ˆ
RN∩[u ̸=0]

(u2 + ϵ2)
µ−1
2 η |∂iu|pi dx dt

≤
ˆ
RN

Fϵ(u(x, t)) η(x) dx

∣∣∣∣t2
t1

+ µ

N∑
i=1

ˆ t2

t1

ˆ
RN

(u2 + ϵ2)
µ−1
2 η |∂iu|pi dx dt

≤ γ
N∑
i=1

ˆ t2

t1

ˆ
RN

|u|pi(u2 + ϵ2)
µ−1
2 |∂iη

1
pi |pi dx dt.

Being µ ∈ (0, 1) and ∂iu(x) = 0 for almost every x ∈ [u = 0], we define the function

η |u|µ−1 |∂iu|pi =:=

{
η |u|µ−1 |∂iu|pi , when [u ̸= 0],

0, in [u = 0].

Therefore, by monotone convergence on all the terms we obtain

ˆ
RN

|u(x, t)|1+µ η(x) dx

∣∣∣∣t2
t1

+
1

C

N∑
i=1

ˆ t2

t1

ˆ
RN

η |u|µ−1 |∂iu|pi dx dt

≤ C
N∑
i=1

ˆ t2

t1

ˆ
RN

|u|pi+µ−1 |∂iη
1
pi |pi dx dt

(5.4)

for some constant C = C(µ) > 0. By assumption u solves the Cauchy problem with datum taken in
L1+µ
loc (RN ) ⊂ L2

loc(RN ), so that estimate (5.4) above is valid for t1 = 0 by a dominated convergence argument.
Let j ∈ {1, . . . , N} and choose η̃, ψ ∈ C∞

c (R; [0, 1])

η(x) = η̃(xj)
pj

∏
i ̸=j

ψ(xi)
pi
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with the properties
η̃⌊{|s|≤R0}≡ 0, ψ⌊{|s|≤R}≡ 1, |ψ′| ≤ C/R.

With this test function, we let R → +∞ in (5.4): all the terms on the right hand side except the j-
th one vanish, since u ∈ ∩Ni=1L

pi(ST ) and u ∈ L1(ST ) by Proposition (3.5), therefore by interpolation
u ∈ Lpi+µ−1(ST ). On the left-hand side the term for t1 = 0 vanishes since supp(u0) ⊆ {|xj | ≤ R0} and on
the other we apply Fatou’s lemma, to obtain

ˆ
RN

|u(x, t2)|1+µ η̃ dx+
1

C

N∑
i=1

ˆ t2

0

ˆ
RN

η̃pj |u|µ−1 |∂iu|pi dx dt ≤ C
ˆ t2

0

ˆ
RN

|u|pj+µ−1 |∂j η̃|pj dx dt (5.5)

where we set for brevity η̃(x) = η̃(xj). We define for r > 2R0, n ∈ N the sequence of sets

rn = 2 r +
r

2n
, sn = r − r

2n+1
, En = {x ∈ RN : sn ≤ |xj | ≤ rn},

and specify for each En the function η̃ = η̃n, to be constructed from a suitable η̃n ∈ C∞(R; [0, 1]) satisfying

η̃n ≡ 1 on En+1, |η̃′n| ≤ C
2n

r
, supp(η̃n) ⊆ {sn ≤ |s| ≤ rn}. (5.6)

Let finally

βi =
pi + µ− 1

pi
< 1, β = min{βi : j = 1, . . . , N}, ηn(x) := η̃1/βn (xj).

Clearly ηn still satisfies (5.6), while being 0 ≤ η̃n ≤ 1 we have for each i ∈ {1, . . . , N}∣∣∂j |ηn u|βj
∣∣pj ≤ |∂j |ηn|βi |pjuβjpj + β

pj

j ηβj pj
n |u|µ−1 |∂ju|pj ≤ C 2pjn

rpj
|u|pj+µ−1 + β

pj

j η̃pj
n |u|µ−1 |∂ju|pj ,

where we used βi ≥ β in the last inequality. Considering the chain rule above, it is possible because the
function z → zβj maps zero-measure sets in zero-measure sets (Theorem 3.44 in [46]) so that we can apply
the chain rule to the function of single variable xi given by |ηnu|βi(x̂, xi). When i ̸= j in this estimate the
first term on the right vanishes, because ηn is independent of xi, and we have the simpler estimate∣∣∂i|ηnu|βi

∣∣pi
= ηβi pi

n

∣∣∂i|u|βi
∣∣pi ≤ βpi

i η̃pi
n |u|µ−1 |∂iu|pi .

Therefore (5.5) for η̃ = η̃n provides for all i ∈ {1, . . . , N} the inequality

ˆ t2

0

ˆ
RN

∣∣∂i|ηn u|βi
∣∣pi

dx dt ≤ C 2n

rpj

ˆ t2

0

ˆ
En−1

|u|pj+µ−1 dx dt, (5.7)

where we used the properties in (5.6) and the monotonicity of En. Since (5.5) also implies

ˆ
RN

|η̃n u|1+µ(x, t) dx ≤
ˆ
En

η̃n−1 |u|1+µ(x, t) dx ≤ C 2n

rpj

ˆ t2

0

ˆ
En−1

|u|pj+µ−1 dx dt

for any t ∈ (0, t2], we can apply Theorem 2.1 in the compact set En ⊂ RN , with parameters

σ = 1 + µ, αi = βi =
pi + µ− 1

pi
, θ =

pj − 2

p∗α − µ− 1
, q = pj + µ− 1.

Substitution gives

α̃ = N

(
1

p̄′
+
µ

p̄

)
, θ = (pj − 2)

N − p̄
λ1+µ

, with
1

p̄′
+

1

p̄
= 1,

where we recall that
λ1+µ = N (p̄− 2) + (1 + µ) p̄.
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The necessary condition θ ∈ [0, p̄/p̄∗] reads, after some algebraic manipulations, as

pj ≤ p̄
(
1 +

µ+ 1

N

)
⇔ µ ≥ N

(
pj
p̄
− 1

)
− 1,

and the latter quantity is always negative under assumption (5.1). Therefore for any µ ∈ (0, 1) (2.16) gives,
through the previous estimates and some algebra

ˆ t2

0

ˆ
RN

|η̃n u|pj+µ−1 dx dt ≤ C 2n T
1−(pj−2) N

λ1+µ

(
2

rpj

ˆ t2

0

ˆ
En−1

|u|pj+µ−1 dx dt

)1+(pj−2) p̄
λ1+µ

which, being η̃n ≡ 1 on En+1, implies

ˆ t2

0

ˆ
En+1

|u|pj+µ−1 dx dt ≤ C 2n T
1−(pj−2) N

λ1+µ

(
2

rpj

ˆ t2

0

ˆ
En−1

|u|pj+µ−1 dx dt

)1+(pj−2) p̄
λ1+µ

.

Applying the classical form of Lemma 9.3 for N = 1 gives that the condition

ˆ t2

0

ˆ
E0

|u|pj+µ−1 dx dt ≤ C rpj

(
1+

λ1+µ
(pj−2) p̄

)
T

N
p̄ −

λ1+µ
(pj−2) p̄ , (5.8)

with E0 = B3r \Br/2, implies the following convergence when n→∞ ,

ˆ t2

0

ˆ
E2n

|u|pj+µ−1 dx dt→ 0,

and hence, since t2 ∈ (0, T ), we have

supp(u(·, t)) ⊆ RN \ E∞ = RN \ {r ≤ |xj | ≤ 2 r} ∀t ∈ [0, T ). (5.9)

To obtain (5.8), we estimate from above with the integral in the whole RN and we employ Proposition 3.5
and Theorem 4.1 as follows:

ˆ T

0

ˆ
E0

|u|pj+µ−1 dx dt ≤
ˆ T

0

∥u(·, t)∥1∥u(·, t)∥
pj+µ−2
L∞ dt

≤ C∥u0∥1
ˆ T

0

∥u0∥
p̄
λ (pj+µ−2)
1

t
N
λ (pj+µ−2)

dt

≤ C∥u0∥
1+ p̄

λ (pj+µ−2)
1 T 1−N

λ (pj+µ−2),

where we recall that λ = λ1 = N (p̄− 2) + p̄ and integrating in time at the last inequality, we assumed

N

λ
(pj + µ− 2) < 1 ⇔ µ < p̄1 − pj ,

the latter being positive due to (5.1). The previous discussion shows that if r and T obey

∥u0∥
1+ p̄

λ (pj+µ−2)
1 T 1−N

λ (pj+µ−2) ≤ C rpj

(
1+

λ1+µ
(pj−2) p̄

)
T

N
p̄ −

λ1+µ
(pj−2) p̄

for some constant C depending only on the data and on µ, then (5.9) holds. This inequality can be rewritten
through some algebra as

r ≥ CT
N (p̄−pj)+p̄

λ pj ∥u0∥
p̄
pj

pj−2

λ

1 .

Thus (5.9) holds for any r ≥ 2R0 satisfying the previous one-sided inequality, concluding the proof.
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5.2 Existence of Lp solutions for square integrable data

Here we consider the Cauchy problem (1.4), attained in L2 with bounded and a compactly supported initial
data. This problem can be read in formulas as{

∂tu =
∑N

i=1 ∂i
(
|∂iu|pi−2∂iu

)
in ST , pi > 2 ∀i = 1, . . . , N,

u0 = g ∈ L2(RN ), supp g ⊂ B̄R0 , g ∈ L∞(BR0).
(5.10)

We show in this Section that this problem has a unique Lp-solution, by a standard approximation technique
relying on the monotonicity of the operator.

Proposition 5.1. Problem (5.10) has a unique Lp-solution which takes g as initial datum in L2(RN ).

Proof. We divide the proof into three steps: existence, uniqueness and attainment of initial data.

STEP 1. Existence.
We let, for n ≥ diam(supp g), Bn = {|x| < n} and consider the boundary value problems

vn ∈ C(0, T ;L2(Bn)) ∩ Lp(0, T ;W 1,p
0 (Bn))

∂tvn −
∑N

i=1 ∂i(|∂ivn|pi−2∂ivn) = 0, in Bn × (0, T ),

vn(·, 0) = g|Bn
.

(5.11)

We regard the solutions to these problems as defined in the whole ST by extending them to be zero on |x| ≥ n.
The problems (5.11) can be uniquely solved by a monotonicity method (see for instance [49, Example 1.7.1]),
and give solutions vn satisfying

sup
t∈[0,T ]

ˆ
RN

|vn(x, t)|2 dx+ 2

N∑
i=1

ˆ ˆ
ST

|∂ivn|pi dx dt = ∥g∥22, ∀n ∈ N, (5.12)

and thus vn ∈ L∞(0, T ;L2(RN )) and ∂ivn ∈ Lpi(ST ) uniformly. Considering the nature of the equation,
the function g can be considered a stationary solution to (5.11), so that by the local comparison principle
Proposition 3.7 we have ∥vn∥∞ ≤ ∥g∥∞. In the weak formulation of (5.11) we take (modulo a Steklov
averaging process) the test function |vn|pj−2vn, j = 1, . . . , N , obtaining ∀t ∈ (0, T )

ˆ
RN

|vn|pj

pj
(x, t) dx+ (pj − 1)

N∑
i=1

ˆ ˆ
St

|∂ivn|pi |vn|pj−2 dxdτ =

ˆ
RN

|g|pj

pj
dx.

implying
vn ∈ ∩Ni=1L

∞(0, T ;Lpi(RN )), with a uniform bound. (5.13)

This estimate, together with (5.12), provides an uniform bound for vn in

Lp(0, T ;W 1,p(RN )) ∩ L∞(0, T ;L2(RN )).

This bound implies that a (not relabelled) subsequence vn converges weakly* to a function v in these spaces.
Moreover, the weak formulation of the equation implies that the right hand side of

∂tvn =

N∑
i=1

∂i(|∂ivn|pi−2∂ivn),

is uniformly bounded in (
Lp
(
0, T ;W 1,p

0 (Bm)
))′

=: Lp′
(0, T ;W−1,p′

(Bm))

by Hölder inequality, for any m ∈ N. By Aubin-Lions theorem [62, Chap. III Proposition 1.3], applied to
the triple

W 1,p
0 (Bm) ↪→ L2(Bm)→W−1,p′

(Bm),

we can select for each m a subsequence vn that converges to a function v in L2(0, T ;L2(Bm)). A diagonal
argument provides a subsequence (still not relabeled) converging in L2(0, T ;L2

loc(RN )) to the weak* limit v
and such that
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1.

ˆ
RN

vn(x, t)φ(x, t) dx→
ˆ
RN

v(x, t)φ(x, t) dx for a.e. t and all φ ∈ C∞
loc(0, T ;C

∞
c (RN )),

2. ∂i(|∂ivn|pi−2∂ivn)⇀ ηi , weakly in Lp′
(0, T ;W−1,p′

(RN )) for some ηi, ∀i = 1, . . . , N .

We can thus pass to the limit in the weak formulation of the equation, identifying ηi = |∂iv|pi−2∂iv through
Minty’s trick, that we explain here below.
The idea is to use the equation to identify the last term. Indeed, let K ⊂⊂ RN and let n be so large that
K ⊂ Bn. Each vn satisfies for every φ ∈ C∞

loc(0, T ;C
∞
0 (K)) and for almost every 0 ≤ s < t ≤ T , the equation

ˆ
K

vnφdx

∣∣∣∣t
s

−
ˆ t

s

ˆ
K

vnφτ dxdτ +

N∑
i=1

ˆ t

s

ˆ
K

|∂ivn|pi−2∂ivn∂iφdxdτ = 0,

and
vn(·, t)→ v(·, t), weakly inL2(RN ), for almost every t ∈ (0, T )

vn → v, weakly* inL∞(0, T ;L2(RN )),

vn → v, weakly inL2((0, T );L2
loc(RN )),

|∂ivn|pi−2∂ivn ⇀ ηi, weakly inLp′
(0, T ;W−1,p′

(RN )).

(5.14)

Indeed, for each i the monotone operator Ai(vn) = ∂i(|∂ivn|pi−2∂ivn) lives in a bounded subset of
Lp′

(0, T ;W−1,p′
(RN )), thus for i = 1, .., N there exists ηi ∈ Lp′

i(0, T ;W−1,p′
i(RN )) such that Ai converges

weakly to ηi and the limit equation is now, for almost every 0 ≤ s < t ≤ T , K ⊂⊂ RN ,

0 = lim
n→∞

{ ˆ
K

vnφdx

∣∣∣∣t
s

−
ˆ t

s

ˆ
K

vnφτ dxdτ +

N∑
i=1

ˆ t

s

ˆ
K

|∂ivn|pi−2∂ivn∂iφdxdτ

}

=

ˆ
K

vφ dx

∣∣∣∣t
s

−
ˆ t

s

ˆ
K

vφτ dxdτ +

N∑
i=1

ˆ t

s

ˆ
K

ηi∂iφdxdτ.

(5.15)

As each vn takes initial value g with strong L2 meaning, we can let s→ 0. The game is over if we show that
each component is ηi = |∂iv|pi−2∂iv. From the monotonicity properties of the operator Ai we obtain

Xn,i =

ˆ t

0

ˆ
RN

⟨Ai(vn(τ))−Ai(z(τ)), vn(τ)− z(τ)⟩ dxdτ ≥ 0,

⇒ Xn :=

N∑
i=1

Xn,i ≥ 0, ∀z ∈ Lp(0, T,W 1,p
loc (R

N )).

Next, from (5.11) and n big enough it holds that

ˆ t

0

ˆ
RN

N∑
i=1

⟨Ai(vn), vn⟩ dxdτ =
1

2

[
||g||2L2(RN ) − ||vn(t)||

2
L2(RN )

]
.

Therefore, as lim inf ||vn(t)||22 ≥ ||v(t)||22, we have

0 ≤ lim supXn ≤
||g||22
2
− ||v(t)||

2
2

2
−
ˆ t

0

ˆ
RN

N∑
i=1

⟨ηi, z⟩ dxdτ −
ˆ t

0

ˆ
RN

N∑
i=1

⟨Ai(z), v − z⟩ dxdτ.

But from (5.15), up to a Steklov averaging, we have

||g||22
2
− ||v(t)||

2
2

2
=

N∑
j=1

ˆ t

0

ˆ
RN

⟨ηj , v⟩ dxdτ,
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and so by passing to the limit n→∞ we get

ˆ t

0

ˆ
RN

N∑
i=1

⟨ηi −Ai(z), v − z⟩ dxdτ ≥ 0, ∀z ∈ Lp(0, T,W 1,p
loc (R

N )). (5.16)

We end Minty’s trick by hemicontinuity of operators Ais. Indeed, at this point it is enough to consider a
function w ∈ Lp(0, T,W 1,p

loc (RN )), ϵ ∈ (0, 1), to define vϵ = v − ϵw and write (5.16) against z = vϵ, so to get

0 ≤ lim
ϵ→0

N∑
i=1

ˆ t

0

ˆ
RN

⟨ηi, w⟩ − ⟨Ai(vϵ), w⟩dxdτ =

N∑
i=1

ˆ t

0

ˆ
RN

⟨ηi −Ai(v), w⟩ dxdτ, ∀w ∈ Lp(0, T ;W 1,p
loc (R

N )).

Henceforth ηi = Ai(v) = ∂i(|∂iv|pi−2∂iv) ∈ Lp′
(0, T ;W−1,p′

(RN )), and we end up with a function v ∈
L2((0, T );L2

loc(RN )) solving (5.10). To show the continuity of the law v : [0, T ] → L2
loc(RN ), it is sufficient

to proceed as in Proposition 2.1, and the bound (5.13) confirms that v is an Lp-solution.

STEP 2. Uniqueness.

Let v1, v2 be two possibly distinct solutions originating from the same initial datum w0. The function
w = v1 − v2 satisfies 

w ∈ C([0, T ];L2
loc(RN )) ∩ Lp(0, T ;W 1,p

loc (RN )),

wt −
∑N

i=1

(
|∂iv1|pi−2∂iv1 − |∂iv2|pi−2∂iv2

)
= 0, in ST ,

w(·, 0) = 0, taken in L2
loc(RN ).

(5.17)

In the weak formulation of (5.17) we take the test function wζ, modulo a Steklov averaging, where the
function x → ζ(x) is a nonnegative piecewise smooth cutoff function in the ball B2R, that equals one in
BR and such that |∂iζ| ≤ 1/R, ∀i = 1, .., N . This gives, together with the monotonicity properties of the
operator Ai, that for all 0 < t < T we have

1

2

ˆ
BR

|w|2(t) dx

≤ 1

2

ˆ
BR

|w|2(t) dx+

ˆ t

0

ˆ
B2R

N∑
i=1

⟨|∂iv1|pi−2∂iv1 − |∂iv2|pi−2∂iv2, ∂iv1 − ∂iv2⟩ζ dxdτ =

= −
ˆ t

0

ˆ
B2R

N∑
i=1

⟨|∂iv1|pi−2∂iv1 − |∂iv2|pi−2∂iv2, ∂iζ⟩w dxdτ.

(5.18)

Therefore as R grows to infinity the L2-norm of w vanishes,

ˆ
BR

|w|2(t) dx ≤ γ

R

N∑
i=1

||w||Lpi (ST )(||∂iv1||Lpi (ST ) + ||∂iv2||Lpi (ST ))→ 0, (5.19)

and we are done.

STEP3. Initial datum in L2.

Next we check that the unique solution v takes the initial datum g in L2(RN ). Let η ∈ (0, 1) be arbitrary
and let gη be a mollification of g such that

||g − gη||L2(RN ) → 0, as η ↓ 0.

In the weak formulation of (5.11) for vn, we consider the testing function vn−gη, modulo a Steklov averaging
process, for n big enough to let supp (gη) ⊂ Bn. We first split the derived terms in the energy term and then
use Young inequality to get the power pi on the term ∂igη and a small contribute to the power pi on the
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energy term which can be reabsorbed on the left hand side of the equation, and finally discarded (because
it is positive), to get

ˆ
Bn

|vn − gη|2(t) dx ≤ ||g − gη||2L2(RN ) + γ

ˆ t

0

ˆ
RN

N∑
i=1

|∂igη|pi dxdτ, ∀0 < t < T,

for a constant γ > 0 depending only on pi’s. Then we apply the triangle inequality and we let n → ∞ and
use the convergence properties of vn to obtain the inequality

||v(·, t)− g||2L2(RN ) ≤ 2||g − gη||2L2(RN ) + γ

ˆ t

0

ˆ
RN

N∑
i=1

|∂igη|pi dxdτ.

From this inequality we can take the limit t ↓ 0,

lim
t↓0
||v(·, t)− g||22,K ≤ 2||g − gη||2L2(RN ), ∀η ∈ (0, 1),

and we conclude letting η ↓ 0.
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6 Barenblatt Fundamental Solutions

construction and properties

They that have power to hurt and will do none,

That do not do the thing they most do show,

Who moving others are themselves as stone,

Unmoved, cold and to temptation slow;

They rightly do inherit heaven’s graces

And husband nature’s riches from expense;

They are the lords and owners of their faces,

Others but stewards of their excellence.

The summer’s flower is to the summer sweet,

Though to itself it only live and die,

But if that flower with base infection meet

The basest weed outbraves his dignity.

For sweetest things turn sourest by their deeds:

Lilies that fester smell far worse than weeds.

- William J. Shakespeare -

Sonnet 94

Throughout this Section we construct a self-similar solution B to (1.1), i.e., by the discussion in Section
3.1, a stationary solution to the Fokker-Planck equation (3.10). To do this, we show that if the bounded
compactly supported initial datum g has L1-norm small enough, then the support of the solution to the
Fokker-Planck equation stays in a cube of side one, and then we turn the problem into a fixed-point one.
Once the theorem of Schauder is applied and the existence of B is proved, we study the positivity properties
of such self-similar solution, which, together with the comparison principle, will be the main tool to expand
the positivity set of non-negative solutions of (1.1) itself.

We begin this section by unveiling the correspondence between the two fundamental Cauchy problems.
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6.1 The resolvent operator

By the results of Section 5.2 we can define, at least for bounded compactly supported initial data g, for each
time t ∈ [0, T ] the resolvent operator St : L2(RN )→ L2(RN ) such that

Stg := u(·, t), t ≥ 1,

where u is the unique Lp-solution to{
∂tu =

∑N
i=1 ∂i

(
|∂iu|pi−2∂iu

)
in S1,∞ := RN × (1,∞),

u(·, 1) = g, taken in L2(RN ).
(6.1)

In terms of the Fokker-Planck equation, this also defines through (3.8) an operator S̃ : L2(RN ) → L2(RN )
by

S̃sg := (Φu)(·, s) s ≥ 0, (6.2)

which assigns to each initial datum g ∈ L2(RN ) the solution at the time s ∈ R+, of the problem{
∂sw =

∑N
i=1 ∂i[(∂iw)

pi−1 + αiyiw] in S∞ := RN × (0,∞),

w0 = g, taken in L2(RN ).
(6.3)

The relation (6.2) implies that

S̃sg = Φes/λSesg, for λ = N(p̄− 2) + p̄, (6.4)

and where Φρ is given in (3.11), allowing us to prove properties for S̃s by proving them for St.

6.2 Construction of a Barenblatt solution

In order to state some basic properties of the operator S̃s we define the following spaces:

XR,M = {g ∈ L∞(RN ) : 0 ≤ g ≤M, supp(g) ⊆ KR}, X =
⋃

R,M>0

XR,M . (6.5)

Lemma 6.1. If (5.1) holds true, the operator S̃s, s ≥ 0 defined in (6.2) has the following properties.

1. If g ∈ L2(RN ) and supp(g) ⊆ KR0
then for some c = c(N,p) it holds

supp(S̃sg) ⊆
N∏
i=1

[−R̃i(s), R̃i(s)], R̃i(s) = 2 e−sαiR0 + c ∥g∥p̄(pi−2)/(piλ)
1 . (6.6)

2. If g ∈ X, then ∥S̃sg∥1 = ∥g∥1 and 0 ≤ S̃sg ≤ ∥g∥∞. In particular S̃s : X → X for all s ≥ 0.

3. For any R,M > 0 and s ≥ 0, S̃s : XR,M → X is continuous when XR,M and X are equipped with the
weak-L2 topology.

Proof. Consider the corresponding problem (6.1) and the therein defined operator St. By Theorem 5.1 we
know that if supp(g) ⊆ KR0

, then for λ = N(p̄− 2) + p̄, the support of Lp-solutions evolves with the law

supp(Stg) ⊆
N∏
i=1

[−Ri(t), Ri(t)], Ri(t) = 2R0 + c (t− 1)αi ∥g∥p̄(pi−2)/(piλ)
1 . (6.7)

Letting t = es and using (6.4) we get the first assertion, since

supp S̃sg ⊆
N∏
i=1

[−R̃i(s), R̃i(s)], R̃i(s) = e−sαiRi(e
s) ≤ 2 e−sαiR0 + c ∥g∥p̄(pi−2)/(piλ)

1 .
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Also the second statement follows from its counterpart on the corresponding solution u of (1.1): to prove
conservation of mass we take advantage of the compactness of the supports of u dictated by (6.7) and test
(1.1) with φ ∈ C∞

c (RN ) such that φ ≡ 1 on ∪t<T supp(u(·, t)), T > 0 arbitrary. Let supp(g) ⊂ KR(t), fix
any time t ∈ R and choose hence the test functions

C∞
c (RN ) ∋ φ =

{
1, for x ∈ KR(t)+1,

ψ ∈ C∞
c (RN \KR(t)+1), otherwise.

(6.8)

So we have, modulo a Steklov averaging process,

||u(·, t)||L1(RN ) − ||u(·, 0)||L1(RN ) =

ˆ t

0

ˆ
RN

∂τu dxdτ =

= −
N∑
i=1

ˆ t

0

ˆ
KR(t)+1

|∂iu|pi−2∂iu · ∂iφdxdτ −
ˆ t

0

ˆ
RN\KR(t)+1

|∂iu|pi−2∂iu · ∂iψ dxdτ = 0,

(6.9)

owing last equality respectively to ∂iφ = 0 and ∂iu = 0 in the respective sets of integration.

The point-wise bounds follow from the local comparison principle, Proposition 3.7, again taking advantage
of the compactness of the support and comparing u with the solutions v ≡ 0 and v ≡ ∥g∥∞, respectively.

There remains to prove the continuity of S̃s : XR,M → X within the weak L2 topologies from departure to
arrival, which by (6.4) is equivalent to prove the same statement for St. Fix T > t ≥ 1 and let

R̄ = max
{
2R+ C (T − 1)αi (|KR|M)p̄(pi−2)/(piλ) : i = 1, . . . , N

}
.

Assume gn → g weakly in L2 with gn ∈ XR,M and let un be the Lp solution to (6.1) with initial data gn.
we observe that thanks to (6.7), it holds supp(un(·, τ)) ⊆ KR̄ for every τ ∈ [0, T ], n ≥ 1. The bounded-
ness of ∥gn∥2 and standard energy estimates then give a uniform bound for un in Lp(1, T ;W 1,p

0 (KR̄)) ∩
L∞(1, T ;L2(RN )) and for ∂τun in Lp′

(0, T ;W−1,p′
(KR̄)), similarly to the proof of existence for Proposi-

tion 5.1. Applying Aubin-Lions theorem as in the proof of Proposition 5.1, we can extract a subsequence
converging weakly∗ to some u in those spaces and such that

un(·, τ)→ u(·, τ) in L2(KR̄), for a. e. τ ∈ [1, T ].

Therefore we can pass to the limit in the weak form of the equation to get in S1,τ = RN × (1, τ) the equation

ˆ
RN

u(x, τ)φ(x, τ) dx−
ˆ
RN

g(x, 1)φ(x, 1) dx−
ˆ
S1,τ

u ∂τφdx dt+

ˆ ˆ
S1,τ

N∑
i=1

ηi ∂iφdx dt = 0

for almost every 1 < τ < T , so that it only remains to show that ηi = |∂iu|pi−2∂iu. We cannot directly
employ Minty’s trick, since this time we are missing the strong convergence of the initial data. However, for
any τ such that un(·, τ) → u(·, τ) in L2(KR̄), we look at {un} as a sequence of solutions to (6.1) on [τ, T ]
with strongly convergent initial data and now Minty’s trick allows to deduce ηi = |∂iu|pi−2∂iu on Sτ,T . Since
τ can be chosen arbitrarily close to 1 we obtain that u is a Lp solution to (6.1) with initial datum g and
from uniqueness we infer that u(·, t) = Stg for any t ≥ 1. A standard sub-subsequence argument concludes
the proof of the third statement.

Theorem 6.1. Under assumption (5.1), there exists a nontrivial stationary solution w ∈ X1,1 to (6.3), and
therefore a Barenblatt Fundamental solution.

Proof. Let us consider the convex set

Cϵ :=
{
g ∈ L2(RN ) : supp g ⊂ K1, 0 ≤ g ≤ 1, ∥g∥L1(RN ) = ϵ

}
⊆ X1,1.

If c is given in (6.6), for s̄ sufficiently large and ϵ̄ sufficiently small it holds

R̃i(s̄) = 2 e−s̄αi + c ϵ̄p̄(pi−2)/(piλ) ≤ 1 ∀i = 1, . . . , N,
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so that (6.6) implies that supp(S̃s̄g) ⊆ K1 for all g ∈ Cϵ̄. Using also point (2) of the previous lemma we
have that S̃s̄Cϵ̄ ⊆ Cϵ̄. Moreover, Cϵ̄ with the weak L2 topology is compact, and by point (3) of the previous
lemma, S̃s̄ : Cϵ̄ → Cϵ̄ is continuous, so that Schauder’s theorem ensures the existence of a fixed point ḡ ∈ Cϵ̄

for S̃s̄. Therefore the function w̄(·, s) = S̃sḡ is a times-periodic, bounded and compactly supported solution
to (6.3), which can therefore be extended to RN+1 as an aeternal solution. Consider the bounded, compactly
supported function

g(y) = sup
s∈R

w̄(y, s), g ∈ X1,1 ,

for which ∥g∥1 ≥ ϵ̄. Then S̃0g = g ≥ w̄(·, τ) for every τ ∈ R, so that by Corollary 3.3 it holds S̃sg ≥ w̄(·, τ + s)
for any s ≥ 0. Taking the supremum in τ ∈ R gives S̃sg ≥ g, but since ∥S̃sg∥1 = ∥g∥1, this implies S̃sg = g
for every s ≥ 0, i.e. g is a stationary solution to (6.3).

Remark 6.1. It is worth underlying that the same proof does not work if we use just Ssg, because in this
case supp(Ssg) ̸⊂ K1. The resolvent operator S̃s has the property to contract the support of the initial
datum. We further observe that the whole problem can be solved, in particular that this contraction property
holds (Lemma 6.1, point 1) is possible, because problems (6.1) and (6.3) have both the same initial datum
u(x, 1) = g = w(x, 0) ∈ L2(RN ).

6.3 Properties of the Barenblatt solutions

Our next aim is to prove that Barenblatt Fundamental solutions (see Definition 3.3) are positive in a quan-
titative way, which is, their positivity set spreads in time in a way controlled by scaling. This amounts in
proving that stationary non-negative solutions of the Fokker Planck equation are bounded from below near
the origin, which is the content of the next theorem.

Theorem 6.2. Let us suppose that (5.1) holds, let w ∈ X1,1 (see (6.5)) be a nontrivial stationary solution
to the Fokker-Planck equation (6.3) and B the corresponding Barenblatt solution to (6.1) with initial datum
g ∈ L2(RN ). Then there exists η̄ > 0, depending on g and N,p, such that

B(x, t) ≥ η̄ t−α if |xi| < η̄ tαi ∀i = 1, . . . , N ; α, αi specified in (3.9).

Proof. Suppose that B is given by

B(x, t) = t−α w(xi t
−αi), t ≥ 1. (6.10)

By Corollary 4.1 we can fix a lower-semicontinuous representative of B and thus of w. Since w > 0 somewhere,
we can pick a point x(0) and numbers δ0, η0 > 0 such that

inf
Kδ0

(x(0))
w(y) > η0. (6.11)

By (6.10), the latter implies for any t ≥ 1

B(x, t) ≥ η0 t−α, when
{
|xi − x(0)i tαi | < δ0/2 t

αi
}
.

Consider now for σ > 0 the function

Bσ(x, t) = σ t−α w
(
σ(2−pi)/pi t−αi (x

(0)
i − xi)

)
,

which solves (6.1) by translation invariance and Proposition 3.1. Notice that, since w ∈ X1,1 we have

∥Bσ(·, t)∥∞ = σ t−α and supp(Bσ(·, t)) ⊆
{
2 |x(0)i − xi| ≤ t

αi σ(pi−2)/pi
}
.

We seek for σ > 0 such that the comparison principle can be applied between Bσ and B with starting time
t = 1. We need {

∥Bσ(·, 1)∥∞ ≤ η0,
supp(Bσ(·, 1)) ⊆ Kδ0(x

(0)),
⇐⇒

{
σ ≤ η0,
σ(pi−2)/pi ≤ δ0/2,
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which, being p1 > 2, can be solved for some σ = σ1 ∈ (0, 1). Consequently, by comparison and (6.11), there
holds

B(x, t) ≥ Bσ1
(x, t) > σ1 t

−α η0, for
∣∣x(0)i − σ

(2−pi)/pi

1 t−αi (x
(0)
i − xi)

∣∣ < δ0/2.

We let tα1
1 = σ

(2−p1)/p1

1 ≥ 1 and, consequently,

η1 = σ1 t
−α
1 η0, x

(1)
i := x

(0)
i

(
1− tαi

1 σ
(pi−2)/pi

1

)
, δ1 := (δ0/2)min

{
tαi
1 σ

(pi−2)/pi

1 : i = 1, . . . , N
}

(observe that, by the choice of t1, it holds x
(1)
1 = 0), to get

inf
Kδ1

(x(1))
B(·, t1) ≥ η1

Proceeding by induction, we will find sequences tn, ηn, δn, x
(n) with the properties

inf
Kδn (x(n))

B(·, tn) ≥ ηn, x
(n)
i = 0 for i = 1, . . . , n,

so that after N steps x(N) = 0 and we find

inf
KδN

B(·, tN ) ≥ ηN .

By (6.10), this implies w(x) ≥ ηN tαN when |xi| < tαi

N δN/2 for i = 1, . . . , N . We set η̄ = min{ηN , δN/2} and
scale back to B through (6.10) again, to get the desired property of B.

We suppose that w is a fixed stationary solution in X1,1 of (6.3). For future purposes we summarise some
properties derived from a scaling argument for a large family of corresponding Barenblatt solutions.

Corollary 6.1. Let B(x, t) = t−αw(xit
−αi) be a fixed Barenblatt Fundamental solution to (6.1) with w ∈ X1,1

and initial datum g ∈ L2(RN ). There exists η̄ > 0 such that the family of Barenblatt solutions

Bσ(x, t) = T1,σ−λ/p̄B (x, t) = σ t−α w(σ(2−pi)/pi xi t
−αi), σ > 0, and α, αi as in (3.9),

has the following properties

1. ∥Bσ(·, t)∥∞ = σ t−α;

2. supp(Bσ(·, t)) ⊆
N∏
i=1

{
|xi| ≤ σ(pi−2)/pi tαi

}
;

3. {Bσ(·, t) ≥ η̄ σ t−α} ⊇
N∏
i=1

{
|xi| ≤ η̄ σ(pi−2)/pi tαi

}
=: Pt.

We will refer in the following to Pt as the set of positivity of Bσ, when σ > 0 will be clear from the context.
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7 Intrinsic Harnack Inequality

A mathematician, like a painter or a poet, is a maker of patterns.

If his patterns are more permanent than theirs,

it is because they are made with ideas.

-G.H. Hardy-

A Mathematician’s Apology

In this Section we prove the main result of the present work. It is an Harnack estimate holding in the
appropriate geometry dictated by the equation itself. The way we prove it is similar to [22]: first we use a
trick called of Krylov-Safonov and a local clustering argument, in order to recover an estimate from below at
a certain time t̄, concentrated in some unknown spatial neighborhood inside the domain Ω. Then we consider
a Barenblatt solution B and we scale it back so that it has a smaller value than u at the time t̄ and support
contained in the former neighborhood. This permits to use the comparison principle (Proposition 3.7) and
expand the positivity of u according to the law of evolution of B. We will therefore prove the following.

Theorem 7.1. Let u ≥ 0 be a local weak solution to (1.1) in Ω× [−T, T ], suppose valid (5.1) and, assume
without loss of generality that the origin is a Lebesgue point for u in Ω× [−T, T ] with u(0, 0) > 0. Then, there
exist constants C1 ≥ 0, C3 ≥ C2 ≥ 1 depending only on N and the pi’s such that, letting M = u(0, 0)/C1 it
holds

1

C3
sup

Kρ(M)

u( · ,−M2−p̄ (C2 ρ)
p̄) ≤ u(0, 0) ≤ C3 inf

Kρ(M)
u( · ,M2−p̄ (C2 ρ)

p̄) (7.1)

whenever
M2−p̄ (C3 ρ)

p̄ < T, and KC3 ρ(M) ⊆ Ω. (7.2)

In order to provide a lower bound for the solution, we cannot use the same procedure of [22] for the trick
of Krylov and Safonov, because the intrinsic geometry that we are considering is quite weird. Instead, we
give a generalisation of ([14], Lemma 4.7 pag.34) that is valid for a topological space equipped with a less
stringent notion of distance. To this end, we make the following observations: for ρ ∈ [0, 1] the translates of
the cylinders Q−

ρ (ρ
−N ) arise naturally from the quasi-metric4

d((x, t), (y, s)) = max
{
|2−1(xi − yi)|pi/(p̄+N(p̄−pi)), |t− s|1/(p̄+N(p̄−2))

}
. (7.3)

Indeed, all the exponents appearing in the previous definition are positive thanks to condition (5.1) on the
spareness of pi’s, therefore the quasi-triangle inequality

d(z1, z3) ≤ γ (d(z1, z2) + d(z2, z3)), ∀z1, z2, z3 ∈ RN+1,

holds true for a constant γ = γ(N,p) ≥ 1 which is the quasi-metric constant. We denote the balls of center z
and radius ρ > 0 in this quasi-metric with the symbol Bρ(z). Finally, notice that the cylinder z̄ +Q−

ρ (ρ
−N )

is the bottom half part of the ball Bρ(z̄) with respect to this distance.

4This terminology is borrowed from Grafakos, but it appears there’s no general consensus on the term “quasi”: sometimes

-pseudo-metric- is used instead.
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Lemma 7.1. Let (X,d) be a quasi-metric space with quasi-metric constant γ and x0 ∈ X. For any β > 0
there exists a constant ω = ω(γ, β) > 1 such that for any bounded function u : B1(x0) → R with u(x0) ≥ 1
there exist x ∈ B1(x0) and r > 0 such that

Br(x) ⊆ B1(x0), rβ sup
Br(x)

u ≤ ω, rβu(x) ≥ 1/ω. (7.4)

Proof. Extend u as 0 outside B1(x0) and suppose that the claim is false. For ω a parameter to be determined
depending only on β and γ, we will construct a sequence of points contradicting the boundedness of u. Set
r0 = 1/(2γ) and choose ω > (2γ)β . By hypothesis u(x0) ≥ 1 and our choice of r0 it follows rβ0u(x0) ≥ 1/ω
and as also Br0(x0) ⊂ B1(x0), it must hold by contradiction

rβ0 sup
Br0 (x0)

u > ω.

Choose x1 ∈ Br0(x0) such that rβ0 u(x1) ≥ ω and set r1 = r0 ω
−2/β , so that

rβ1 u(x1) ≥ 1/ω.

If Br1(x1) ⊆ B1(x0), we can similarly construct by contradiction x2 ∈ Br1(x1) such that

rβ2 u(x2) ≥ 1/ω, r2 = r1 ω
−2/β .

Proceed by induction to get a sequence of points and radii such that, if Brn(xn) ⊆ B1(x0),

rβn u(xn) ≥ 1/ω, rn = rn−1 ω
−2/β .

As ω > 1, the first condition contradicts the boundedness of u if all the balls Brn(xn) are contained in
B1(x0). This can be achieved if for any n ≥ 0

d(x0, xn) ≤ γ
n−1∑
i=0

γi d(xi, xi+1) ≤ γr0
+∞∑
i=0

γi ω−2i/β < 1,

which holds for γ ω−2/β < 1/2.

7.1 Proof of Theorem 7.1, first step. Looking for a bound from below.

We look in the first place for a bound from below, somewhere. More in detail, this is the purpose of next
Lemma: it states that there exists a time t̄ and an intrinsic cube, where the sole function of space u(·, t̄) is
above a multiple of the volume of the intrinsic cube itself. To begin with, we suppose that a semicontinuous
representative for the solution has been chosen, through Corollary 4.1; hence u(0, 0) makes sense as a number.

Lemma 7.2. Let u ≥ 0 be a bounded solution to (1.1) in Q−
1 . There exist C1 > 0 such that if u(0, 0) ≥ C1,

then there exist ε > 0 and a point (x̄, t̄) ∈ Q−
1 , both depending only on N and p such that

inf
x̄+Kρ(ερ−N )

u(·, t̄) ≥ ε ρ−N for ρ > 0 with x̄+Kρ(ε ρ
−N ) ⊆ K1. (7.5)

Proof. Let β = N in Lemma 7.1, with the quasi-metric (7.3) and let C1 = 1/ω, where ω(N) is given in
Lemma 7.1. We apply the Lemma 7.1 to u/C1 and extend u as 0 in the upper half-space. Then, (7.4)
implies the existence of a point z1 ∈ Q−

1 and r ∈ (0, 1) such that

z1 +Q−
r (r

−N ) ⊆ Q−
1 , sup

z1+Q−
r (r−N )

u ≤ r−N , u(z1) ≥ C2
1r

−N .

The solution v = Tr,r−Nu(·+ z1) in Q
−
1 , (with T given in (3.6)) obeys

sup
Q−

1

v ≤ 1, v(0) ≥ C2
1 . (7.6)
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We prove that (3.60) holds for ν̄ = νa given in Lemma 3.4 when a = C2
1/3 (thus ν̄ depends only on N and

p). Indeed, if, by contradiction, we have

|[v ≥ a] ∩Q−
1 | ≤ νa |Q

−
1 |,

then since 0 ≤ v ≤ 1 in Q−
1 , Lemma 3.4 and lower semi-continuity of u give the point-wise estimate

v(0) ≤ sup
Q−

1/2

v ≤ 3

2
a =

C2
1

2
,

contradicting the second condition in (7.6). Therefore the thesis of Proposition 3.6 holds true for any ν, λ
to be chosen and for the corresponding point z2 = (x̄, t̄) ∈ Q−

1 , the following measure estimate holds at the
time t̄

|[v(·, t̄) ≤ λ a] ∩ (x̄+Kϵ)| ≤ ν |Kϵ|, t̄ ∈ (−1,−ν̄/4].
Recall that this measure estimate is valid for any ν, λ > 0 to be chosen, which in turn determine an arbitrarily
small ϵ, so we can also suppose

ν < ν̄, ϵ−2ν̄ > 1, ϵ−1a > 2,

where a = C2
1/3. We choose λ = 1/2 and scale again considering w = Tϵ/2,ϵ/2v(·+ z2). Since v solves (1.1)

in Q−
1 and by (3.5) it holds Kϵ = Kϵ(ϵ) = Tϵ/2,ϵ/2(K2), w solves (1.1) in K2 × (0, ϵ−2 ν̄] and it satisfies

|[w(·, 0) ≤ 2] ∩K2| ≤ |[w(·, 0) ≤ ϵ−1a] ∩K2| ≤ ν. (7.7)

We propagate forward in time the information in (7.7) as follows. Fix a time 0 < τ < ν < 1, so that we can
write down the energy inequality for (w − 2)− in the subcylinder K2 × (0, τ2] with 0 ≤ η ≤ 1 independent
of time and such that η = 1 in K1, η = 0 outside of K2 and |∂iη| ≤ C for a constant C > 0, to get

ˆ
K1

(w(·, t)− 2)2− dx ≤
ˆ
K2

(w0 − 2)2− dx+ C

N∑
i=1

ˆ t

0

ˆ
K2

(w(·, s)− 2)pi

− dx ds,

for all t ∈ (0, τ2]. The second term on the right hand side is bounded by C 2N+pmax ν, while the first one is
smaller than 4 ν due (7.7). The term on the left hand side bounds |[w(·, t) ≤ 1] ∩K1|, hence we get

|[w(·, t) ≤ 1] ∩K1| ≤ C ν ∀t ∈ (0, τ2],

which implies by integration

|[w ≤ 1] ∩Q+| ≤ C ν |Q+|, Q+ := K1 × (0, τ2].

We need now to recover the correct intrinsic geometry, to apply a De Giorgi-type Lemma. Let τ = 2−n for
some n ∈ N to be determined. We partition K1 in 2Nn dyadic cubes xi +K2−n = xi +Kτ and consider the
corresponding cylinders Q+

i := (xi + Kτ ) × (0, τ2]. Notice that for any such τ , the latter are intrinsically
scaled, since Q+

i = (xi, τ
2) +Q−

τ (τ). On at least one of these cylinders it must hold

|[w ≤ τ ] ∩Q+
i | ≤ |[w ≤ 1] ∩Q+

i | ≤ C ν |Q
+
i |.

Now the levels in consideration are scaled according to the intrinsic geometry, and we can apply (3.41),
choosing ν such that C ν ≤ ν1, (determining ϵ, τ and n in the process, depending only on N and p). This
implies

w ≥ τ/2 in (xi, τ
2) + Tτ,τQ

−
1/2 = (xi, τ

2) +Q−
τ/2(τ/2)

and in particular
w ≥ τ/2 in z3 +Kτ/2(τ/2)

for some z3. Scaling back to u = T −1
ϵr/2,ϵr−N/2

w we get for some z0 ∈ Q−
1 the estimate

u ≥ τ ϵ r−N/4 in z0 +Kτϵr/4(τ ϵ r
−N/4),

To conclude the proof of (7.5), it suffices to set

ρ =
τ ϵ r

4
, ε ρ−N =

τ ϵ r−N

4
,

so that ε = (τ ϵ/4)N+1 depends only on N and p.
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7.2 Proof of Theorem 7.1, final step. Expansion of positivity.

We begin setting C1 as given in Lemma 7.2. To define C2 and C3, we begin by considering the inequality

u(0, 0) ≤ C3 inf
Kρ(M)

u(·, M2−p̄ (C2 ρ)
p̄), M = u(0, 0)/C1. (7.8)

We claim that there exist D̄ > 0 and functions Ā(·) > 0, B̄(·) > 0 all depending only on N and p such that,
whenever

D ≥ D̄, A ≥ Ā(D), B ≥ B̄(D), (7.9)

then it holds

inf
Kr(M)

u(·, DM2−p̄ rp̄) ≥ u(0, 0)/B if KAr(M)× [−M2−p̄ (Ar)p̄,M2−p̄ (Ar)p̄] ⊆ ΩT . (7.10)

Taking C2 ≥ D̄ and, accordingly, C3 ≥ max{Ā(C2), B̄(C2)} will then give (7.8) as long as

KC3r(M)× [−M2−p̄ (C3 r)
p̄,M2−p̄ (C3 r)

p̄] ⊆ ΩT .

t

x̄

⋃
t>0

Pt

v > C

t̄

s̄

K

K1

D

Figure 1: Scheme of proof of (7.10). The light-gray part is the support of the Barenblatt starting at (x̄, s̄),

while K is Kρ(ϵ ρ
−N ).

PROOF OF THE CLAIM (7.10).

In order for (7.10) to make sense we start by prescribing Ā(D)p̄ ≥ max{D, 1}. We suppose (this will
determine (7.2)) that the function v = Tr,Mu solves the equation in QA := KA× [−Ap̄, Ap̄] and v(0, 0) = C1.
Then (7.5) holds, namely there exists (x̄, t̄) ∈ Q−

1 , ρ ∈ (0, 1) and ϵ = ϵ(N,p) such that

inf
x̄+Kρ(ε ρ−N )

v(·, t̄) ≥ ε ρ−N for (x̄, t̄) +Kρ(ε ρ
−N ) ⊆ K1.

We choose σ > 0, −2 < s < 0 so that the Barenblatt solution centered at (x̄, s) defined as

bσ,s(x, t) = Bσ(x− x̄, t− s)

is below v in KA, which is implied bysupp bσ,s(·, t̄) ⊆ x̄+Kρ(ε ρ
−N ),

∥bσ,s(·, t̄)∥∞ ≤ ε ρ−N .
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By Corollary 6.1, with α, αi as specified in (3.9), this amounts to requireσ
(pi−2)/pi (t̄− s)αi ≤ 1

2 (ε ρ
−N )(pi−p̄)/pi ρp̄/pi = 1

2ε
(pi−p̄)/pi ρλαi ,

σ (t̄− s)−α ≤ ε ρ−N ,

which holds true for s = s̄ obeying s̄ = t̄ − ρλ with ρ < 1, λ = N(p̄ − 2) + p̄ = N/α, and σ̄ = σ(N,p)
sufficiently small. Since s̄ > −2, by Corollary 6.1 it holds

bσ̄,s̄(x, t) ≥ σ̄ η̄ (t− s̄)−α ≥ σ̄ η̄ (t+ 2)−α

for all

t > 0, x ∈
N∏
i=1

{|x̄i − xi| < η̄ σ̄(pi−2)/pi (t− s̄)αi} ⊇ Pt(x̄) :=

N∏
i=1

{|x̄i − xi| < η̄ σ̄(pi−2)/pi tαi}.

We then choose τ̄ > 0 sufficiently large so that Pτ̄ (x̄) ⊇ K1 and set D̄ = τ̄ (this is possible by (5.1), which
ensures αi > 0 for each i = 1, . . . , N). Then, for any D ≥ D̄ we additionally prescribe

Ā(D)p̄ ≥ D + 2 and
⋃

x̄∈K1

suppBσ̄(· − x̄, D + 2) ⊆ KĀ(D). (7.11)

Notice that this choice can be made depending only on the parameters N,p and D and that if the latter
conditions holds for Ā then they hold for any A ≥ Ā. The prescribed conditions on A permits the use of
the comparison principle (Proposition 3.7) between v and bσ̄,s̄ in KA × [t̄, D] (since on the lateral part of its
boundary bσ̄,s̄ vanishes), which then yields

v(·, D) ≥ bσ̄,s̄(·, D) ≥ σ̄ η̄ (D + 2)−α in K1

for any D ≥ D̄. Defining B̄(D) = C(D + 2)α/(η̄σ̄) and scaling back gives (7.10), and the claim is proved.

We next deal with the left inequality in (7.1), sketching its proof as some arguments are identical to the
previous one. The constant C1 is the same C as before and we claim that the inequality

sup
Kr(M)

u(·,−DM2−p̄ rp̄) ≤ B u(0, 0) if KAr(M)× [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ ΩT (7.12)

(with M = u(0, 0)/C) holds true for any A,B,D as in (7.9), for a possibly different choice of D̄ and of the
functions Ā, B̄.
To prove (7.12), we fix γ > N/p̄ and start by prescribing

Ā(D)p̄ ≥ D, B̄(D) ≥ Dγ .

Next, consider A,B,D fulfilling (7.9) together with KAr(M)× [−M2−p̄(Ar)p̄,M2−p̄(Ar)p̄] ⊆ ΩT , but such
that

sup
Kr(M)

u(·,−DM2−p̄rp̄) > B u(0, 0). (7.13)

We rewrite the latter in terms of v = Tr,MDγu, which is a solution in QA(D
−γ): the resulting information is

v(0, 0) = C D−γ , sup
K1(D−γ)

v(·,−D1+γ(p̄−2)) > B v(0, 0) ≥ C, (7.14)

where we used B ≥ B̄(D) ≥ Dγ in the last inequality. We fix a point x0 ∈ K1(D
−γ) such that

v(x0,−D1+γ(p̄−2)) > C,

and suppose that Ā(D) is additionally large enough so that v is a solution in (x0,−D1+γ(p̄−2)) + Q1. We
can then apply Lemma 7.2 and, proceeding exactly as in the first part of the proof, we find

x̄ ∈ x0 +K1, −D1+γ(p̄−2) − 2 ≤ s̄ < t̄ ≤ −D1+γ(p̄−2)
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t

x̄

v > C

x0

t̄

⋃
t>0

Pt

K

v = C D−γ

s̄

D1+γ(p̄−2)

Figure 2: Scheme of proof of (7.12). The light-gray part is the support of the Barenblatt starting at (x̄, s̄)

while K is Kρ(ϵ ρ
−N ).

and σ̄(N,p) > 0 such that the Barenblatt solution bσ̄,s̄ centered at (x̄, s̄) is below v at the time t̄. As before,
for some η̄(N,p) it holds

bσ̄,s̄(·, t) ≥ σ̄ η̄ (t+D1+γ(p̄−2) + 2)−α in Pt+D1+γ(p̄−2)(x̄), ∀t > −D1+γ(p̄−2).

If needed, we further increase Ā(D) so that v solves the equation in a rectangle containing the support of
any possible bσ̄,s̄ so constructed, up to the time t = 0 (through a condition of the type (7.11)).

So far, the definition of the functions Ā(D) and B̄(D) is concluded, and we now look for all the values of D
such that 0 ∈ PD̄1+γ(p̄−2)(x̄). Since x0 ∈ K1(D

−γ) and x̄ ∈ x0 +K1, this is true if

1 +D−γ(pi−p̄)/pi ≤ η̄ σ̄(pi−2)/pi D(1+γ(p̄−2))αi , ∀i = 1, . . . , N. (7.15)

We claim that the exponent of D on the left is less than the one on the right. Indeed, from the definition of
αi, the claim reduces through elementary algebraic manipulations to

γ p̄ (2− pi) < N (p̄− pi) + p̄,

which is always true since the left hand side is negative by pi > 2 and the right hand side is positive by (5.1).
It follows that (7.15) holds true for any D ≥ D̄1, and in this case we get by comparison

v(0, 0) ≥ bσ̄,s̄(0, 0) ≥ σ̄ η̄ (D1+γ(p̄−2) + 2)−α. (7.16)

Next, we claim that there exists D̄2 such that if D ≥ D̄2, then

σ̄ η̄ (D1+γ(p̄−2) + 2)−α > C D−γ . (7.17)

Indeed, it suffices to show that the exponent on the left is greater than the one on the right, which, recalling
that α = N/(N(p̄− 2) + p̄), amounts to

γ − α (1 + γ (p̄− 2)) =
γ p̄−N

N (p̄− 2) + p̄
> 0 ⇔ γ >

N

p̄

as we assumed. Thus (7.17) is proved, which in turn contradicts the first condition in (7.14) via the lower
bound in (7.16). All in all, letting D̄ = max{D̄1, D̄2} shows that if A,B,D obey (7.9), then (7.13) cannot
hold, completing the proof of (7.12). We conclude choosing the constants C2 and C3 as in the previous step,
and finally pick the largest between the so defined constants and previous ones.
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Corollary 7.1. Let u be a non-negative local weak solution to the equation

−
N∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
= 0, in Ω ⊂⊂ RN , (7.18)

and let condition (5.1) be satisfied. Suppose furthermore for a point xo ∈ Ω that u(xo) > 0. Then there exist
constants C1 > 0 and C3 ≥ 1 depending only on N and the pi’s such that

1

C3
sup

Kρ(M)

u ≤ u(xo) ≤ C3 inf
Kρ(M)

u) (7.19)

whenever xo +KC3 ρ(M) ⊆ Ω and being M = u(xo)/C1.

Although most arguments in our proofs are local, previous Theorem 7.1 expresses a global information. Let
(xo, to) ∈ ΩT be a point where the local weak solution u is positive. We will distinguish the sets where the
point-wise control (7.1) holds true.

Proposition 7.1. Suppose satisfied the assumptions of Theorem 7.1 for (x0, t0) ∈ Ω× [−T, T ]. Then,

inf
P+

u (x0,t0)
u ≥ u(x0, t0)/C3, and sup

P−
u (x0,t0)

u ≤ C3u(x0, t0), (7.20)

where P+
u (xo, to) and P−

u (xo, to) are defined, up to side-condition (7.2), by

P+
u (x0, t0) =

{
(x, t) ∈ ΩT : C p̄

2 |xi − x0,i|piθ2−pi ≤ (t− t0), ∀i = 1, ..N

}
,

and

P−
u (x0, t0) =

{
(x, t) ∈ ΩT : (t− t0) ≤ −C p̄

2 |xi − x0,i|piθ2−pi , ∀i = 1, ..N

}
.

The union of these two sets through the point (xo, to) is the whole anisotropic intrinsic paraboloid

Pu(x0, t0) =

{
(x, t) ∈ ΩT : |xi − x0,i|pi ≤ C−p̄

2 θpi−2|t− t0| < (ρ+)p̄θpi−p̄, ∀i = 1, ..N

}
, (7.21)

where ρ+ depends on u, ΩT and (x0, t0) with the following expression

ρ+ = C−p̄
3

(
u(x0, t0)

C1

)p̄−2

min
i=1,...,N

{
(T − |t0|),

(
dist(x0, ∂Ω)

2

)pi
(
u(x0, t0)

C1

)2−pi
}
. (7.22)

Proof of (7.20). Estimates of Harnack inequality (7.1) and (7.2) give a condition that can be expressed for
different radii ρ ∈ (0, ρ+), where ρ+ is identified by means of (7.2) as

(T − |t0|)
(

u(x0,t0)
C1

)p̄−2

C−p̄
3 > ρp̄,

(C3ρ)
p̄
pi

(
u(x0,t0)

C1

) pi−p̄

pi

≤
(

dist(x0,∂Ω)
2

) ⇒


ρp̄ ≤ C−p̄

3 (T − |t0|)
(

u(x0,t0)
C1

)p̄−2

,

ρp̄ ≤ C−p̄
3

(
dist(xo,∂Ω)

2

)pi
(

u(x0,t0)
C1

)p̄−pi

,

therefore we may take ρ+ as the minimum as in (7.22). Finally, to show estimates (7.20) we use (7.1) to get
a precise description of radii ρ in terms of the fixed times t0 ± (C2ρ)

p̄(u(x0, t0)/C1)
2−p̄, which amounts in

the case of P+
u (x0, t0) to
|xi − x0,i|pi < ρp̄

(
u(x0,t0)

C1

)pi−p̄

,

t = t0 + (C2ρ)
p̄

(
u(x0,t0)

C1

)2−p̄ ⇒


|xi − x0,i|pi

(
u(x0,t0)

C1

)p̄−pi

< ρp̄,

ρp̄ = C−p̄
2

(
u(x0,t0)

C1

)p̄−2

|t− t0|,

⇒ |xi − x0,i|pi < C−p̄
2

(
u(x0, t0)

C1

)pi−2

(t− t0).

In case t < t0 we obtain a similar statement for P−
u (x0, t0). If the equation is solved in all RN , then we set

ρ+ = +∞.
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8 Consequences of Harnack’s inequality

Future perspectives and open problems

Quanta energia racchiusa in una frase,

quanta struttura imprigionata in due simboli.

Libertà di scrivere, voi direte, è questa.

Saltano però i tiranti delle vele maestre

allo soccar delle implicazioni funeste

che al paradosso scontrano muro a testa.

Lá dove fallisca rappresentazione,

leggera astrazione liberasi amichevole

tra voce e parole, tra nascita e lutto,

con messaggio ch’evapora il messaggero.

Al formalismo questa passione deve tutto,

giacché, se non è falso e non è vero,

da questa prigione v’è natural evasione

se alla fantasia è posta alta recinzione.

- S.C. -

Formalismo e Libertà

In this last Section we show that some classical consequences of Harnack inequality hold true, for local weak
solutions to (1.1). Following the lines of ([27], Section 10), we show that Harnack estimates (7.1) imply a
reduction of the essential oscillation. From this point to Hölder continuity, we use a different strategy than
the one we found in literature ([23], Lemma 3.1 Chap. III, or [65]); because if θ0 > θn the inclusion of Qρ(θ0)
in Qρ(θn) is no more valid for anisotropic intrinsic cylinders. Moreover, we show some interesting rigidity
results of Liouville-type. On a third step we show a version of the Harnack inequality that frees the time
variable of the intrinsic geometry. To achieve this estimate, we use the Harnack inequality first to recover a
lower bound, and then we use comparison principle with B. As soon as side-condition (7.2) is satisfied, this
particular Harnack estimate is equivalent to the previous (7.1) for small radii.

Finally we comment some open problems; some of them easier, some of them harder and some of them
very general and challenging. We wish so to attract the attention of the research community on the present
research topic which, as we have already discussed in detail along the Introduction, has deep roots into the
study of singular and degenerate equations. It is nowadays evident that new techniques are required.
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8.1 Hölder Continuity

We use the intrinsic Harnack inequality (7.1) to establish locally quantitative Hölder estimates for local,
weak solutions u of (1.1), conditioned to the assumption 2 < pi < p̄(1 + 1/N) for each i = 1, .., N . This
condition is part of the hypothesis of Theorem 7.1, and it is stronger than the sole boundedness condition
(4.6). It may happen that in this range of pis the diffusion is so slow that no expansion of positivity occurs.

Theorem 8.1. Local weak solutions to (1.1) are locally Hölder continuous under condition (5.1). More
precisely, there exist constants γ > 1, χ ∈ (0, 1) depending only upon pi, N with the following property. For
each compact set K ⊂⊂ ΩT there exist an open set K ⊂ Λ ⊆ ΩT and a constant ωo = ωo(K, ∥u∥∞,K) as
defined in (8.3)-(8.4), such that for every pair of points (x, t), (y, s) ∈ K

|u(x, t)− u(y, s)| ≤ γωo

(∑N
i=1 |xi − yi|

pi
p̄ ω

p̄−pi
p̄

o + |t− s|
1
p̄ω

p̄−2
p̄

o

p-dist(K, ∂Λ)

)χ

, (8.1)

with
p-dist(K, ∂Λ) := inf{px,pt}, being

px = inf

{
|xi − yi|

pi
p̄ (ωo/C1)

p̄−pi
p̄ : (x, t) ∈ K, (y, s) ∈ ∂Λ, i = 1, .., N

}
,

pt = inf

{
|t− s|

1
p̄ (ωo/C1)

p̄−2
p̄ : (x, t) ∈ K, (y, s) ∈ ∂Λ

}
,

(8.2)

Furthermore, if u is bounded in ΩT then (8.1) holds with Λ = ΩT .

We will prove Theorem 8.1 in five steps.

Proof. Let us fix a compact set K ⊂⊂ Ω and two points (y, s), (x, t) ∈ K.

STEP 1-A global bound for the solution in K.

By compactness of K it is possible to find a number m ∈ N of points (xi, ti) ∈ K and λi, Hi ∈ R+ for
i = 1, . . . ,m such that

K ⊂ Λ :=

m⋃
j=1

{(xj , tj) +Qλj ,Hj
} ⊆

m⋃
j=1

{(xj , tj) +Q2λj ,Hj
} ⊆ ΩT ,

beingQλ,M as in (4.8). This is becauseD = dist(K, ∂ΩT ) > 0 and we may consider λj , Hj < min{(D/2)pi ,
√
D/2}.

Then by (4.9) we have for each Qλj ,Mj
= (xj , tj) +Qλj ,Mj

, j = 1, . . . ,m, the estimate

∥u∥L∞(Qλj,Mj
) ≤ g−1(1/Mj) + h−1

(
C

(
Mj

ˆ ˆ
Q2λj,Mj

|u|p̄2 dxdt

) p̄
N+p̄

)

≤ g−1(1/min
j
Mj) + h−1

(
C max

j=1,...,m

(
Mj

ˆ ˆ
Q2λj,Mj

|u|p̄2 dxdt

) p̄
N+p̄

)
=: I,

(8.3)

because h,g, are monotone increasing. Observe that I does not depend anymore on j ∈ {1, . . . ,m}. Finally,
we define

ω0(K) = 2mI, (8.4)

so that

K ⊂
m⋃
j=1

Qλj ,Mj (xj , tj) = Λ, & 2∥u∥L∞(K) ≤ ωo(K).

Let us call ωo = ωo(K) for the sake of brevity.
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STEP 2-Accommodation of degeneracy.

We recall (8.2) and we define R := [p-dist(K, ∂Λ)]/(2C3). We claim that the intrinsic cylinder centered in
(y, s) ∈ K and constructed with R and ωo is contained inside Λ,

(y, s) +QR(ωo/C1) ⊆ Λ.

Let us check it component-wise. We denote with πk the projection on the xk-th component of RN+1, and
we have for all i = 1, . . . , N

πi

(
(y, s) +QR(ωo/C1)

)
=

{
|yi − xi| < (ωo/C1)

pi−p̄

pi

(
inf{|wi − zi|

pi
p̄ (ωo/C1)

p̄−pi
p̄ }

2C3

) p̄
pi
}
,

for w ∈ K, z ∈ ∂Λ, by definition of R. Hence for xi ∈ πi((y, s) +QR(ωo/C1))) we have

|yi − xi| ≤ (ωo/C1)
pi−p̄

pi

(
inf{|yi − zi|

pi
p̄ (ωo/C1)

p̄−pi
p̄ }

2C3

) p̄
pi

≤ dist(yi, πi(∂Λ)),

where the infimum is taken over all zi ∈ πi(∂K) and those terms involving ωo cancel out. Moreover,

πt

(
(y, s) +QR(ωo(K)/C1)

)
=

{
|s− t| < (ωo/C1)

2−p̄

(
inf{|h− l|

1
p̄ (ωo/C1)

p̄−2
p̄ }

2C3

)p̄}
,

for h ∈ πt(K), l ∈ πt(Λ) using again the definition of R, is included in Λ. Indeed for all times t in such a set
it holds

|s− t| ≤ (ωo/C1)
2−p̄

(
inf{|s− l|

1
p̄ (ωo/C1)

p̄−2
p̄ }

2C3

)p̄

≤ dist(s, πt(∂K)),

where the infimum is take over all l ∈ πt(K). Our claim is proved.

STEP 3-Alternatives.

Consider now any other point (x, t) ∈ K. We show that we can formulate the problem for (y, s)+QR(ωo/C1),
having otherwise the Lipschitz continuity of u. If |s− t| ≥ (ωo/C1)

2−p̄Rp̄, we have

|u(y, s)− u(x, t)| ≤ |u(y, s)|+ |u(x, t)| ≤ 2ωo ≤ 4ωo

(
(ωo/C1)

p̄−2
p̄ |s− t|

1
p̄

p-dist(K, ∂Λ)

)
.

Indeed by assumption

1 ≤ 2

(
(ωo/C1)

p̄−2
p̄ |s− t|

1
p̄

p-dist(K, ∂Λ)

)
⇐ p-dist(K, ∂Λ) ≤ (ωo/C1)

p̄−2
p̄ |s− t|

1
p̄ .

Same conclusion pertains the case |yi − xi| ≥ (ωo/C1)
pi−p̄

p̄ R
p̄
pi for some i ∈ {1, . . . , N}, arriving again to

|u(y, s)− u(x, t)| ≤ |u(y, s)|+ |u(x, t)| ≤ 2ωo ≤ 4ωo

(
(ωo/C1)

p̄−pi
p̄ |yi − xi|

pi
p̄

p-dist(K, ∂Λ)

)
.

In conclusion we are left with the following possibility{
|s− t| < (ω0/C1)

2−p̄Rp̄

}
&

{
|yi − xi| < (ωo/C1)

pi−p̄

pi R
p̄
pi

}
∀i = 1, . . . , N. (8.5)

which means that if we pick any point (x, t) in K we can assume that

(x, t) ∈ (y, s) +QR(ωo/C1).

We take this cylinder as the first element Q0 := QR(ωo/C1) of a net of particular cylinders Qn shrinking to
their center (y, s) in such a way that the oscillation in each of them is controlled uniformly.
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STEP 4- Controlled reduction of oscillation

Proposition 8.1 (Reduction of oscillation in shrinking cylinders). Let the hypothesis of Theorem 8.1 be
satisfied and assume also (8.5). Let C1, C2, C3 the constants of Theorem 7.1. Then we can define numbers
δ, ε ∈ (0, 1) such that if we set

{
ω0 = ωo(K),

ωn = δωn−1, 1 < n ∈ N
,


θn = (ωn/C1),

ρn = ερn−1, 1 < n ∈ N,
ρ0 = R

,

{
δ = 4C3/(1 + 4C3),

ε = δ
p̄−2
p̄ /A

, A > 1,

we have both the inclusions

Qn ⊂ Qn−1, with Qn = (y, s) +Qρn(θn) =

N∏
i=1

{
|yi − xi| < θ

pi−p̄

pi
n ρ

p̄
pi
n

}
×
(
s− θ2−p̄

n (C2ρn)
p̄, s

]
and the controlled inequalities

osc
Qn

u ≤ ωn ≤ δnωo. (8.6)

Proof of Proposition 8.1. We proceed by induction. The first step is oscQ0 u = oscQR(ωo/C1) ≤ ωo, that holds
true because ωo ≥ 2 oscQ0 having the inclusion (y, s) +QR(ωo/C1) ⊂ Λ by the previous accommodation of
degeneracy. Moreover, we postpone the proof of Q1 ⊆ Q0 = (y, s) + QR(ωo/C1) for the following general
fact. By direct computation,

θp̄−2
n+1(C2ρn+1)

p̄ =

(
C1

ωn+1

)p̄−2(
(C2ρn/A)

p̄δp̄−2

)
=

(
C1

δωn

)p̄−2(
(C2ρn/A)

p̄δp̄−2

)
= θp̄−2

n (C2ρn/A)
p̄,

precisely, and for each i ∈ {1, .., N} as pi > 2 and δ ∈ (0, 1) it holds

θ
p̄−pi
pi

n+1 ρ
p̄
pi
n+1 =

(
C1

ωn+1

) p̄−pi
pi
(
ρn
A
δ

p̄−2
p̄

) p̄
pi

=

(
C1

δωn

) p̄−pi
pi

δ
p̄−2
pi

(
ρn
A

) p̄
pi

=

(
C1

ωn

) p̄−pi
pi
(
ρn
A

) p̄
pi

δ
pi−p̄

pi
+ p̄−2

pi = θ
p̄−pi
pi

n

(
ρn
A

) p̄
pi

δ
pi−2

pi ≤ θ
p̄−pi
pi

n

(
ρn
A

) p̄
pi

.

This computation show a little more, by allowing indeed Qn+1 ⊂ Qρn/A(ωn/C1) ⊂ Qn. These computations
holding also for Q1 ⊂ Q0, the first and (n+ 1)-th steps are checked at once.

Proof of the inductive step (8.6)

We assume now that the statement (8.6) is true until step n and we show it for n+ 1. This will determine
number A. More precisely, we assume that oscQn

u ≤ ωn and by contradiction that oscQn+1
u > ωn+1. With

numbers ωn we construct the following

Mn = sup
Qn

u, mn = inf
Qn

u, Pn = (y, s− (C2ρn)
p̄θ2−p̄

n ).

Point Pn is the opposite point in Qn to the vertex (y, s). Now we observe that one of the following two
inequalities must hold

Mn − u(Pn) > ωn+1/4, or u(Pn)−mn > ωn+1/4.

Indeed if both alternatives are violated then by adding their opposites we obtain oscQn u ≤ ωn+1/2 < oscQn+1

generating an absurd by monotonicity of the oscillation and the proven fact that Qn+1 ⊆ Qn. Let us suppose
Mn − u(Pn) ≥ ωn+1/4, the other case being similar. In particular we have the double bound

ωn+1/4 ≤Mn − u(Pn) ≤ ωn.
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We work within the half-paraboloid P+
n = P+

Mn−u(Pn)
(Pn) for times limited to the ones of Qn, which is

P+
n =

{
|xi − yi|pi < [(Mn − u(Pn)/C1)]

pi−2ρp̄n(ωn/C1)
2−p̄, s− (C2ρn)

p̄(ωn/C1)
2−p̄) ≤ t ≤ s

}
.

The condition ρp̄nθ
2−p̄
n < (ρ+)p̄θ2−p̄

n specified by right-hand inequality of (7.21) is naturally satisfied, being
θn = (Mn − u(Pn)/C1). Indeed, by definition of R, ωo > ωn > Mn − u(Pn) and recalling that P+

n is limited
to the times of Qn, we have the following estimate along the time variable

ρp̄n

(
ωn

C1

)2−p̄

≤ Rp̄

(
ωo

C1

)2−p̄

≤ (ρ+)p̄
(
Mn − u(Pn)

C1

)2−p̄

.

It is worth to observe that in the previous estimate the number ρ+ depends on the function Mn−u(Pn) and
the point Pn. On the other hand, by definition of ωn, we recover an estimate for the space variables

C p̄
2 |xi − yi|pi <

(
Mn − u(Pn)

C1

)pi−2

ρp̄n

(
ωn

C1

)2−p̄

=

(
Mn − u(Pn)

C1

)pi−2(
R

An

)p̄(
ωo

C1

)2−p̄

.

First inequality of last estimate shows also that paraboloid P+
n is contained in Qn. Now we show that after a

certain time t̄, the whole cylinder Qn+1 is contained in the paraboloid P+
n , see Figure 3 for a representation.

For times t > s− (C2ρn)
p̄(ωn/C1)

2−p̄ we denote by P+
n (t) the time-section of P+

n at time t:

P+
n (t) =

{
x ∈ RN : |xi − yi|pi < (C2)

−p̄[(Mn − u(Pn)/C1)]
pi−2(t− s+ (C2ρn)

p̄(ωn/C1)
2−p̄)

}
.

Let us set
t̄ = s− (C2ρn+1)

p̄(ωn+1/C1)
2−p̄, (8.7)

and let us prove that at time t̄ we have the inclusion

πx(Qρn+1
) ⊂ P+

n (t̄) =

{
x ∈ RN : |xi − yi|pi < ρp̄n[(Mn − u(Pn)/C1)]

pi−2(1−A−p̄)(ωn/C1)
2−p̄

}
.

This hence reduces to show that

(ρn+1)
p̄(ωn+1/C1)

pi−p̄ ≤ (1−A−p̄)ρp̄n[(Mn − u(Pn)/C1)]
pi−2(ωn/C1)

2−p̄ =

= (1−A−p̄)[(Mn − u(Pn)/C1)]
pi−2Ap̄ρp̄n+1(ωn+1/C1)

2−p̄,

⇐⇒ (ωn+1)
pi−2 ≤ (Ap̄ − 1)(Mn − u(Pn))

pi−2.

If we choose A > 1 such that 4pN−1 < Ap̄ − 1 as for instance A = 4pN , then

(ωn+1)
pi−2 = (ωn+1/4)

pi−24pi−2 ≤ (Ap̄ − 1)(Mn − u(Pn))
pi−2.

Therefore we can estimate by Harnack inequality (7.1) the infimum of Mn − u in Qn+1 as

inf
Qn+1

(Mn − u) ≥
Mn − u(Pn)

C3
≥ ωn+1/(4C3), (8.8)

again referring to Figure 3. Now we use that inf(−u) = − supu to estimate

Mn ≥ sup
Qn+1

u+ ωn+1/(4C3),

and we add − infQn
u ≥ − infQn+1

u to both sides, to get by assumption oscQn+1
u > ωn+1 that

ωn ≥ sup
Qn+1

u+ ωn+1/(4C3)− inf
Qn+1

u = osc
Qn+1

u+ ωn+1/(4C3) >

(
1 +

1

4C3

)
ωn+1 .
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x ∈ RN

t ∈ R
Qn+1

Qn
P+
n

Pn s
t̄

Figure 3: Scheme of the proof of (8.8), by use of the anisotropic paraboloid P+
n (in red), that is centered in

Pn = ( y, s− (C2ρn)
p̄(ωn/C1)

2−p̄) and evolves in a time (C2ρn)
p̄(ωn/C1)

2−p̄ to cover completely Qn+1.

This leads to the contradiction by definition of δ, as

ωn >

(
1 +

1

4C3

)
δωn =

(
4C3

1 + 4C3

)(
1 +

1

4C3

)
ωn = ωn,

and Proposition 8.1 is proved true.

STEP 5.Conclusion of the proof of Theorem 8.1

If we consider a point (x, t) ∈ (y, s)+QR(ωo/C1), let n ∈ N be the last number such that we have (x, t) ∈ Qn,
so that (x, t) ̸∈ Qn+1. From the first condition we have

|u(x, t)− u(y, s)| ≤ osc
Qn

u ≤ δnωo.

The rest of the job is to determine from condition (x, t) ̸∈ (y, s) +Qn+1 an upper bound for δn. Indeed let

β > 0 be such that δ
p̄−2
p̄ /A = δβ and as the point is not contained, there must be an index i ∈ {1, . . . , N}

such that

|xi − yi| > ρ
p̄
pi
n+1(ωn+1/C1)

pi−p̄

pi ≥ γ(δ, A)
(
δn
) p̄(β−1)+pi

pi

R
p̄
pi (δnωo/C1)

pi−p̄

pi , (8.9)

that gives us for χi = p̄/(p̄(β − 1) + pi) the following estimate of δn,

δn ≤ γ
(
|xi − yi|

pi
p̄ (ωo/C1)

p̄−pi
p̄

R

) p̄
p̄(β−1)+pi

≤ γ
(∑N

i=1 |xi − yi|
pi
p̄ ω

p̄−pi
p̄

o + |t− s|
1
p̄ω

p̄−2
p̄

o

p-dist(K, ∂Λ)

)χi

. (8.10)

Now we can repeat the same reasoning in case that x ∈ Kρn+1
but t ̸∈ (−ρp̄n+1(ωn+1)

2−p̄, 0], getting an
estimate of δn by condition

|t− s| > ρp̄n+1(ωn+1/C1
)2−p̄ > γ(δ, A)(δn)p̄(β−1)+2Rp̄(ωo/C1)

2−p̄

⇒ δn < γ

(
|t− s|

1
p̄ (ωo/C1)

p̄−2
p̄

R

) p̄
(p̄(β−1)+2)

≤ γ
(∑N

i=1 |xi − yi|
pi
p̄ ω

p̄−pi
p̄

o + |t− s|
1
p̄ω

p̄−2
p̄

o

p-dist(K, ∂Λ)

)χt

,

this time with χt = p̄/(p̄(β − 1) + 2). Finally we put all estimates together to get

|u(x, t)− u(y, s)| ≤ osc
Qn

u ≤ δnωo ≤ γωo

(∑N
i=1 |xi − yi|

pi
p̄ ω

p̄−pi
p̄

o + |t− s|
1
p̄ω

p̄−2
p̄

o

p-dist(K, ∂Λ)

)χ

,

with the following choice of χ ∈ (0, 1), motivated again by (8.5), and therefore we choose as Hölder constant

χ = min{χi, χt, i = 1, . . . , N} = p̄

p̄(β − 1) + pN
, being pN > 2. (8.11)
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8.2 Liouville-type results

Harmonic functions in RN with one-sided bound are constant. This fact, known as Liouville’s property, is a
sole consequence of the Harnack inequality and as such it extends to solutions to homogeneous, quasi-linear,
elliptic partial differential equations in RN with one-sided bound. This statement has a correspondent one
in case of elliptic p-Laplacean equations, and also in case of the elliptic anisotropic p-Laplacean one.

Theorem 8.2. Let u be a nonnegative weak solution in the whole RN to the equation (7.18). If u is bounded
from below and condition (5.1) is satisfied, then it is constant.

Proof. We suppose that supRN u > infRN u, admitting supRN u ∈ R̄, and let ϵ ∈ (0, supRN u − infRN u).
Consider the non-negative solution vϵ = u − infRN u + ϵ/2 to (7.18). By continuity, we can pick a point xϵ
such that vϵ(xϵ) = ϵ. Up to translations, the elliptic Harnack inequality (7.19) implies that vϵ ≤ C3 ϵ in
xϵ +Kρ(ϵ/C1), for all ρ > 0. Letting ρ→ +∞, we get vϵ ≤ C3 ϵ in the whole RN , i.e.

u ≤ inf
RN

u+ (C3 − 1/2) ϵ

in RN and letting ϵ→ 0 we get the claim.

On the other hand the parabolic theory is much different, because of the general principle that ”diffusion
needs some time to pass”. As a matter of fact, this property does not extend to the heat equation in RN ×R:
indeed the function 0 ≤ u(x, t) = ex+t is caloric and has a left-sided bound while not being constant. A
one sided-bound is therefore not anymore sufficient to imply that solutions are constant. The Liouville’s
property continues to be false, stated as it is, also for non-negative solutions to degenerate p-Laplacean
equations (p > 2). Indeed, the one-parameter family of non-negative functions

R× R ∋ (x, t)→ u(x, t; c) = c
1

p−2

(
p− 2

p− 1

) p−1
p−2

(1− x+ ct)
p−1
p−2

+ ,

is a family of non-negative, non-constant weak solutions to ut = ∆pu in R2. This naturally provides a
counterexample also in case of equation (1.1) in one spatial dimension. On the other hand, if a left-sided
bound is coupled with a right-sided bound at some time level, it is possible to prove the following result.

Theorem 8.3. Let T ∈ R, ST = RN × (−∞, T ) and u be a solution to (1.1) with condition (5.1), which is
bounded below in ST . Assume moreover that for some time s < T

sup
RN

u(·, s) =Ms <∞. (8.12)

Then u is constant in Ss = RN × (−∞, s).

Corollary 8.1. Let T ∈ R, ST = RN × (−∞, T ) and u be a solution to (1.1) with condition (5.1), which is
bounded above and below in ST . Then, u is constant.

Proof. For u is bounded below in ST , let us set

m = inf
ST

u,

and for points (y, s) ∈ ST for which u(y, s) > m let us construct the intrinsic backward p-paraboloid

P−
m(y, s) := Pu(y,s)−m

C1

(y, s) =

{
(x, t) ∈ ST | ∀i = 1, ..N, (t− s) ≤ −C p̄

2 (2|xi − yi|)pi

(
u(y, s)−m

C1

)2−pi
}
,

where the constants C1, C2 are the constants of the intrinsic Harnack inequality (7.1). First of all we prove
the following fact which is interesting per se: for all x ∈ RN fixed,

lim
t→−∞

u(x, t) = inf
ST

u. (8.13)
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To prove (8.13) we unfold the definition of infimum: for every chosen ε > 0 there exists a point (yε, sε) ∈ ST

such that u(yε, sε) −m ≤ ε/C3, being C3 the constant appearing in (7.1). Now we apply left-hand side of
inequality (7.1) to the solution (u−m), to obtain

m ≤ u(y, s) ≤ m+ ε, for all (y, s) ∈ P−
m(yε, sε).

Now, we consider that the intrinsic p-paraboloid P−
m(yε, sε) expands until it spreads all over the space when

time diverges to −∞. For a fixed point x ∈ RN , the half line [t < T ]×{x} intersects the intrinsic p-paraboloid
for some first time tε,x. To sum up, for each chosen x ∈ RN and ε > 0 there exists a time tε,x ∈ R such that
∀s < tε,x the function u(x, s) gets arbitrarily close to m.

A similar argument shows that

sup
ST

u =M <∞ ⇒ lim
t→−∞

u =M.

This implies that if u is a non-negative solution to (1.1) bounded from both above and below in the whole
ST , it is necessarily constant. Indeed, by (8.13) we would have supST

u = infST
u.

To end the proof of Theorem 8.3, we use the assumption that there exists a time s̄ ∈ (−∞, T ] such that the
function of the sole space u(·, s̄) is bounded from above by Ms ∈ R in the whole RN . Indeed in this case for
each x ∈ RN we achieve again, by the intrinsic backward Harnack inequality, the uniform bound

u(y, s) ≤ C3u(x, s̄) ≤ C3Ms̄, for all (y, s) ∈ Pu(x,s̄)/C1
(x, s̄),

and these intrinsic paraboloids P−
u(x,s̄)/C1

(x, s̄) invade all the strip Ss̄ when x ranges all over RN . By previous

considerations, being u bounded from both above and below, it is necessarily constant in Ss̄.

Moreover, when the equation is solved in RN × R, it suffices to check the asymptotic (in time) two-sided
boundedness of the solution at a single point y ∈ RN to conclude its constancy.

Theorem 8.4. Let u be a local weak solution to (1.1) in RN ×R, bounded from below. Let condition (5.1) be
satisfied. If in addition there exists y ∈ RN and a sequence of points N ∋ {sn}n∈N → +∞ such that u(y, sn)
is bounded for large n ∈ N, then u is constant.

Remark 8.1. It is an easy application to see that if we replace the previous assumption with the request
that for some point y ∈ RN the following limit is finite

lim inf
t→+∞

u(y, t) = α ∈ R, (8.14)

then u is constant.

Proof. We consider the solution ũ = u + 1 of equation (1.1). By assumption there exists some divergent
sequence in time {sn}n∈N →∞ and a number n̄ ∈ N such that

ũ(y, sn) < Mn̄, ∀n ≥ n̄.

Let us fix s̄ = sn̄, and consider the following sequence of radii {ρn}n∈N, defined by being equidistant to s̄ in
the following sense

sn −
(

C1

ũ(y, sn)

)p̄−2

(C2ρn)
p̄ = s̄ ⇒ ρn =

1

C2

[
(sn − s̄)

(
ũ(y, sn)

C1

)p̄−2]1/p̄
.

As our aim is to apply Harnack inequality and invade all the space, we need to check that the intrinsic
anisotropic cubes Kρn(ũ(y, sn)/C1) expand. Indeed by explicit computation

Kρn(ũ(y, sn)/C1) =

N∏
i=1

{(
ũ(y, sn)

C1

) pi−2

pi 1

C
p̄/pi

2

(sn − s̄)
1
pi

}
⇒n→∞ RN ,
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being ũ > 1, pi > 2 and {sn} divergent. Now by the intrinsic backward Harnack inequality (7.1) we have

sup
Kρn

ũ

(
· , sn −

(
C1

ũ(y, sn)

)p̄−2

ρp̄n

)
≤ γ ũ(y, sn) ≤ γMn̄,

which gives for all n ≥ n̄, by exploiting the definition of {ρn}, the uniform estimate

sup
Kρn

ũ(·, s̄) ≤ γMn̄ ⇒n̄ fixed
n→∞ sup

RN

ũ(·, s̄) ≤ γMn̄.

This is precisely the hypothesis of Theorem 8.3, and under its application the proof is concluded.

8.3 An alternative formulation of Harnack inequality

In this small Section we show how it is possible to free the Harnack inequality from its intrinsic geometry
in time. More precisely, we can give a formulation where the function can be calculated at any chosen
time level, independently of the anisotropic geometry but always provided that there is enough room for
the anisotropic evolution inside ΩT . Unlike the isotropic case, it looks here more difficult to get rid of the
intrinsic geometry along space variables.

Theorem 8.5. Let u be a nonnegative local weak solution to (1.1) in ΩT , and suppose (5.1) valid. Then,
there exist constants η̃ > 0, γ > 1 depending only on N , pis such that for all points (xo, to) ∈ ΩT and all
ρ, θ > 0 such that

(xo, to + θ) +QC3ρ(u(xo, to)/C1) ⊆ ΩT ,

we have

u(xo, to) ≤ γ
{(

ρp̄

θ

) 1
p̄−2

+

(
θ

ρp̄

)N/p̄[
inf

xo+Kη̃ρ(η̃u(xo,to))
u(·, to + θ)

]λ/p̄}
, (8.15)

where λ = N(p̄ − 2) + p̄ and C1, C3 > 1 are the constants of Theorem 7.1 while η > 0 is the constant of
Corollary 6.1.

Proof. Let ρ, θ > 0 be two numbers such that the anisotropic intrinsic cylinder (xo, to) +Qρ(θ) is contained
in ΩT , let Ci be the constants of Theorem 7.1 for i = 1, 2, 3 and η̄ the number specified in the third point of
Corollary 6.1. Now we consider the time level

t∗ :=

(
C1

u(xo, to)

)p̄−2

(C2ρ)
p̄, such that t∗ ≤ θ/2, (8.16)

indeed otherwise u(xo, to) ≤ γ(ρp̄/θ)1/(p̄−2) for γ = γ(C1, C2, η̄) and (8.15) is valid. We observe that
inequality (8.16) above with the hypothesis on the domain implies also(

C1

u(xo, to)

)p̄−2

(C2ρ)
p̄ < θ/2 ≤ T, and xo +KC3ρ(u(xo, to)/C1) ⊂ Ω.

By the Harnack inequality (7.1) and (8.16) we have a precise bound from above at the point (xo, to), so that

u(xo, to) ≤ C3u(x, to + t∗), ∀x ∈ Kρ(u(xo, to)/C1).

This initial value can be taken for a comparison principle with a Barenblatt solution Bσ(x − xo, t − s)
centered in (xo, s), where s ∈ (−θ, 0) and σ > 0 must be chosen to let Bσ(x − xo, t − s) be below u in
xo +Kρ(u(xo, to)/C1). This request is written as{

suppBσ(·, to + t∗ − s) ⊆ xo +Kρ(u(xo, to)/C1),

||Bσ(·, to + t∗ − s)||∞ ≤ u(xo, to)/C3,
⇐

{
σ

pi−2

pi (to + t∗ − s)αi ≤ ρp̄/pi(u(xo, to)/C1)
pi−p̄

pi

σ(to + t∗ − s)−α ≤ u(xo, to)/C3.

(8.17)
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This can be done by choosing

σ = |to+ t∗−s|N/λu(xo, to)/C3, and s = to+ t
∗−
(

ρp̄

u(xo, to)p̄−2

)
γ1, γ1 = min{Cpi−2

3 | i = 1, . . . , N}.

Therefore, the comparison principle implies that at the time to + θ we have

u(x, to + θ) ≥ η̄σ|to + t∗ − (to + θ)|−α ≥ η̄
(
u(xo, to)

C3

)
|to + t∗ − s|N/λ|θ − t∗|−N/λ

≥ η̄
(
u(xo, to)

C3

)(
γ1ρ

p̄

u(xo, to)p̄−2

)N/λ(
θ

2

)−N/λ

≥ γu(xo, to)p̄/λ
(
ρp̄

θ

)N/λ

,

recalling that α = N/λ and being γ = γ(γ1, η̄), for every x in the set of positivity of Bσ

Pto+θ(xo) =

N∏
i=1

{|xi − xo,i| < η̃ρp̄/piu(xo, to)
(pi−p̄)/pi} = xo +Kη̃ρ(η̃u(xo, to)),

with η̃ = η̃(η̄, C1, C2, C3) = min{η̄C(2−pi)/pi

3 Cαi
2 C

(p̄−2)αi

1 | i = 1, . . . , N}. This implies, by passing to the
minimum of u on such a set, the right-hand member of (8.15).

Remark 8.2. In Theorem 8.5 it is not required that u(xo, to) > 0 and θ > 0 is arbitrary, between those
numbers that preserve the inclusion of the intrinsic cylinder translated to time θ into ΩT . Actually, Theorems
7.1 and 8.5 are equivalent locally.

Indeed, we proved that Theorem 7.1 implies 8.5. Now we show that the converse statement can be obtained
by a simple choice of θ. Indeed, let us pick

θ =
(2γ)p̄−2ρp̄

u(xo, to)p̄−2
,

and suppose that (xo, to + θ) +QC3ρ(u(xo, to)/C1) ⊂ ΩT . The weak Harnack inequality (8.15) leads us to

u(xo, to) ≤ γ
{
u(xo, to)

2γ
+

(
2γ

u(xo, to)

)N(p̄−2
p̄
[

inf
xo+Kη̃ρ(η̃u(xo,to))

u(·, to +
(
u(xo, to)

2γ

)2−p̄

ρp̄
]λ

p̄
}

⇒ u(xo, to) ≤ C̃3 inf
xo+Kρ̃(M)

u(·, to + C̃2M
2−p̄ρ̃p̄), M = u(xo, to)/C̃1,

for all ρ̃ ≤ η̃ρ and positive constants

C̃3 =
(2γ)

N(p̄−2)
p̄

2
, C̃1 = 1/η̃, C̃2 =

(2γ)p̄−2

η̃2
.

8.4 Future Perspectives and Open Problems

In the isotropic case, Theorem 8.5 can be stated with a weighted space integral on the left. Indeed, considering
the isotropic version of (8.15) by taking pi ≡ p > 2 ∀i = 1, . . . , N , then for at least one point x̄ ∈ Kρ we have

ˆ
Kρ(u(xo,to)/C1)

u(x, to) dx = u(x̄, to) ≤
{(

ρp̄

θ

) 1
p̄−2

+

(
θ

ρp̄

)N/p̄[
inf

x̄+Kη̃ρ(η̃u(x̄,to))
u(·, to + θ)

]λ/p̄}
,

that, in the isotropic geometry would have η̃ = 1 and would not be anymore intrinsic in space, because
xo ∈ Kρ(u(xo, to)/C1) = Kρ. That is why one can estimate from above the right-hand side with the value
u(xo , to+θ). Here the situation is markedly different, because the inequality (8.15) is still intrinsic in space.
Therefore a natural question would be to find an estimate as in ([23], Cor. 2.1, Chap VI), that would be of
the following type.
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Open Problem 8.6. Let the assumptions of Theorem 8.5 be satisfied. Then there exist constants C̃1, γ > 1
depending only on N , pis such that for all points (xo, to) ∈ ΩT and all ρ, θ > 0 such that

(xo, to + θ) +QC3ρ(u(xo, to)/C1) ⊆ ΩT ,

defining M = u(xo, to)/C̃1 we have

ˆ
Kρ(M)

u(x, to) dx ≤ γ
{(

ρp̄

θ

) 1
p̄−2

+

(
θ

ρp̄

)N/p̄[
u(xo, to + θ)

]λ/p̄}
, (8.18)

where λ = N(p̄− 2) + p̄ and C3 > 1 is the number of Theorem 7.1.

Furthermore, the estimate (8.15) is usually referred to as a weak Harnack inequality, when it is stated for
supersolutions. This is another interesting question, that will be the object of future investigation.

Open Problem 8.7. Let u be a nonnegative local weak supersolution to (1.1) in ΩT and let assumption
(5.1) be at stake. Then, there exist constants η̃ > 0, γ > 1 depending only on N , pis such that for all points
(xo, to) ∈ ΩT and all ρ, θ > 0 such that

(xo, to + θ) +QC3ρ(u(xo, to)/C1) ⊆ ΩT ,

we have ˆ
Kρ(M)

u(x, to) dx ≤ γ
{(

ρp̄

θ

) 1
p̄−2

+

(
θ

ρp̄

)N/p̄[
inf

xo+Kη̃ρ(η̃u(xo,to))
u(·, to + θ)

]λ/p̄}
, (8.19)

where λ = N(p̄− 2) + p̄ and C1, C3 > 1 are the constants of Theorem 7.1 and η > 0 of Corollary 6.1.

In the present work we chose to prove the results and introduce the theory for solutions to (1.1), while
it is a classically known fact that many of the results shown are still valid if we replace solution by super
or sub-solution. For example, to the aim of expanding positivity, it would be sufficient to have at hand a
subsolution B− whose support evolves as the one of B. Moreover, an intrinsic Harnack inequality as (7.1)
for the singular range 2N/(N + 1) < pi < 2 is to be expected, with some suitable additional condition on
the sparseness of the pis. Reasoning again by comparison, the existence of B may be the consequence of
extinction in finite time, instead of finite speed of propagation (see [34] for another interesting approach).

Finally, a much more difficult task (but for the same reason far more intriguing) would be the identification
of a suitable class of functions A that enhances the properties that we already know for local weak solutions
to (1.1). The class A may be defined with assumption similar to the ones in [27], [30]; according to the
general fact explained above that the equation roughly speaking evolves both in a singular and degenerate
way. Hence it is reasonable to suspect that it may include both the energy estimates (3.13) and some kind
of logarithmic estimates. This question does not have an answer yet for isotropic parabolic p-Laplacean
equations. We refer to [36] for a partial result and more references; there, a class of functions A is identified
just by means of the sole energy estimates, but for a very special homogeneous case.

Last problem introduced above may look very general. It can be clarified, if we think about the classical
isotropic elliptic p-Laplacean equations with measurable and bounded coefficients (see for instance [24],
Chap. 10). More in detail, it is possible to show that if a function u belongs to a certain space of functions
DGp, called De Giorgi classes, then it automatically has the desired properties of Hölder continuity, Harnack
inequality, et cetera. It would be therefore already a simpler but excellent starting point to identify a suitable
class of functions G that satisfies the elliptic version of previous general parabolic problem.

Open Problem 8.8. Let and G be the class of functions u ∈W 1,p
loc (K1)∩L∞(K1) such that for each function

of the form

C∞
o (K1) ∋ η =

N∏
i=1

ηpi

i (xi) for ηi ∈ C∞
o (πi(K1)), (8.20)

where as usual πi is the projection to the i-th coordinate, satisfy the inequality

N∑
i=1

ˆ
K1

|∂i(η(u− k)±)|pi dx ≤ γ
N∑
i=1

ˆ
K1

|(u− k)±|pi η̂i|∂iηi|pi dx, being η̂i =
η

ηpi

i

. (8.21)

Then, u ∈ G is locally Hölder continuous and satisfies an analogous version of (7.19).
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9 Appendix and References

Technicalities and known facts

You’d better believe it.

- Baloo -

The Jungle Book

9.1 Some algebraic and iteration Lemmata

Lemma 9.1 ([23] Chap. I, Lemma 4.4). Let p ≥ 2. Then for each a, b ∈ RN , there exists a constant γo
depending only on p,N such that

⟨|a|p−2a− |b|p−2b, a− b⟩ ≥ γo|a− b|p. (9.1)

Lemma 9.2 ([23] Chap. I, Sec. IV). Let {Yn}n∈N be a sequence of equibounded positive numbers which
satisfies the recursive inequality

Yn ≤ CbnY 1−α
n+1 , α ∈ (0, 1), C, b > 1. (9.2)

Then

Y0 ≤
(

2C

b1−1/α

) 1
α

. (9.3)

Remark 9.1. If we just have a sequence of equibounded numbers {Yn} such that

Yn ≤ ϵYn+1 + Cbn, C, b > 1, ϵ ∈ (0, 1), (9.4)

then by a simple iteration, setting (ϵb) = 1/2 and letting n→∞ gives (9.3) with α = 1.

The following is a simple generalization of ([23], Lemma 4.1 Chap. I), useful for the anisotropic growth.

Lemma 9.3. Let βi > 0 for i = 1, . . . , N and suppose Zn > 0 satisfies

Zn+1 ≤ C Bn 1

N

N∑
i=1

Z1+βi
n (9.5)

for some C > 0 and B > 1. Then letting β = min{β1, . . . , βN}, the following logical implications hold

Z0 ≤
1

C
1
β B

1
β2

and CB
1
β ≥ 1 ⇒ Zn ≤ B−n

β Z0 ⇒ lim
n↑∞

Zn = 0.

Proof. That the limit {Zn} →n→∞ 0 follows from the first implication is trivial. We show by induction the
first implication.
For n = 0 it is trivially satisfied, so we suppose the validity of the formula for the n-th step and we verify it
for the (n+ 1)-th one. Let us apply (9.5) to evaluate

Zn+1 ≤
CBn

N

N∑
i=1

Z1+βi
n ≤ CBn

N

N∑
i=1

(
B−n

β Z0

)1+βi

≤
N∑
i=1

(
CB

n(β−βi)+1

β Zβi

0

N

)
B− (n+1)

β Z0.
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Last term in parenthesis is smaller than one if

CB
n(β−βi)+1

β Zβi

0 ≤ CB
1
βZβi

0 ≤ 1 ⇐⇒ Zβi
o ≤ (CB

1
β )−1.

As Zo ≤ 1 by assumptions, our choice of β determines the condition

Zβi
o ≤ Zβ

o ≤ (CB
1
β )−1, ∀i = 1, . . . , N.

Remark 9.2. Condition CB1/β ≥ 1 is always satisfied when C ≥ 1, as in ([33], Lemma 2.7). The proof for
the isotropic version of this simple fact, which is when βi ≡ 1, can be found in ([45], Lemma 4.7 page 66).

9.2 Useful inequalities

In this subsection we suppose for ease of notation that E ⊆ RN is an open set. It is well known that these
inequalities can be given a far more general fashion, that nonetheless is beyond the aim of the present work.

Proposition 9.1 (Young’s Inequality). Let a, b, ϵ be positive numbers, and 1 < p <∞, p′ = 1/(1− 1/p) its
Hölder’s conjugate. Then

ab ≤ ϵap + C(ϵ)bp/(p−1), with C(ϵ) =

(
p− 1

p1/(p−1)p

)(
1

ϵ

) 1
p−1

. (9.6)

Proposition 9.2 (Generalised Hölder’s Inequality). Let m ∈ N and p1, . . . , pm, r > 0 be real numbers such
that

∑m
i=1 1/pi = 1/r. Let fi ∈ Lpi(E) for i = 1, . . . ,m. Then

∏m
i=1 fi ∈ Lr(E) and

∥
m∏
i=1

|fi|∥Lr(E) ≤
m∏
i=1

||fi||Lpi (E). (9.7)

Next proposition is a classic interpolation result, that heuristically states that if f ∈ Lp ∩ Lr for 0 < p < r,
then f ∈ Lq for every p < q < r.

Proposition 9.3 (Interpolation). Let us suppose that 0 < p < q < r ≤ ∞. Then Lp(E) ∩ Lr(E) ⊂ Lq(E)
and

∥f∥Lq(E) ≤ ∥f∥λLp(E) ∥f∥
1−λ
Lr(E), (9.8)

where λ ∈ (0, 1) is to be determined so that

1

q
=
λ

p
+

1− λ
r

, and λ = p/q when r =∞.

9.3 Directional Poincaré’s Inequality and Absolute Continuity along lines.

Along this subsection we recall some classic properties of functions u ∈ W 1,p
o (Ω), which is, that are limits

of sequences in C∞
o (Ω) under the norm ∥u∥W 1,p

o (Ω) =
∑N

i=1 ||∂iu||Lpi (Ω). We will focus on the possible
inequalities that can be derived by the different summability on the weak partial derivatives. First we recall
the following directional Poincaré-type inequality.

Proposition 9.4 ([35], Theorem 1). Let {ei}i=1,..,N be a basis of RN and Ω ⊂⊂ RN a bounded domain
with Lipschitz boundary such that is contained in a slab, i.e. supx,y∈Ω⟨x − y, ej⟩ =: dj < ∞ for some
j ∈ {1, . . . , N}. Then a function u ∈W 1,p

o (Ω) satisfies the inequality

∥u∥Lpj (Ω) ≤
pjdj
2
∥∂ju∥Lpj (Ω). (9.9)

Next we consider the following result of absolute continuity on lines of functions which have merely summable
weak derivatives. We state it for the preferred direction e1 but it is clear that every direction ei, i ∈ {1, . . . , N}
can be considered.
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Proposition 9.5 ([13], Theorem 8.27). Let u ∈W 1,1(E), where E ⊂ RN is an open set having the form

E =

{
x ∈ RN |α(x2, . . . , xN ) < x1 < β(x2, . . . , xN )

}
, being possibly α = −∞, β =∞. (9.10)

Then there exists a function ũ coinciding almost everywhere on E with u and such that the map

x1 7→ ũ(x1, x2, . . . , xN )

is absolutely continuous for LN−1-a.e. (x2, . . . , xN ) ∈ RN−1 such that (x1, x2, . . . , xN ) ∈ E. Moreover, the
derivative ∂x1

ũ coincides almost everywhere with the weak derivative ∂1u.

9.4 Steklov-averaged solutions.

Let u ∈ L1(ΩT ) and for 0 < h < T let us define for all 0 < t < T the Steklov averages vh(·, t) by

vh(·, t) ≡

{
h−1
´ t+h

t
v(·, τ) dτ, t ∈ (0, T − h],

0, t > T − h.
(9.11)

We present the following properties of Steklov averages, that are useful for our purposes.

Proposition 9.6. Let v ∈ L1(ΩT ). Then

(a) If u ∈ Lr(0, T ;Lp(Ω)) for some r, p > 1 then uh ∈ Lp(Ω) for every t ∈ [0, T ) and

(a1) it holds ||uh(·, t)||Lp(Ω) ≤ h−1/r||u(·, t)||Lp(Ω),

(a2) uh ∈ C([0, T );Lp(Ω)) ∩ L∞(0, T ;Lp(Ω));

(a3) ||uh||Lr(0,T ;Lp(Ω)) ≤ ||u||Lr(0,T ;Lp(Ω)).

(b) If u ∈ Lr(0, T ;Lp(Ω)) then limh↓0 ||uh − u||Lr(0,T ;Lp(Ω)) = 0.

(c) Operators ∂i and (·)h commute, i.e. if for i ∈ {1, . . . , N} we have ∂iu ∈ Lri(0, T ;Lpi(Ω)) then

∂i(uh(·, t)) = (∂iu)h(·, t), ∀t ∈ Ih = [0, T − h).

(d) If v ∈ C(0, T ;Lp(Ω)), then for every ε ∈ (0, T ), t ∈ (0, T−ε) it holds limh↓0 ||vh(·, t)−v(·, t)||Lp(Ω) = 0.

(e) If u ∈ C(0, T ;Lp(Ω)), then uh is strongly differentiable in the time variable and

∂t(uh)(·, s) =
(
u(·, s+ h)− u(·, s)

h

)
(∈ Lp(Ω)), ∀t ∈ I̊h.

Now we define what is a local weak solution to (1.1) in terms of its Steklov average and prove that this
definition is equivalent to Definition 2.1.

Definition 9.1. A function u ∈ Lp
loc(0, T ;W

1,p
loc (Ω)) is a Steklov averaged sub-(super)-solution to (1.1) if for

all s ∈ (0, T ), h ∈ (0, T − s), for all compact sets K ⊂⊂ Ω and every test function ϕ ∈W 1,p
o (K) it holds

ˆ
K

(∂t(uh)(x, s))ϕ(x) dx+

N∑
i=1

ˆ
K

(
|∂iu|pi−2∂iu

)
h

(x, s)∂iϕ(x) dx ≤ (≥)0. (9.12)
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Equivalence between Definition 2.1 and Definition 9.1

[(2.2)⇒ (9.12)]
Fix t ∈ (0, T ) and let h > 0 to be so small that 0 < t < t + h < T . In formulation (2.2) we take φ = ϕ(x)
depending only on the space variables and t2 = t+ h, t1 = t. So we get for each compact set K ⊂⊂ Ω

ˆ
K

[
u(·, t+ h)− u(·, t)

h

]
ϕdx+

N∑
i=1

ˆ
K

[
1

h

ˆ t+h

t

−0 + |∂iu(·, t)|pi−2∂iu(·, t)
]
∂iϕdx ≤ (≥)0,

by dividing the integral inequality by h, observing that (u∂τϕ) = 0 and using Fubini-Tonelli on the last
term. Now we use property (e) of previous Proposition 9.6 inside the first integral term to get that for each
time t ∈ (0, T ), h ∈ (0, T − h), each compact set K ⊂⊂ Ω and each test function ϕ ∈ W 1,p

o (K) the integral
inequality (9.12) holds true.

[(9.12)⇒ (2.2)]
For a compact set K ⊂⊂ Ω, consider a function 0 ≤ ϕ ∈W 1,2

loc (0, T ;W
1,p
o (K)): for each fixed time τ ∈ (0, T )

it holds (9.12). We integrate such an estimate along whatever interval [t1, t2], to get for h sufficiently small

ˆ t2

t1

ˆ
K

(∂tuh(x, τ))ϕ(x, τ) dxdτ +

N∑
i=1

ˆ t2

t1

ˆ
K

(
|∂iu|pi−2∂iu

)
h

(x, τ) ∂iϕ(x, τ) dxdτ ≤ (≥)0 . (9.13)

As u ∈ C(0, T ;W 1,p
o (K)) then by the above properties uh ∈ AC(0, T ;W 1,p

o (K)) and we are allowed to use
integration by parts to get

ˆ
K

uh(x, t2)ϕ(x, t2) dx+

ˆ t2

t1

ˆ
K

[
− uh(x, τ)∂tϕ(x, τ)

]
+

+

N∑
i=1

ˆ t2

t1

ˆ
K

(
|∂iu|pi−2∂iu

)
h

(x, τ) ∂iϕ(x, τ) dxdτ ≤ (≥)
ˆ
K

uh(x, t1)ϕ(x, t1) dx .

Now we use the Dominated Convergence Theorem on each term to get, as

• uh(·, τ)→ u(·, τ) in L2(K) when h ↓ 0 for every τ ∈ [t1, t2 − h]→ [t1, t2],

• (|∂iu|pi−2|∂iu)h(·, τ) → |∂iu(·, τ)|pi−2∂iu(·, τ) in L(pi−1)/pi(K) for almost every τ ∈ [t1, t2 − h],

that (2.2) is verified on the limit h ↓ 0 by summability of the functions (uh)ϕ, (uh)∂tϕ, [(|∂iu|pi−1)h]∂iϕ.
Finally, the estimate (9.13) shows us that we can use this formulation involving the time-derivative of the
function uh for the purposes of deriving energy estimates (and other tools).

9.5 Miscellaneous

We recall in this last section two classic abstract theorems that find their application along some important
steps of the present work. The first one is useful in both Sections 5 and 6.

Theorem 9.1 (Aubin-Lions, [62] Chap. III Prop. 1.3). Consider B0, B1, B2 three Banach spaces with
B0 ⊂ B1 ⊂ B2 and B0, B2 reflexive. Let B0 be compactly contained in B1 and B1 be continuously contained
in B2. Let 1 < p, q <∞ and define

Dq
p = {u ∈ Lp(0, T ;B0)| ∂tu ∈ Lq(0, T ;B2)}.

Then, the inclusion Dq
p ⊂ Lp(0, T ;B1) is compact.

Finally, we state a general Lebesgue differentiation theorem that we use to prove semicontinuity in Section
4. Let (X, dX , µ) be a measure space endowed with a metric dx, i.e. a metric measure space. Let us denote
its balls centered in x ∈ X of radius r > 0 with Br(x). The measure µ is said to be doubling with respect to
the distance dX , if there exists a positive constant C = C(µ) such that

µ(B2) ≤ C(µ)µ(B1),

and in this case the metric measure space (X, dX , µ) is called a doubling metric measure space.
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Theorem 9.2 ([42], Theorem 1.8). Let f be a nonnegative, locally integrable function on a doubling metric
measure space (X, dX , µ), then

lim
r↓0

ˆ
Br(x)

f dµ = f(x), for µ-almost every x ∈ X.
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[14] L. Caffarelli, X. Cabré, Fully nonlinear elliptic equations. American Mathematical Soc., 43, Providence,
Rhode Island, (1995).

[15] J.A. Carrillo, G. Toscani, Asymptotic L1-decay of Solutions of the Porous Medium Equation to Self-
Similarity. Indiana University Mathematics Journal, 49(1), (2000), 113-142.
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