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We show that in the presence of the Snyder algebra the notion of translation in momen-

tum space is modified to a formula similar to the relativistic addition of velocities. These
results confirm the strict connection between Snyder algebra and the Lorentz group.
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1. Introduction

Among the possible methods to quantize gravity we can mention the introduction of

a minimal length in physical theories. This idea was introduced in 1947 by Harland

Snyder1 but was later abandoned due both to the difficulty of introducing a minimal

length in quantum field theory and to the success of the renormalization theory for

the standard model.

The fact that gravity is the only nonrenormalizable physical theory has however

left open the possibility of defining a physical theory in the presence of a minimal

length, a natural cutoff for the ultraviolet divergences that afflict quantum field

theory.

In general, the simplest noncommutative field theories are defined by introduc-

ing a star-product between the fields (a type of noncommutative product). How-

ever, reconciling Snyder’s algebra with quantum field theory remains a subject of

considerable difficulty. In this work, we try to give a new direction with which to

face this long-standing problem.

Normally, the Fourier transform is used to establish a relationship between the

functions defined on a Minkowski space and the operators defined on a Hilbert
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space. In the case of Snyder’s algebra the operator eikαx̂
α

(which is central in defin-

ing the mapping) can be considered as a deformation of the translation operator in

momentum space. However, as we will calculate later, this deformation introduces

some fictitious singularities and leads to poorly defined results.

To overcome this difficulty, we introduce an alternative deformation of the trans-

lation operator in momentum space which is free of singularities. We anticipate that

a close relationship is obtained between this deformation and the formula for adding

the velocities in special relativity. This confirms the close connection between Sny-

der’s algebra and the Lorentz group, while the approach with the Fourier transform

seems to be incompatible with the structure of Snyder’ s algebra.

2. Noncommutative Field Theories and the Star Product

Noncommutative field theories have been the subject of recent studies.2–4 In the

case that space–time is noncommutative in the sense that

[x̂µ, x̂ν ] = i θµν , (2.1)

where θµν is a constant matrix, there is a correspondence between functions f

defined on the Minkowski space and operators F defined on a Hilbert space given by

F (x̂) =

∫
d4x

(2π)2
eik · x̂f̃(k), (2.2)

where f̃ is linked to a function f in the position space:

f̃(k) =

∫
d4x

(2π)2
e−ik · xf(x). (2.3)

In addition, the following inversion formula applies:

f̃(k) = Tr(e−ik · x̂F (x̂)), (2.4)

where the trace is defined by

Tr(A) = lim
Λ→∞

(2π)2

Λ4

∫ Λ

d4q〈q|A|q〉, (2.5)

where the |q〉 are momentum eigenvectors. This inversion formula works because

the following identity holds:

〈h| eiq · x̂e−ik · x̂|h〉 = δ(q − k). (2.6)

Similarly, the product of operators maps to the star-product of functions

F G↔ f ? g, (2.7)

where the star-product is defined by

f ? g = lim
x′→x

e
i
2 θ
αβ∂α∂

′
βf(x) g(x′). (2.8)
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However, our interest is in Snyder’s algebra, defined in terms of the compact

variable ρi as follows:

x̂i = i~
√

1− βρ2
∂

∂ρi
pi =

ρi√
1− βρ2

0 < ρ2 <
1

β
. (2.9)

In this case, it is still possible to define a relationship between functions f and

operators F through (2.2) and (2.3) (f → F ) but it is not possible to easily reverse

this relationship (F → f) (see for details Ref. 2). This fact makes it difficult to

calculate the star product in the presence of Snyder’s algebra.

3. Translation in Momentum Space

Let’s analyze the following operator in details:

eik
α · x̂α = e−k

α
√

1−βρ2 ∂
∂ρα . (3.1)

In the limit β → 0 this operator is nothing else than the translation operator in

momentum space:

|ρ0 + k〉 = e−k
α ∂
∂ρα |ρ0〉. (3.2)

If β 6= 0 we can exactly calculate its action on the operator ρα:

e−ik · x̂ραeik · x̂ = ρα + kα

×

[√
1− βρ2

sin
(√

βk2
)√

βk2
+ β(k · ρ)

(
cos
(√

βk2
)
− 1

βk2

)]
(3.3)

from which we get

|ρ′α0 〉 = eik · x̂|ρα0 〉

=

∣∣∣∣∣ρα0 + kα

[√
1− βρ2

0

sin
(√

βk2
)√

βk2
+ β(k · ρ0)

(
cos
(√

βk2
)
− 1

βk2

)]〉
.

(3.4)

The problem we raise now is that the possible values of ρα0 must meet the

condition

0 < ρ2
0 <

1

β
(3.5)

while the transformed ρ′
α
0 does not meet this requirement. Hence, the operator (3.1)

takes out of the allowed space and is poorly defined. For example in d = 1 a finite

translation (
√
βk2 = α) can bring a finite momentum (βρ2

0 = cos2 α) to an infinite

momentum (βρ′20 = 1), a rather unphysical behavior. Furthermore, the product of

two operators of the type (3.1) eih·x̂eik·x̂ is very complicated.
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In general one can define a generic deformation for the translation in momentum

space using the following formula:

(x′, ρ′) = ek
αf(βρ2) ∂

∂ρα (x, ρ)e−k
αf(βρ2) ∂

∂ρα (3.6)

but for a generic f(βρ2) it is not warranted that the transformed ρ′
α

satisfies the

constraint 0 < ρ′
2
< 1

β , leading to singularities in the transformed momentum p′

for some finite value of ρ and k.

In the following section, we will define a new deformation which doesn’t intro-

duce fictitious singularities in the mapping (x, ρ)→ (x′, ρ′) and which reduces to a

translation in the momentum space in the limit β → 0.

4. One-Dimensional Case

We require that the mapping T : ρ→ ρ′ meets the following two requirements:

(i) if ρ belongs to the range 0 < ρ2 < 1
β then also the transformed ρ′ does the same

0 < ρ′
2
<

1

β
(4.1)

(ii) in the limit β → 0 the mapping T reduces to simple translation ρ′ = ρ+ k.

These two requirements are met by the following mapping:

ρ→ ρ′ =
ρ+ k

1 + βkρ
. (4.2)

In particular it is true that

(1− βρ2)→ (1− βρ′2) =
(1− βk2)(1− βρ2)

(1 + βkρ)2
(4.3)

so 0 < ρ′
2
< 1

β is valid if 0 < k2 < 1
β and 0 < ρ2 < 1

β . We obtain as a consequence

that the translation parameter k is also limited in the same interval.

To obtain a symmetry of the algebra

[x, ρ] = i~
√

1− βρ2 (4.4)

we also have to change x→ x′:

x→ x′ =
1 + βkρ√
1− βk2

x. (4.5)

Thus it is ensured that

[x, ρ] = i~
√

1− βρ2 → [x′, ρ′] = i~
√

1− βρ′2. (4.6)

Going from the reduced variable ρ to the momentum variable p we obtain

p→ p′ =
1√

1− βk2

[
p+ k

√
1 + βp2

]
,

x→ x′ =
1√

1− βk2

[
1 +

βkp√
1 + βp2

]
x.

(4.7)
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The composition of two transformations of this type is simple:

ρ→ ρ′ =
ρ+ k

1 + βkρ
→ ρ′′ =

ρ′ + h

1 + βhρ′
=

ρ+ h̃

1 + βh̃ρ
, (4.8)

where

h̃ =
h+ k

1 + βhk
. (4.9)

Obviously also h̃2 < 1
β since h2 < 1

β and k2 < 1
β .

5. Generalization to the Snyder Algebra

The generalization to Snyder’s algebra is trivial if one remembers how the addition

of velocities is done in special relativity;

ρ′
α

=
1

(1 + βρ · k)

{
ρα
[
1 +

(
1−

√
1− βρ2

)ρ · k
ρ2

]
+
√

1− βρ2 kα
}
. (5.1)

The following properties are valid:

ρ′ · ρ =
ρ2 + ρ · k

(1 + βρ · k)
,

√
1− βρ2 →

√
1− βρ′2 =

√
1− βk2

(1 + βρ · k)

√
1− βρ2.

(5.2)

To obtain a symmetry of Snyder’s algebra

[xα, ρβ ] = i~
√

1− βρ2δαβ → [x′
α
, ρ′β ] = i~

√
1− βρ′2δαβ , (5.3)

we must transform xα → x′
α

as follows:

x′
α

= i~
√

1− βρ′2 ∂

∂ρ′α
=

√
1− βk2

(1 + βρ · k)

∑
β

∂ρβ
∂ρ′α

xβ . (5.4)

We note that this definition allows a simple composition of these

transformations:

x′′
α

= i~
√

1− βρ′′2 ∂

∂ρ′′α

=

√
1− βρ′′2√
1− βρ′2

∑
β

∂ρ′β
∂ρ′′α

x′
β

=

√
1− βρ′′2√
1− βρ2

∑
β

∂ρβ
∂ρ′′α

xβ . (5.5)

The calculation of this matrix of partial derivatives

fαβ =
∂ρβ
∂ρ′α

(5.6)

is complicated. Let’s first calculate:

∂ρ′β
∂ρα

= ηαβA1 + ραρβA2 + kαkβA3 + ραkβA4 + kαρβA5, (5.7)
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where

A1 =
1

(1 + βρ · k)

[
1 +

(
1−

√
1− βρ2

)ρ · k
ρ2

]
,

A2 =
1

(1 + βρ · k)

[
βρ · k√

1− βρ2 ρ2
− 2
(
1−

√
1− βρ2

)ρ · k
ρ4

]
,

A3 = − β
√

1− βρ2

(1 + βρ · k)2
,

A4 = − β

(1 + βρ · k)
√

1− βρ2
,

A5 = − β

(1 + βρ · k)2
+

(
1−

√
1− βρ2

)
ρ2(1 + βρ · k)2

.

(5.8)

Let us define

fαβ = ηαβB1 + ραρβB2 + kαkβB3 + ραkβB4 + kαρβB5. (5.9)

The coefficients Bi can be obtained from Ai. Finally, we get the following

expressions:

B1 =
1

A1
,

B2 = −A2

∆
− k2

A1∆
(A2A3 −A4A5),

B3 = −A3

∆
− ρ2

A1∆
(A2A3 −A4A5),

B4 = −A4

∆
+
ρ · k
A1∆

(A2A3 −A4A5),

B5 = −A5

∆
+
ρ · k
A1∆

(A2A3 −A4A5),

(5.10)

where the denominator is

∆ = (A1 + ρ2A2 + (ρ · k)A5)(A1 + k2A3 + (ρ · k)A4)

− (k2A5 + (ρ · k)A2)(ρ2A4 + (ρ · k)A3). (5.11)

6. Connection with β-Canonical Transformations

It is possible to show that the transformation (5.4) also satisfies the condition of

β-canonical transformation (see Ref. 5), therefore it is well defined. In the one-

dimensional (1D) case, we simply have to prove that(
∂x′

∂x

∂ρ′

∂ρ
− ∂ρ′

∂x

∂x′

∂ρ

)√
1− βρ2 =

√
1− βρ′2, (6.1)
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where

ρ′ =
ρ+ k

1 + βkρ
x′ =

1 + βkρ√
1− βk2

x. (6.2)

Verification reduces to the following identity:

∂ρ′

∂ρ
=

1− βk2

(1 + βkρ)2
, (6.3)

which is true.

In general we have to show that

{x′i, ρ′j}{xi,ρj} =

√
1− βρ′2δij , (6.4)

{x′i, x′j}{xi,ρj} = β

(
x′iρ
′
j − x′jρ′i√
1− βρ′2

)
, (6.5)

where the bracket is modified:

{ui, vj}{qi,wj} =
√

1− βw2

n∑
k=1

(
∂ui
∂qk

∂vj
∂wk

− ∂uj
∂qk

∂vi
∂wk

)

+β

n∑
l,m=1

(
qlwm − qmwl√

1− βw2

)
∂ui
∂ql

∂vj
∂qm

(6.6)

and

x′i =

√
1− βρ′2√
1− βρ2

∑
k

∂ρk
∂ρ′i

xk. (6.7)

We first prove Eq. (6.4). We obtain as an intermediate step

n∑
k=1

(
∂x′i
∂xk

∂ρ′j
∂ρk

)
=

√
1− βρ′2√
1− βρ2

δij , (6.8)

which is true.

Let us prove Eq. (6.5). We can rewrite the β-canonical bracket as

{x′i, xj} = α1 + α2,

α1 =
√

1− βρ2

n∑
k=1

(
∂x′i
∂xk

∂x′j
∂ρk
−
∂x′j
∂ρk

∂x′i
∂xk

)
,

α2 = β

n∑
l,m=1

(
xlρm − xmρl√

1− βρ2

)
∂x′i
∂xl

∂x′j
∂xm

.

(6.9)
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Calculating the derivatives is easy. We obtain

∂x′i
∂xk

=

√
1− βk2

(1 + βρ · k)

∂ρk
∂ρ′i

,

∂x′i
∂ρk

= − βkkx
′
i

(1 + βρ · k)
+

√
1− βk2

(1 + βρ · k)

n∑
l=1

∂

∂ρk

(
∂ρl
∂ρ′i

)
xl.

(6.10)

The first term α1 gives rise to

α1 =

√
1− βρ′2

(1 + βρ · k)

[
−x′j

∂(βρ · k)

∂ρ′i
− (i↔ j)

]
. (6.11)

The second term proportional to β gives rise to

α2 =
β(1− βk2)

2(1 + βρ · k)2
√

1− βρ2

[
xl
∂ρl
∂ρ′i

∂ρ2

∂ρ′j
− (i↔ j)

]
. (6.12)

Using this identity

(1− βρ2) =
(1 + βρ · k)2

(1− βk2)
(1− βρ′2), (6.13)

we obtain

α2 = β

(
x′iρ
′
j − x′jρ′i√
1− βρ′2

)
+

√
1− βρ′2

(1 + βρ · k)

[
−x′i

∂(βρ · k)

∂ρ′j
− (i↔ j)

]
. (6.14)

Adding the two contributions equation (6.5) is verified.

7. A Solvable Example

To define a mapping between functions and operators in the case of the deformation

described in this paper, we limit ourselves to the soluble case in 1D. We must first

find the explicit representation:

ρ→ ρ′ =
ρ+ k

1 + βkρ
= eHρe−H ,

∂

∂ρ
→ ∂

∂ρ′
= eH

∂

∂ρ
e−H ,

(7.1)

where H = f(ρ) ∂∂ρ is a linear operator.

The H operator must satisfy the condition:

f(ρ′)
∂

∂ρ′
= f(ρ)

∂

∂ρ
(7.2)

from which we obtain

f(ρ′) =
(1− βk2)

(1 + βkρ)2
f(ρ). (7.3)

2250070-8



June 7, 2022 10:40 IJMPA S0217751X22500701 page 9
FA

Translation in momentum space and minimal length

The general solution of this equation is

f(ρ) = c(k)(1− βρ2), (7.4)

where c is a constant dependent on k.

The constant c(k) can be obtained with a perturbative calculation

c(k) = k( 1 +
1

3
βk2 +

1

5
β2k4 + · · · ) =

1√
β

tanh−1(
√
βk2) (7.5)

or from the condition that the composition of two transformations

eH(h)eH(k) = eH(h̃), (7.6)

where h̃ is defined by Eq. (4.9).

Let us notice that c(k) = η(k) is the rapidity function of special relativity:

η(k) + η(h) = η(h̃). (7.7)

At this point we notice the substantial difference between our solution

H = η(k)(1− βρ2)
∂

∂ρ
(7.8)

and the operator (3.1).

Furthermore, the rapidity variable η can extend to infinity while the variable k

is bounded 0 < k2 < 1
β .

Also the bounded variable ρ can be replaced with the variable

ρ→ y =
1√
β

tanh−1
(√

βρ2
)
, (7.9)

which is unbounded. Then the translation operator defined in this work takes the

standard form

eiηx̂, (7.10)

where the rapidity η takes the role of momentum variable in the Fourier transform

and x̂ = −i ∂∂y .

So, we can try to define a mapping between functions and operators of the form:

f(x) =

∫
dη eiηxf̃(η),

F (x̂) =

∫
dη eiηx̂ f̃(η),

(7.11)

which is the basis for defining a field theory in noncommutative geometry.

In the general case there is certainly an operator H such that

ρa → ρ′a = eHρae−H (7.12)

but it is difficult to find a closed form for the linear operator H as we did in case

1D. We leave this discussion for future work.
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8. Conclusions

Normally noncommutative field theories are defined in terms of a star-product that

modifies fields in interaction. In the case of Snyder algebra we have criticized this

method based on the Fourier transform, because applying it we obtain a deforma-

tion of the translation operator in momentum space that introduces a fictitious

singularity for some finite value of k and ρ.

In this work, we have introduced a correct deformation of the translation oper-

ator in momentum space constructed starting from the formula of the addition of

velocities in special relativity.

This deformation is a true symmetry of Snyder’s algebra. Confirmation of this

is the verification that this deformation has the property of being a β-canonical

transformation (introduced as symmetry of the path-integral in our previous work5).

Therefore we find a close connection between Snyder algebra and the Lorentz

group, while the Fourier transform method is more suitable for noncommutative

theories in which the translation in momentum space is the standard one.

We hope that the knowledge of this deformation can stimulate the construction

of a new method to define quantum field theory in the presence of Snyder’s algebra.
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