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Abstract
Sustainability of agriculture is difficult to measure and assess because it is a multi-
dimensional concept that involves economic, social and environmental aspects and 
is subjected to temporal evolution and geographical differences. Existing studies 
assessing agricultural sustainability in the European Union (EU) are affected by sev-
eral shortcomings that limit their relevance for policy makers. Specifically, most of 
them focus on farm level or cover a small set of countries, and the few exceptions 
covering a broad set of countries consider only a subset of the sustainable dimen-
sions or rely on cross-sectional data. In this paper, we consider yearly data on 12 
indicators (5 for the economic, 3 for the social and 4 for the environmental dimen-
sion) measured on 26 EU countries in the period 2004–2018 (15 years), and apply 
group-based multivariate trajectory modeling to identify groups of countries with 
common trends of sustainable objectives. An expectation-maximization algorithm is 
proposed to perform maximum likelihood estimation from incomplete data without 
relying on an explicit imputation procedure. Our results highlight three groups of 
countries with distinguished strong and weak sustainable objectives. Strong objec-
tives common to all the three groups include improvement of productivity, increase 
of personal income in rural areas, reduction of poverty in rural areas, increase of 
production of renewable energy, rise of organic farming and reduction of nitrogen 
balance. Instead, enhancement of manager turnover and reduction of greenhouse 
gas emissions are weak objectives common to all the three groups of countries. Our 
findings represent a valuable resource to formulate new schemes for the attribution 
of subsidies within the Common Agricultural Policy (CAP).
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1 Introduction

The concept of sustainability is increasingly prominent in current agricultural 
policy debates. After the first definition provided by the Brundtland Report in 
the late 1980s (WECD 1987), where a sustainable system meets the needs of the 
present without compromising the ability of future generations to meet their own 
needs, the term sustainability has often been used to qualify actions aimed at 
reducing the impact of human activities on the natural environment. However, the 
agricultural sector has several other important functions besides the conservation 
of the ecosystem, for instance the provision of safety and healthy food, and the 
improvement of socio-economic conditions in rural areas. Therefore, agricultural 
sustainability is a multidimensional concept involving economy, environment and 
society (Hayati et al. 2010; Food and Agriculture Organization 2014; Antle and 
Ray 2020). More precisely, it can be identified with a harmonious interconnection 
between the efficient production of goods and services (economic function), the 
management of natural resources (environmental function) and the improvement 
of conditions in rural areas (social function). The European Union (EU) has paid 
great attention to the principle of sustainable agriculture, which was integrated 
into the objectives of the Common Agricultural Policy (CAP) and has found a 
significant place in the EU scientific research program Horizon 2020 (European 
Commission 2011), mostly through the concept of bioeconomy. Also, agricultural 
sustainability is a core theme in the 2030 agenda for the Sustainable Development 
Goals (SDGs) of the United Nations (UN General Assembly 2015).

The recent research on sustainability of EU agriculture involves the measure-
ment of the sustainable dimensions through sets of indicators (see Latruffe et al. 
2016 for a review). However, this task is made difficult by the lack of a unified 
theoretical framework guiding the selection of indicators (Gennari and Navarro 
2019) and by practical issues concerning availability, quality and comparability 
of data (Nowak et al. 2019). Most existing studies focus on farm level (Gómez-
Limón and Sanchez-Fernandez 2010; Majewski 2013; Ryan et al. 2016; Gaviglio 
et  al. 2017) or cover a small set of countries (Öhlund et  al. 2015; Radovanović 
and Lior 2017; Mili and Martínez-Vega 2019; Czubak and Pawlowski 2020), and 
the few exceptions covering a broad set of countries consider only a subset of the 
sustainable dimensions (Cristache et al. 2018; Czyzewski et al. 2020) or rely on 
cross-sectional data (Nowak et al. 2019; Cataldo et al. 2020). Focusing on farm 
level or on a restricted set of countries precludes to draw an exhaustive picture 
of agricultural sustainability in the EU. Instead, disregarding or considering only 
partially some sustainable dimensions prevents to understand agricultural sustain-
ability in all of its relevant aspects. Furthermore, relying on cross-sectional data 
allows to assess the level of sustainability at a specific instant without accounting 
for its temporal evolution (trend). We believe that, in the assessment of sustain-
ability, the temporal evolution is more relevant than the level, because it informs 
whether and to which extent the analyzed economies are pursuing sustainable 
objectives. Nevertheless, collecting longitudinal data at the purpose of assessing 
the trend of sustainability is challenging due to issues of availability and quality 
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of publicly released statistics. In fact, some indicators may be unavailable, or 
their time series may have short length, present structural breaks or contain miss-
ing values.

In this paper, we consider yearly data on 12 indicators (5 for the economic, 3 for 
the social and 4 for the environmental dimension) measured on 26 EU countries 
in the period 2004–2018 (15 years) and apply group-based multivariate trajectory 
modeling to identify groups of countries with common trends of sustainable objec-
tives. As such, our research overcomes the main limitations of existing studies and 
provides a detailed monitor of agricultural sustainability in EU countries in support 
of policy makers.

This paper is structured as follows. In Sect.  2, the selection of indicators and 
the data collection process are described. In Sect. 3, the methodology is detailed. 
In Sect.  4, the results are reported and discussed. Section  5 contains concluding 
remarks and purposes for future work.

2  Selection of indicators and data collection

In this study, the level of agricultural sustainability in EU countries is measured through 
a set of indicators covering the three sustainable dimensions, i.e., economic, social and 
environmental dimensions. The selection of indicators was based on theory and guide-
lines available in the literature on the assessment of agricultural sustainability (Hayati 
et al. 2010; Food and Agriculture Organization 2013, 2014; Latruffe et al. 2016; Antle 
and Ray 2020), and data collection relied on publicly available statistics from the Com-
mon Monitoring and Evaluation Framework (CMEF, European Commission 2020), 
Eurostat  (European Commission 2022) and Faostat (Food and Agriculture Organiza-
tion 2022). We selected a set of indicators and a temporal window as large as possi-
ble balancing representativeness of the three sustainable dimensions and availability of 
time series data. In the data collection process, we tolerated at most one third of miss-
ing values for each time series, with no more than two consecutive missing values inter-
nal to the time series and no more than two missing values at each extreme.

The resulting dataset comprises 12 indicators: 5 for the economic, 3 for the social 
and 4 for the environmental dimension, measured yearly on 26 EU countries in the 
period 2004–2018 (15 years). The selected countries include Austria, Belgium, Bul-
garia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, 
Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom. We excluded Croa-
tia and Malta due to a high occurrence of missing values. Table 1 provides a brief 
description and the data source for the selected indicators, while a detailed descrip-
tion is contained in Sects. 2.1, 2.2 and 2.3.

Table  2 reports the number of missing values by type for each country and 
indicator. Three different types of missing values are distinguished: internal to 
the time series (type A), at the beginning of the time series (type B), and at 
the end of the time series (type C). Basically, the most problematic indicators 
are the ratio young/elderly for farm managers ( XECO,3 ) and the production of 
renewable energy from agriculture ( XENV,1 ), because their time series include a 
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systematic pattern of missing values for all countries, evidently due to a proto-
col of measurement. Specifically, XECO,3 is observed only in 2005, 2007, 2010, 
2013 and 2016, thus the time series for each country has seven missing values of 
type A, two of type B and one of type C. Instead, XENV,1 is not observed in 2011, 
2014, 2016 and 2017, thus the time series for each country has four missing val-
ues of type A. The indicators for the social dimension ( XSOC,1 , XSOC,2 and XSOC,3 ) 
contain missing values of type C only (i.e., some time series start later than 
2004), with a number by country ranging from zero to two. The indicator XENV,4 
includes missing values of type B only (i.e., some time series end before 2018), 
with a number by country ranging from zero to three. The remaining indicators 

Table 2  Number of missing values by type for each country and indicator

 Indicators with no missing values ( XECO,1 , XECO,2 , XECO,4 , XECO,5 , XENV,2 and XENV,3 ) are omitted. The 
column ‘Total’ reports the total number of non-systematic missing values, i.e., the total number of miss-
ing values across all indicators excepting XECO,3 and XENV,1 . Type A: internal to the time series. Type B: 
at the beginning. Type C: at the end

Country XECO,3 XSOC,1 XSOC,2 XSOC,3 XENV,1 XENV,4 Total

A B C A B C A B C A B C A B C A B C A B C

Austria 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
Belgium 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 3 0
Bulgaria 7 2 1 0 0 2 0 0 2 0 0 1 4 0 0 0 3 0 0 3 5
Cyprus 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 3 0 0 3 2
Czechia 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 1 0 0 1 2
Denmark 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 3 0
Estonia 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 3 0
Finland 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
France 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
Germany 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 1 0 0 1 2
Greece 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 3 0
Hungary 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 1 0 0 1 2
Ireland 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
Italy 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
Latvia 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 0 0 0 0 2
Lithuania 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 3 0 0 3 2
Luxembourg 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 3 0 0 3 0
Netherlands 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 0 0 0 0 2
Poland 7 2 1 0 0 1 0 0 2 0 0 1 4 0 0 0 0 0 0 0 4
Portugal 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
Romania 7 2 1 0 0 2 0 0 2 0 0 2 4 0 0 4 0 0 0 0 6
Slovakia 7 2 1 0 0 1 0 0 2 0 0 1 4 0 0 0 0 0 0 0 4
Slovenia 7 2 1 0 0 1 0 0 1 0 0 1 4 0 0 0 0 0 0 0 3
Spain 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
Sweden 7 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 1 0
United Kingdom 7 2 1 0 0 1 0 0 0 0 0 1 4 0 0 0 1 0 0 1 2
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( XECO,1 , XECO,2 , XECO,4 , XECO,5 , XENV,2 and XENV,3 ) do not contain missing values. 
In overall, the countries with the highest occurrence of missing values are Bul-
garia, Romania, Cyprus and Lithuania.

A first solution to obtain a complete dataset is to drop the indicators XECO,3 , 
XENV,1 and XENV,4 , and to let the period of analysis start in 2006 rather than in 
2004. However, it is quite undesirable to drop some indicators, because each 
one provides a valuable and non-substitutable information on sustainable dimen-
sions, and the loss of two time points would shorten significantly the sample 
size. Thus, imputation of missing values appears a better option. On this point, 
it should be noted that the three types of missing values are ordered increas-
ingly based on the difficulty of imputation: type A requires interpolation, type 
B requires forward extrapolation, and type C requires backward extrapolation. 
Multiple imputation (Rubin 1987) is a widely employed imputation method 
able to take into account the distribution of missing values in order to correctly 
assess the uncertainty of the estimated model. Although simple to implement, 
multiple imputation is often computationally expensive, thus we prefer a third 
option consisting of performing parameter estimation through the Expectation-
Maximization (EM) algorithm (Dempster et  al. 1977), which carries out an 
implicit imputation of missing values. The EM algorithm has proven to be an 
effective estimation procedure for a broad range of statistical models in case 
of incomplete data, due to its ability to maximize the expected likelihood with 
respect to the distribution of missing values. The EM algorithm assumes that 
data are Missing At Random (MAR), i.e., the probability for a datum to be miss-
ing does not depend on its value but only on the observed values (Rubin 1976). 
Therefore, any missing value for a given statistical unit can be inferred based on 
the pattern of observed values for that unit. In our case, the MAR assumption 
allows missing values to be due to (random) measurement errors or loss of data, 
but excludes them to arise from the refusal of a country to provide the required 
information. This is a quite reasonable hypothesis considering that the EU inter-
national law lays down the obligation for member countries to provide national 
data according to a precise timetable.

Table 3 reports summary statistics for the selected indicators in some differ-
ent periods. The dataset and the graphics of the time series by country are avail-
able as supplementary materials. In overall, it can be seen that most indicators 
have an average annual change in the period 2004–2018 consistent with sustain-
ability. Indicators with the highest average annual change are the real income 
of agricultural factors per paid annual work unit ( XECO,4 , +2.17%), the median 
equivalised net income in rural areas ( XSOC,1 , +3.74%), the production of renew-
able energy from agriculture ( XENV,1 , +19.91%) and the area under organic cul-
tivation ( XENV,2 , +7.47%). The huge growth rate of indicator XENV,1 is explain-
able by the compliance with the 2020 renewable energy targets, according to 
which the EU has committed to obtain 20% of its energy from renewable sources 
by 2020. The only indicator with average annual change in 2004–2018 not con-
sistent with sustainability is the ratio young/elderly for farm managers ( XECO,3 , 
−3.14%).
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Table 3  Summary statistics for 
the selected indicators in some 
different periods

Indicator Mean SD annual %

2004–2008
XECO,1 99.2 3.9 +1.08
XECO,2 5.0 2.9 +3.46
XECO,3 16.3 12.0 −7.41
XECO,4 92.2 20.7 +1.61
XECO,5 104.6 54.6 +0.33
XSOC,1 11763.2 5844.9 +8.35
XSOC,2 6.9 2.7 −5.50
XSOC,3 19.1 6.8 −0.23
XENV,1 3.9 4.5 +74.96
XENV,2 4.8 3.6 +11.40
XENV,3 2.9 2.1 −0.32
XENV,4 66.9 47.5 −1.24
2009–2013
XECO,1 104.7 7.0 +0.66
XECO,2 5.5 3.4 +1.24
XECO,3 13.9 10.1 −6.33
XECO,4 103.8 19.9 +8.12
XECO,5 111.6 45.4 +12.90
XSOC,1 13004.6 6059.5 +1.06
XSOC,2 10.3 5.4 +3.83
XSOC,3 18.8 6.9 −0.17
XENV,1 8.8 8.0 +5.41
XENV,2 6.5 4.5 +7.30
XENV,3 3.0 2.1 +0.33
XENV,4 63.9 45.3 +1.90
2014–2018
XECO,1 111.8 11.2 +1.14
XECO,2 5.4 3.9 +0.87
XECO,3 12.3 8.8 −1.42
XECO,4 118.6 30.1 +1.19
XECO,5 125.5 48.1 −0.40
XSOC,1 14483.1 6434.4 +3.60
XSOC,2 8.6 5.0 −11.17
XSOC,3 19.3 7.9 −0.37
XENV,1 10.0 8.7 +6.15
XENV,2 7.9 5.4 +5.52
XENV,3 3.0 2.2 −0.46
XENV,4 61.8 44.6 +0.94
2004–2018
XECO,1 105.3 9.4 +1.11
XECO,2 5.3 3.4 +1.27
XECO,3 14.5 10.7 −3.14
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2.1  Selected economic indicators

The selected economic indicators cover the following objectives: improvement of 
productivity, maintenance of man-made capital, enhancement of manager turno-
ver and improvement of profitability.

Productivity represents the ability of the agricultural sector to efficiently allo-
cate resources in the production of goods and services. For its measurement, we 
considered the Total Factor Productivity (TFP) index of agriculture with base 
year 2005 ( XECO,1) sourced from the Common Monitoring and Evaluation Frame-
work (CMEF, European Commission 2020).

The man-made capital of the agricultural sector is represented by capital 
investments in agriculture. In this study, they are measured by the ratio of net 
capital stocks to gross value added ( XECO,2 , source: Faostat). Net capital stocks 
are preferred to gross fixed capital formation, because they are net of depreciation 
and indicate the actual value of the capital. The division by the gross value added 
serves to make the value of the capital comparable across countries.

Manager turnover indicates the propensity of the agricultural sector to renewal 
the entrepreneurial class in favor of the new generations. Higher levels of man-
ager turnover are typically associated to more dynamic and more profitable 
entrepreneurial contexts. For the measurement of manager turnover, we consid-
ered the ratio young/elderly for farm managers ( XECO,3 , source: CMEF), where 
young managers are less than 25-years-old, and elderly managers are more than 
55-years-old.

Profitability represents the ability of the agricultural sector to remunerate the 
production factors (land, labour, capital and entrepreneurship). In this study, it 
is measured by the real income of agricultural factors per paid annual work unit 
( XECO,4 ) and by the net entrepreneurial income of agriculture per unpaid annual 
work unit ( XECO,5 ), both computed by Eurostat as indices with base year 2010.

Table 3  (continued) Indicator Mean SD annual %

XECO,4 104.9 26.3 +2.17
XECO,5 114.1 50.4 +1.01
XSOC,1 13136.4 6210.8 +3.74
XSOC,2 8.6 4.7 −1.86
XSOC,3 19.1 7.2 −0.14
XENV,1 6.8 7.3 +19.91
XENV,2 6.4 4.8 +7.47
XENV,3 3.0 2.1 −0.11
XENV,4 64.3 45.9 −0.32

 ‘SD’: standard deviation; ‘annual %’: average annual percentage 
change averaged across countries
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2.2  Selected social indicators

The selected social indicators cover the objective of reducing inequality and pov-
erty in rural areas. They include the median equivalised net income in rural areas 
( XSOC,1 ), the at-risk-of-poverty rate in rural areas ( XSOC,2 ) and the unemployment 
rate in rural areas ( XSOC,3 ), all sourced from Eurostat.

The provision of food of good quality is also an objective of the social dimen-
sion of sustainability. Unfortunately, there are no hard data (i.e., objectively 
measured) available on food quality, but our study partially covers this topic 
through the indicator XENV,1 (area under organic cultivation), which is employed 
to measure the environmental dimension of sustainability (see Sect. 2.3).

Further objectives of the social dimension of sustainability like health, work-
ing conditions and accessibility to food are not considered in this study. This is 
a shortcoming independent of our effort because, as confirmed by the review in 
Latruffe et al. (2016), it is difficult to find hard data of good quality covering the 
social dimension of sustainability, and, to our knowledge, the selected indicators 
are the best publicly available measures for EU countries.

2.3  Selected environmental indicators

The selected environmental indicators cover two objectives: rise of agricultural 
practices favoring a positive development of the natural environment and reduc-
tion of pressures on the natural environment due to agriculture.

In order to measure the spread of agricultural practices favoring a positive 
development of the natural environment, we employed two indicators: produc-
tion of renewable energy from agriculture ( XENV,1 , source: CMEF) and area under 
organic cultivation ( XENV,2 , source: Faostat). The production of renewable energy 
is at the basis of an environmentally sustainable development, and it is also an 
important topic in the EU agenda. In fact, based on the 2020 renewable energy 
targets, the EU has committed to obtain 20% of its energy from renewable sources 
by 2020. Organic cultivation concerns the use of fertilizers of organic origin, and 
it is a practice internationally regulated and legally enforced by many countries in 
the world since the 21st century. Currently, organic cultivation is considered as a 
positive determinant of environmental conservation and quality of food, thus it 
also affects the social dimension of sustainability.

In order to measure the pressures on the natural environment due to agricul-
ture, we employed two indicators: greenhouse gas emissions due to agriculture 
per hectare ( XENV,1 , source: Faostat) and gross nitrogen balance per hectare 
( XENV,4 , source: Eurostat). Unfortunately, the measurement of the nutrient bal-
ance was limited to nitrogen because the time series of the other available nutri-
ents (phosphorus and potassium) contain a large number of missing values. Also, 
further pressures like soil erosion, deforestation and loss of biodiversity are not 
considered in our study due to unavailability of data.
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3  Methodology

The methodology employed in this study borrows from group-based trajectory mod-
eling (Nagin 2005), a specialization of finite mixture modeling for longitudinal data 
where the units in the same group have the same trajectory. In group-based trajectory 
modeling, the units are assigned to groups based on a single indicator with trajectory 
defined by a polynomial regression on time within each group. Recently, group-based 
trajectory modeling was extended to the case of multiple indicators by replacing the 
univariate polynomial regression within each group with a multivariate one (Nagin 
et  al. 2018). We refer to this methodology as Group-Based Multivariate Trajectory 
(GBMT) modeling.

The formulation of a GBMT model is provided in Sect. 3.1. In Sect. 3.2, we propose 
an Expectation-Maximization (EM) algorithm for maximum likelihood estimation that 
is able to deal with missing values and multiple local maxima. In Sect. 3.3, predic-
tion of trajectories is addressed. Finally, the procedure to select the optimal number of 
groups and polynomial order is described in Sect. 3.4.

3.1  Group‑based multivariate trajectory modeling

Let i = 1,… , n denote the unit, t = 1,… , T the time point and k = 1,… ,K the indi-
cator. Also, let �i,t = (yi,t,1,… , yi,t,k,… , yi,t,K)

� be the multivariate observation of the 
indicators on unit i at time t, and yi be the multivariate time series of the indicators for 
unit i:

Finally, let j = 1,… , J denote the groups, and, for i = 1,… , n , let Gi be a latent vari-
able taking value j if unit i belongs to group j.

A GBMT model with polynomial degree d assumes that the multivariate observa-
tion of the indicators on unit i at time t is generated by one multivariate normal (MVN) 
polynomial regression for each group j = 1,… , J:

where:

(1)yi =

⎛
⎜⎜⎜⎜⎜⎜⎝

�i,1
�

�i,2
�

…

�i,t
�

…

�i,T
�

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

yi,1,1 … yi,1,k … yi,1,K
yi,2,1 … yi,2,k … yi,2,K
… … … … …

yi,t,1 … yi,t,k … yi,t,K
… … … … …

yi,T ,1 … yi,T ,k … yi,T ,K

⎞⎟⎟⎟⎟⎟⎟⎠

(2)
�i,t ∣ Gi = j ∼ MVN

(
�j,t,�j

)

�j,t = ��
j

(
1, t, t2,… , td

)�
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is the (d + 1) × K matrix of regression coefficients in group j, and �j is the K × K 
covariance matrix of the indicators in group j. The likelihood of the model is:

where �(�i,t ∣ �j,�j) is the multivariate normal density of �i,t in group j according to 
formula (2), and �j is the prior probability of group j.

Note that each indicator should have the same level across units in order to deter-
mine the groups entirely based on the trend. In fact, since group-based probabil-
ity density functions are determined to minimize dissimilarity within groups, if the 
level dominates the sample variability, then the groups will be mainly determined by 
the level and will not necessarily be homogeneous in trend (Heggeseth and Jewell 
2018).

We define the sample mean vector of unit i as the temporal mean of the multivari-
ate time series of the indicators for unit i:

If the sample mean vector is the same for all units, then each indicator has the same 
level across units. If this is not the case, the sample mean vector can be made con-
stant by normalising the measurements within units. Subtracting the sample mean 
(centering) is a commonly adopted normalisation method, but it allows compari-
sons only among the measurements of the same indicator. In order to allow compari-
sons among the measurements of different indicators, standardization (centering and 
division by the sample standard deviation) is often applied. Division by the sam-
ple mean is a further normalisation method allowing comparisons among different 
indicators in case of strictly positive measurements, which can be considered as a 
raw measure of performance (Gursoy et al. 2013; Giusti and Grassini 2013). In this 
study, we adopt the logarithmic division by the sample mean:

(3)�j =

⎛⎜⎜⎜⎝

�j,0,1. … . �j,0,k … . �j,0,K
�j,1,1. … . �j,1,k … . �j,1,K
… . … . … . … . …

�j,d,1. … . �j,d,k … . �j,d,K

⎞⎟⎟⎟⎠

(4)L(�1,… ,�J ,�1,… ,�J ,�1,… ,�J) =

n∏
i=1

[
J∑
j=1

�j

T∏
t=1

�(�i,t ∣ �j,�j)

]

(5)yi =

⎛⎜⎜⎜⎜⎜⎝

1

T

∑T

t=1
yi,t,1

…
1

T

∑T

t=1
yi,t,k

…
1

T

∑T

t=1
yi,t,K

⎞⎟⎟⎟⎟⎟⎠
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The normalisation in (6) has an interpretation similar to the division by the sample 
mean, in fact it approximates the relative change with respect to the average of the 
whole period of observation, but, in addition, it brings several valuable advantages 
to the estimation procedure: numerical stability and convergence are enhanced, and 
imputed values result positive.

It is important to remark that normalisation provides important benefits for both 
estimation and interpretation of finite mixture models, especially for multivariate 
ones, but it may modify the original covariance matrix, thus particular attention 
should be paid to check whether model assumptions on the dependence structure are 
supported by the data (Heggeseth and Jewell 2018).

3.2  Parameter estimation

For each group j = 1,… , J , the maximum likelihood estimate of parameters �j , �j 
and �j is obtained through the EM algorithm detailed as Algorithm 1. The algorithm 
starts from random initial values for missing data and parameters. Afterward, the 
expectation and the maximization steps (E-step and M-step, respectively) are alter-
nated until convergence of the likelihood (Dempster et al. 1977). The E-step con-
sists of computing the posterior probability of each group j = 1,… , J for each unit 
i = 1,… , n:

where the hat symbol above a parameter denotes the current estimate of that param-
eter. Instead, the M-step consists of obtaining the maximum likelihood estimate of 
parameters given posterior probabilities. The maximum likelihood estimate of the 
prior probability of group j is obtained by averaging the posterior probabilities of 
group j:

Before estimating the other parameters, missing values should be imputed based on 
their conditional expectation given the observed values and the current estimate of 
parameters (MAR assumption). Let �i,t =

(
�
(o)

i,t
, �

(ō)

i,t

)�

 be a partition of a generic 
multivariate observation into, respectively, the observed and the missing values. 
Also, let �j,t and �j be analogously partitioned as:

(6)�∗
i,t
= log

(
�i,t

yi

)
≈

�i,t − yi

yi

(7)Pr(Gi = j ∣ yi) ≡ �i,j =
�̂j
∏T

t=1
�(�i,t ∣ �̂j, �̂j)∑J

j=1
�̂j
∏T

t=1
�(�i,t ∣ �̂j, �̂j)

(8)�̂j =
1

n

n∑
i=1

Pr(Gi = j ∣ yi) =
1

n

n∑
i=1

�i,j
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It can be shown that the conditional expectation of missing values given that unit i 
belongs to group j is equal to:

Therefore, missing values for each group j = 1,… , J are imputed using formula 
(10) where �j,t and �j are replaced by their respective current estimates 
�̂j,t = �̂�

j

(
1, t, t2,… , td

)� and �̂j . Afterward, the maximum likelihood estimate of 
parameters �j and �j for each group j = 1,… , J is obtained by fitting the regression 
in formula (2) through weighted least squares (Draper and Smith 1981, p. 85-96) 
with posterior probabilities of group j as weights:

where:
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After convergence of Algorithm 1, each unit i = 1,… , n is assigned to the group 
with the highest posterior probability:

Also, it is possible to compute the expectation of missing values given the observed 
ones:

It is widely known that the likelihood of finite mixture models may have multiple 
local maxima possibly making the EM algorithm stuck at one of these, rather than 
to the global one. To overcome this issue, Algorithm 1 is run several times starting 
from different random initial values, and the estimate with the highest likelihood is 
retained.

Several software packages exist for the estimation of GBMT models, including 
traj in SAS (Jones et  al. 2001) and Traj in STATA  (Jones and Nagin 2013). 
These two packages employ quasi-Newton optimization (Dennis and Mei 1979; 
Dennis et al. 1981), implement multiple random restarts, and handle missing values 

(13)Ĝi = argmaxl Pr(Gi = l ∣ yi) ≡ argmaxl �i,l

(14)�

(
�
(ō)

i,t
|| �(o)i,t
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(ō,o)
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��
(o,o)

j

)−1(
�
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− ��

(o)

j,t
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under the MAR assumption (see examples of code in Nagin et al. 2018). Also, the 
software platform Mplus (Muthén and Muthén 2017), specialized in structural 
equation modeling, can be employed to estimate GBMT models through the EM 
algorithm with potentially unlimited flexibility in the specification. Mplus imple-
ments multiple random restarts and handles missing values under the MAR assump-
tion as well, but intercepts and slopes are random instead of fixed, thus results may 
differ from those provided by Algorithm 1. In the open source platform R (R Core 
Team 2020), group-based trajectory modeling is implemented in several pack-
ages simple to use but limited to a single indicator. The only possibility to estimate 
GBMT models in R is the package OpenMx (Boker et al. 2018), which is function-
ally equivalent to Mplus and based on a similar syntax. To fill this gap while main-
taining the ease of use typically characterizing R packages, we implemented Algo-
rithm 1 in the R package gbmt (Magrini 2022).

3.3  Prediction

Based on the regression in formula (2), prediction of the multivariate trajectories at 
time t in group j is obtained as:

where �̂j is the maximum likelihood estimate of �j . We denote the predicted value 
of the k-th indicator at time t in group j, i.e., the k-th element of �̂j,t , as �̂j,t,k . The 
variance of the prediction �̂j,t,k is equal to:

where �̂2
j,k

 is the element in position (k, k) of �̂j (the maximum likelihood estimate of 
�j ), and matrices � and � are defined in formula (12). Therefore, (1 − �) ⋅ 100% 
pointwise prediction intervals for the k-th indicator in group j are obtained as:

where t1− �

2
,n−d−1 is the quantile of order 1 − �

2
 of a Student’s t distribution with 

n − d − 1 degrees of freedom.
Prediction can also be performed for specific units. Let ŷi,t,k be the predicted value 

of the k-th indicator at time t for unit i. It holds:
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Therefore, (1 − �) ⋅ 100% asymptotic pointwise prediction intervals for the k-th indi-
cator relatively to unit i are obtained as:

where z1− �

2

 is the quantile of order 1 − �

2
 of the standard normal distribution.

3.4  Model selection

The main challenge in GBMT modeling is the selection of the optimal number of 
groups. To date, there is no one commonly accepted fit statistic to be exploited at 
this purpose. Several simulation studies have shown that the performance of cur-
rently available fit statistics is highly dependent on data-specific characteristics and 
that no one of them emerges as superior to the others (see the review in Van der 
Nest et al. 2020). Therefore, it is important to jointly consider several different fit 
statistics when establishing the adequate number of groups, bearing in mind that 
the objective of the model selection process is to summarize the most distinctive 
features of data through as less complexity as possible (Nagin 2005, p. 77). Fit sta-
tistics of common use include information criteria like AIC (Akaike 1974) and BIC 
(Schwarz 1978):

where L is the likelihood, p is the total number of free parameters, and N = nT  is 
the total number of observations. Lower values of an information criterion indicate 
a better balance between goodness of fit and complexity. AIC has the asymptotic 
property to select the model with the lowest mean squared error, but it is not a con-
sistent criterion, i.e., it does not identify the true model based on a sample of infinite 
size. Instead, BIC is consistent but has the tendency to underestimate the optimal 
complexity in small samples. For these reasons, a correction has been proposed to 
make AIC consistent (CAIC, Bozdogan 1987) and to reduce the tendency of BIC to 
underestimate the number of groups (ssBIC, Sclove 1987):

A further information criterion worthy of note is the HQIC (Hannan and Quinn 
1979):

which is consistent like BIC but with a higher convergence rate. Classification crite-
ria represent another family of fit statistics commonly employed to assess the good-
ness of fit of finite mixture models. The most popular classification criterion is the 
Average Posterior Probability of Assignment (APPA, Nagin 2005):

(19)ŷi,t,k ± z1− �

2

√
Var(̂yi,t,k)

(20)
AIC = −2 logL + 2p

BIC = −2 logL + p ⋅ logN

(21)
CAIC = −2 logL + p(logN + 1)

ssBIC = −2 logL + p ⋅ log
(
N+2

24

)

(22)HQIC = −2 logL + 2p ⋅ log logN
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where I(⋅) is the indicator function. The APPA value indicates the average posterior 
probability of the units assigned to each group, thus it can be interpreted as a meas-
ure of class separation. However, caution should be taken when interpreting high 
APPA values as high degree of class separation, because, when the sample size is 
small, classification criteria tend to take high values even if the degree of class sepa-
ration is not high as well.

The selection of the GBMT model with the best fit to data requires to establish 
not only the number of groups, but also the polynomial degree for each indicator 
within each group. According to Nagin (2005, p. 66-67), the choice of the polyno-
mial degree is less important than the choice of the number of groups. In this per-
spective, we adopt the following model selection procedure: (i) the optimal number 
of groups is established based on several fit statistics by keeping fixed a reasonably 
high polynomial degree (which can be set based on expert opinion, previous studies 
or visual inspection), then (ii) the best polynomial degree for each indicator within 
each group is determined through backward elimination of non-significant terms 
(pruning).

4  Results and discussion

We normalised the measurements within units as in formula (6) and used Algo-
rithm 1 with 100 random restarts to estimate all the GBMT models with up to six 
groups ( J = 1,… , 6 ), keeping fixed the polynomial degree to three ( d = 3 ). The 
maximum number of groups equal to six was chosen in order to have a reasonable 
number of countries per group (with 26 countries and six groups, we expect four 
countries per group), while a polynomial degree equal to three, equating to a cubic 
trend, was deemed sufficient to achieve enough flexibility across 15 time points. The 
estimated models were then pruned through backward elimination of non-signifi-
cant polynomial terms for each indicator within each group. The R package gbmt 
(Magrini 2022) was employed to perform the computations and to obtain the graph-
ics shown in this section.

Table 4 reports average number of EM iterations, log likelihood, number of free 
parameters and values of information criteria for each model after pruning. Models 
are ranked differently by information criteria, thus we selected the model with the 
best balance of ranks, which is definitely the one with J = 3 groups, as it is ranked 
first by BIC, ssBIC and HQIC and second by all the other criteria. APPA values are 
near one for all groups in all models but, due to the relatively small size of our sam-
ple ( n = 26 ), they may not indicate perfect class separation. The groups identified by 
the selected model ( J = 3 ) are:

• Group 1: Austria, Finland, France, Hungary, Italy, Luxembourg, Portugal, Slove-
nia, Spain;

(23)APPAj =

∑n

i=1
I(Ĝi = j)�i,j∑n

i=1
I(Ĝi = j)
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• Group 2: Bulgaria, Cyprus, Germany, Greece, Ireland, Latvia, Netherlands, 
Poland, Sweden, United Kingdom;

• Group 3: Belgium, Czechia, Denmark, Estonia, Lithuania, Romania, Slovakia.

Figure 1 shows the estimated group trajectories. Parameter estimates and group tra-
jectories in separate graphics are provided in the Appendix as Table 6 and Figs. 3, 
4 and 5. All the figures are also available in high resolution as supplementary 
materials.

It can be seen that, in the selected model, at least one polynomial degree is 
required in most cases, with only three cases where the trend is constant ( d = 0 ). 
The inspection of observed trajectories (grey broken lines) in relation to 95% point-
wise prediction intervals (dotted curves) in Figs. 3, 4 and 5 points out, for all groups, 
very few outliers and a small amount of cases where the observed variability is defi-
nitely different than the expected one. The most severe inconsistency of this kind 
involves the production of renewable energy from agriculture ( XENV,1 ), because the 
discrepancy between observed and expected variability increases definitely with the 
trend in all groups, suggesting the unreliability of the assumption of constant covari-
ance matrix within each group. Instead, the other inconsistencies hold only for some 
groups, like it is the case of agricultural fixed capital ( XECO,2 ) in Group 1, organic 
cultivation ( XENV,2 ) in Group 2, net entrepreneurial income ( XECO,5 ) and unemploy-
ment in rural areas ( XSOC,2 ) in Group 3. Nevertheless, the relatively small number 
of units in our study is unlikely to allow an effective check of model assumptions 
on the dependence structure and, above all, the specification of more complex (non-
constant) covariance matrices.

Table 5 reports the average annual percentage changes for some different periods 
implied by group trajectories in the selected model ( J = 3 ). In Table  5, observed 
average annual percentage changes averaged across countries are shown within 
brackets to highlight the variability of trajectories within groups. Below, group tra-
jectories are discussed in details.

Table 4  Average number of EM iterations across 100 random restarts ( m ), log likelihood ( logL ), num-
ber of free parameters (p) and values of information criteria for up to six groups ( J = 1,… , 6 ). Ranks of 
models according to each information criterion are shown within brackets

J 1 2 3 4 5 6

m 22.00 55.50 87.80 271.43 439.72 1367.77
logL 2510.70 2969.81 3322.02 3421.74 3582.40 3558.87
p 114 225 341 445 554 665
AIC −4793.40 (6) −5489.62 (5) −5962.05 (2) −5953.48 (3) −6056.80 (1) −5787.74 (4)
BIC −4341.26 (3) −4597.24 (2) −4609.59 (1) −4188.54 (4) −3859.55 (5) −3150.25 (6)
ssBIC −4702.97 (6) −5311.15 (4) −5691.56 (1) −5600.50 (3) −5617.36 (2) −5260.25 (5)
CAIC −4227.26 (3) −4372.24 (1) −4268.59 (2) −3743.54 (4) −3305.55 (5) −2485.25 (6)
HQIC −4614.17 (6) −5135.87 (4) −5425.93 (1) −5253.85 (2) −5185.79 (3) −4742.22 (5)
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Table 5  Average annual percentage changes for some different periods implied by group trajectories in 
the selected model ( J = 3)

Observed average annual percentage changes averaged across countries are shown within brackets. ‘Tar-
get’ indicates the sign that the trend should have to be consistent with sustainability. Group 1: Austria, 
Finland, France, Hungary, Italy, Luxembourg, Portugal, Slovenia, Spain; Group 2: Bulgaria, Cyprus, 
Germany, Greece, Ireland, Latvia, Netherlands, Poland, Sweden, United Kingdom; Group 3: Belgium, 
Czechia, Denmark, Estonia, Lithuania, Romania, Slovakia

Indicator (target) 2004–2008 2009–2013 2014–2018 2004–2018

Group 1
XECO,1 ( +) +0.85 ( +0.56) +0.85 ( +0.33) +0.85 ( +1.55) +0.85 ( +0.87)
XECO,2 ( +) +2.60 ( +2.78) +0.28 ( +1.80) −2.05 (−1.55) +0.28 ( +0.56)
XECO,3 ( +) −7.00 (−6.58) −3.82 (−3.44) −7.24 (−6.02) −5.80 (−6.35)
XECO,4 ( +) −0.42 (−0.08) +1.37 ( +4.68) +3.15 ( +2.90) +1.37 ( +1.39)
XECO,5 ( +) −1.08 (−1.25) +1.69 ( +7.55) +4.46 ( +3.26) +1.69 ( +1.57)
XSOC,1 ( +) +4.20 ( +4.66) +1.80 ( +0.82) +2.12 ( +2.26) +2.62 ( +2.43)
XSOC,2 (−) −0.64 (−3.17) +6.16 ( +4.65) −11.31 (−10.15) −1.12 (−0.85)
XSOC,3 (−) −0.65 (−1.17) +0.35 ( +1.19) −2.41 (−2.36) −0.78 (−0.58)
XENV,1 ( +) +47.53 ( +50.48) +4.96 ( +0.58) +5.19 ( +3.67) +17.80 ( +17.21)
XENV,2 ( +) +3.52 ( +3.15) +5.07 ( +5.26) +6.62 ( +7.45) +5.07 ( +5.02)
XENV,3 (−) −0.30 (−0.34) +0.31 ( +0.27) +0.92 ( +0.40) +0.31 ( +0.13)
XENV,4 (−) +0.00 (−1.68) +0.00 ( +4.55) +0.00 ( +0.63) +0.00 ( +0.10)
Group 2
XECO,1 ( +) +1.11 ( +1.78) +1.11 ( +0.58) +1.11 ( +0.90) +1.11 ( +1.15)
XECO,2 ( +) +3.47 ( +4.33) +1.05 ( +1.42) −1.37 ( +0.37) +1.05 ( +1.52)
XECO,3 ( +) −4.75 (−4.12) −4.75 (−6.78) −4.75 (−3.99) −4.75 (−5.03)
XECO,4 ( +) +2.98 ( +3.63) +2.98 ( +6.70) +2.98 ( +1.32) +2.98 ( +2.56)
XECO,5 ( +) +3.00 ( +4.20) +3.00 (10.32) +3.00 (−0.26) +3.00 ( +2.27)
XSOC,1 ( +) +6.26 ( +6.69) +1.42 (−0.18) +3.20 ( +3.38) +3.41 ( +3.18)
XSOC,2 (−) +0.38 (−3.40) +5.92 ( +5.76) −15.44 (−13.47) −2.15 (−1.50)
XSOC,3 (−) +0.00 ( +1.16) +0.00 (−1.42) +0.00 ( +0.19) +0.00 ( +0.01)
XENV,1 ( +) +51.75 ( +57.19) +6.38 ( +7.51) +6.98 ( +6.30) +20.17 ( +19.98)
XENV,2 ( +) +11.79 ( +14.36) +7.48 ( +7.59) +3.16 ( +5.93) +7.48 ( +8.14)
XENV,3 (−) −0.26 (−0.09) +1.13 ( +0.81) −0.78 (−1.12) +0.14 (−0.02)
XENV,4 (−) −2.18 (−1.64) −0.43 ( +1.83) +1.32 ( +1.08) −0.43 (−0.15)
Group 3
XECO,1 ( +) +1.54 ( +0.67) +1.54 ( +1.17) +1.54 ( +1.33) +1.54 ( +1.32)
XECO,2 ( +) +0.87 ( +2.07) +0.87 (−0.12) +0.87 ( +4.33) +0.87 ( +1.61)
XECO,3 ( +) −2.94 (−6.28) −2.94 (−5.76) −2.94 (−1.15) −2.94 (−3.24)
XECO,4 ( +) +2.11 ( +0.25) +6.14 ( +12.77) −2.49 (−1.61) +2.34 ( +2.41)
XECO,5 ( +) −5.00 (−4.67) +8.50 ( +17.67) −12.56 (−12.94) −1.87 (−1.72)
XSOC,1 ( +) +4.92 ( +6.64) +4.92 ( +2.99) +4.92 ( +5.27) +4.92 ( +4.82)
XSOC,2 (−) −0.66 (−7.47) +3.29 (−2.04) −15.67 (−12.42) −3.58 (−3.24)
XSOC,3 (−) −1.59 (−1.48) −0.10 (−0.43) +1.39 ( +1.17) −0.10 ( +0.05)
XENV,1 ( +) +38.08 ( +40.00) +8.47 ( +6.40) +7.19 ( +2.15) +16.97 ( +15.22)
XENV,2 ( +) +11.53 ( +11.30) +7.38 ( +6.89) +3.22 ( +5.94) +7.38 ( +7.83)
XENV,3 (−) +0.00 (−0.69) +0.00 (−0.32) +0.00 (−0.64) +0.00 (−0.54)
XENV,4 (−) −1.82 (−0.60) −1.82 (−2.79) −1.82 ( +2.28) −1.82 (−2.36)
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Group 1 (Austria, Finland, France, Hungary, Italy, Luxembourg, Portugal, Slove-
nia, Spain) is characterized by trajectories satisfying sustainability for all indicators 
excepting the ratio young/elderly for farm managers ( XECO,3 ), which has a definitely 
decreasing trend, and greenhouse gas emissions per hectare ( XENV,3 ), which shows 
an upward inversion of the trend since 2011. It can be noted that the tendency of 
unemployment in rural areas ( XSOC,2 ) undergoes an upward inversion inconsistent 
with sustainability from 2006 to 2014 and that fixed capital stock ( XECO,2 ) begins to 
decrease in compliance with sustainability only since 2012. Also, nitrogen balance 
per hectare ( XENV,4 ) has a stable trend in the period 2004–2018. We can conclude 
that countries in Group 1 are characterized by partial achievement of economic 
and environmental sustainability and by full achievement of social sustainability. 
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Fig. 1  Group trajectories in the selected model ( J = 3 ). Values represent relative changes with respect to 
country averages. Shaded regions indicate 95% pointwise prediction intervals
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Specifically, the weak objectives are enhancement of manager turnover, mainte-
nance of man-made capital and reduction of greenhouse gas emissions, while unem-
ployment in rural areas ( XSOC,2 ) requires attention in the near future to ensure that 
its trend will not be inverted again.

Group 2 (Bulgaria, Cyprus, Germany, Greece, Ireland, Latvia, Netherlands, 
Poland, Sweden, United Kingdom) is characterized by trajectories satisfying sus-
tainability for all indicators excepting the ratio young/elderly for farm managers 
( XECO,3 ), which has a definitely decreasing tendency, and greenhouse gas emis-
sions per hectare ( XENV,3 ), which has a definitely increasing trend. It can be noted 
that, initially, the tendency of unemployment in rural areas ( XSOC,2 ) does not satisfy 
sustainability but it is inverted in 2013, and nitrogen balance per hectare ( XENV,4 ) 
begins to increase slightly since 2015 after a decreasing pattern consistent with sus-
tainability. Also, at-risk-of-poverty in rural areas ( XSOC,3 ) has a stable trend in the 
period 2004–2018. We can conclude that countries in Group 2 share some weak 
objectives with countries in Group 1 (i.e., enhancement of manager turnover and 
reduction of greenhouse gas emissions) but, in general, they are characterized by a 
stronger growth of sustainability, as shown by the highest absolute annual change 
for all indicators excepting XSOC,3 (see Table 5). Similarly to what was deduced for 
Group 1, unemployment in rural areas ( XSOC,2 ) requires attention in the near future 
to ensure that its trend will not be inverted again. In addition, nitrogen balance per 
hectare ( XENV,4 ) should be monitored for the same reason.

Group 3 (Belgium, Czechia, Denmark, Estonia, Lithuania, Romania, Slovakia) is 
characterized by trajectories not satisfying sustainability for the ratio young/elderly 
for farm managers ( XECO,3 ), which has a definitely decreasing tendency, and for the 
real income of factors ( XECO,4 ) and the net entrepreneurial income ( XECO,5 ), which 
show a downward inversion of the trend since 2013. It can be noted that, initially, 
the tendency of unemployment in rural areas ( XSOC,2 ) does not satisfy sustainability, 
but it is inverted in 2013. We can conclude that countries in Group 3 are character-
ized by full achievement of social and environmental sustainability and by partial 
achievement of economic sustainability, with enhancement of manager turnover and 
improvement of profitability as weak objectives. Similarly to what was deduced for 
Group 1 and Group 2, unemployment in rural areas ( XSOC,2 ) requires attention in the 
near future to ensure that its change in trend is permanent.

Our approach, besides identifying groups of countries with common trends 
of sustainable objectives, allows to detect strong and weak objectives for each 
group, as well as those indicators requiring attention in the near future. Strong 
objectives common to all the three groups include improvement of productivity, 
increase of personal income in rural areas, reduction of poverty in rural areas, 
increase of production of renewable energy, rise of organic farming and reduction 
of nitrogen balance. Instead, maintenance of man-made capital is a distinguished 
strong objective of Group 2 (Bulgaria, Cyprus, Germany, Greece, Ireland, Latvia, 
Netherlands, Poland, Sweden, United Kingdom) and Group 3 (Belgium, Czechia, 
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Denmark, Estonia, Lithuania, Romania, Slovakia), while improvement of profit-
ability is a distinguished strong objective of Group 1 (Austria, Finland, France, 
Hungary, Italy, Luxembourg, Portugal, Slovenia, Spain) and Group 2 (Bulgaria, 
Cyprus, Germany, Greece, Ireland, Latvia, Netherlands, Poland, Sweden, United 
Kingdom). Enhancement of manager turnover is a weak objective common to all 
the three groups of countries, while reduction of greenhouse gas emissions is a 
weak objective common to Group 1 (Austria, Finland, France, Hungary, Italy, 
Luxembourg, Portugal, Slovenia, Spain) and Group 2 (Bulgaria, Cyprus, Ger-
many, Greece, Ireland, Latvia, Netherlands, Poland, Sweden, United Kingdom). 
Remarkably, greenhouse gas emissions per hectare ( XENV,3 ) has a stable trend in 
Group 3 (Belgium, Czechia, Denmark, Estonia, Lithuania, Romania, Slovakia), 
thus reduction of greenhouse gas emissions is not a strong objective of Group 
3 as well. Furthermore, maintenance of man-made capital is a distinguished weak 
objective of Group 1 (Austria, Finland, France, Hungary, Italy, Luxembourg, 
Portugal, Slovenia, Spain), while improvement of profitability is a distinguished 
weak objective of Group 3 (Belgium, Czechia, Denmark, Estonia, Lithuania, 
Romania, Slovakia). It is worth noting that, in all groups of countries, the trend of 
unemployment in rural areas ( XSOC,2 ) has begun to satisfy sustainability only in 
recent years, thus it requires attention in the near future to ensure the persistence 
of this tendency.

Our findings cannot be properly compared with those of existing studies because 
our work is the first one in the literature performing a longitudinal assessment on 
all the three sustainable dimensions for an exhaustive number of EU countries and 
providing a classification of EU countries based on common trends of sustainabil-
ity. Among existing studies, the most suited ones for a comparison with our work 
are Nowak et al. (2019) and Cataldo et al. (2020), because all the three sustainable 
dimensions and a large number of countries are considered. Unfortunately, these two 
studies employ cross-sectional data, thus they can rank EU countries only based on 
the level of sustainability, rather than based on the trend like our study does.

Finally, it is interesting to check the consistency of our results with subsi-
dies attributed by the Common Agricultural Policy (CAP). At this purpose, we 
downloaded the data on CAP subsidies from the Farm Accountancy Data Network 
(FADN, European Commission 2020), and computed the distribution of relative 
changes with respect to country averages for each time point and group (see Fig. 2). 
It can be seen that the three groups of countries are characterized by distinctive 
trends of CAP subsidies: in Group 1, they have a definite increasing tendency; in 
Group 2, they have a stable pattern since 2009 after an initial increase; in Group 3, 
they have an increasing tendency until 2009, then decreasing until 2015 and increas-
ing again afterward. Also, it is apparent that Group 1 is characterized by the highest 
growth rate of CAP subsidies, followed by Group 2 and Group 1. Remarkably, this 
finding is coherent with the average annual changes implied by the estimated group 
trajectories (see Table  5), where Group 1 is distinguished by the lowest absolute an-
nual change for all indicators excepting XENV,2 , and Group 3 is characterized by a
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higher absolute annual change than Group 2 for most indicators. Unfortunately, it is 
not possible to disentangle available data on CAP subsidies to match the sustainable 
objectives considered in our study, thus our results cannot be exploited to assess the 
effectiveness of the CAP. Nevertheless, they represent a valuable resource to formu-
late new schemes for the attribution of CAP subsidies at the purpose of improving 
specific weak sustainable objectives of EU member countries. Specifically, our 
group trajectories emphasize the existence of a trend of the ratio young/elderly for 
farm managers and of greenhouse gas emissions not consistent with sustainability 
for all groups of countries, thus we recommend to establish more subsidies for those 
interventions favoring the turnover of farm managers and preventing pollution due 
to agriculture.

5  Concluding remarks

We have proposed the application of group-based multivariate trajectory modeling 
to the assessment of agricultural sustainability in EU countries. Our research is 
innovative with respect to existing studies for three main reasons: (i) we selected 
a broad set of indicators to cover all the three sustainable dimensions (economic, 
social and environmental dimensions), (ii) we considered a comprehensive set of 
countries (26 in total) to provide a wide picture of agricultural sustainability in the 
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Fig. 2  Distribution of CAP subsidies by year for each group of countries identified by the selected model 
( J = 3 ). Boxplots are constructed based on relative changes with respect to country averages, with 
whiskers extending up to 1.5 times the interquartile range
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EU, (iii) we collected data over a long period (15 years) to explore the temporal evo-
lution of agricultural sustainability.

Our approach, besides identifying groups of countries with common trends of 
sustainable objectives, allows to detect strong and weak objectives for each group, as 
well as those indicators requiring attention in the near future. Therefore, our results 
provide a detailed monitor of agricultural sustainability in the EU that can assist 
policy makers in understanding the dynamics of the various countries and in detect-
ing their specific deficiencies. As emphasized in the discussion of our results, this 
is of particular relevance to formulate effective schemes for the attribution of CAP 
subsidies.

Quality and availability of data is a critical issue affecting multidimensional 
assessments because publicly available time series may have short length, present 
structural breaks or contain missing values. In our study, we paid particular care to 
keep the occurrence of missing values under a reasonable threshold, and exploited 
the expectation-maximization algorithm to perform maximum likelihood estimation 
from incomplete data without relying on an explicit imputation procedure.

The choice of the normalisation method to apply is another critical issue 
addressed in our work. Normalising the measurements in finite mixture models 
serves to determine the groups entirely based on the trend and to allow compari-
sons among different indicators. We adopted the logarithmic ratio with respect to the 
average of the whole period of observation, which provides not only a meaningful 
interpretation, but also computational advantages for parameter estimation.

The main limitation of our work relies in the relatively small number of units (26 
countries), which prevented an effective check of the assumption of constant covari-
ance matrix within each group and, above all, the specification of more complex 
dependence structures. In the future, we plan to identify the sources of the observed 
inconsistencies with model assumptions (e.g., quality of data, heteroskedasticity, 
unreliability of the MAR assumption), in view of an effective refinement of model 
formulation.

Although a valuable feature of our approach is that the various indicators can be 
monitored separately, future work will be directed toward the combination of group-
based multivariate trajectory modeling and the construction of composite indica-
tors, at the purpose of monitoring a synthetic representation of the three sustainable 
dimensions.

Appendix

Table 6 shows parameter estimates for the selected model ( J = 3 ), while Figs. 3, 4 
and 5 display the estimated group trajectories.
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Table 6  Estimated parameter values for the selected model ( J = 3 ). Estimated standard errors are shown 
within brackets. Blank spaces indicate that the term was dropped by the pruning procedure

Indicator �̂j,0,k �̂j,1,k �̂j,2,k �̂j,3,k

Group 1 ( ̂�1 = 0.346)
XECO,1 −0.0684 (0.0056) 0.0085 (0.0006)
XECO,2 −0.1276 (0.0474) 0.0400 (0.0136) −0.0023 (0.0008)
XECO,3 0.4886 (0.0551) −0.1189 (0.0288) 0.0104 (0.0041) −0.0004 (0.0002)
XECO,4 −0.0283 (0.0423) −0.0149 (0.0122) 0.0018 (0.0007)
XECO,5 −0.0099 (0.0677) −0.0273 (0.0195) 0.0028 (0.0012)
XSOC,1 −0.2817 (0.0222) 0.0688 (0.0116) −0.0054 (0.0017) 0.0002 (0.0001)
XSOC,2 0.0405 (0.0905) −0.1573 (0.0474) 0.0335 (0.0068) −0.0016 (0.0003)
XSOC,3 0.0532 (0.0352) −0.0295 (0.0185) 0.0051 (0.0026) −0.0003 (0.0001)
XENV,1 −2.5570 (0.2326) 0.9247 (0.1218) −0.0896 (0.0174) 0.0029 (0.0007)
XENV,2 −0.3351 (0.0448) 0.0259 (0.0129) 0.0016 (0.0008)
XENV,3 0.0029 (0.0093) −0.0067 (0.0027) 0.0006 (0.0002)
XENV,4 0.0020 (0.0129)
Group 2 ( ̂�2 = 0.385)
XECO,1 −0.0887 (0.0086) 0.0111 (0.0009)
XECO,2 −0.1935 (0.0388) 0.0492 (0.0111) −0.0024 (0.0007)
XECO,3 0.3587 (0.0284) −0.0475 (0.0031)
XECO,4 −0.2384 (0.0262) 0.0298 (0.0029)
XECO,5 −0.2399 (0.0388) 0.0300 (0.0043)
XSOC,1 −0.4125 (0.0571) 0.1217 (0.0299) −0.0121 (0.0043) 0.0004 (0.0002)
XSOC,2 0.0321 (0.1427) −0.1513 (0.0748) 0.0351 (0.0107) −0.0018 (0.0004)
XSOC,3 0.0012 (0.0122)
XENV,1 −2.8159 (0.1999) 0.9981 (0.1047) −0.0959 (0.0150) 0.0031 (0.0006)
XENV,2 −0.7936 (0.1064) 0.1438 (0.0306) −0.0043 (0.0019)
XENV,3 0.0036 (0.0215) −0.0259 (0.0113) 0.0050 (0.0016) −0.0002 (0.0001)
XENV,4 0.1107 (0.0487) −0.0323 (0.0140) 0.0018 (0.0009)
Group 3 ( ̂�3 = 0.269)
XECO,1 −0.1235 (0.0114) 0.0154 (0.0013)
XECO,2 −0.0696 (0.0360) 0.0087 (0.0040)
XECO,3 0.2140 (0.0492) −0.0294 (0.0054)
XECO,4 −0.1902 (0.1092) −0.0606 (0.0572) 0.0180 (0.0082) −0.0008 (0.0003)
XECO,5 0.2543 (0.1924) −0.2876 (0.1008) 0.0515 (0.0144) −0.0023 (0.0006)
XSOC,1 −0.4096 (0.0228) 0.0492 (0.0025)
XSOC,2 0.1353 (0.1378) −0.1341 (0.0722) 0.0291 (0.0103) −0.0015 (0.0004)
XSOC,3 0.0773 (0.0316) −0.0248 (0.0091) 0.0015 (0.0006)
XENV,1 −2.0807 (0.2636) 0.6869 (0.1381) −0.0608 (0.0197) 0.0019 (0.0008)
XENV,2 −0.7822 (0.0512) 0.1402 (0.0147) −0.0042 (0.0009)
XENV,3 0.0000 (0.0058)
XENV,4 0.1371 (0.0534) −0.0182 (0.0059)
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Fig. 3  Trajectories for countries in Group 1 (Austria, Finland, France, Hungary, Italy, Luxembourg, Por-
tugal, Slovenia, Spain). Values represent relative changes with respect to country averages. The estimated 
group trajectory is shown in bold, with dotted curves indicating 95% pointwise prediction intervals
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Fig. 4  Trajectories of countries in Group 2 (Bulgaria, Cyprus, Germany, Greece, Ireland, Latvia, Nether-
lands, Poland, Sweden, United Kingdom). Values represent relative changes with respect to country aver-
ages. The estimated group trajectory is shown in bold, with dotted curves indicating 95% pointwise pre-
diction intervals
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Fig. 5  Trajectories for countries in Group 3 (Belgium, Czechia, Denmark, Estonia, Lithuania, Romania, 
Slovakia). Values represent relative changes with respect to country averages. The estimated group tra-
jectory is shown in bold, with dotted curves indicating 95% pointwise prediction intervals
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