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A
utonomousUnderwater Vehicles (AUVs) have become fundamental tools
for marine scientists and industries to explore and monitor underwa-

ter areas. Non-predictable environmental conditions and sensor acquisitions
make the design of AUV surveys challenging even for expert operators. Mul-
tiple attempts are required, and the collected data quality is not guaranteed:
the AUV usually passively stores the sensors’ acquisitions that are then an-
alyzed offline after its recovery by human operators in charge of identifying
and localizing the so-called Objects of Potential Interest (OPIs). When it
comes to acoustic images, the lack of features and low resolution make this
task even more challenging. As a consequence of these statements, the ma-
rine community has sought robots able to meaningfully perceive and model
the surroundings and autonomously conduct the assigned task, which are
the foundations of fully autonomous vehicles. In this work, these topics have
been investigated.

To allow a compact and lightweight AUV to gather knowledge of the
surroundings, an Automatic Target Recognition (ATR) strategy based on
modern Convolutional Neural Networks (CNNs) for onboard online applica-
tions was developed. The ATR methodology was used to identify and localize
potential targets of interest in Forward-Looking SONAR (FLS) imagery.

Then, to avoid using pre-planned surveys and make an AUV actively
considering the acquired data online, this thesis presents a probabilistic
framework for FLS-driven seabed inspections. The realized sensor-driven
Receding-Horizon Coverage Approach (RHCA) endows the AUV with the
ability to autonomously conducting the survey and ensures adequate cover-
age of the target area. A Rapidly-exploring Random Tree (RRT) inspired
view planning algorithm for underwater inspections was designed. Then,
advancements for enhancing the performance of the algorithm have been
carried out. In particular, a novel informed tree expansion methodology for
guiding the vehicle towards the non-explored regions is proposed. Thanks to
this solution based on the Kernel Density Estimation technique, the AUV
learns the distribution of the discovered map. In addition, to explore other
view planning strategies, a preliminary investigation about the exploitation
of a Randomized Model Predictive Control (RMPC) approach for conducting
autonomous seabed inspections is reported.

Finally, the proposed ATR methodology and the RHCA have been com-
bined to realize a target-aware planning solution for autonomously inspecting
an area of interest. A probabilistic semantic map that includes the knowl-
edge about the presence of the OPIs is created and updated by using the
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ATR findings. The semantic map enables the view planning algorithm to
generate paths that cover the area of interest and simultaneously reduces the
target localization uncertainty. Therefore, this methodology allows an AUV
to meaningfully perceive and model the surroundings and autonomously con-
duct inspections surveys.

The solutions proposed in this thesis have been firstly validated with
realistic simulations made by means of the Unmanned Underwater Vehicle
Simulator (UUV Simulator), where a dynamic model of FeelHippo AUV was
implemented. Moreover, the ATR strategy, the RHCA framework, and the
proposed view planning advances have been tested in real experimental cam-
paigns at sea.
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Chapter 1

Introduction and thesis
motivation

T
he last two decades of mobile robotics developments have been led by the
increasing demand coming from scientists, researchers, and industries

for robots able to perform complex tasks and acquire data in hazardous
scenarios. In this context, the recent advancement in autonomous vehicles
aims to develop increasingly intelligent systems capable of interacting with
the surrounding environment and independently deciding the best actions to
fulfill specific tasks. To this end, modern robotics tries to integrate advanced
planning methodologies, environment perceiving and modelling strategies,
and Artificial Intelligence (AI) concepts and technologies. In particular, AI
is currently used in robotic systems for different purposes, such as making
autonomous decisions, planning paths, and extensive data processing, fields
where excellent results are being achieved.

For what concerns the marine environment, since the demanded tasks
of Autonomous Underwater Vehicles (AUVs) have become more and more
challenging [1] [2], researchers and scientists are following the tide of change
and are pushing the boundaries of AUVs capabilities by integrating cutting-
edge technologies. Indeed, autonomous inspection [3] and intervention [4]
strategies for underwater installations, exploration planning solutions [5],
and autonomous coverage approaches [6] [7], have become essential tools to
execute demanding and hazardous subsea operations.

To accomplish such complex tasks, perceiving and understanding the
environment is a fundamental hierarchical step. To this end, AUVs can

1
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be equipped with several payload sensors, such as optical cameras, Multi-
Beam Echosounders (MBEs), SideScan SONARs (SSSs), Forward-Looking
SONARs (FLSs), Sub Bottom Profilers (SBPs), and so on. However, col-
lected raw data could not be sufficient for meaningfully understanding the
environment. Thus, such data shall be processed online to identify obstacles,
objects of interest, or hazardous targets, to mention a few. For exploring un-
known areas as well as navigating into highly unstructured environments, free
and occupied areas must be carefully identified [8] and 3D occupancy maps
must be created using Mechanically Scanned Imaging SONARs (MSISs), op-
tical cameras, and FLSs [5] [9]. Regarding autonomous interventions, the
AUV shall correctly detect and localize objects of interest to interact with
the external environment. When dealing with structured areas, such as wa-
ter tanks, Augmented Reality (AR) markers and Computer Vision (CV)
techniques represent a simple and extremely effective solution [4]. Never-
theless, robots have to face frequently non-structured and unknown regions.
For instance, in sea mining explorations, the AUV performs optical surveys
to identify nodules and stones. Once a nodule is detected, a visual-guided
landing maneuver to collect the object is performed. In this context, since en-
vironmental and light conditions change continuously and cannot be foretold,
the performance of CV techniques are limited. Hence, modern Convolutional
Neural Networks (CNNs) shall be exploited to achieve satisfying results [10].

Contemporaneously, marine vehicles have become reliable and essential
tools for science users (e.g., archaeologists, oceanographers, biologists) and
navy personnel for collecting high-quality data to analyze and study an area
of interest.

In marine science investigations, field specialists have sought systems to
expand their ability to discover and observe the oceans, and AUVs have met
their requirements [11]. Consequently, the scientific community has exten-
sively used AUVs endowed with different payload sets in various applications
in the last years [12]. In [13], the authors used an AUV to collect MBE
data to characterizing the active tectonic and gravitational deformation of
the northern Ligurian margin, Italy. To identify mechanisms related to the
detachment fault denudation at the seafloor and investigate the relation be-
tween the mass wasting and the tectonic extension, the authors in [14] used
the collected micro bathymetric data and geologic samples acquired by an
AUV and a Remotely Operated Vehicle (ROV), respectively. MBE data ac-
quired by the Eagle Ray AUV was used in the research work presented in
[15]. In detail, the MBE dataset was used to locate and map the hydrocarbon
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seeps that are evident in the MBE measurements in Green Canyon Block 600
in the Gulf of Mexico. For deep ocean seafloor investigations, 6,000 m depth
rated AUVs acquired MBE, SSS, and SBP data as reported in [16] and [17].
The collected data allowed geoscientists to analyze the seafloor morphology,
the bathymetric changes associated with sediment transport, gravitational
driven failure associated features, and ocean bottom-current activities. Be-
sides, marine biologists were able to investigate deep-ocean benthic habitats.
Similarly, in [18], the distribution of the benthic communities of the Ningaloo
Marine Park, Australia, was analyzed using geomorphological measurements
provided by an MBE device, environmental data (such as the water tem-
perature, salinity, to mention a few), and optical images. The exploited
dataset was acquired in several surveys conducted by different AUVs. In
[19], an AUV able to acquire high-resolution photographic, bathymetric, and
sub-bottom data was used to perform a seismo-acoustic characterization.
An optical delineation campaign of near-shore benthic habitat was reported
in [20]. The exploited AUV was equipped with multi-spectral radiometers
and optical cameras; the results demonstrated AUVs’ ability to map littoral
habitats at high resolution and proved their fundamental role in collecting
high-quality data for science users. Marine vehicles were also employed for
water quality monitoring and observation of fish behavior in net cage fish
farming [21], where collecting data over large areas is of utmost importance.

In seabed inspections, AUVs are used to collect optical as well as acous-
tic images, using cameras and imaging sonars. Then, the data could be used
for underwater navigation [22] and surveillance purposes [23], where image
processing techniques and modern Deep Learning (DL) methodologies can
accurately find targets of interest (see [24], [25], and [26]), and for archae-
ological investigations, where optical [27] and acoustic reconstructions [28]
emerged as an essential tool to correctly classifying historical finds. These
tasks are generally performed by exploiting optical sensors; however, optical
cameras are affected by water turbidity and lighting conditions, and gather-
ing satisfactory images does arise as a non-trivial task, not feasible in several
scenarios. As a consequence, e.g., SSSs, as well as FLSs, are commonly fa-
vored to carry out inspection and exploration tasks; in fact, sonars are not
influenced by illumination conditions and can provide high-range data. In
particular, FLSs can synthesize satisfactory resolution images, more detailed
than SSSs, but at shorter distances. Nevertheless, the high noise and the lack
of features make sonar images hard to interpret by using conventional image
processing techniques. De facto, a human operator is usually in charge of
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analyzing the thousands of acquired images to identify the so-called Objects
of Potential Interest (OPIs). Once identified, the targets shall be localized,
the AUV navigation data and the sonar characteristics are needed. There-
fore, Automatic Target Recognition (ATR) strategies that detect and localize
OPIs in FLS imagery are fundamental tools that could help human opera-
tors in this demanding task. In this context, cutting-edge DL techniques,
which have become the state of the art in the classification and object detec-
tion tasks [29], are being investigated in marine ATR applications, showing
outstanding results [25] [30].

The aforementioned case studies’ analysis highlights the science users
(e.g., archaeologists, geologists, oceanographers, biologists) and navy person-
nel necessity for robots for collecting high-quality data to analyze and study
an area of interest. Science users cooperate with technicians to plan AUV
surveys, often using lawnmower or zig-zag paths, to acquire well distributed
and representative data. Generally speaking, despite the different scopes and
sensors used, the surveys are designed so that the more the area is covered,
the better the data collected. Thus, the better the area characterization.

Nowadays, mostly AUVs passively store the data that is then analyzed
offline after their recovery, meaning that exteroceptive sensor feedbacks are
not used during the mission. Since environmental conditions cannot be fore-
casted, and the sensor characteristics affect the quantity and the quality
of the collected data, it implies many mission replanning and repeated at-
tempts, increasing the total cost of exploration and monitoring campaigns.
This is especially the case of FLS and SSS based seabed inspections. The
seafloor morphology and composition, as well as object shapes and positions,
affect the performance of such acoustic devices. Consequently, designing of-
fline AUV paths that ensure satisfying coverage of the area is challenging
and requires time and experienced operators.

Coverage Path Planning (CPP) and exploration strategies represent an
excellent solution. Sensor-driven algorithms can actively consider sensor
feedbacks and environmental information; they can monitor the quality and
quantity of acquired data and guarantee adequate coverage levels or explo-
ration goals, avoiding repeated missions. Since the problem of computing a
path that optimally covers an area of interest with a sensor is common to
many robotic domains, several CPP and exploration methodologies for Un-
manned Ground Vehicles (UGVs), Micro Aerial Vehicles (MAVs), AUVs have
been proposed in the last years. Generally speaking, the authors developed
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solutions to enable the robot to calculate the shortest route online through
unknown areas to create representative maps and acquire the necessary data,
requiring various sensor sets.

In order to summarize, recent AUVs advancements have focused on three
aspects, among others, that arose as of utmost importance for industries and
the scientific community:

• perceiving and modeling the environment;

• autonomously planning the best path for carrying out assigned tasks;

• making autonomous decisions and deciding the best action to fulfill
specific tasks.

In this context, this research work has focused on the first two intrinsi-
cally connected points. In particular, the research activity conducted during
the Ph.D. period, at the Department of Industrial Engineering (DIEF) of
the University of Florence (UNIFI), aimed at developing a framework that
can lead an AUV toward fully autonomous surveys. To this end, a vehicle
shall autonomously compute the mission path to inspect an area of interest,
guaranteeing the acquisition of representative data by considering the sensor
feedbacks and environmental characteristics.

Firstly, since optical cameras’ exploitation in the underwater domain
presents non-negligible drawbacks, strategies for modeling and meaningfully
perceiving the surroundings using acoustic exteroceptive sensors were inves-
tigated. In detail, the use of state-of-the-art DL object detection method-
ologies for developing an onboard acoustic-based ATR solution for detecting
and localizing OPIs in FLS images was deepen. Indeed, recognizing OPIs
represents a preliminary and fundamental hierarchical stage for effectively
understanding and gathering knowledge of the environment and thus, ac-
complishing interactive tasks and creating fully autonomous robots that can
help human operators in challenging assignments.

Then, a sensor-driven CPP framework was developed in light of develop-
ing intelligent vehicles able to autonomously carrying out inspection surveys
that can guarantee to acquire well-distributed high-quality data to model and
investigate an area of interest. The framework, composed of a planning and
a mapping module, is based on receding-horizon view planning methodology
and was applied to FLS-based seabed inspections. To correctly plan and



6 CHAPTER 1. INTRODUCTION AND THESIS MOTIVATION

re-plan the survey, the CPP strategy uses a 3D probabilistic occupancy grid
mapping system based on FLS imagery. Consequently, the AUV actively
considers the sensor feedbacks during the mission by planning the survey
according to the created map. Thus, it can guarantee adequate coverage of
the area of interest.

Finally, to make the AUV actively taking into account the presence of
OPIs, an object ATR results were included in the inspection framework,
realizing a target-aware inspection solution. The FLS 3D probabilistic oc-
cupancy mapping system has been extended to include ATR findings and
create a semantic occupancy map of the environment. It is used by the plan-
ning module so that, during the mission, OPIs are correctly recognized and
localized.

1.1 Overall framework

The research activity described in this work has been carried out at the
Mechatronics and Dynamic Modeling Laboratory (MDM Lab) of the De-
partment of Industrial Engineering of the University of Florence (UNIFI
DIEF). UNIFI DIEF is operative in the field of underwater robotics since
2010 thanks to the participation in the Tuscany-funded project TecnicHe per
l’Esplorazione Sottomarina Archeologica mediante l’Utilizzo di Robot aU-
tonomi in Sciami (THESAURUS). Since then, the MDM Lab research group
has taken part in several cutting-edge national and international projects
in the marine robotics field. In 2013, the MDM Lab joined as the coordi-
nating partner of the European FP7 project ARcheological RObot systems
for the World’s Seas (ARROWS). Afterward, in 2016, the research group
participated in the Bridging Robots for Underwater Communication Enrich-
ment (BRUCE) project, a sub-project of the European FP7-funded Sensing,
monitoring and actuating on the UNderwater world through a federated Re-
search InfraStructure Extending the future Internet (SUNRISE). Together
with the official spin-off company MDM Team S.r.l. of UNIFI DIEF, the
MDM Lab took part in the Autonomous underwater Robotic and sensing
systems for Cultural HEritage discovery COnservation and in sitU valoriza-
tion (ARCHEOSUb) European project in 2018. The group joined the H2020
EUMarineRobots (EUMR) and Operational Platform managing a fleet of
semi-autonomous drones exploiting GNSS high Accuracy and Authentica-
tion to improve Security Safety in port areas (PASSport) pojects in 2019
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and 2020, respectively. While PASSport has the goal of improving secu-
rity in port areas through the combined use of Unmanned Aerial Vehicles
(UAVs) and AUVs, EUMR aimed to open up key national and regional ma-
rine robotics research infrastructures to all European researchers from both
academia and industry. Regarding the EUMR project, the MDM Lab acted
as a node of Interuniversity Center of Integrated Systems for the Marine En-
vironment (ISME). In fact, since 2014, the University of Florence has joined
the ISME consortium that gathers academic institutions from all over Italy
and whose main goal is to act as a common platform for joint operations
for what concerns marine robotics. The support of the Italian Navy through
the Naval Support and Experimentation Center (Centro di Supporto e Sper-
imentazione Navale) (CSSN) has led to the institution of the SEALab joint
laboratory between CSSN and ISME. In the context of the EUMR project,
the SEALab allowed conducting several experimental campaigns in the Lig-
urian Sea that led to the results obtained during the Ph.D. activity.

During the last ten years, according to the goal of the aforementioned
projects, several AUVs were developed by the UNIFI DIEF MDM Lab. Each
AUV of the MDM Lab fleet has its own characteristics and was developed
for a specific purpose. The Typhoon class AUVs [31] were created in the
context of the THESAURUS project as a swarm of AUVs to perform coop-
erative autonomous surveys of areas of archaeological interest in the Tuscan
Archipelago. MArine Robotic Tool for Archaeology (MARTA) AUV [32] is
a torpedo-shaped modular vehicle built during the European project AR-
ROWS and designed to reduce the cost of archaeological operations. On
the other hand, Zeno Environment Nautical Operator (Zeno) was developed
with a compact design and high portability, together with a rapid battery
replacement for the ARCHEOSUb project targets: surveying, conservation,
and protection of new and existing underwater Underwater Cultural Heritage
(UCH) sites. These vehicles were developed before this Ph.D. period, and
since they were not used to test the developed methodologies, their descrip-
tions will be omitted.

FeelHippo AUV completes the MDM Lab AUV fleet. It was initially built
for participating in the Student Autonomous Underwater Vehicles Challenge-
Europe (SAUC-E) competition in 2013. Since then, it was used in many
robotics competitions during the last years. Among the milestones achieved
by the team in these competitions, recently, the award of “Best Marine Team”
was won during the European Robotics League - Emergency Robots (ERL)
2018 and ERL 2019 (see [33] and [34] for further details). Continuous over-
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hauls and upgrades have made FeelHippo AUV a versatile platform for under-
taking research topics. For instance, FeelHippo AUV was used for conducting
the experiments of EUMR project. Besides, it was used as a testing platform
for the methodologies proposed in this thesis. Thus, a detailed description
of its main characteristics and the list of the equipped sensors is provided in
the next section.

1.2 FeelHippo AUV

FeelHippo AUV, whose last version is depicted in Fig.1.1, is a compact and
lightweight AUV developed by the MDM Lab in 2013 for joining student
and non-student robotics competitions. In the last years, it has faced several
hardware and software upgrades that have made FeelHippo AUV a reliable
and versatile platform for conducting research activities and project-related
tasks.

FeelHippo AUV has a central body made of a Plexiglass® hull, where the
hardware and electronics are housed two aluminum pipes attached under the
main body, which contain the batteries. At the time of writing, FeelHippo
AUV propulsion is realized through six thrusters (two at the stern, two at the
bow, and one each on both sides inclined at 45°) arranged in a vectored con-
figuration that allows for the control of all the Degrees Of Freedom (DOFs)
of the vehicle, except for the pitch motion that depends entirely on the inner
mass distribution and the vehicle configuration.

FeelHippo AUV main characteristics are summarized in Table 1.1.

Table 1.1: FeelHippo AUV Main Features

Weight [kg] 35
Dimensions [mm] 600×640×500
Controlled DOFs 5

Thrusters 6
Maximum Depth [m] 35

Maximum Longitudinal Speed [m/s] 1
Battery Life [h] 4

The list of the primary electronic components and the sensor sets with
which FeelHippo AUV is equipped are reported below:
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Figure 1.1: FeelHippo AUV before an on-field underwater mission.

• Intel i7-based LP-175-Commel motherboard (main computer);

• NVIDIA Jetson Nano (payload computer);

• U-blox 7P precision Global Positioning System (GPS);

• Orientus Advanced Navigation Attitude and Heading Reference System
(AHRS);

• KVHDSP 1760 single-axis high precision Fiber Optic Gyrosope (FOG);

• Nortek DVL1000 Doppler Velocity Log (DVL), measuring linear veloc-
ity and acting as Depth Sensor (DS);

• EvoLogics S2CR 18/34 acoustic modem;

• Teledyne BlueView M900 2D FLS.

• one Microsoft Lifecam Cinema forward-looking camera;

• one Microsoft Lifecam Cinema bottom-looking cameras;

The main computer (Intel i7-based LP-175-Commel motherboard) runs
the software architecture based on the Robot Operating System (ROS) frame-
work [35], and it is used for onboard processing of guidance, navigation, and
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control algorithms, for supervising the state of the vehicle, and for managing
the communication channels. The three payload computers (one NVIDIA
Jetson Nano and two Intel Neural Compute Stick 2), connected to the main
computer, are exploited for running onboard machine learning algorithms
and the ATR solutions developed in the Ph.D. activity. An overview of
FeelHippo AUV hardware is reported in Fig.1.2.

Figure 1.2: FeelHippo AUV hardware overview.

1.3 Thesis structure

This thesis is organized as follows.
Chapter 2 reviews state-of-the-art FLS-based ATR solutions and related

works about coverage and exploration strategies. Chapter 2 also highlights
the main contributions of this thesis.

Chapter 3 is dedicated to the notation used in this work, and introducing
the ATR preliminaries, and planning and mapping concepts.
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Then, Chapter 4 firstly describes the developed ATR framework and de-
tails the criteria used for selecting the CNNs models. The Chapter presents
the validation of the ATR solution and the performance assessment. Finally,
it reports the results of the conducted experimental campaign.

Chapter 5 introduces and discusses the designed framework for autonomous
inspections. The structure of the framework is detailed, and the developed
algorithm is presented. Besides, this Chapter reports a mathematical for-
mulation of the developed solution and a novel theoretical analysis of the
exploited volumetric information formulation’s effects. The results of the
realistic simulations and the dedicated experimental campaign at sea that
aimed at validating the developed framework and the proposed analysis are
reported in this Chapter.

In Chapter 6 advances for enhancing the performance of the developed
coverage algorithm are proposed. In particular, Chapter 6 describes a paral-
lel implementation of the algorithm and presents a novel sampling strategy
for guiding the expansion of the tree towards unexplored areas. This novel
sampling strategy, is based on estimating the density probability function of
the discovered map that is used for sampling new points. Simulation and
experimental results demonstrate the effectiveness of the proposed enhance-
ments.

Chapter 7 describes the development of a Randomized Model Predictive
Control (RMPC) algorithm for planning coverage surveys. The aforemen-
tioned solution for estimating the density probability function of the discov-
ered map, detailed in Chapter 6 is utilized for developing a fast methodology
for evaluating if a path is leading the vehicle toward non-covered regions. Re-
alistic simulations demonstrated the effectiveness of the proposed solution.

Chapter 8 is dedicated to fusing the coverage and ATR methodologies
for creating a target-aware planning solution for enabling an AUV to au-
tonomously inspect an area of interest while actively considering the pres-
ence of OPIs by creating a semantic map. The solution was validated with
realistic simulations.

Finally, Chapter 9 concludes the thesis by providing an analysis of the
main achieved results and discussing possible future developments.





Chapter 2

Related works and thesis
contribution

This section reviews the related works that inspired this Ph.D. research work.
Firstly, state-of-the-art and innovative ATR approaches for the underwater
domain are presented. Then, coverage and exploration strategies that influ-
enced the solution developed during the Ph.D. period are reviewed. Lastly,
this section highlights the main contribution of this thesis.

2.1 State-of-the-art ATR solutions

With the growing demand for intelligent systems capable of performing com-
plex interactive tasks, reacting to the environment while inspecting areas,
and cooperating meaningfully with human operators, object detection has
become a fundamental feature of modern robots. UGVs and UAVs can rely
on a large variety of sensors, ranging from optical cameras to Light Detec-
tion and Ranging (LiDAR) devices, to detect objects. Due to the wide use
of modern cameras, several image-based target identification solutions have
been developed. In particular, CNN-based approaches have shown outstand-
ing results, becoming the golden standard in the image classification and
target recognition tasks [29].

On the contrary, marine robots have limited recognition capabilities due
to the underwater domain. Water turbidity, low-light conditions, and poor
visibility degrade the quality of the optical images (Fig.2.1), making the sub-
sea object detection hardly achievable in many cases. Acoustic sensors, such

13
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Figure 2.1: On the left, an underwater pipeline structure in the corresponding
optical image (native resolution of 704 x 576 pixels); on the right, the 2D
FLS acoustic frame (native resolution of 894 x 477 pixels). These images
were acquired by FeelHippo AUV during the ERL competition in 2018. It
is worth highlighting that the optical image was acquired by a distance of
about 1.5 m, while the range of FLS used to gather the optical frame was
set to 10 m.

as FLS or SSS, represent a valid alternative. Indeed, these sensors provide
high-range data that are not as affected by water conditions. Besides, even
though recognizing object patterns in the high-noise acoustic sonar images
can be challenging, FLS has the potential to be a functional device in un-
derwater ATR tasks by providing decent resolution images (an example is
provided in Fig. 2.1), at high frame rates, and not requiring the vehicle to
move.

Different Template-Matching-based object recognition approaches for FLS
imagery have been developed and tested with different similarity measures
and feature-trained classifiers [36] [37]. Nonetheless, these techniques cannot
generalize the template patterns; additionally, their performance degrades in
the handling of multi-scale objects. Therefore, these limitations led many ma-
rine researchers to investigate the use of CNN-based solutions also in acous-
tic imagery. In [30], custom CNN architectures to classify FLS images have
been evaluated. The reported performance comparison with classical tem-
plate matching solutions shows that CNNs could provide better performance
while keeping a low number of parameters [38]. Nevertheless, developing a
custom CNN architecture is time expensive and requires plenty of images to
train the network. Besides, AUVs cannot rely on bulky hardware and usu-
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ally have limited onboard computational power. In addition, ATR should
be performed in real-time to be effective during underwater missions. Thus,
developing a CNN for onboard applications does emerge as a real challenge.

Turning to a more detailed overview, these solutions follow a common
approach. The first network layers, called the backbone (or feature extractor)
of the network, are in charge of extracting the dominant features, while the
last layers classify those features and localize objects in the image. Generally,
the backbone is tricky to train and requires a large dataset. Conversely, by
using transfer learning, the last layers can easily be trained on a custom
dataset by fine-tuning higher-order feature representations, speeding up the
training phase. In fact, the idea of transfer learning is simple: CNNs learn
generic feature vectors, and thus feature learned from a dataset can be used
to solve a different problem [39]. Consequently, for what concerns the object
recognition task, pre-trained CNNs solutions can be used. The backbone can
be frozen, and only the last layers are trained on a new dataset.

As regards the subsea environment, since gathering a large dataset in
an underwater scenario is by no means straightforward, such Deep Neural
Network (DNN) approaches, relying on transfer learning, could be used to
tackle object detection in FLS images.

Several remarkable DNN architectures have been proposed in the last few
years for several and disparate fields of application; considering that for FLS
the scientific literature highlights sparse applications, the most performing
and promising DNN architectures have been taken into account in order to
find which ones best fit our system. The You Only Look Once (YOLO)
network [40] was developed as an optimized end-to-end structure composed
of 24 convolutional layers and 2 fully connected layers. This simple structure
allows predicting bounding boxes and class probabilities from full images in
one evaluation. Thus, the network achieves real-time image processing with
an extremely high frame per second (fps). In [41] and [42], improvements to
make YOLO faster and more accurate were introduced. In addition to these
two upgraded networks, namely YOLOv2 and YOLOv3, several versions have
also been developed that benefit from various speed/accuracy tradeoffs. The
YOLO architecture was tested on FLS images ATR in [43], where the authors
developed a system to detect divers.

A different approach was used to design the Single Shot Multibox Detec-
tor (SSD) [44], a convolutional network able to detect and classify objects at
different scales at a high frame per second (fps). Its native version used the
Visual Geometry Group (VGG) network [45] as a backbone to extract the



16 CHAPTER 2. RELATED WORKS AND THESIS CONTRIBUTION

image features. Also, different feature extraction networks, such as Inception
[46] and Mobilenets [47], were tested. As will be shown in Chapter 4, the
choice of the feature extractor plays a fundamental role since it affects the
speed/accuracy tradeoff, which is of utmost importance when developing an
ATR strategy for onboard real-time applications [48]. Small convolutional
filters are then applied to different scale feature maps in the final layers to
detect and classify objects. The network training aimed to optimize a multi-
task loss that took into account both the classification error and the bounding
box coordinate error. This simple structure lets the SSD reach high-accuracy
detections at high fps (up to 45). As the underwater domain is concerned,
SSD was used to recognize objects in optical images [25], but as far as the
author known, it has not been tested on FLS imagery yet.

When the detection accuracy shall be favored over the inference speed,
Region-based architectures, such as the Faster Region-based Convolutional
Neural Network (Faster R-CNN) [49], are the recommended choice. The
Faster R-CNN’s backbone is composed of a feature extractor network and a
Region Proposal Network (RPN) to produce the Regions Of Interests (ROIs)
in the feature maps and predict the bounding boxes. Two fully-connected
sibling layers take each ROI as input, and classify possible objects and refine
the bounding boxes. The loss function used to train the network was a trade-
off between the classification and the localization tasks. Generally speaking,
compared with the YOLO and SSD, the Faster R-CNN is more accurate but
cannot reach the exceptionally high inference speed.

Finally, the Mask Region-based Convolutional Neural Network (Mask R-
CNN) [50] extended the Faster R-CNN. Firstly, the backbone was improved
through the Feature Pyramid Network (FPN) that can better represent ob-
jects at multiple scales. Besides, the authors added in the final layers a
convolutional branch to generate a segmentation mask for the selected ROIs.
The training loss also considered the segmentation tasks, improving the net-
work performance. In fact, instance segmentation enables identifying object
outlines at the pixel level, enhancing the localization precision. R-CNN archi-
tectures were tested on optical underwater images [51] and on FLS imagery
[25]. However, in [25] an analysis of their performance on FLS images was
not reported.
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2.2 Related works on Autonomous Inspec-

tions and Explorations

The exploration and CPP task is integral to several robotic applications and
domains. It can be defined as the problem of autonomously inspecting an
area of interest, i.e., moving the robot so that it can cover with a sensor all
the points in a target area. Exploration and CPP algorithms have to compute
a feasible path for the robot using simple motion trajectories [52] that is op-
timal, according to specific criteria, such as the path length or the total time
to complete the mission. According to [53] and [54], such algorithms are clas-
sified as offline, which requires full prior knowledge of the environment and
relies on on stationary information, and online, as they consider the sensor
feedback. Offline algorithms are built on assumptions that might be unre-
alistic in many scenarios, as the underwater domain, where the conditions
change continuously and rapidly, affecting both optical and acoustic pay-
load sensors’ performance. On the other hand, online strategies, also called
sensor-based or sensor-driven, can deal with changing or unknown environ-
ments by considering as feedbacks the sensor measurements and reacting to
the perceived environment. In this research, the problem of collecting FLS
data over an area of interest, i.e., FLS-based inspection, is considered, and
since AUVs are commonly used in unknown areas where a prior map is not
available, the focus has shifted to online algorithms.

In the context of underwater robotics, the CPP problem is a typical dual-
use topic and was considered, for instance, for Mine CounterMeasure (MCM)
applications and also extended to exploration tasks.

An online approach for SSS seabed coverage for MCM was proposed in
[6]. The AUV employed a multi-objective optimization that combines infor-
mation theory with the concept of branch entropy to compute the heading
reference. The branch entropy was proposed to overcome the limitations of
the information gain, which is a useful tool for calculating the potential next
moves’ expected benefits. Still, it is not sufficient to achieve global goals
when there is incomplete prior knowledge about the environment. In fact,
it becomes a greedy-first search when applied to coverage tasks that could
limit sensor-driven methods performance. The AUV performed constant al-
titude surveys in an equal-sized hexagon cell decomposed workspace. The
MCM problem was also tackled in [55]. The authors presented a two-phase
solution that considers Acoustic Doppler Current Profiler (ADCP) measure-
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ments to compensate for currents and sonar data processed with an object
detection algorithm to adapt the survey to reinspect potential targets im-
mediately. These methods, however, are limited to MCM or object hunting
applications since they consider as a measurement the belief about the pres-
ence or absence of an object at a location.

Inspections of underwater structures have carried the development of the
research described in [56]. The authors proposed a planning algorithm to
compute the inspection path and a guidance strategy that uses the data
perceived during the mission to adapt the vehicle trajectory to the terrain.
However, to calculate the initial inspection mission, the algorithm required
a prior bathymetric map of the area. For a similar application, in [57],
an algorithm that uses a prior map to calculate the minimum number of
viewpoints that provide the maximum amount of information was presented.
Then, a trajectory that guides the AUV through the computed viewpoints
is computed by solving a Traveling Salesman Problem (TSP). Again, this
strategy needs a prior map, meaning that either it was available or the AUV
had to perform a pre-survey to gather a preliminary bathymetric map of the
area.

To carry out underwater exploration in 3D unknown environments, Vidal
and colleagues developed a two-layer planning system that considers opti-
cal and acoustic data to select the viewpoints [5]. The environment was
represented with a cubic cell-based map, where each cell was labeled accord-
ing to multisensor measurements. Acoustic data, provided by a multibeam
sonar, were used to determine whether a cell was occupied or not, while an
estimation of the camera Field of View (FoV) marked the cells as viewed.
The view planner utilized the map to compute range and camera candidates
deterministically. Then the viewpoints were generated along the surface nor-
mal at a distance determined by the sensor parameters (range and FoV). To
select the best viewpoint, candidates were evaluated according to a metric
function that used the distance between the robot and the viewpoint and
the orientation difference. The selected Next-Best Viewpoint (NBV) was
sent to the motion planner layer, responsible for computing a safe and fea-
sible path to lead the AUV to the viewpoint. To this end, the asymptotic
optimal Rapidly-exploring Random Tree (RRT) (RRT⋆) algorithm [58] was
employed. Outstanding results were reached both in simulations and in real
sea trials; the Girona 500 AUV, used as a testing platform, managed to
explore challenging unknown scenarios. Nevertheless, the view planner com-
puted the NBV among the Frontier Points (FP), i.e., points in the regions
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between known and unknown spaces. This strategy is a proper approach for
exploration tasks, but it limits the performance of inspection algorithms. De
facto, it ends up being a greedy search strategy and leads to longer paths for
adequate coverage levels in CPP applications.

In the context of 3D object reconstructions, it is possible to find several
similarities with the CPP problem considered in this research work. In this
context, researchers considered the problem of selecting the NBV to perform
an active volumetric 3D reconstruction of an object with a camera attached
to a mobile robot. Deterministic [59] [60] and stochastic [61] candidates
selection processes have been proposed in the last years. Then, in [62], which
extends the work of [63], an analysis of volumetric information gain metrics
is proposed. The voxels’ entropy was used to consider the volumetric map
uncertainty in the NBV selection criteria, and the authors proposed different
ways to quantify the information contained in the voxels. In this paper,
the voxels’ entropy idea and the information metrics, shown in the works
mentioned above, were considered. However, as for FP methods, considering
only the next best action makes those approaches greedy.

Finally, the coverage methodology proposed in this research was inspired
by the strategies presented in [64] and [65], where MAVs used novel path
planning methods to explore unknown 3D spaces with a camera. Random
trees were expanded in the working space. Each node of the tree represented
a viewpoint that was evaluated according to the amount of unmapped space
visible from the viewpoint. The best branch in the constructed tree was se-
lected. Then, only the first viewpoint was executed (becoming the NBV),
and the process was repeated in a receding-horizon manner. For the sake of
completeness, in [64], a second planning layer (based on random trees) was
employed to find a path that minimizes the expected localization and map-
ping uncertainty. By considering the branch information gain, these methods
predicted the effects of more actions than just one and overcame the limi-
tations of the information gain method in unknown environments. Besides,
random trees have the non-negligible advantage of being able to implement
nonholonomic constraints conveniently and can run onboard in real-time on
small robots with limited computational capability. These methodologies
were developed for the aerial domain for carrying out autonomous explo-
rations with MAVs. To the best of the authors’ knowledge, such random
tree-based strategies have not been extended to the underwater domain yet.
This research work investigates the use of receding-horizon sensor-driven ran-
dom tree-based approaches for AUV coverage tasks. The here presented
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methodology enables an AUV to autonomously inspect an unknown area
and, by actively considering the sensor feedbacks, guarantees satisfying cov-
erage levels.

The previously discussed solutions rely on a mapping strategy. In detail,
the robot must create a map that reflects the structure of the environment
and other meaningful information for the tackled task. For instance, the
map can be used to distinguish between known/unknown and free/occupied
regions so that the robot can autonomously conduct a safe exploration or
CPP survey. To this end, the well-known theory of occupancy grid map-
ping has shown outstanding results [66]. Besides, to increase environmental
awareness, maps can include high-level data. In [67], the authors proposed
a semantic mapping strategy that added to the geometrical data, the results
of a CNN-based object detection solution. An analogous mapping strategy
was used in [68] to realize a semantically–enhanced path planning strategy
for UAVs for exploring unknown environments and simultaneous searching
for objects of interest. Similarly, in [69] an object-aware map was used for
exploration tasks with UAVs, and a benchmark of different strategies was
reported. For the sake of completeness, in the field of aerial vehicles, maps
are also used for active perception, i.e., path planning that incorporates the
expected outcomes of perception, where they can include the amount of in-
formation of an area [70], [71].

While UGVs and UAVs can exploit a large variety of sensors, marine
robots usually have limited perception capabilities. Indeed, optical devices
(e.g., optical cameras) [72] and [73] or LASER-based solution [74], even if
unquestionably worth, lay themselves open to water conditions. Thus, due
to the favorable property of acoustic propagation in the underwater environ-
ment, acoustic devices have emerged as a strong alternative in underwater
sensing.

Briefly, for what concerns imaging-sonars, such as the FLS device used
in the methodologies developed in this work, to the authors’ best knowledge,
the first mapping solution dates back to [75]. Here, the method is applied to
MSIS data, where 2D reconstruction only is involved. More recently, in [76]
a probabilistic 3D occupancy mapping framework is presented, where the
OctoMap library [66] is employed. The group of the University of Girona,
Spain, presented remarkable solutions for acoustic [77] and multisensor (opto-
acoustic) mapping [5]. In [78], a volumetric map representation that supports
FLS devices is developed; however, a concentrator lens is employed to reduce
the aperture of imaging devices. In [9], the authors present an FLS-based
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probabilistic 3D occupancy mapping framework tailored explicitly to AUVs,
where the mapping layer takes advantage of the OctoMap library [66]. A
novel line of work [79], [80], and [8] based on the OctoMap framework, tries
to provide a unique map representation useful both localization, under the
Simultaneous Localization And Mapping (SLAM) paradigm, and planning.
Nevertheless, this is not the core of this work.

2.3 Thesis contribution

This research work investigates the development of a methodology for mak-
ing an AUV able to autonomously conducting an inspection survey, ensuring
adequate coverage of the target area while looking for OPIs. In the under-
water domain, state-of-the-art inspection missions are usually represented
by pre-planned surveys, such as lawnmower and zig-zag paths, where the
AUVs passively store the collected data. Such paths can be optimized by
considering the utilized sensor characteristics, but environmental conditions
cannot be forecasted, and thus, they do not guarantee the acquisition of data
over the entire area of interest and could lead to repeated attempts. In the
last years, some solutions to overcome these limitations have been proposed.
However, as reported in Section 2.2, such CPP solutions were developed for
MCM applications and only considered as feedback the presence or absence of
an object. Solutions for inspections of underwater structures or exploration
of unknown areas could seem reasonable. Still, they either rely on a prior
map or end up being a greedy strategy when it comes to CPP applications.
As the aerial domain is concerned, some remarkable solutions, which could
inspire an AUV tailored CPP solution, have recently been presented, but to
the best of authors’ knowledge, their exploitation has not been investigated
yet by the marine community.

Therefore, this research work aims at investigating the use of receding-
horizon sensor-driven random tree-based approaches solutions for conducting
FLS seabed inspections, but suitable for any acoustic or optical sensor. In
particular, the authors have sought a solution that overcomes the drawbacks
of the previously mentioned approaches; that is, it does not require a prior
map; it uses the expected benefit of more actions than just one, i.e., does
not turn into a greedy approach that leads to longer paths, and can re-plan
online the mission by considering as feedbacks the covered area and not only
the presence or absence of objects.
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In detail, the 3D probabilistic occupancy mapping system for FLS recon-
structions presented in [9] (UNIFI DIEF’s work) was used, and a receding-
horizon sensor-driven view planning methodology was developed. Based on
random trees, the here proposed solution considers the vehicle kinematics
using the Dubins constraints and evaluates the tree nodes according to the
updated occupancy map and information metrics. At each iteration, the
best branch is selected, and only the first node becomes the NBV that is
then reached by the AUV. The process is repeated in a receding-horizon
manner: when the vehicle arrives at the waypoint, the process is repeated
by maintaining the best previously computed solution in order to find the
new NBV. A comparison of volumetric information gain metrics, along with
a theoretical analysis of the developed Receding Horizon Coverage Approach
(RHCA) is reported in Section 5.3 and Section 5.4. In addition, a novel sam-
pling methodology for guiding the expansion of the tree towards unexplored
areas was developed and tested. This innovative sampling solution is based
on estimating the probability density function of the discovered map by us-
ing a Kernel Density Estimation (KDE) approach [81] [82], and improves the
performance of the RHCA.

Moreover, to enable the AUV to autonomously detecting and localiz-
ing OPIs during the inspection survey, the use of state-of-the-art CNNs for
an ATR strategy for real-time onboard applications was investigated. In
particular, the research activity has focused on developing and evaluating
a CNN-based ATR solution on FLS imagery. Since the ATR solution al-
lows to understand and gather knowledge of the environment effectively, the
exploited FLS mapping system was extended to include ATR findings and
create a semantic occupancy map of the environment. Thus, an object-aware
planning system that leads the AUV to correctly localize the OPIs, during
the survey, was realized.

Therefore, FeelHippo AUV, selected as the testing platform, by using
the here proposed ATR and planning strategies, can autonomously conduct
an inspection survey, ensuring to acquire well-distributed high-quality data
while actively considering the presence of OPIs.

In conclusion, the main contributions of this work are:

• The development and testing of an ATR methodology to identify and
localize real-time onboard OPIs in FLS imagery by using state-of-the-
art CNN architectures. The conducted experimental campaign showed
that the ATR strategy can endow an AUV with the ability of au-
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tonomously recognizing OPIs;

• A sensor-driven RHCA that uses a random trees-inspired algorithm.
The view planning algorithm uses the map created through an FLS-
based reconstruction system to evaluate the randomly generated tree
node and selects the NBV. The proposed view planning strategy was
firstly validated with realistic simulations performed by means of the
Unmanned Underwater Vehicle Simulator (UUV Simulator). Then, it
was tested in real experiments conducted at sea to assess the perfor-
mance of the proposed RHCA;

• A mathematical formulation of the developed algorithm and a theoret-
ical analysis of the effects of the exploited volumetric information for-
mulation. The results of the simulations and the real trails performed
at sea constitute a benchmark of information gain metrics for AUVs in-
spection tasks. The RHCA algorithm was tested with a volume-based
and an entropy-based gain metric. The comparison results are reported
and discussed. As far as the author knows, this is the first study of
information gain metrics for coverage tasks in the underwater domain;

• A novel sampling strategy based on estimating the probability density
function of the discovered map by using a KDE approach for guiding
the expansion of the tree towards unexplored areas was developed and
tested. After the validation of the solution through realistic simula-
tions, an experimental campaign at sea was conducted. The results
show that this informed tree expansion methodology improves the per-
formance of the RHCA;

• A preliminary investigation of the use of an approach for view plan-
ning. In particular, a RMPC strategy is utilized for generating possi-
ble inspection paths that steer the AUV during the inspection mission.
Here, the KDE-based discovered map density function is employed for
rapidly evaluating the viewpoint candidates. The effectiveness of the
proposed strategy was demonstrated with simulations;

• To make the AUV able to inspect the area of interest, while simul-
taneously searching and mapping for OPIs in the environment, the
mapping system has been extended to include the ATR findings and
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thus creates a semantic map. Then, an object-aware planning strat-
egy was realized. Realistic simulations made using the UUV Simulator
validated the proposed methodology;



Chapter 3

Preliminaries and notation

This Chapter describes the notation and reference systems employed in the
rest of the work and provides a complete review of the fundamental theoret-
ical and mathematical concepts used throughout this thesis.

3.1 Notation, reference systems, and FLS con-

cepts

Firstly, the mathematical notation used in this thesis is introduced. Given a
generic reference system {Oixiyizi}, a vector p ∈ R3 expressed in this frame
will be denoted as ip. A rotation matrix R ∈ SO(3), for which it holds that
R ∈ R3×3, RR⊤ = I3, where I3 is the 3 × 3 identity matrix, and det(R) = 1,
is referred as kRj

i ; it rotates unit vectors of the frame {Oixiyizi} in unit
vectors of the frame {Ojxjyjzj}, both expressed in the frame

{
Okxkykzk

}
.

If k = j, the three-indexes notation could be simplified in the following form:
jRj

i = Rj
i . Introducing the transformation matrix T of the special Euclidean

group in R3:

SE(3) :=

{
T =

[
R p
0T 1

]
| R ∈ SO(3),p ∈ R3

}
, (3.1)

the relation between two reference frames can be described in a com-
pact notation using homogeneous transformations and the four-dimensional
representation vector p̃. In particular, it holds that:
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jp̃ =

[
jp
1

]
=

[
Rj
i tji

0T 1

] [
ip
1

]
= T j

i
ip̃, (3.2)

where tji is the translation vector between the center of the frames < i >
and < j >.

Then, the reference systems can be defined and the Society of Naval Ar-
chitects and Marine Engineers (SNAME) notation is used throughout this
thesis [83]. The North-East-Down frame, denoted as < N >,

{
ONxNyNzN

}
,

is commonly used in marine robotics as the inertial reference system. It is a
local Earth-fixed frame whose axes point, North, East, and Down (NED) re-
spectively, and its center is placed on the Earth’s surface at a specific latitude
and longitude pair, depending on the specific application [84], [85]. Attached
to the vehicle, a reference system called body frame < b >,

{
Obxbybzb

}
, is

defined assuming the x-axis along the longitudinal axis of the vehicle, the
z-axis pointing downwards, and the y-axis completes a right-handed system
(see [83]).

The vehicle considered as a testing platform for the methodologies pro-
posed in this research work is FeelHippo AUV, described in Section 1.2,
which estimates its pose with sufficient accuracy for conducting monitoring,
mapping, and inspection surveys, by using high-grade sensors and navigation
strategies developed by the UNIFI DIEF. Further information about the ex-
ploited navigation solutions can be found in [86], [87], and [88]. Thus, as far
as this thesis does not deal with the development of underwater navigation
strategies, the relation between the < N > frame and the < b > frame, TN

b ,
is considered completely known [83].

Generally speaking, for each sensor mounted on an AUV, a reference
frame < s >, {Osxsyszs}, can be defined. Thus, a generic sensor acquires
measurements in the < s > frame, and by knowing the sensor mounting
pose with respect to the AUV, i.e, T b

s , the measurements can be projected
in to the < b > frame. This holds for both interoceptive (e.g., Inertial
Measurement Unit (IMU), FOG, DVL, and so on) and exteroceptive sensors
(e.g., optical cameras, FLS, just to mention a few). Regarding the FLS, which
is the main sensor considered in this thesis, it is rigidly attached in front of the
AUV, and a right-handed reference system, denoted as< F >,

{
OFxFyF zF

}
,

can be considered. The introduced < F > frame center corresponds with
the FLS center; its x-axis points forward, while the z-axis points downwards.
Since the FLS mounting position and orientation with respect to the AUV are
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known, the homogeneous transformation T b
F is determined. Fig.3.1 depicts

the overall situation.

Figure 3.1: Representation of the NED frame < N >, the body frame < b >,
and the FLS frame < F >.

According to [88], [89], and [90], in the < F > frame, a point P ∈ R3

represented in Cartesian coordinates FP = [X, Y, Z]⊤ can be expressed in
spherical coordinates FP = [R̄, α, ϕ]⊤, where R̄ is the FLS delivering range,
α is the azimuth angle, and ϕ the elevation angle. It holds that: X

Y
Z

 = R̄

 cosϕ cosα
cosϕ sinα
− sinϕ


 R̄
α
ϕ

 =

 √
X2 + Y 2 + Z2

tan−1 (Y/X)

tan−1
(
−Z/
√
X2 + Y 2

)
.

(3.3)

FLS devices natively use the spherical system in the imaging process: for
each beam that composes the FoV, at every range interval, the average power
of the reflected waves is measured and used to produce the corresponding
pixel intensity in the image. However, the 3D to 2D image formation process
leads to a loss of the information about the elevation angle ϕ [90]. In fact, as
depicted in Fig.3.2, the 3D point FP (R̄, α, ϕ) ∈ R3 is projected on the FLS
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image plane, depicted in red in Fig. 3.2 and denoted in the following as <
FI >, in a point p along the arc defined by the elevation angle ϕ [91]. Hence,
given an FLS image, only the azimuth angle α and the range R̄ of point
can be computed. FLSs typically have limited vertical beamwidth ϕ [92],
[91]. Besides, vehicles such as FeelHippo AUV, considered in this work, have
the roll and pitch dynamics hydrostatically stable, and seabed inspection
surveys do not excite these Degrees Of Freedom (DOFs). Hence, the AUV
navigates with roll and pitch angles almost zero with negligible variations. As
a consequence of these considerations, a point FP can be localized through
its projection p in the FLS image plane. Thus, the approximation F P̂ of FP
can be computed as:

F P̂ =

 X̂

Ŷ

Ẑ

 = R̄

 cosα
sinα
0

 . (3.4)

Figure 3.2: The FLS imaging process: given a range R̄, points on the arc

defined by the angle
⌢

ϕ are projected in the FLS image plane < FI > (in red)
in the point p.

As described in Section 3.2, the proposed ATR solution uses image-based
DNN architectures to identify OPIs in FLS images. Such models give as
output the predicted classes, with the computed confidence, and the object
bounding boxes. In particular, the bounding boxes are provided as the top-
left and the bottom-right corners in the image reference frame < I >, which
uses pixels as the measurement unit and whose center is in the image top-left
corner and the x- and y-axis along the image width and height, respectively.
To correctly localize the ATR findings, they shall be projected into an inertial
reference frame < N >. To this end, the relation between the < I > frame
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and the < FI > frame is known as depicted in Fig.3.3. Thus, for each OPI
identified by the trained neural network, the bounding box can be projected
from the < I > frame to the < FI > frame; then the target can be localized:
by using Eq.3.4 its position is estimated in the < F > frame, and since the
transformation TN

F = TN
b T b

F is known, it is localized in the inertial reference
frame < N >, and consequently, in the World Geodetic System (WGS84),
which uses latitude, longitude and altitude as coordinates (see [84] for more
details).

Figure 3.3: The 2D FLS frame with respect to the image reference system
< I >.

For what concerns this research work, the considered OPIs to be identi-
fied and localized lie on the seabed, and by assuming that the sea bottom
imaged within a frame is dominantly flat, which means that the DNN de-
tected bounding boxes lie on the seafloor at an altitude h from the AUV, see
Fig.3.2, a more accurate model than the one presented in Eq.3.4 for localiz-
ing the OPIs can be determined. That is, the elevation of the point FP can
be retrieved using altimeter data. In fact, according to the local flat seafloor
hypothesis, for a point FP on the sea bed, it holds:

R̄ sin(γ + ϕ̄) = h, (3.5)

where γ denotes the FLS tilt angle w.r.t. the horizontal plane. Eq.3.5 allows
to calculate the elevation angle ϕ̄, and thus the point FP can be localized
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accurately:

FP =

 X
Y
Z

 = R̄

 cosα cos ϕ̄
sinα cos ϕ̄

sin ϕ̄

 . (3.6)

In conclusion, Eq.3.5 and Eq.3.6 can be used to localize the detected
bounding boxes with respect to the < F > frame. Consequently, they can
be localized with respect to to the < N > frame by using the transformation
TN
F = TN

b T b
F .

3.2 Convolutional Neural Network background

This Section aims at providing the main concepts related to CNNs and their
use for the object detection task (also called ATR in the marine community).
It is intended to be an introduction to the use of such technologies for object
recognition. In particular, the key concepts are described with the goal of
providing an overview of the fundamental working aspects of CNN architec-
tures. That is, this Section is not meant to give a theoretical dissertation
about DL aspects, but it is willing to cover many practical issues beneficial
for end-users when selecting and training a proper state-of-the-art CNN.

3.2.1 Machine Learning and Neural Networks

A Machine Learning (ML) algorithm is an algorithm that is able to learn
from structured data. In more practical terms, for solving an image classi-
fication problem by using a ML solution, a feature extractor algorithm that
detects the key points of the image is needed. Indeed, the ML model works
on the outputs of the feature extractor [93]. On the other hand, DL solu-
tions, which are a subset of ML, do not necessarily need structured data
since they learn to extract the features that characterize the data by using
more complex structures. Both ML and DL can be trained with two types of
learning methodology: supervised and unsupervised. While the former relies
on labeled data (i.e., data where the ground-truth is provided by an opera-
tor), in the latter, the training dataset is a collection of examples without a
specific desired outcome [94].

A Neural Network (NN) is a DL structure based on a collection of con-
nected nodes called artificial neurons; each node can transmit data to another
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one. These kinds of networks have been used on various tasks, like computer
vision, speech recognition, medical diagnosis, and so on. Generally speaking,
the idea of NN is to learn a model from a dataset and then use the model to
evaluate samples that the model has not seen during the learning phase. In
order to work properly, a NN must learn to generalize the dataset pattern;
that is, it has to extract generic features that can be used to characterize new
samples. To this end, a NN architecture shall be designed so that it has a suf-
ficient learning capacity for the tackled task. However, the required learning
capacity, which depends on the designed architecture and the number of pa-
rameters/weights, cannot usually be estimated a priori, and a trial-and-error
approach should be followed. A NN learns during the training that consists
of a gradient-based optimization procedure with respect to a loss function
with the goal of finding the best set of parameter/weight values that model
the training dataset features. The success of the training depends on several
key parameters [95]:

• Dataset : the available set of data is of utmost importance since it de-
termines the features that a model can learn. Generally speaking, in
supervised learning, the dataset is composed of data and the corre-
sponding ground truth, which is the correct value for the feature that
the model shall learn. The dataset is usually split in three parts: the
training set, the biggest set that is used to train the model, the valida-
tion set, on which the model is tested during the tuning of the training
parameters, and the test set for evaluating the trained model.

• Loss Function: it defines the task of the ML model. It is the objec-
tive function of the optimization procedure, which is designed so that
the model performance improves when it decreases. It measures the
difference between the NN output and the ground truth value, and it
determines the gradient used by the optimizer to update the value of
the model weights.

• Optimizer : it is the optimization algorithm that minimizes the loss
function L by updating the model weights Θ. To this end, the most
common strategy is the Gradient Descent:

Θn+1 = Θn − α∇L(ŷ, y), (3.7)

where y is ground truth value, ŷ is the NN predicted output, and
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α ∈ [0, 1] is the learning rate. Several gradient descent optimization
algorithms, such as Stochastic Gradient Descent (SGD) with/without
momentum [96], RMSProp [97], ADAM [98], just to mention a few,
have been proposed in the last years. These algorithms aim at effi-
ciently training NN and ML models by using learning rate schedules
and more effective weight updating routines [96].

• Learning Rate: it controls the convergence rate of the optimizer. Large
learning rate values could lead to an unstable optimization process
since it can overshoot the minimum value of the loss function, which
eventually makes the training phase fail. On the other hand, excessively
small values make the training slow, increasing the time for developing a
proper NN architecture. Typically, it is set to small values [10−1, 10−3].

• Number of Epochs : it defines the length of the training. If a NN is
trained for too long, the model could overfit the dataset. That is, it fails
to generalize when tested on new data since it has learnt non-generic
features or noise in the training dataset. Conversely, if the training is
stopped too early, the model could not have converged. Predicting a
proper number of epochs is by no means straightforward, and several
attempts should be performed. A common strategy to overcome the
issues related to the selection of the number of epochs is the early
stopping criterion, which consists of monitoring the loss function of
a validation dataset, composed of different samples than the training
dataset. The training is stopped when the validation loss increases.

When the training is completed, the NN model shall be evaluated on the
test set. To characterize the performance of a NN model, several aspects must
be considered. Firstly, metrics that allow to correctly evaluate the precision
of the NN predictions for the tackled task are selected. Then, if the model
was designed for real-time applications, the time required for analyzing new
samples (often called the inference speed) plays a fundamental role and must
be carefully evaluated. This final step, where the network is evaluated, is
crucial for comparing different NN models and select the best option for the
considered application.
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3.2.2 Convolutional Neural Networks and Object De-
tection

CNNs are NN exploiting a combination of convolutional and pooling layers.
In a nutshell, convolution layers convolve the input image with a set of filters
(the neurons of CNNs, also called kernels) and pass the results of this oper-
ation through a non-linear activation function. The pooling layers, instead,
reduce the dimensions of data by combining the outputs of neuron clusters
at one layer into a single neuron in the next layer. More details regarding
CNNs can be found in [94].

CNNs have become the golden standard in many visual tasks, such as
Image Classification and Object Detection [29]. Indeed, their structure is
optimized for analyzing images and allows them to take advantage of some
essential properties. Firstly, convolutional layers can extract relevant im-
age features by learning the filter weights. By adding pooling layers, more
complex features can be extracted. In fact, as shown in [99], the use of sub-
sequent convolutional and pooling layers leads to a feature hierarchy, where
simple features, such as edges and corners, are extracted in the first layers.
Then more complex elements are identified in the last layers. Additionally,
CNNs use filters that do not depend on the spatial position in the image and
consider that the closer the pixels, the higher the correlation.

For what concerns the use of CNNs for Object Detection, as reported
in Chapter 2, several breakthrough architectures (YOLO, SSD, and Faster
R-CNN) have been proposed in the last few years. These networks use dif-
ferent approaches but share a common working principle: the first layers
compose the backbone that extracts the relevant features (thus, the back-
bone is also called feature extractor), and then the final layers classify and
localize possible objects of interest. Such image-based object detectors (in
the following object detectors) take as input an image and give as output the
predicted classes, with the computed confidence, and the object bounding
boxes, provided as the top-left and the bottom-right corners in the image
reference frame, whose center is in the image top-left corner and the x- and
y-axis along the image width and height, respectively. For the sake of the
reader, a general object detector workflow is depicted in Fig. 3.4.

To characterize the performance of an object detector and then compare
different solutions, evaluation metrics must be defined. According to [48],
the Microsoft Common Objects in Context (COCO) metrics [100] have been
used for the investigations conducted in this work. Considered the output
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Figure 3.4: A general workflow of an object detector. Given an image as
input, it outputs the predicted classes, with the computed confidence, and
the object bounding boxes coordinates, expressed as the top-left (pItl) and
the bottom-right (pIbr) corners in the image reference frame {OIxIyI}.

of object detector algorithms, to decide whether a prediction is correct or
not for an object, the Intersection over Union (IoU) is exploited. In detail,
the IoU is computed as the intersection between the predicted bounding box
and ground-truth bounding box divided by their union (see Fig.3.5), and a
prediction is considered correct if the IoU is greater than a threshold (0.5 at
least). Thus, the predictions of object detectors can be classified as follows:

• True Positive (TP): A correct detection, i.e., a detection with IoU
greater than a defined threshold

• False Positive (FP): A wrong detection, i.e., a detection with IoU less
than a defined threshold

• False Negative (FN): A non detected ground-truth

To characterize the accuracy of ML and DL models, Precision and Recall
are often used. The former is defined as the ratio between true positive over
the sum of true positive and false positive:

Precision =
TP

TP + FP
, (3.8)

while, Recall is the percentage of true positive detected among all relevant
ground truths:
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Recall =
TP

TP + FN
. (3.9)

Figure 3.5: Rendering of the IoU metric.

As the selected IoU threshold increases, the detection task becomes more
challenging. As a matter of fact, a good detector identifies only relevant
objects (i.e., FP = 0) and all ground truths (i.e., FN = 0). The trade-
off between precision and recall can be seen in the Precision - Recall (PR)
graph (an example taken from [101] is reported in Fig. 3.6), which serves
as an evaluation of the performance of an object detection model and is
monotonically decreasing. An object detector is considered a good model if
the precision stays high as the recall increases.

In COCO metrics, the mean Average Precision (mAP) is computed con-
sidering the precision-recall curve [100], and is a value that sums up the
accuracy of a detector [48]. In detail, the mAP can be computed consider-
ing different IoU thresholds, typically 0.5 and 0.75 (denoted as mAP@0.5
and mAP@0.75, respectively). However, the official COCO metric uses the
mAP averaged over IOU thresholds from 0.5 to 0.95 with a step size of 0.05,
referred as mAP@[0.5 : 0.05 : 0.95] or mAP .

In conclusion, as this work is concerned, the precision of an object detec-
tor is evaluated by means of the mAP. However, as explained in the previous
section, the accuracy of a detector is not the only parameter that shall be
considered when developing an ATR solution for real-time onboard applica-
tions. In fact, the inference speed is of utmost importance since it determines
whether an object detector can be deployed or not on the available hardware.
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Figure 3.6: An example of the PR curve (in blue) taken from [101]. The
graph reports the interpolated PR curve (in red) employed to reduce the
impact of fluctuations. It is computed by considering the precision value for
some recall samples, usually 11 and equally spaced.

Regarding image-based object detectors, the inference speed is evaluated as
frames per second (fps).

3.3 Occupancy mapping fundamentals

To carry out autonomous exploration and inspection surveys, robots must
create a map of the environment that reflects its structure. To this end,
the occupancy grid mapping paradigm [102], which was developed as a ro-
bust representation of the surrounding, has shown noteworthy results in the
last years in several robotic domains and applications, ranging from collision
checking and obstacle/collision avoidance [4], to planning [5], [77], and explo-
ration [65], [68], just to mention a few. In the context of this work, to conduct
the autonomous inspections, the FLS-based mapping methodology presented
in [9] was employed and extended to include the ATR findings. Since it re-
sorts to the occupancy grid mapping paradigm, this section presents the
fundamentals of such a strategy.

An occupancy map tries to infer the map m from a set of measurements
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z(·) acquired from the time 1 up to the time t, where t ≥ 1, and denoted
as z1:t. Each measurement is collected from a robot pose that, as far as
this work is concerned, is assumed to be known, as described in Section 3.1.
For the sake of brevity, the dependence on the poses will be omitted in the
following.

The occupancy grid theory relies on two fundamental assumptions:

• the 2D or 3D domain is partitioned through 2D/3D grid cells mi, such
that m =

∑
imi, which are considered as independent.Therefore, the

problem of estimating m is divided into independent sub-problems.
Intentionally, to make problem tractable, dependencies among neigh-
boring cells are explicitly not considered;

• the Markovian assumption p (zt | mi, z1:t−1) = p (zt | mi) is employed,
where p(· | ·) represents the conditional probability.

In the Bayesian context, the update law becomes:

p (mi | z1:t)
1− p (mi | z1:t)

=
p (mi | zt)

1− p (mi | zt)︸ ︷︷ ︸
inverse sensor model

p (mi | z1:t−1)

1− p (mi | z1:t−1)︸ ︷︷ ︸
recursive term

1− p(mi)

p(mi)︸ ︷︷ ︸
prior

. (3.10)

As firstly suggested by [103], given log-odds ratio l (·), where

l (·) = log
p (·)

1− p (·)
, (3.11)

an elegant and numerically efficient update formulation for the occupancy
grid problem can be obtained:

l (mi | z1:t) = l (mi | z1:t−1) + l (mi | zt)− l (mi) . (3.12)

It is worth to note that the term p (mi | zt) is called Inverse Sensor Model
(ISM). It depends on the exploited device, and as regards as the FLS used
in this work, more details can be found in [9].

The OctoMap framework [66] was utilized to develop the 3D probabilis-
tic occupancy mapping solution presented in [9] and exploited in this work.
OctoMap is a well-known and efficient open-source C++ library for proba-
bilistic map representation; it permits to model free Wfree, occupied Wobst,
and unmapped Wuk areas, which is fundamental for planning and exploring
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in unknown environments. Basically, OctoMap can deal with distance-like
sensor fusing measurements into a voxel representation, where the informa-
tion is stored in an octree data structure.

OctoMap, in its standard version, employs the non-informative prior as-
sumption p(mi) = 0.5, which is reasonably when mapping in completely un-
known environments. Moreover, the clamping update policy is used, leading
to:

l (mi | z1:t)
= max (min (l (mi | z1:t−1) + l (mi | zt) , lmax) , lmin) ,

(3.13)

where lmin ∈ R+ and lmax ∈ R− are the lower and upper bound on the
log-odds value, respectively.

3.4 View planning preliminaries

3.4.1 AUV motion modeling and feasible path plan-
ning

This Section introduces the equations used to describe the motion of an AUV
moving within a fluid and discusses how such equations can be integrated
into a planning algorithm in order to generate feasible paths.

Generally, the pose of an AUV in 3D is expressed by means of six vari-
ables, and its motion can be expressed through kinematic and dynamic mod-
els. According to [83] and [104], by considering the AUV as a rigid body
and by using the notation and reference frames introduced in Section 3.1,
the AUV pose with respect to the NED frame (<N>) is expressed with

η =
[
Nη⊤

1 η⊤
2

]⊤ ∈ R6, where Nη1 ∈ R3 indicates the position of the vehicle
with respect to the NED frame and η2 ∈ R3 its orientation. The AUV linear
and angular velocities with respect to the body reference frame (< b >) are

represented with bν =
[
bν⊤

1
bν⊤

2

]⊤
, where bν⊤

1 = [u v w], denotes the linear
velocities and bν⊤

2 = [p q r] are the angular counterparts along the axes of
the body frame, namely surge, sway, and heave. Thus, the vehicle kinematic
model is expressed as:

(
˙Nη1

η̇2

)
=

[
J1 (η2) 03×3

03×3 J2 (η2)

](
bν1
bν2

)
, (3.14)
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where

J1 (η2) =
NRN

b = Rz(ψ)Ry(θ)Rx(ϕ) =

=

 cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕcψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 , (3.15)

and

J2 (η2) =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ

 . (3.16)

In a compact notation, Eq. 3.14 can be expressed as:

η̇ = J(η)ν, (3.17)

where

J(η) =

[
J1 (η2) 03×3

03×3 J2 (η2)

]
. (3.18)

In several applications, AUVs usually conduct surveys at constant depth
or altitude. As described in Section 1.2, vehicles such as FeelHippo AUV have
the roll and pitch dynamics hydrostatically stable, and since seabed inspec-
tion surveys, considered in this work, do not excite these DOFs, the AUV
navigates with roll and pitch angles almost zero with negligible variations.
For the sake of completeness, the roll motion is not controlled. Additionally,
to reduce the energy consumption, FeelHippo AUV usually moves about the
surge axis and only rotates about the heave axis, i.e., it only changes its
orientation. As a consequence of these statements, the kinematic motion on
a horizontal plane of FeelHippo AUV can be represented as a simple car-like
vehicle:  ẋ

ẏ

ψ̇

 =

 u cos(ψ)
u sin(ψ)

r

 . (3.19)

While kinematic models only use geometric equations that relate the ve-
hicle positions and velocities, dynamic models consider the force and torques
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that create the motion. As a consequence, this latter class of models de-
scribes the AUV motion constraints more accurately. Further information
about these models can be found in [83]. As far as this work is concerned,
since the view planning problem was tackled, only the kinematic model was
considered for the following reasons. Firstly, dynamic models require a higher
computational load and more time than the kinematic counterpart to evolve
the system [77]. That is, fewer new configurations can be generated given
a computational time, and thus worse solutions are found. As discussed in
the following Chapters, evaluating the visibility gain of a configuration is
the most demanding operation in terms of time and computational load that
limits the number of configurations that can be generated. Therefore, to
generate as many configurations as possible within a given computation time
slot (in order to compute good inspection paths), a kinematic model has been
preferred.

Additionally, and most importantly, inspired by the noteworthy RRT⋆

[58] algorithm, the use of a rewiring strategy, which consists of a routine that
checks whether a new node could improve the cost of neighbour nodes, was
investigated in this work. To this end, a steering function, which returns the
optimum path between two states, is needed. When using motion constraints,
computing a steering function means addressing a two-point Boundary Value
Problem (BVP). That is, it corresponds to solving a differential equation un-
der certain boundary conditions [105], which is generally a difficult problem.

Describing the AUV motion with kinematic model of Eq. 3.19, the con-
figuration space (C) is C = SE(2), i.e., a configuration ξ ∈ SE(2). Assuming
that the vehicle navigates with a constant surge speed u, and by considering
that it has a maximum turning rate rmax, which defines a minimum turning
radius Rmin, the AUV kinematic motion can be described with the Dubins
vehicle model [106]. In particular, by using this model, the shortest path
between two configurations consists of circular arcs of maximum curvature
and straight line segments. Thus, the shortest path can be obtained by com-
bining three possible maneuvers: straight (S), right turn (R), and left turn
(L). Thus, the shortest path will always be at least one of the six combi-
nations: RSR, RSL, LSR, LSL, RLR, LRL. The Dubins vehicle model is of
particular interest in planning tasks since it can be used for both generating
new configurations, which in RRT-based solutions corresponds to expanding
the tree, and works as a steering function for the rewiring routine, see [58]
and [77] for more details.

In conclusion, as a consequence of these considerations, for planning fea-
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sible paths for the AUV, its motion was modeled by using the Dubins vehicle
model. Finally, it is worth highlighting that the AUV model selection has by
no means been influenced by the considerations and assumptions regarding
the sea bottom profile discussed in Section 3.1.

3.4.2 View planning and information gain metrics

In this work, the AUV is supposed to perform a constant altitude mission;
thus, the coverage algorithm was designed to compute the next waypoint
constituted of a 2D position (xN , yN) in the NED frame and orientation (ψ),
which represents the vehicle heading angle. From these considerations, a
robot viewpoint (or configuration) is defined as ξ ∈ Ξ, with ξ = (xN , yN , ψ),
and the considered problem is the following: computing online the best path
according to a cost function, that let the AUV map the workspace W , that
is initially unknown Wuk = W , and classify it as free Wfree or occupied
Wobs. The occupancy map paradigm, described in Section 3.3, is employed
to determine the NBV and monitor the coverage progresses. Consequently,
the coverage algorithm solves the problem of computing the waypoints that
allow to estimate m =

∑
imi.

Using the occupancy mapping strategy (Section 3.3), the visibility of a
viewpoint ξ is defined as the set of visible voxels that are computed through
a ray casting process. The sensor characteristics define the set of rays Rξ for
every viewpoint; each ray r ends when it reaches the maximum sensor range
or the limit of the map or it hits an occupied voxel. Traversing the map, a
ray visits a set of voxels Xr. The obtainable Information Gain (IG) from a
viewpoint, denoted as Gξ is estimated as [62]:

Gξ =
∑
∀r∈Rξ

∑
∀x∈Xr

I(x) , (3.20)

where I(x) denotes the Volumetric Information (VI) contained in the voxel
x.

In this paper, a comparison of information gain metrics for seabed inspec-
tions is reported. In particular, two VI formulations were considered: the
first one, denoted as volume-based VI in the following, considers the volume
of unmapped cells, while the second one, called entropy-based VI, uses the
concept of entropy to take into account the map uncertainty. Similarly to
[65], when exploiting the volume-based VI, viewpoints’ IG is computed by
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considering only the volume of unmapped cells, yielding to:

Iv(x) =

{
µ(x) if x ∈ Wuk

0 otherwise ,
(3.21)

where µ(x) denotes the volume of the voxel. OctoMap was used to develop
the FLS-based 3D probabilistic occupancy mapping solution described in
[9] and utilized in this work. Since it employs the non-informative prior
assumption (Section 3.3), the VI can be written as:

Iv(x) =

{
µ(x) if 0.5− δ ≤ Po(x) ≤ 0.5 + δ
0 otherwise ,

(3.22)

where Po(x) is the voxel probability of being occupied, and δ is a parameter
that depends on the mapping sensor accuracy.

Moreover, the occupancy grid mapping paradigm allows considering the
map uncertainty easily. Assumed P o(x) = 1 − Po(x), an entropy-based VI
formulation can be defined:

Ie(x) = −Po(x)ln(Po(x))− P o(x)ln(P o(x)) . (3.23)

Utilizing this VI formulation, the highest uncertainty matches unknown vox-
els, that have the occupancy probability of Po(x) = 0.5.



Chapter 4

CNN-based Automatic Target
Recognition

This chapter reports the development of the proposed methodology for mak-
ing FeelHippo AUV able to effectively detecting OPIs autonomously during
an inspection survey. Firstly, the speed/accuracy trade-off of modern CNN
image-based object detectors is presented, and important desired character-
istics of the developed ATR methodology for FLS imagery are discussed. On
all these considerations, which are of utmost importance for selecting a proper
architecture, the developed CNN-based ATR solution that is then presented
is based. Then, the networks training and validation details are discussed,
and their performance is evaluated. Finally, the experimental results of the
conducted real sea trials are reported.

4.1 Proposed ATR methodology

This Section investigates the development of a DL ATR strategy for FLS
imagery that can run real-time on compact AUVs with limited hardware
capabilities. In particular, since the effectiveness of image-based state-of-
the-art CNNs on FLS images was shown in previous works [43] [25], this
research focuses on a practical application of such CNN techniques. Besides,
even though gathering a large and heterogeneous underwater dataset is time
and cost consuming, the aforementioned state-of-the-art DNNs allow the use
of transfer learning approaches that speed up the ATR development by fine-
tuning the final network layers while the backbone is not modified. That

43
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is, the use of network weights pre-trained on a common dataset, such as the
COCO dataset, even if it contains images that do not present any similarities
with the considered FLS images, is investigated. As a result, a network model
does not require thousands of images to be trained on a custom dataset, and
the learning process is speeded up and simplified.

Therefore, the desired characteristics and the selection criteria for the
CNN model are firstly discussed. Then, the framework used for training the
selected network and the developed ATR methodology for using the CNN
onboard on FeelHippo AUV is presented.

4.1.1 Model selection

As far as the speed/accuracy trade-off of CNN detector is concerned, an ex-
haustive investigation was presented in [48]. In particular, the authors high-
lighted that some modern state-of-the-art object detectors follow very similar
designs; that is, they are composed of a backbone that extracts the features
and final layers in charge of localizing and classifying the objects. Thus,
such structure makes these CNNs modular, which means that, as proposed
in [48], they can be considered as meta-architectures where different feature
extractors can be exploited. Since the accuracy, measured as the mAP, is
not the only parameter that shall be considered when developing an ATR so-
lution for real deployments, the study proposed in [48] helps in selecting and
testing only the most promising CNN architectures. The authors analyzed
three meta-architectures (i.e., SSD, Faster R-CNN, and Region-based Fully
Convolutional Network (R-FCN) [107]) with six feature extractors (see Fig.
4.1, coming from [48]), and compared their performance in terms of accuracy,
speed, and memory demand. The speed/accuracy trade-off is summarized in
Fig. 4.2, where the dotted gray line represents the optimality frontier, i.e.,
where the best detectors can be found. According to Fig. 4.2, taken again
from [48], the meta-architecture performance is strongly connected with the
choice of the backbone, but in general terms, the Faster R-CNN is more ac-
curate, while the SSD and R-FCN are faster. Nevertheless, it is worth noting
that by limiting the number of regions proposed, the Faster R-CNN can be
fastened.

When it comes to select the most appropriate network for the recognizing
objects in FLS imagery onboard real-time, some relevant points must be
considered. Firstly, the acoustic frames are provided by a Teledyne BlueView
M900 2D FLS that acquired at a low frame rate (3 Hz). Therefore, an
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Figure 4.1: The properties of the feature extractors used in [48] for the
speed/accuracy investigation. Top-1 accuracy is the classification accuracy
metric used on ImageNet [108].

Figure 4.2: The speed/accuracy trade-off reported in [48].

extreme inference rate, such as YOLO, is not required. Moreover, the ATR
solution has to provide additional geolocalization of possible seabed objects;
within this context, since the target 3D positions are estimated from the 2D
DNN localization in the FLS frame, minor errors in the bounding boxes at
the pixel level could lead to large errors in meters in the 3D localization.
Therefore, the network accuracy is of utmost importance and shall favor the
inference speed as the model selection parameter. However, since the goal of
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this work was the development of a CNN-based ATR methodology for real-
time onboard applications, the inference speed cannot be ignored; indeed,
the ATR solution must analyze 3 fps, i.e., all the frames gathered by the
Teledyne BlueView M900 2D FLS.

As a consequence of these statements, the Faster R-CNN represents a
functional selection for the developed ATR solution as it is one of the most
accurate CNN architectures and can meet real-time requirements. In detail,
according to the optimilaity frontier of Fig. 4.2, the Faster R-CNN based
on ResNet and a limit of 50 proposal was selected for the investigations
conducted in this work. Moreover, since this research activity proposes a
preliminary investigation of an ATR solution for self-contained onboard ap-
plications, the required computational resources are of utmost importance,
and the efficient SSD with Mobilenet V2, designed for mobile and embedded
devices, has also been tested. In fact, as shown in Fig. 4.2, SSD Mobilenet
network is the fastest and computationally lightest but yet accurate solution.

Therefore, in conclusion, the following models were considered for devel-
oping the here proposed CNN-based ATR methodology for FLS images:

• Faster R-CNN with ResNet, 50 proposals;

• SSD with Mobilenet V2.

4.1.2 ATR Framework

To exploit the selected CNN models, they must be trained on a custom
dataset, and they could be deployed on the dedicated AUV hardware. To
this end, the open-source ML library TensorFlow [109], which has become the
standard for AI applications and has been chosen by several top-level com-
panies, has been selected. TensorFlow offers multiple levels of abstraction to
easily and rapidly develop ML solutions. It provides a high-level Application
Programming Interface (API) that allows to build and train custom mod-
els. Besides, a wide variety of state-of-the-art models and training dataset
repositories are available. Hence, exploiting TensorFlow, it is possible to ei-
ther train state-of-the-art NN models or design custom solutions by plugging
together building blocks, which are network layers. Besides, TensorFlow is
supported by the NVIDIA hardware, the golden standard for AI and DL
developments, for both training and real deployments.
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Deployment on FeelHippo AUV

As regards the real deployment of the CNN architectures, a custom ATR
software was developed. It uses the TensorFlow libraries to handle the trained
models, which were integrated within the ROS framework [35] to manage the
input and output data.

When a new FLS image is acquired, it is analyzed by the ATR software
by means of the trained CNN model. As described in Section 3.2.2, the
network outputs the predicted object classes, with the computed confidence
level and the object bounding boxes. Then, the bounding boxes are used to
localize the detected objects in the NED frame, as explained in Section 3.1,
by using the FLS mounting pose with respect to the vehicle and the AUV
estimated pose. To run the developed CNN-based ATR solution, an NVIDIA
Jetson Nano [110] was mounted on FeelHippo AUV (see Section 1.2). The
NVIDIA Jetson Nano, depicted in Fig. 4.3, is a platform for embedded AI
computing that belongs to the NVIDIA Jetson series, specifically designed to
meet the power consumption and limited space requirements of autonomous
machines. It acted as a dedicated payload computer that was connected to
the FeelHippo AUV main computer, in charge of running onboard processing
navigation and control algorithms and supervising the state of the vehicle,
through an Ethernet cable. In particular, the NVIDIA Jetson Nano is the
smallest hardware of the Jeston series and was favoured since it could fit into
the limited available space on FeelHippo AUV.

Figure 4.3: The NVIDIA Jetson Nano mounted on FeelHippo AUV for run-
ning the developed CNN-based ATR algorithm.
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4.2 Training and validation

4.2.1 Training

Since in this work the focus has shifted on fine-tuning pre-trained networks,
the CNN model training procedure can be performed on a laptop. In detail,
the selected SSD and Faster R-CNN models were trained on a laptop fitted
with 16GB RAM, an Intel Core i7-8750H processor, and an Nvidia GeForce
GTX 1050 Ti card.

For what concerns the training details, the methodology proposed by
the authors of the Faster R-CNN and SSD was followed. The SSD network
was trained using the optimizer RMSProp [97] and a batch size of 24. On
the other hand, the Faster R-CNN model was fine-tuned by using the SGD
optimizer with momentum [96] with a batch size of 1. According to [44] and
[49] respectively, the learning rate schedules have been defined explicitly for
each CNN architecture to accomplish optimal inference outcomes and a fast
convergence timing.

Once the training has been performed, the CNN models can be saved;
then, they can be used in the ATR software. A trained model consists of
a configuration file describing the network architecture, and weights files,
binary files that include the trained network weights. Following this lead, a
general-purpose ATR software can be developed; thus, the target objects are
defined by the selected trained network.

4.2.2 Dataset gathering

The training dataset was gathered with FeelHippo AUV during on-field trials,
performed in May 2019, at the CSSN basin, La Spezia, Italy. The proposed
ATR solution was utilized to detect OPIs on the seabed; as depicted in Fig.
4.4, target OPIs have different shapes and dimensions, and their rendering
on FLS images is strictly related to the sonar viewpoint.

Among the recorded FLS images, 175 frames, in a native resolution of 894
x 477 pixels and containing one or more detectable targets, had been selected.
In particular, it is worth noting that this procedure has been fulfilled in the
view of collecting a diversified, heterogeneous dataset. Consequently, images
with different informative regions have been taken into account. Although
it may be considered an evident and negligible pattern, this design guideline
plays a fundamental role in providing the CNN architecture with an optimal
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generalization capability. Furthermore, coherently with the aim of building a
robust dataset, data augmentation options of the TensorFlow framework were
used to expand the dataset and make it more heterogeneous. In particular,
the dataset was augmented by randomly horizontally flipping the images and
randomly varying their brightness.

In conclusion, the Faster R-CNN and the SSD models were trained using
the TensorFlow framework with this dataset as explained in Section 4.1. The
training was stopped for both the networks at about 10k steps, where the
validation loss started to increase consistently (Section 3.2).

Figure 4.4: Examples of FLS images used in the training dataset. The
selected CNN architectures were trained to detect and localize the depicted
OPIs . It is worth noting that, in order to get a heterogeneous ATR solution,
the OPI forms and sizes vary while affecting their rendering, which also
depends on the FLS viewpoint.

4.2.3 Validation and performance assessment

To assess the performance of the trained networks, a validation dataset was
made. In particular, the validation dataset was constituted of 200 FLS images
acquired in October 2019 at the CSSN basin. During the campaign, multiple
surveys with FeelHippo AUV flying at different altitudes from the seabed
were conducted in order to collect a diversified set of images. Thus, the
validation dataset was constituted of images depicting zero, one or more
detectable targets, enlightened from several sonar viewpoints.

During the training, the CNN models were evaluated by using the valida-
tion dataset and the TensorFlow framework. The accuracy of the networks
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was computed through the mAP metric, and the results are reported in
Fig. 4.5. Fig. 4.5 depicts the mAP considering the IoU thresholds of 0.5
(bottom-left) and 0.75 (bottom-right). It also shows the mAP averaged over
IOU thresholds from 0.5 to 0.95 with a step size of 0.05, which is the metric
officially used in the COCO dataset.

As expected, according to [48] (see Section 4.1), the Faster R-CNN model
resulted as more accurate than the SSD. The maximum mAP value reached
by the Faster R-CNN is 0.451, whereas the SSD could not overcome 0.345.
In fact, as shown in Fig. 4.6 that reports two examples of the detections
performed during the evaluation procedure, the predicted bounding boxes
(represented in green) of the Faster R-CNN, on the left of the picture, are
closer to the provided ground-truths (represented in red) than the SSD model,
whose predictions are reported on the right.

Figure 4.5: The mAP at different IoU thresholds computed during the train-
ing of the Faster R-CNN, in blue, and the SSD, in orange. The mAP was
evaluated by using the validation dataset.

Nevertheless, since this research work focuses on developing a self-contained
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Figure 4.6: Two examples of the detections performed by the trained CNN
models during the evaluation. On the left, the predictions of the Faster R-
CNN, whereas, on the right, the detections of the SSD model. The green
rectangles represent the computed bounding boxes. The provided ground-
truths are reported in red.

ATR methodology capable of running on compact AUVs, the mAP is not
the only parameter that shall be taken into account. The inference speed
is of utmost importance to establish whether the ATR strategy can analyze
all the acquired images in real-time, and the available hardware plays a key
role. As described in Section 4.1, FeelHippo AUV acquires 3 FLS images per
second by means of a Teledyne BlueView M900 2D FLS. Thus, CNN-based
ATR must achieve such a working rate, which defines a real-time require-
ment. Therefore, the inference speed, measured as fps, of the developed
ATR algorithm by utilizing both the trained CNNs was assessed. Firstly, by
using pre-recorded data, the inference speed of the ATR algorithm was eval-
uated with both the CNNs on the laptop used for training, that is fitted with
16GB RAM, an Intel Core i7-8750H processor, and an Nvidia GeForceGTX
1050 Ti card. As reported in Table 4.1, with both the Faster R-CNN and
the SSD, the ATR strategy achieved the online recognition requirements by
analyzing more than 3 fps. Then, the inference speed was evaluated offline
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on FeelHippo AUV hardware to verify whether the developed solution could
be used on hardware with limited computational resources, as the NVIDIA
Jetson Nano. To this end, both the aforementioned ATR strategies were run
on the NVIDIA Jetson Nano mounted on FeelHippo AUV, while its main
computer was used to stream the pre-recorded data. This setup allowed to
simulate real experiment working conditions. The SSD Mobilenet network,
designed for mobile and embedded devices, managed to analyze up to 8 fps.
On the other hand, the more accurate Faster R-CNN with ResNet has a
higher computational load and resulted slower than the SSD model, reaching
just 0.95-1 fps. Since, as explained above, the acoustic frames were captured
by a Teledyne Blueview M900 2D FLS at 3 Hz, the Faster R-CNN network
could not fulfill the online recognition requirements. Given that the OPIs
rendering on FLS images strictly depends on the insonification position and
angle, to the best of the author’s knowledge, it is of utmost importance to
analyze all the collected images to avoid false negatives. As a consequence of
this analysis, only the SSD Mobilenet network, which can run at a satisfying
frame rate, was considered for the sea trials described in the next Section.

Table 4.1: ATR performance evaluation

Inference speed
Laptop Dell G5 FeelHippo AUV

CNN Model mAP NVIDIA 1050 Ti (4 Gb GPU) NVIDIA Jetson Nano
Faster R-CNN ResNet 0.451 8–10 fps 0.95-1.0 fps

SSD Mobilenet 0.345 25-30 fps 6-8 fps

4.3 Experimental results

To validate the developed ATR methodology, an experimental campaign was
conducted in October 2020 at the CSSN, La Spezia, Italy. According to the
performance evaluation reported in the previous Section, since the Faster
R-CNN could not reach a satisfying frame rate in the self-contained ATR
solution, only the trained SSD Mobilenet network was tested during the ex-
perimental campaign. It is worth highlighting that the network was trained
with the dataset acquired in May 2019, and to provide the whole experiment
with an improved generalizing context, when the experimental campaign was
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conducted in October 2020, the OPIs were replaced and relocated. Since
the testing site was an unknown environment and the OPIs ground-truth
localization was not provided, the accuracy of the ATR methodology was
assessed. To this end, an OPI (resembling a truncated cone) was deployed in
a known position in the CSSN basin. FeelHippo AUV was used to enlighten
the OPI with the Teledyne Blueview M900 2D FLS, and the ATR solution
was run with the localization technique detailed in Section 3.2. In partic-
ular, the OPI position was estimated by using both the FLS standard 2D
approximation (Eq. 3.4) and the 3D version of Eq. 3.6, which makes use of
additional assumptions that hold for the testing site (see Section 3.2). While
with the former approach, the ATR solution achieved a localization error of
about 2.5 m (computed considering a single view), the latter resulted more
accurate with an error of less than 2 m (about 1.3 m). It is worth noting
that considering the underwater navigation system accuracy (in position and
orientation, in particular, the heading angle), localization errors below 2 m
can be considered accurate.

Thus, FeelHippo AUV was used to inspect the unknown region with the
ATR strategy. It conducted several autonomous surveys following lawn-
mower paths at constant altitudes. An example is shown in Fig. 4.7. As
shown in Fig. 4.8, during the surveys, the ATR solution with the SSD Mo-
bilenet network, which was running on the NVIDIA Jetson nano, managed
to detect and localize several OPIs of various forms and sizes online. Turning
to quantitative analysis, during the survey, the ATR methodology provided
61 detections. Afterward, a human operator analyzed the ATR outputs in a
post-processing stage that allowed to classify the detections as true positives
and false positives. In detail, 59 detections were true positives, while only
two images were misidentified and were classified by the operator as false
positives. Besides, the human operator, by analyzing the ATR detections,
managed to identify 9 different OPIs. However, as stated above, since a
precise OPI map of the underwater scenario has not been provided, a strict
quantitative evaluation of the OPI localization metrics cannot be reported.
Moreover, the actual OPIs number was not available, and thus it is not pos-
sible to verify whether all OPIs were detected or not.

This experimental campaign demonstrated that thanks to the developed
ATR methodology, FeelHippo AUV is able to identify and localize OPIs
online onboard during the survey. That is the first fundamental step for
making a compact AUV, such as FeelHippo AUV, able to effectively un-
derstanding and gathering knowledge of the environment and thus, making
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it fully autonomous and able to accomplish interactive tasks. Finally, it is
worth mentioning that although the OPIs utilized in the testing site for the
experimental campaign were replaced and relocated with respect to the ones
used for training the ATR network, objects of comparable size but different
shapes have been employed. For the sake of clarity, the here presented ATR
solution was utilized for detecting and localizing possible OPIs in FLS im-
ages, i.e., for determining the presence and the position of the objects, and
not for classifying the different object types.

Figure 4.7: One of the lawnmower surveys performed by FeelHippo AUV
during the experimental campaign in October 2020 at the CSSN, La Spezia,
Italy. In a red line, the estimated FeelHippo AUV traveled path.
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Figure 4.8: Examples of the online detected and localized OPIs by means of
the developed self-contained ATR with the SSD network during the experi-
mental campaign conducted in October 2020 at the CSSN, La Spezia, Italy.
In purple the localization outcomes in a Latitude-Longitude-Depth represen-
tation whilst in green the bounding box traced around the OPIs as well as
the class label and the detection probability.

4.4 Main contribution

This Chapter presented the developed CNN-based ATR architecture for com-
pact AUVs. The solution was designed to make a small and compact AUV,
such as FeelHippo AUV, able to effectively detecting OPIs autonomously in
FLS images during an inspection survey.

Firstly, important desired characteristics that have driven the develop-
ment of the ATR methodology were presented, and the speed/accuracy trade-
off of modern CNN image-based object detectors was discussed. Such aspects
are of utmost importance for selecting the proper CNN architecture and
defining the requirements of an ATR solution. As a consequence of these
considerations, two state-of-the-art ATR architectures were selected for de-
tecting OPIs in FLS images: the Faster R-CNN with ResNEt and the SSD
with Mobilenet. Thus, the developed architecture for training and deploying
a proper network was detailed.

Regarding the training process, a dataset constituted of 175 raw FLS im-
ages was collected in May 2019 at the CSSN basin in La Spezia, Italy. To
validate and assess the performance of the trained networks, a new valida-
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tion dataset was constituted of 200 FLS images acquired in October 2019
on the same site. Thus, during the training, the CNN models were evalu-
ated. The accuracy of the networks was computed through the mAP metric,
while the inference speed was evaluated by testing the trained networks on
an NVIDIA Jetson Nano mounted on FeelHippo AUV. The Faster R-CNN
model resulted more accurate than the SSD. However, only by using the
SSD network, the developed ATR solution managed to achieve the online
recognition requirements, i.e., analyzing more than 3 fps.

Finally, in October 2020, the proposed ATR methodology was validated
in real tests at sea conducted at the CSSN basin, La Spezia, Italy. To provide
the whole experiment with an improved generalizing context, when the exper-
imental campaign was conducted, the OPIs were replaced and relocated. It is
worth highlighting that since the Faster R-CNN could not reach a satisfying
frame rate in the self-contained ATR solution, only the trained SSD Mo-
bilenet network was tested at field. Thanks to the developed ATR method-
ology, FeelHippo AUV was able to identify and localize online onboard during
the survey the present OPIs. In conclusion, the achieved results have high-
lighted the capability of the proposed architecture to autonomously inspect
an unknown underwater scenario by effectively detect and localize targets of
potential interest.



Chapter 5

Sensor-driven RRT-based
receding-horizon coverage
approach for autonomous
inspections

The developed sensor-driven RHCA for autonomous inspections is described
in this section. Firstly, the framework structure and implementation details
are reported. Then, the developed random tree-based coverage algorithm is
described and analyzed. The effect of the different VI formulations described
in Section 3.4.2 is investigated through a theoretical analysis which is then
validated by the obtained results. In detail, simulations and experimental
campaigns were conducted to validate and assess the performance of the de-
veloped coverage strategy using different VI formulations. The main findings
reported in this Chapter were published in [111].

5.1 Sensor-driven receding-horizon framework

The here proposed coverage solution, depicted in Fig.5.1, is composed of four
elements: the Mission Manager, the Mapping module, the High-level planner,
and the Motion planner. These modules run onboard on the AUV and were
integrated within the ROS framework [35]. Additionally, a Graphical User
Interface (GUI) that runs on a laptop computer was developed. It enables
an operator or a science user to interact with the AUV. As shown in Fig.5.2,

57



58 CHAPTER 5. SENSOR-DRIVEN RRT-BASED RHCA

the GUI allows to easily define the inspection area, which is sent to the AUV
through a radio or WiFi link.

Figure 5.1: The developed inspections framework. In the context of this
research, the framework was used to perform FLS seabed inspections. The
operator can define the inspection area through a dedicated GUI. The Mis-
sion Manager works as an interface with the GUI, sets the workspace limits,
and monitors the mission progresses. The Mapping module creates and up-
dates the map using an exteroceptive sensor. The Mission Manager triggers
the High-level planner to plan the NBV to accomplish the task. Then, the se-
lected NBV is set as the goal configuration for the motion planner, in charge
of computing a feasible path for the AUV. Finally, the GNC block includes
the Guidance, Navigation, and Control strategies.

The Mission Manager uses the selected inspection area to limit the workspace
of other modules. It triggers the High-level planner to compute the NBV
when it receives the start command from the GUI, or the vehicle has reached
the previous viewpoint. It also monitors the coverage progresses.

The Mapping module creates and updates an occupancy map. It takes
as input the AUV estimated position and orientation and the gathered FLS
images. A detailed description of the exploited 3D probabilistic occupancy
mapping system for FLS reconstructions can be found in [9]. Briefly, when
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Figure 5.2: The developed GUI used for selecting the inspection area, limited
by the four green points and the black dashed lines.

a new image is acquired, the module utilizes a front-end based on a seg-
mentation techniques on acoustic images to generate a 3D point cloud of
the seafloor and protruding visible objects, overcoming the information loss
that occurs during the 3D to 2D image projection. Then, in the back-end
the occupancy map is updated. It is worth highlighting that this mapping
module was developed to provide feedback to the planning module on the
area covered by the utilized imaging SONAR, i.e., the enlightened seabed,
and not for creating an accurate reconstruction.

The High-level planner uses the view planning algorithm detailed in Sec-
tion 5.2. Starting from the AUV position, the view planner builds a random
tree to determine viewpoint candidates. For each viewpoint candidate, its
visibility is evaluated according to the updated map with a ray casting strat-
egy. To this end, the planner uses a ROS service to request the Mapping
module the viewpoint visibility, which replies with the list of visible voxels
and their occupancy probability. Thus, the expected information gain along
the branch can be evaluated by calculating the voxels discovered along a tree
branch and using one of the metrics proposed in Section 3.4.2. The algorithm
selects the branch that is expected to collect the highest gain. The first node
is extracted as the NBV, while the rest of the branch is stored, and it is used
to initialize the tree when the Mission Manager requests a new NBV.

The computed NBV becomes the goal configuration of the Motion plan-
ner. In order to realize a multi-purpose framework that could be used for
different tasks, the role of this module is twofold. In the context of this
research, it is used to generate the Dubins path that connects the AUV po-
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Figure 5.3: A visualization of the ROS computation graph of the developed
inspection framework. Oval frames represent the ROS nodes, while squared
frames depict the topics, and the continuous one-way arrows visualize the
flow of information in the topics. Finally, the bidirectional dashed arrows
represent the implemented ROS services.

sition to the target NBV. In addition, it could be employed to calculate the
best feasible path according to the vehicle motion constraints and a cost
function. For instance, in future developments, a planning algorithm to find
a path that minimizes the expected localization and mapping uncertainty as
proposed in [64] could be exploited.

Finally, the GNC module includes the guidance, navigation, and control
strategies that the AUV uses to estimate its position and track the planned
path. This module is reported for showing how the developed framework is
connected to the software architecture of an AUV, but it is not in the scope
of this paper. Further information regarding the exploited GNC solutions
used by FeelHippo AUV, selected as the testing platform, can be found in
[112] and [87]. For the sake of completeness, the ROS computation graph of
the developed inspection framework is reported in Fig.5.3.

This simple structure gives the High-level planner continuous feedback of
the mapped environment and enables the use of a receding-horizon approach
that allows using this solution in unknown environments and helps to reduce
the coverage errors. Therefore, it realizes a receding-horizon sampling-based
sensor-driven view planning strategy for autonomous inspections.
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5.2 RRT-based view planning

As described in Section 5.1, the High-level planning module computes on-
line the path to accomplish the coverage survey. In the framework proposed
here, whenever the Mission Manager requests to plan the next waypoint, the
High-level planner computes the NBV resorting to a RRT inspired coverage
algorithm. The developed algorithm, summarized in Algorithm 1, takes as
input the AUV actual configuration. A new tree T containing the AUV con-
figuration is initialized (line 3). If the algorithm had already been activated,
the remainder of the previous call solution, i.e., the remainder of the best
branch, is added to the tree, and its expected gain is evaluated according to
the new updated map (lines 5-7). Then, until the terminal condition, which
is the maximum planning time tmax is reached, the algorithm expands the
tree T : it randomly samples a new configuration ξs in the workspace with a
uniform distribution, the nearest node in the tree is retrieved ξn, and a new
configuration ξnew is computed by propagating ξn along the direction to ξs
with a random step (lines 8-10). If the generated new node ξnew is inside the
inspection area and the motion ξn → ξnew is valid (line 11), ξnew is added
to the tree T (line 12). The algorithm requests to the Mapping module the
visibility of ξnew, which responds with the observable voxels computed by
using a ray casting procedure (line 13). It is worth noting that the visibility
of a viewpoint does not depend on the parent of the node; only its gain is af-
fected by the choice of the parent. In fact, to correctly evaluate the expected
viewpoint gain, the voxels already seen along the branch shall not be con-
sidered. This simple consideration constitutes the rewiring strategy. Once
the viewpoint visibility has been computed, the algorithm looks for the best
parent, i.e., the parent that maximizes the gain, among the nearest nodes
in the tree. Therefore, the list of the k-nearest nodes of ξnew is retrieved
(line 14), and for each node in the list ξp, if the motion ξp → ξnew is valid
(line 16), the branch gain assuming ξp as the parent is computed (line 17).
To calculate the branch gain, the viewpoint IG of Eq. 3.20 was extended to
define the Branch Information Gain (BIG) GB as follows:

GB =
∑

∀x∈XB

I(x) , (5.1)

where XB denotes the observable voxels along the branch B, and I(x) is the
voxel VI, which is calculated according to Eq.3.22 or Eq.3.23.
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Then, the branch gain is computed combining the BIG with penalizing
factors. Since this work focuses on FLS seabed inspections, long and curvy
paths were penalized:

GB = GBe
λψ(∆ψ(ξ0,ξk))eλd(distance(ξ0,ξk)) , (5.2)

where λψ ∈ R penalizes curvy paths by considering the heading changes, and
λd ∈ R penalizes long paths.

Finally, the branch that is expected to collect the highest information
gain is selected as the solution (lines 18-21) and stored to initialize the next
call (line 22). The first node becomes the NBV that is sent to the Motion
planner (line 23).

The presented coverage algorithm was developed using the Open Mo-
tion Planning Library (OMPL) [113], and was implemented using the C++
programming language and integrated within the ROS framework.
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Algorithm 1 Coverage planner algorithm

(1) Input: AUV configuration ξt
(2) Output: Next best view configuration ξt+1

Iteration:
(3) Initialize a new tree T with ξ0 = ξt

if first call then
(4) g∗ ← 0

else
(5) addBranch(T , Bt−1)
(6) g∗ ← updateBranchGain(Bt−1)
(7) ξ∗ ← getPreviousSolution()

end
while time < timemax do

(8) ξs ← sampleNewConfiguration()
(9) ξn ← getNearest(T , ξs )

(10) ξnew ← randomPropagation(ξs, ξn )
(11) if (not isStateInArea(ξnew) or not isMotionValid(ξnew, ξn)) then

continue
end

(12) addNode( T, ξnew)
(13) callVisibilityService(ξnew)
(14) Vparents ← getNeighbors(T ,ξnew)
(15) for ξp : Vparents do
(16) if (not isMotionValid(ξnew, ξp)) then

continue
end

(17) g ← computeBranchGain(ξp , ξnew)
(18) if isGainBetterThan(g, g∗) then
(19) setParent(ξnew, ξp )
(20) g∗ ←g
(21) ξ∗ ←ξnew

end

end

end
(22) Save best branch Bt
(23) ξt+1 ← getNBV(Bt )
(24) Delete T

Return: ξt+1
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5.3 Influence of the VI formulations

A theoretical analysis of the proposed RRT-based receding-horizon coverage
solution highlights essential properties. Generally speaking, as in [65] and
[5], each time a new viewpoint is requested, the High-level planner tries
to solve an optimization problem. Since the environment is unknown, the
best approach is to compute the next moves according to the available data,
and then, when new measurements have been acquired, repeat the process.
Considering the presented RRT-based solution, the receding-horizon problem
can be formulated as:

maxB GB
s.t. B = {ξi}Npi=0

ξi = f(ξi−1)
ξ ∈ W ,

(5.3)

where B is a branch that is composed of a sequence of random length Np of
configurations (viewpoints) {ξi}, and ξ0 denotes the AUV actual configura-
tion. The function f is the relation between two consecutive vehicle configu-
rations ξi and ξi−1, that, in the context of this research, was represented by
the Dubin kinematic constraints.

The problem cannot be solved using deterministic optimization algo-
rithms. In fact, a deterministic relation between the gain function (BIG)
and the workspace W , where the configurations {ξi} are sampled, i.e., the
inspected area, is not available (the environment is not known a priori). De
facto, the only way to know the BIG associated with a configuration is to test
the configuration, i.e., compute the visible voxels given the available map;
thus, the gain shall be considered a ”black-box” function. Stochastic opti-
mization strategies were developed to handle such problems [114]. Random
search algorithms use a probabilistic approach by repeatedly sampling the
feasible region, typically according to a uniform sampling distribution. They
are proven to converge probabilistically to the global optimum with proba-
bility one, but the expected number of cost function evaluations grows ex-
ponentially with the feasible space dimension [115]. Thus, they were applied
to many ”black-box” global optimization problems to rapidly find a sub-
optimal solution. Exploiting random trees to solve the optimization problem
in Eq.5.3, as in this research or in [65], correspond to use a Random Search
(RS) strategy [116]: RRT algorithms compute random trees by randomly
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sampling new configurations typically with a uniform distribution over the
workspace, which leads to a Voronoi-biased expansion strategy to explore the
workspace efficiently. Hence, the theory of the RS algorithm can be used to
analyze the coverage/exploration problem. Firstly, as explained above, the
gain function is a ”black-box” whose value cannot be foretold. However, it
is worth to note that it depends on two factors: the number of visible voxels
and the IG formulation used. Regarding the former, the number of visible
voxels along a branch B depends on the configurations that constitute the
branch, which are randomly sampled, and on the sensor characteristics (FoV
and range). The IG depends on the occupancy probability of visible vox-
els and the exploited VI formulation, such as the volume and entropy-based
proposed in Section 3.4.2. Therefore, given a branch B, i.e., a sequence of
configurations (viewpoints), and the sensor used to accomplish the task, the
set of visible voxels is defined, and the gain function of the optimization
problem depends only on the VI formulation.

Since the high-level planner has a limited computing time to solve the
optimization problem, according to the RS theory, it looks for a sub-optimal
solution. Defined the optimum branch B⋆ at each call of the algorithm and
its gain g⋆ as:

B⋆ = argmaxB GB
G⋆ = GB⋆ ,

(5.4)

the algorithm tries to compute a sub-optimal solution with a gain G⋆ − ϵ.
According to [116], the probability of a RS algorithm to generate a sample
with gain better than a value c ∈ R can be defined:

p(c) = ν(S(c))/ν(W) , (5.5)

where ν(·) denotes the Lebesgue measure, W is the workspace (where the
samples are generated), and S(c) is the level set:

S(c) = {B = {ξ} : ξ ∈ W and GB ≥ c} . (5.6)

Therefore, at each call, there is a probability

p(G⋆ − ϵ) = ν(S(G⋆ − ϵ))/ν(W) , (5.7)

of finding a sub-optimal solution. Finally, it is possible to analyze the effect of
the VI on the high-level planner. Fig.5.4 shows the VI formulations (Section
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3.4.2) normalized with respect to the their maximum value. As discussed
above, given a set of visible voxels, the gain function of the optimization
problem in Eq.5.3 depends only on the voxels’ occupancy probability and the
VI used. Thus, as shown in Fig.5.4, according to Eq.5.7, since the entropy
VI formulation has a larger sub-optimal level set, an algorithm using such VI
formulation is more likely to find a sub-optimal solution than by exploiting
the volume-based.

From the presented analysis, some important considerations can be drawn.
The exploited VI formulation impacts the performance of the here proposed
solution. A receding-horizon strategy is used in this work; thus, the last
call’s best solution is kept to initialize the algorithm. However, this solu-
tion was the best according to the information available in the previous step.
The VI based on the entropy enhances the algorithm probability of finding
a sub-optimal solution within the given computation time, meaning that the
algorithm is more likely to compute a new best solution. In conclusion, the
entropy VI formulation leads to a more well-posed optimization problem and
could enhance the performance of the coverage algorithm. This analysis is
validated with the results presented in Section 5.4 and Section 5.5, where a
comparison of the two VI formulations is proposed.

5.4 Validation and quantitative analysis

The proposed RHCA has firstly been validated with an extensive comparison
of realistic simulations made by means of the UUV Simulator. FeelHippo
AUV, detailed in Section 1.2, was selected as the testing platform. Since
conducting experimental sea trials is time and cost expansive, this validation
step made through realistic simulations, has been of utmost importance. In
fact, the results reported in this Section aimed to validate and tune the
developed coverage framework and the proposed analysis in light of the sea
trials described in the next Section 5.5. In fact, during the experimental
campaign, the coverage solution was tested with the parameters found in the
here reported validation process.

The realistic simulations were based on the dynamic model of FeelHippo
AUV that was implemented in the UUV Simulator. Coverage surveys at a
constant altitude of 2 meters from the seabed to inspect an area of 36x34
m were simulated. To make these simulations as realistic as possible, the
BlueViewM900 2D FLS, which is mounted on FeelHippo AUV, was simulated
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Figure 5.4: Comparison of the VI formulations normalized with respect to
their maximum value. Given a sub-optimal value (1− ε), depicted with the
continuous black line, the entropy-based VI formulation (blue dashed-dotted
line) has a larger sub-optimal level set than the volume-based formulation
(red dashed line).

through the UUV Simulator. The sensor has a horizontal FoV (hFOV) of
130◦ and a vertical FoV (vFOV) of 20◦ and the range was set to 10 m. The
FLS was mounted in front of the vehicle with a tilt angle of 30◦ w.r.t. the
horizontal plane. The Motion planner and High-level planner modules used
the Dubins curves with a turning radius of 3 m to model the AUV kinematics
constraints. Finally, the High-level planner maximum computing time was
set to 2 s.

Firstly, two lawnmower paths were designed, considering the character-
istics of the sensor (FoV and range) and the target area dimensions. In
particular, the lawnmower patterns were designed by two different operators
to ensure the coverage of the 90% of the inspected area with the AUV fly-
ing at a constant altitude of 2 meters from the seabed, equipped with the
considered FLS. As shown in Table 5.1, the length of the paths varies. The
coverage solution was validated by performing 10 simulations with and with-
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out the rewiring strategy for both the proposed VI formulations (a total of 40
runs were performed). For each simulation, the AUV position and heading
were randomly initialized. Since the developed coverage algorithm is based
on a probabilistic approach, Table 5.1 reports the path length mean and
standard deviation of the performed experiments. It is worth highlighting
that the developed RHCA does not make use of the inspection area shape;
thus, to the best of the author’s knowledge, the results reported here have
general validity. RHCA volume denotes the proposed receding-horizon cover-
age approach with the volume-based VI, while RHCA entropy stands for the
proposed solution using the VI formulation based on the entropy function.
When the rewiring strategy is used, the algorithm tests the closest k = 10
neighbor nodes. The rewiring procedure is computationally expensive; this
parameter was selected heuristically as a trade-off to let the algorithm evalu-
ate a sufficient number of possible parents and generate an adequate number
of samples during the given planning time.

Table 5.1: Outcomes of the coverage simulations

Coverage level 80% Coverage level 90%
Path length Path length Path length Path length

Method mean [m] standard deviation [m] mean [m] standard deviation [m]
Lawnmower 1 102.94 - 121.31 -
Lawnmower 2 87.76 - 106.47 -
RHCA volume 98.87 9.47 126.65 16.01
RHCA entropy 89.63 9.75 123.16 13.14

RHCA volume - rewiring 95.59 7.35 124.17 13.09
RHCA entropy - rewiring 96.13 4.44 123.21 12.35

Table 5.1 highlights the effectiveness of the here proposed coverage solu-
tion and points out some key aspects. The proposed RHCA solution is based
on a random optimization process that varies the performance in each trial.
As shown by the path length mean and standard deviation, the RHCA out-
performed the lawnmower paths in some trials, but the planned path is longer
in other experiments. However, lawnmower paths are usually developed by
skilled operators, taking into account both the environmental characteristics
and the robots’ payloads; the here proposed strategy could represent a so-
lution for science-users that do not require such field experts. Besides, the
classic surveys may require multiple attempts. In fact, the AUV acquires data
passively, without considering the quality and quantity of the gathered data.
As these simulations are concerned, they were conducted in a smooth sea
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bottom scenario without significant shadowing phenomena. By knowing the
geometric properties of the scene and the sensor operational settings in ad-
vance, the lawnmower patterns were easily designed. The perfect knowledge
of the environment allowed the lawnmower surveys to achieve the requested
coverage levels (without requiring multiple attempts) and outperform the
proposed RHCA. However, such conditions do not hold when exploring and
gathering data of new areas is demanded. In the rapidly changing underwater
environment, AUVs do not always deal with smooth bottom scenarios, and
no knowledge is available a priori to operators to design the missions. The
proposed strategy instead ensures an adequate coverage level of the inspec-
tion area by actively monitoring the gathering process. It permits to obtain
reasonable performance, close to the lawnmower missions, without knowing
the underwater scenario in advance. Moreover, the RHCA eliminates the
pre-mission time: the AUV is deployed, and the mission can start avoiding
an operator to design a suitable path that might take several minutes.

Deepening the analysis, the outcomes validate the theoretical investiga-
tion proposed in Section 5.3. The entropy-based VI formulation led to shorter
paths for achieving both the 80% and the 90% of the coverage. Regarding
the former goal, the RHCA entropy reached a mean path length of 89.63
m, which is close to the inspection conducted following the Lawnmower 2;
while the RHCA volume, which accomplished a mean path length of 98.87 m,
outperformed the survey conducted with the Lawnmower 2. The importance
of the theoretical analysis of Section 5.3 emerges from comparing the RHCA
results with the two VI formulations. The entropy VI formulation enhances
the coverage algorithm’s success probabilities of computing a solution better
than the one found at the previous call. Hence, it is more likely to update
the survey path than the volume-based VI. Consequently, it improves the
performance of the proposed methodology.

Achieving a 90% of coverage is a more challenging task. The more the
AUV covers the area, the more difficult the optimization problem of Eq.5.3
becomes. It means that the algorithm is less likely to change the computed
old best path, leading to worse performance, i.e., longer surveys. A longer
planning time could lead to better performance of the RHCA, and better
highlight the effect of VI formulation. Nevertheless, the planning time is
a trade-off between the proposed framework’s performance and the online
computation constraints.

The rewiring procedure reduces the variances of the computed paths. In
fact, by testing different possible parents of the newly generated node, the
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optimization is guided toward better solutions. However, this mechanism is
computationally expensive, reducing the number of generated samples within
the given time. While it enhances the RHCA volume performance, it deteri-
orates the RHCA entropy outcomes. By generating fewer samples, it reduces
the probabilities of computing new good paths, but it enables the algorithm
to perform better updates, i.e., the most promising branches are expanded.
Although the rewiring strategy deteriorates the mean values of the RHCA
entropy, it reduces the standard deviation.

5.5 Experimental results

The proposed framework was tested in real sea trials in shallow waters, per-
formed in October 2020 with FeelHippo AUV at CSSN basin in La Spezia,
Italy. The experimental campaign aimed to validate the coverage framework
in an unknown real environment. Besides, the results validated the theoreti-
cal and quantitative analyses discussed above. An inspection area as large as
the one used during the simulations (Section 5.4), i.e., 36x34 m, was selected.
FeelHippo AUV performed several surveys at constant altitude (2 meters) to
inspect the seabed using the BlueView M900 2D FLS. The FLS was mounted
in front of the vehicle with a tilt angle of 30◦ w.r.t. the horizontal plane (see
Fig.5.5). The SONAR range was set to 10 m. The Mapping module aimed
to create an occupancy grid map of the covered area that is used as an active
feedback for the High-level planning module. Thus, since the goal was not
to create a detailed reconstruction of the environment, the map resolution
was set to 0.5m. Both the Motion planner and High-level planner modules
modeled again the AUV kinematics constraints with Dubins curves with a
turning radius of 3 m. The High-level planner had 2 s to compute the NBV.

First of all, in order to have a benchmark for evaluating the proposed
methodology, a lawnmower survey at a constant altitude (2 meters) over the
selected area of interest was performed. The executed lawnmower pattern
was designed considering the SONAR characteristics and its mounting pose
with respect to the AUV. By following such a path, the AUV managed to
cover 80% and 90% of the target area in 65.34 m and 72.37 m, respectively.

Regarding the proposed RHCA, the experiments showed that the devel-
oped approach led the AUV toward the inspection surveys. Fig.5.6 reports a
sequence of snapshots of the planning process. The High-level planner used
the algorithm described in Section 5.2 to grow a random tree from the AUV
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initial position. The best branch (whose nodes are reported in yellow in
Fig.5.6), i.e., the branch that is expected to acquire more information, was
selected, and the first node became the NBV. Then, FeelHippo AUV fol-
lowed the path computed by the Motion planner (depicted in green). When
the NBV was reached, the High-level planner grew a new random tree that
was initialized using the previous best solution. As reported by Fig.5.6, the
RHCA solution has the desired behavior: while performing the survey, the
AUV can replan the mission considering the Mapping module feedback.

To highlight this sought behavior, Fig.5.7 reports a visualization of the
data collected during an inspection survey planned by the developed RHCA
during the experimental campaign. While the AUV was following the inspec-
tion path, the Mapping module updated the occupancy map and allowed to
monitor the covered area. The map was updated using the mapping strat-
egy described in [9] that made use of the gathered FLS images. The map’s
use is twofold: it is used to monitor the progress of the coverage survey
and plan the NBV. In fact, as shown in Fig.5.7, the RHCA considers the
map to move the AUV toward non-enlightened regions. The inspection path
planned by the proposed High-level planner is depicted with the blue line,
while the purple spheres represent the path to lead the AUV to the NBV,
calculated by the Motion planner. In particular, it is worth noting that since
the initially planned survey (Fig.5.7a) managed to guide the vehicle through
non-enlightened regions of the area of interest, it was not modified. Each time
the AUV reached a viewpoint (the blue spheres) of the inspection path, the
view planning algorithm was executed, but within the given computational
time, it did not find a better path (Fig.5.7b and Fig.5.7c). Then, as depicted
in Fig.5.7d, the inspection path was updated to complete the coverage of
the area. Finally, Fig.5.8 shows the map created by means of the developed
RHCA when the 90% of the inspection area was covered. Therefore, thanks
to the developed solution, the vehicle inspected the seabed actively by mon-
itoring the quantity and quality of the acquired data during the survey and
using the data to replan the mission. Then, an adequate coverage level can
be ensured, avoiding multiple attempts.

Turning to quantitative analysis, the RHCA was tested at field both with
the volume and the entropy VI formulations. To assess the developed RHCA
solution’s performance in a real scenario, four trials for each VI formulation
were performed: two with and two without the rewiring procedure. Table 5.2
reports the obtained results using the volume-based VI. The vehicle managed
to inspect the area with satisfying results. In accordance with the valida-
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Figure 5.5: FeelHippo AUV endowed with the BlueView M900 2D FLS used
to conduct the inspection surveys during the experimental campaign.

Table 5.2: RHCA volume-based VI sea trials results

Method Coverage level 80% Coverage level 90%
Path length Path length

RHCA volume rewiring [m] [m]
Trial 1 no 88.87 118.91
Trial 2 no 91.34 114.74
Trial 3 yes 87.82 104.53
Trial 4 yes 83.79 110.15

tion experiments’ outcomes, the rewiring procedure reduced the path length
of the RHCA volume method. In fact, by testing possible parents of new
nodes, the rewiring procedure helps the algorithm finding most promising
solutions. In Table 5.3 the results of the trials performed using the RHCA
entropy algorithm are reported. Together with the realistic simulations, these
experimental results proved the validity of the theoretical analysis of the de-
veloped coverage methodology. The entropy VI formulation leads to a more
well-posed optimization problem, and by enhancing the algorithm probabil-
ity of finding a new best solution at each call, it improves the performance
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Figure 5.6: Different snapshots of one of the autonomous surveys conducted
by FeelHippo AUV during the experimental campaign, La Spezia (Italy).
Using the developed coverage framework, the vehicle managed to inspect the
seabed of the target area, defined by the four green points and the four black
dashed lines. The yellow points are the nodes of the best branch computed
by the High-level planner. The path to lead the AUV to the NBV is depicted
in green, while the estimated AUV tracked path is reported in red.

Table 5.3: RHCA entropy-based VI sea trials results

Method Coverage level 80% Coverage level 90%
Path length Path length

RHCA entropy rewiring [m] [m]
Trial 1 no 75.39 95.85
Trial 2 no 76.92 88.87
Trial 3 yes 86.41 105.74
Trial 4 yes 80.66 121.61
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Figure 5.7: Four snapshots of an inspection survey performed by FeelHippo
AUV exploiting the developed RHCA. Two green polygons delimit the in-
spection area at depth 0 m and the maximum depth. The Mapping module
uses the data gathered with the FLS, whose FoV is represented with the
yellow lines, during the survey to update the map of the covered area. The
inspection path generated by the High-level planner is shown with the blue
line, while the purple spheres depict the path created by the Motion planner,
which the AUV tracks to reach the computed NBV. For the sake of complete-
ness, the snapshots report, on top on the right side, the traveled distance and
the reached coverage level.
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Figure 5.8: The final map of the inspected area. FeelHippo AUV conducted
the inspection survey autonomously by using the developed coverage solution.

of the inspection framework. As shown in Section 5.4, the rewiring strategy
deteriorates the RHCA entropy algorithm’s performance. It is a computa-
tionally expensive process that reduces the number of generated samples.
Consequently, it reduces the chances of computing new sub-optimal solu-
tions.

In conclusion, the RHCA strategy using the entropy-based VI formulation
without the rewiring procedure led to better results in both simulations and
real sea trials. The outcomes are in line with the theoretical discussion
(Section 5.2). Besides, the experimental campaign demonstrated that the
developed framework can guide the AUV toward active inspection surveys in
a real unknown environment and can guarantee adequate levels of coverage
of the target area.

Finally, to evaluate the developed framework, the achieved results shall
be compared with the ad-hoc pre-planned lawnmower pattern. By using both
the VI formulations, the proposed methodology led to longer coverage paths
than the state-of-the-art lawnmower. Nevertheless, the lawnmower path re-
quires the perfect knowledge of the scenario and the FLS operational settings
in advance, and during the mission, the AUV passively stores the acquired
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data. Moreover, it was calculated by a skilled operator and required a non-
negligible pre-mission time. On the other hand, the hereby sensor-driven
RHCA, being fully probabilistic, permits to obtain reasonable performance
(close to the lawnmower mission) without knowing the underwater scenario
in advance. In addition, it eliminates the path designing time, and by moni-
toring the gathered data through the created map, ensures the insonification
of a required portion of the seafloor. Therefore, the developed RHCA could
represent a solution for AUV end-users by simplifying the data acquisition
process.

5.6 Main contribution

A framework to enable an AUV to perform FLS seabed inspections au-
tonomously, but suitable for any acoustic or optical sensor, was presented
in this Chapter.

The framework is composed of a Mapping module, a High-level planner,
and a Motion planner. In detail, the latter generates the Dubins path that
connects the AUV position to the target NBV, while the Mapping mod-
ule exploits the probabilistic 3D occupancy mapping system for FLS based
reconstructions proposed in [9]. The focus of this work has shifted to the
High-level for which a sensor-driven coverage path planning algorithm was
developed. The algorithm utilizes the Mapping module updated map to ex-
pand random trees and find the NBV. The visibility of each node of the tree
is evaluated on the map through a ray casting process that takes into account
the FLS range and FoV. The AUV tracks the path computed by the Motion
planner to reach the NBV; then, the process is repeated in a receding-horizon
paradigm: the previous best branch is evaluated on the updated map, and
it is used to initialize the new tree. The usage of such a RRT-based method-
ology, inspired by the aerial domain, has never been investigated, to the
author’s knowledge, in the underwater domain.

Moreover, several metrics for estimating the discovered map from a view-
point have been proposed in the last years, but their influence on the con-
sidered problem has only been evaluated heuristically. Here, a mathematical
formulation of the developed coverage algorithm and a theoretical investiga-
tion of the effects of the exploited VI formulation were provided. Besides,
a comparison of two VI formulations was reported. To the author’s best
knowledge, the theoretical analysis of the VI formulations is novel. This re-
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search work also presents the first investigation of information gain metrics
for seabed inspections.

The proposed framework was also validated with realistic simulations and
then through a dedicated experimental campaign at sea. The developed so-
lution endowed FeelHippo AUV with the ability to autonomously inspecting
the seabed in a target area. By actively monitoring the data gathering pro-
cess, it ensures adequate coverage levels and avoids multiple attempts. In
addition, the outcomes are in accordance with the theoretical analysis; the
entropy-based VI enhances the algorithm chances of computing a better so-
lution w.r.t. the previous call and leads to better results, i.e., shorter paths.





Chapter 6

Advances in RRT-based view
planning for autonomous
inspections

Chapter 5 presented the designed RHCA for conducting autonomous inspec-
tions and detailed the view planning algorithm. In this Chapter, advances
for enhancing the performance of the developed algorithm are proposed.

Firstly, due to the time constraints, the algorithm detailed in Chapter
5 managed to test only ten parent candidates for each new viewpoint and
did not evaluate the effect of new nodes in the tree. In fact, performing a
complete rewiring procedure would have reduced the number of generated
viewpoints within the given computational time. Thus, to overcome this
limitation, the RRT-based planning algorithm has been rewritten in a parallel
fashion. This new implementation allows testing possible rewiring actions
while a new node is generated.

In addition, an innovative sampling methodology for guiding the expan-
sion of the tree towards unexplored areas is presented. This novel informed
tree expansion strategy that combines the KDE technique and a rejection
sampling method represents the major contribution of this Chapter. The
performance of the RHCA using this novel strategy based on estimating the
probability density function of the discovered map by using the KDE tech-
nique is compared with the state-of-the-art RRT sampling policy based on a
uniform distribution.

79
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6.1 Parallel implementation of the view plan-

ning algorithm

The performance of the developed RHCA solution strictly depends on the
view planning algorithm. As described in Section 5.4 and Section 5.5, dur-
ing the conducted campaigns, only ten parent candidates were considered
during the rewiring routine. This parameter was selected as a trade-off to
allow Algorithm 1 to test a sufficient number of possible parents and gen-
erate an adequate number of configurations within a given computational
time. Evaluating more parent candidates could enhance the performance
achieved by the RHCA framework, but it would reduce the number of gen-
erated viewpoints. Besides, the algorithm presented in Chapter 5 looked for
only the best parent and did not evaluate whether the new node improves
the expected gain of other branches. Thus, the view planning algorithm has
been rewritten in a parallel manner to perform a complete rewiring routine
without reducing the generated viewpoints.

First of all, by analyzing Algorithm 1, two distinct phases can be identi-
fied: a generation step, where a new node is created and added to the tree
(lines 8-13), and then a rewiring step, where possible connections are tested
(lines 14-21). In detail, in the former step, a configuration is sampled using
a uniform distribution over the workspace, and a new node is computed by
expanding the closest tree node toward the direction of the sampled con-
figuration. It is worth noting that by using this strategy, tree nodes that
correspond to larger Voronoi regions are more likely to be selected for the
expansion, i.e., it creates a Voronoi-biased expansion that guarantees that
the tree explores the workspace rapidly. Once the pose of the viewpoint
has been calculated, its visibility can be evaluated, which in the context of
this work, it was done by the Mapping module (see Fig. 5.1) that acted
as a server for the High-level planner. As stated in Section 5.2, it is worth
highlighting that the visibility of a node depends only on its position and
orientation. On the other hand, in the rewiring step, the best parent of the
new viewpoint is searched by calculating the expected BIG assuming near
tree nodes as parents.

In Algorithm 1, the generation and the rewiring phases are sequentially
performed. Deepening the analysis, it emerges that for performing a step
of the algorithm, the former takes about 75% of time, while the latter the
remainder 25%. In particular, during the generation phase, most of the time
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is spent waiting for the Mapping module computing the visibility. Therefore,
by the time the generation step is computed, the rewiring procedure could be
performed. However, the standard RRT implementation on which Algorithm
1 is based does not allow such operation. In fact, until the node visibility is
not calculated, it is not possible to test other tree nodes as a parent. As a
consequence, a novel implementation of the RRT-based algorithm, Parallel
Rapidly-exploring Random Tree (pRRT) in the following, has been designed.
As detailed in Algorithm 2, it allows executing the view planning algorithm
in a parallel fashion. To this end, at each step, Algorithm 2 generates a new
node ξn and calls the service for evaluating its visibility (Algorithm 3), while
it runs the rewiring routine (Algorithm 4) for finding the best connections
for the node created at previous iteration ξp. As stated above, this simple
structure allows the use of a parallel implementation. In fact, the functions
generateNode() and rewireNode(ξ), in lines 33 and 34 respectively, can
be run concurrently by using two distinct threads. Therefore, by the time the
generation phase is performed, the rewiring routine can be executed without
increasing the time required for a step of the algorithm. That is, pRRT only
leverages the advantages of the rewiring process.

Thanks to the developed pRRT, the rewiring procedure, described in
Algorithm 4, can both look for the best parent of the new node (lines 52-58)
and checks whether the new node enhances the tree by evaluating if it can
improve the expected gain of other viewpoints (lines 59-66).

6.2 Informed expansion of the tree

In the proposed RHCA solution, the RRT algorithm was used to find the
NBV. As a matter of fact, the RRT can rapidly explore the workspace by
exploiting a Voronoi-biased expansion strategy. That is, at each iteration,
by sampling a random configuration with a uniform distribution (line 42 of
Algorithm 3) and expanding the closest node in the tree (lines 43-44), nodes
that correspond to larger Voronoi regions are more likely to be selected. As
shown in Figure 6.1, published in the remarkable work presented in [117], such
a strategy ensures that the generated tree well explores the workspace, better
than a naive solution where nodes are randomly selected for the expansion.
Therefore, the sampling policy of the expansion phase plays a key role.

For what concerns the motion planning task, several efforts have been
made to develop innovative strategies for sampling new configurations to en-
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Algorithm 2 Coverage planner algorithm parallel implementation

Input: AUV configuration ξt
Output: Next best view configuration ξt+1

Iteration:
(25) Initialize a new tree T with ξ0 = ξt
(26) Initialize ξp = Null

if first call then
(27) g∗ ← 0;

else
(28) addBranch(T , Bt−1)
(29) g∗ ← updateBranchGain(Bt−1)
(30) ξ∗ ← getPreviousSolution()

end
while time < timemax do

(31) if ξp = Null then
(32) ξn ← generateNode()

else
(33) ξn ← generateNode()
(34) rewireNode(ξp)

end
(35) if nodeIsValid(ξp) then
(36) addNode( T, ξp)

end
(37) ξp ← ξn

end
(38) Bt ← getBestBranch(Bt )
(39) Save best branch Bt
(40) ξt+1 ← getNBV(Bt )
(41) Delete T

Return: ξt+1

hance the performance of RRT algorithms. For instance, a common solution
for steering the tree toward the solution is to randomly sample the goal con-
figuration. Thus, a trade-off between the exploration of the workspace and
the rapidity of obtaining a solution to the task can be achieved. Another
approach, among the others, was presented in [118], where the subset of
states that can improve a solution was defined and used to sample the new
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Algorithm 3 generateNode()

Input:
Output: New configuration ξnew
Iteration:

(42) ξs ← sampleNewConfiguration()
(43) ξn ← getNearest(T , ξs )
(44) ξnew ← randomPropagation(ξs, ξn )
(45) if ( isStateInArea(ξnew) and isMotionValid(ξnew, ξn)) then
(46) callVisibilityService(ξnew)
(47) setNodeValidity(ξnew, True)
(48) Return ξnew

else
(49) generateNode()

end

configurations.

When it comes to view planning applications, the RRT exploration prop-
erties are of utmost importance since evaluating the visibility of a viewpoint
through the ray casting routine is time expensive, and thus a limited num-
ber of configurations can be generated within a given planning time. As a
consequence, for finding good inspection paths, the view tree has to contain
well-spawned nodes. However, while the Voronoi-based expansion is an effi-
cient solution at the beginning of the survey (i.e., when most of the area is
unknown), it loses its effectiveness as the area is explored. That is, to gener-
ate a branch that leads the robot toward unexplored regions, more viewpoints
shall be generated since the optimization becomes more challenging.

In this Section, a novel methodology for biasing the tree expansion to
unexplored areas is introduced. By making use of the KDE technique, the
discovered occupancy map density function can be estimated and used to
sample new configurations. Therefore, while Algorithm 1 can find a path by
chance (as in [64] and [65]), with the hereby proposed sampling methodology
a map-aware expansion is achieved. Simulation and experimental results
demonstrate that the proposed strategy enhances the performance of the
RHCA.
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Algorithm 4 rewireNode(ξ)

Input: ξ
Output:
Iteration:

(50) gb ← getGain(ξ)
(51) Vp ← getNeighbors(T ,ξ)
(52) for ξp : Vp do
(53) if (not isMotionValid( ξp, ξ)) then

continue
end

(54) g ← computeBranchGain(ξp , ξ)
(55) if isGainBetterThan(g, gb) then
(56) setParent(ξ, ξp )
(57) setGain(ξ, g )
(58) gb ←g

end

end
(59) for ξc : Vp do
(60) if (not isMotionValid(ξ, ξc)) then

continue
end

(61) gc ← getGain(ξc)
(62) g ← computeBranchGain(ξ, ξc)
(63) if isGainBetterThan(g, gc) then
(64) setParent(ξc, ξ )
(65) setGain(ξc, g )
(66) updateChildrenGain(ξc )

end

end
Return

6.2.1 KDE for estimating the discovered map distri-
bution

The developed methodology for biasing the expansion of the tree makes use
of KDE technique [119] that estimates the density function of the discovered
map. The KDE is a non-parametric method to estimate the probability
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Figure 6.1: Comparison of the expansion of a Naive Random Tree (on the
left side) with an RRT (right side), both composed of 2000 nodes [117].

density function of independent and identically distributed samples that has
found a broad use in statistics and ML.

In particular, let (s1, s2, . . . , sn) be independent and identically distributed
samples drawn from some distribution with an unknown density function f
at any given point s. The KDE estimator allows to estimate the value of
f(s) as:

f̂h(s) =
1

n

n∑
i=1

Kh (s− si) =
1

nh

n∑
i=1

K

(
s− si
h

)
, (6.1)

where K is the kernel, which in the context of this research a Gaussian
Kernel was considered, and h is the bandwidth, a tuning parameter. Consid-
ering the occupancy mapping paradigm used in this research [9], by utilizing
as the samples the instantiated map cells {mi}ni=1, i.e. the discovered map,
the value of density function of a point p can be estimated:

f̂h(p) =
1

nh

n∑
i=1

K

(
p−mi

h

)
. (6.2)

Eq.6.2 can be used for various purposes. As this research work is con-
cerned, it was employed to generate samples to expand the tree toward
the unexplored regions, as detailed in the next Section. In particular, the
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RHCA framework was developed with the goal of making an AUV able to
autonomously inspect the seabed of an area of interest using an FLS. There-
fore, the reconstructed seabed made through the solution presented in [9]
was considered as the discovered map, and since constant altitude surveys
were assumed, only the 2D position of the cells was utilized. It is worth
highlighting that the method could be employed for exploration tasks and
can be extended to 3D applications. In fact, by using such a solution, a
robot learns the distribution of the discovered map and can use it to guide
the exploration.

6.2.2 Expanding the tree toward non-explored regions

The novel methodology based on the KDE technique for estimating the dis-
tribution of the map provides the opportunity to develop an informed map-
aware tree expansion strategy. As a consequence, the RHCA is more likely
to find paths that steer the robot toward non-explored regions than by using
the standard Voronoi bias.

Firstly, a sampling strategy shall be designed. Given a distribution, sam-
ples are typically drawn by using different techniques so that they are dis-
tributed accordingly. As this work is concerned, the goal is to generate
samples that do not belong to the given distribution. In particular, since
Eq.6.2 estimates the distribution of the discovered map, a sampling policy
that aims at generating observations in the non-explored regions is required.

To this end, the estimated probability density function given by Eq.6.2
was employed for implementing a rejection sampling algorithm [120]. The
reject method is a basic sampling approach that allows drawing random
numbers from various distributions. It was used since Eq.6.2 only estimates
f̂h(p), and an explicit form of f is not available, and thus, approaches such
as the inverse transform sampling cannot be exploited.

Briefly, the designed sampling algorithm utilizes a simple workflow. It
samples a point p with a uniform distribution over the workspace, and a
value u ∈ U [0,max{f̂h(mi)}nmi=1], where {(mi)}nmi=1 denote the map discovered

cells and U denotes the uniform distribution. Then, f̂h(p) is computed, and if

u > f̂h(p), which means that the point p does not belong to the distribution
f , i.e., it is in an unexplored region, the point p is accepted, otherwise it is
rejected and process is repeated until a good point is found.

To validate the proposed methodology, known seabed reconstructions
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with a resolution of 0.5 m were simulated. Three examples are depicted
on the left side of Fig. 6.2, whose estimated distributions are reported in
the middle column. Regarding the utilized KDE estimator, the mlpack li-
brary was used [121]. In detail, a Gaussian kernel was employed, and the
bandwidth was set to 0.5, corresponding to the map resolution. Finally, the
histogram of 5k samples generated by using the above-described rejection
method is reported on the right side of Fig.6.2.

As described in the following, the developed KDE-based sampling method-
ology was run online on the main computer of FeelHippo AUV and used dur-
ing the conducted experimental campaign. Such a solution allows the robot
to learn the distribution of the discovered map, and thus it learns where
to sample the most promising configurations for guiding the view planning
algorithm.

Therefore, it is possible to bias the expansion of the tree by utilizing
the samples drawn in the non-explored areas during the generation step of
Algorithm 2. To this end, the function sampleNewConfiguration() (line
42, Algorithm 3) has been modified as follows. At each call, the function
samples a value ps ∼ U [0, 1], where U denotes the uniform distribution.
Then, if ps is smaller than a pre-defined threshold ts, ξs is generated using
the KDE-based methodology so that it biases the tree toward the unknown
region. Otherwise, it is randomly sampled with a uniform distribution over
the workspace. It is worth highlighting that the threshold ts allows modifying
the behaviour of the expansion procedure. While small values promote the
use of the standard uniform distribution, which leads to the Voronoi-bias and
thus a rapid exploration of the workspace, with a threshold close to 1, the
here proposed informed expansion is more likely to be used, and the tree is
steered toward the most promising areas. By selecting intermediate values,
a trade-off between the two behaviour can be achieved.

As reported in the next Sections, in this work three values of ts were
investigated: ts = 0, i.e., the standard expansion routine, ts = 1 for utilizing
only samples generated with the proposed KDE methodology, and ts = 0.5
that balances the Voronoi-bias and the informed expansion.
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Figure 6.2: On the left side, the occupancy map of the simulated seabeds,
whose distributions were estimated with the KDE approach (middle column).
On the right side, the histogram of 5k samples drawn in the unexplored
region.
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6.3 Validation

To test and validate the advances proposed for the view planning algorithm
utilized in the RHCA framework, realistic simulations were firstly performed
exploiting the UUV Simulator. As in Chapter 5, a dynamic model of Feel-
Hippo AUV was used, and the BlueView M900 2D FLS, which has an hFOV
of 130◦ and a vFoV of 20◦, was simulated. The FLS range was set to 10
m. To have results that are consistent with those previously obtained, the
same conditions detailed in Chapter 5 (Section 5.4 and Section 5.5) were
considered. In particular, FLS-based coverage surveys at a constant alti-
tude (2 meters from the seabed) of an area of 36x34 m were performed. The
High-level planner running the view planning algorithm had 2 s of computing
time.

Figure 6.3 highlights the effectiveness of the developed learning-sampling
methodology for realizing the informed tree expansion. On the top, a snap
of one of the performed surveys using the informed expansion strategy. In
detail, the green lines delimit the inspection area. The gray voxels depict
the discovered sea bottom, the yellow lines represent the generated tree, and
the blue line highlights the selected best path. On the left-bottom side, a
representation of the discovered map distribution learned online by the robot
using the KDE technique. Such a distribution is employed by the sampling
algorithm to generate samples in unexplored regions. For the sake of clarity,
the histogram of 1k samples generated accordingly is reported on the right-
bottom side. The learning-sampling method was used to expand the tree,
reported in yellow on the top side of the image, which is thus steered toward
the most promising areas.

Three configurations of the algorithm were tested. As described above,
the Voronoi-based expansion (the standard RRT strategy) was compared
with the hereby proposed informed expansion that utilizes the KDE method-
ology for estimating the discovered map. In addition, a balanced solution
that makes use of both the Voronoi and the informed expansions was investi-
gated. With regard to the sampling strategy described in Section 6.2.2, such
algorithm configurations are achieved by considering sampling thresholds of
ts = 0, ts = 1, and ts = 0.5, respectively. The results reported in the follow-
ing aim at demonstrating the effectiveness of the novel informed expansion
strategy. Thus, since it is a preliminary validation, only the 50-50 sampling
ratio for the balanced configuration is investigated. However, different sam-
pling ratios, e.g., 25-75 and 75-25, could be adopted. Please note that the
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Figure 6.3: The proposed learning-sampling methodology utilized to develop
the informed expansion. On the top, a snap collected during one of the
surveys depicting the inspection area (delimited by the green lines) and the
discovered map, reported in gray. The map distribution learned online by the
robot with the KDE strategy is shown on the left-bottom side. On the right,
the histogram of 1k samples generated in the non-explored area thanks to
the learning-sampling methodology is reported. The tree informed expansion
is realized by means of this learning-sampling strategy, which allows steering
the tree (shown in yellow) towards the most promising regions.
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choice of the 50-50 sampling ratio does not depend on the inspection area
shape.

Regarding the exploited VI formulation, it is worth highlighting that
only the entropy-based formulation (Eq.3.23) has been tested. In fact, as in
Chapter 5, with such formulation the RHCA achieved better results.

Being the sensor-driven RHCA fully probabilistic, for each algorithm con-
figuration, denoted as RHCA - Voronoi (ts = 0), RHCA - Informed (ts = 1),
and RHCA - Balanced(ts = 0.5), 10 simulations with random starting AUV
positions were performed, and the performance was evaluated in terms of
the path length required to achieved the 80%, 90%, and 95% of coverage of
the area. The mean values of the 10 runs were considered. The results are
summarized in Table 6.1.

The proposed informed expansion enhances the performance of the RHCA.
The considered coverage levels are achieved with shorter paths when the KDE
methodology is used for generating the samples for expanding the tree to-
ward unexplored regions than exploiting the state-of-the-art Voronoi bias.
The higher the target coverage level, the more the RHCA benefits from the
developed Informed expansion solution. In fact, when the 95% of coverage
is demanded, which is the most challenging task, the KDE-based sampling
strategy leads to a mean path length reduction of about 20 m (15% of the
total mean path length). Besides, even for reaching the 80% and 90% of
coverage, the mean length is significantly reduced.

Table 6.1 shows that the best solution is using a balanced expansion
strategy. That is, at each iteration of the view planning algorithm, there is a
50-50 chance of using either the Voronoi-biased or the Informed expansion.
Thus, a trade-off between the exploration of the workspace and a guided
expansion toward the goal, i.e., unexplored regions, is exploited. Using only
the here proposed KDE-based methodology for sampling new configuration
improves the performance compared to the Voronoi bias. However, only
focusing on the expansion toward new areas prevents the tree from exploring
the space. Thus, it limits the view planning algorithm performance.

For the sake of completeness, for each view planning algorithm configu-
ration, an example of the tree expansion is reported. In detail, Figure 6.4
reports the use of the Voronoi-biased expansion, while Figure 6.5 shows the
effect of the proposed Informed strategy. The former ensures that the tree
rapidly covers the area of interest, but it does not consider the already dis-
covered map, and thus, it could lead to longer paths. The latter steers the
tree toward new areas, focusing the view planning algorithm on looking in
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the most promising areas. Finally, Fig. 6.6 depicts the balanced approach.
This latter solution combines the benefits of the aforementioned strategies.
It drives the tree toward the unexplored regions while maintaining a fast
exploration of the workspace.

Table 6.1: Simulation outcomes

Coverage level 80%
Path length Path length

Method mean [m] standard deviation [m]
RHCA - Voronoi 85.69 12.88
RHCA - Informed 79.63 10.23
RHCA - Balanced 75.15 11.99

(a) Results for 80% of coverage

Coverage level 90%
Path length Path length

Method mean [m] standard deviation [m]
RHCA - Voronoi 116.98 21.04
RHCA - Informed 99.18 10.68
RHCA - Balanced 100.34 7.67

(b) Results for 90% of coverage

Coverage level 95%
Path length Path length

Method mean [m] standard deviation [m]
RHCA - Voronoi 140.00 26.93
RHCA - Informed 120.71 20.31
RHCA - Balanced 118.54 12.58

(c) Results for 95% of coverage

6.4 Experimental results

An experimental campaign for testing and validating the proposed advances
for the view planning algorithm was conducted in July 2021 at the CSSN
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Figure 6.4: Examples of the generated inspection tree (in yellow) by using
the Voronoi-bias during the expansion. Each yellow point represents an AUV
configuration. The green lines delimit the inspection area, while the blue one
depicts the selected inspection path, i.e., the best branch. The Voronoi bias
ensures that the tree rapidly explores the workspace.
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Figure 6.5: The tree expansion when only the KDE-based Informed strategy
is exploited. The tree is biased through non-explored regions.

basin in La Spezia, Italy. The same framework shown in Chapter 5 was uti-
lized. The improvements proposed in this Chapter have been implemented
using C++ language, and the OMPL library [113]. Regarding the KDE-
based map density estimation technique, it was realized exploiting the ml-
pack, a flexible C++ machine learning library [121]. The advanced view
planning algorithm was run online on the main computer of FeelHippo AUV
(Section 1.2).

Since conducting experimental sea trials is time and cost expansive, two
configurations of the view planning algorithm were tested during the exper-
imental campaign. The RHCA - Balanced, that fuses the Voronoi-bias with
the developed informed strategy and emerged as the best solution during the
validation process, was compared with the RHCA - Voronoi that utilizes the
state-of-the-art Voronoi-based expansion.

Thus, 5 coverage surveys of an area of 36x34 m for each configuration
were conducted. The surveys were performed autonomously by FeelHippo
AUV utilizing the BlueView M900 2D FLS, whose range was set to 10 m.
As for the simulations, the surveys were evaluated in terms of path length
required to achieved the 80%, 90%, and 95% of coverage of the area, Table
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Figure 6.6: Four snapshots depicting the tree generated using the balanced
expansion approach. By randomly exploiting both the Voronoi and the In-
formed bias, it enhanced the performance of conducted autonomous coverage
surveys.
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6.2 reports the mean value as well as the standard deviation of the 5 trials.

As expected from the simulations, the RHCA - Balanced outperformed
the state-of-the-art RHCA - Voronoi in all the benchmarks. By mixing the
uniform distribution and the map-aware sampling policy, the balanced con-
figuration guides the expansion of the tree toward the most promising areas
while guarantying it well-explores the workspace. The RHCA - Balanced
reached a mean path length reduction of 18.38 m, 31.80 m, and 18.40 m
(21.5%, 25.7%, and 12.7% of the total mean path length) for the 80%, 90%,
and 95% of coverage, respectively.

To benchmark the achieved experimental results, Table 6.2 reports the
outcomes of the lawnmower survey described in Section 5.5. The lawnmower
pattern was designed considering the FLS characteristics by a skilled op-
erator. In the smooth scenario where the real tests were conducted, the
lawnmower outperformed the developed solution in the best configuration,
i.e., RHCA - Balanced. However, the same considerations stated in the pre-
vious Chapter hold. For designing the lawnmower survey, a perfect knowl-
edge of the scenario and a non- negligible pre-mission time is needed. In
addition, the AUV passively stores the acquired data, and thus multiple at-
tempts should be performed. By using the proposed sensor-driven RHCA
strategy, the survey designing time (i.e., the pre-mission time) is eliminated.
Besides, the AUV monitors the acquired data and can ensure the insonifica-
tion of a required portion of the seafloor, avoiding multiple attempts. Being
fully probabilistic, the results can vary but are reasonable compared with the
state-of-the-art lawnmower pattern. Besides, thanks to the proposed KDE-
based methodology, the vehicle learns where to sample new configurations for
steering the tree toward unexplored regions of the workspace and enhances
the strategy performance getting closer to the lawnmower.

It is worth highlighting that the proposed map-aware sampling strategy,
based on learning the discovered map distribution by means of the KDE tech-
nique, was run online on the main computer mounted FeelHippo AUV. Thus,
it does not require dedicated hardware and can be used even on compact and
lightweight robots.

6.5 Main contribution

This Chapter proposed advances for enhancing the view planning algorithm
utilized in the RHCA framework.
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Table 6.2: Experimental results

Coverage level 80%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 65.34 -

RHCA - Voronoi 85.49 5.91
RHCA - Balanced 67.12 11.58

(a) Results for 80% of coverage

Coverage level 90%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 72.37 -

RHCA - Voronoi 123.56 21.63
RHCA - Balanced 91.76 14.84

(b) Results for 90% of coverage

Coverage level 95%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 76.39 -

RHCA - Voronoi 145.08 5.93
RHCA - Balanced 126.68 11.00

(c) Results for 95% of coverage

For enabling the use of a complete rewiring routine, the RRT-based view
planning algorithm has been redesigned. It uses two parallel threads for
speeding up the tree construction. By the time a new node is generated
and its visibility is computed through a ray-casting procedure, the rewiring
routine is executed for the node created at the previous iteration. The scope
of this latter procedure is twofold: it finds the best parent and checks if the
new node can improve other branches.

The developed informed expansion strategy represents the major contri-
bution. For the first time to the best of the author’s knowledge, the KDE
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technique, which has found a large use in statistics and ML, is exploited to
estimate the distribution density function of the discovered occupancy map.
Combined with a rejection sampling algorithm, the estimated density func-
tion is used to draw sample configurations in the unexplored areas of the
workspace. Such samples can be used to biasing the expansion of the tree
toward the most promising region. That is, the robot learns where to sample
the configurations for guiding the planning algorithm.

Simulations as well as real experimental results, collected during sea trials
conducted in July 2021 at the CSSN basin in La Spezia, Italy, show that
the informed expansion strategy improves the performance of the RHCA
framework. In particular, a comparison of the three expansion strategies
was provided. The results highlight that the state-of-the-art Vornoi-based
expansion was outperformed by the informed approach. However, mixing
the two strategies emerged as the best configuration. In fact, using both the
uniform distribution and the map-aware sampling policy offers a good trade-
off between a goal-guided expansion and the exploration of the workspace.



Chapter 7

Randomized MPC for view
planning in AUV seabed
inspections

Chapter 5 presented the development and testing of an RRT-based view
planning algorithm utilized for autonomous FLS seabed inspections. Then,
in Chapter 6 advances for improving the performance of the algorithm were
proposed and validated through both realistic simulations and an experimen-
tal campaign. In particular, the state-of-the-art Voronoi biased expansion
was compared with an innovative informed strategy based on estimating the
distribution of the discovered map.

This Chapter aims at investigating a different approach based on the use
of an RMPC [122] strategy for generating viewpoints. The main findings
reported in this Chapter were published in [123]. As showed in Chapter 6,
the performance of RRT-based solutions is affected by the sampling strategy
utilized for expanding the tree. In addition, in order to grow the tree, the
motion between a tree’s node and a newly generated node must comply with
the robot motion constraints. As this work is concerned, since kinematic
constraints are considered, the motion feasibility check can be computed in
a reasonable amount of time. Still, in light of expanding the view planning
methodologies to dynamic constraints, a BVP, which is generally a difficult
and computationally expensive problem, shall be solved. The solution inves-
tigated in this Chapter, by directly applying feasible control inputs to the
robot motion equations, realizes a forward propagation that generates proper
vehicle paths, avoiding the motion checking routine.

99
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The same framework presented in Chapter 5 is exploited. The RMPC
strategy is used as the view planing algorithm in the High-level planner in-
stead of the previously discussed RRT-based solution. By selecting random
controls feasible for the considered vehicle, the algorithm randomly propa-
gates the AUV state and thus generates viewpoint candidates. Each view-
point is evaluated according to the discovered map. The map that can be
discovered from a viewpoint is generally evaluated through a ray casting pro-
cess. However, sensors such as the FLS considered in this work has wide FoV
and long ranges, making the ray casting evaluation slow and computationally
expansive. As a consequence, the number of candidates that can be gener-
ated in a given computational time is limited and degrades the performance
of the view planning algorithms. To overcome this limitation, the KDE
methodology described in Chapter 6 is utilized for estimating the density of
the discovered map and rapidly evaluating the viewpoint candidates.

7.1 Randomized MPC for View Planning

While Chapter 5 proposed the use of RRT-based view planning solution for
seabed inspections, here, an MPC approach is investigated. The developed
view planner algorithm utilizes an MPC strategy for generating an inspection
path that steers the AUV toward unexplored regions. In particular, the
view planner selects among the predicted paths the best path that guides
the AUV toward unexplored regions. As described in Chapter 5, when the
robot reaches the first viewpoint of the selected path, the process is repeated
realizing a receding-horizon approach. In fact, the inspection framework
detailed in Chapter 5 was utilized. Following the idea proposed in [124], a
predicted inspection path is a sequence of sub-paths, where each one starts
from an AUV configuration and consists of a control input u = [u, r]⊤, where
u is the surge velocity and r the yaw rate, which is used to evolve the AUV
state. Thus, the simulated paths can be represented by using a tree structure,
initialized at the AUV current location, where the nodes are the AUV states
and the edges denote the sub-paths.

Therefore the view planner solves the following optimization problem:
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maxξ0,{u} G{ξ}i
s.t. ξi = f(ξi−1,ui)

u ∈ U
ξ ∈ W ,

(7.1)

where G{ξ}i is the optimization function that corresponds to the expected
discovered map along the path constituted by the predicted configurations
{ξ}i, ξ0 is the current AUV pose, and U denotes the space of feasible control
inputs for the AUV.

As discussed in Section 5.2, since the optimization function G{ξ}i is a
black-box function, i.e., the relation between the function and the AUV con-
figurations is unknown, it is not possible to compute the optimal control se-
quence {u} by means of a deterministic optimization algorithm [125], [116].
Therefore, the optimization problem in Eq.7.1 shall be solved by directly
evaluating the expected gain of the predicted paths, which means computing
the IG of the associated configurations and selecting the one with the highest
gain. To generate an appropriate set of possible paths that well explore the
workspace, which is of utmost importance for finding a near-optimal solu-
tion for the optimization problem, a control input selection strategy must
be adopted. In the context of this work, to avoid the use of a manually
defined set of controls, a set of random control inputs is selected for each
AUV configuration. However, to guarantee the exploration of the workspace,
the control inputs shall be well-distributed. Thus, a set of desired controls
Ud = {(ud, rd,k)}k=0,...,Nc was defined. Such set of controls assumes a constant
desired surge velocity ud, and, given the yaw maximum changing rate rmax,
uniformly samples the range [−rmax, rmax]. Finally, for each tuple of the de-
sired control set (ud, rd,k), a control input (u, r) in sampled with a Gaussian
distribution. The idea is summarized in Fig.7.1.

7.2 Fast evaluation of the optimization func-

tion via KDE

As discussed above, solving the optimization problem of Eq.7.1 means finding
among the generated paths, the one that has the highest gain, i.e., is expected
to discover more new regions. In fact, since the optimization function G{ξ}i is
a black-box function, to known the gain of a path, it must be evaluated. That
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Figure 7.1: The control input selection strategy utilized in this work. The
red points depict the desired control set, which assumes a constant surge
velocity ud and uniformly samples the set [−rmax, rmax]. To predict the AUV
paths, for each configuration, a set of random controls is sampled around the
desired set with a Gaussian distribution. In particular, for each tuple of the
desired control set (ud, rd,k), a control input (u, r) is randomly selected. The
figure shows the sampling probability of the set of possible control inputs.
Points in the yellow regions are more likely to be sampled than the ones
in the blue. It is worth mentioning that the x- and y-axis report the yaw
turning rate and the surge velocity normalized with respect to the maximum
rate rmax and desired velocity ud, respectively.

is, for each configuration that composes a path, Eq.3.20 must be computed
by using a ray casting procedure. Nevertheless, this procedure for sensors
with wide FoV and long ranges, such as the FLS considered in this work, is
computationally expansive and requires a lot of time, reducing the number
of candidates that can be evaluated in a given computational time, and
thus degrading the performance of the view planning algorithm. RRT-based
solutions, as proposed in Chapter 5, make use of a Voronoi-bias expansion
(or the informed sampling strategy described in Chapter 6) strategy that
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ensures that the generated tree, even if it does not contain a plethora of
nodes, well explores the workspace. Thus, the optimization function G{ξ}i can
be considered as the sum of the VI of all the voxels visible from a path, which
are computed using the classic ray casting procedure for each configuration
that composes the path.

For what concerns the RMPC approach proposed here, the ray casting
procedure cannot be employed. In fact, by using such strategy for evaluating
the optimization function, either a small number of paths can be generated
or only short paths (i.e., a short prediction horizon for the MPC problem
that leads to poor results) can be evaluated. To overcome this limitations,
a novel method for rapidly evaluating the viewpoint candidates based on
the KDE methodology for estimating the distribution density function of the
discovered map has been utilized (see Section 6.2.2). To evaluate whether a
viewpoint candidate ξ is leading the AUV toward non explored regions, the
KDE estimator can be exploited as measure of the configuration gain:

f̂h(ξ(x,y)) =
1

nh

n∑
i=1

K

(
ξ(x,y) −mi

h

)
(7.2)

Computing f̂h(ξ(x,y)), denoted as f̂h(ξ) in the following for the sake of
clarity, is greatly faster than performing the ray casting procedure. Thus,
more paths can be evaluated. It is worth highlighting that f̂h(ξ) acts as a
surrogate model for the optimization problem. In particular, by using the
KDE approach, the visibility of a configuration is not computed, but f̂h(ξ)
gives as a measurement that allows to quantify the quality of a configuration,
i.e., how it leads the vehicle to unexplored areas.

Finally, it is possible to define the optimization function G{ξ}i as:

G{ξ}i = G{ξ}i−1
+ (max{f̂h(mi)}ni=1 − f̂h(ξ))eγψ∆ψ(ξ0,ξi)eλd(distance(ξ0,ξk)) (7.3)

where ∆ψ(ξ0, ξi) computes the heading changes along the path, γψ ∈ R
is a penalization factor for curvy paths, and λd ∈ R penalizes long paths.
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7.3 Validation of the RMPC view planning

algorithm for autonomous inspections

To validate the developed view planning RMPC algorithm with the fast
evaluation method, realistic simulations were performed by means of the
UUV Simulator. As done for the validating the RRT-based solution (Chapter
5 and Chapter 6), FLS-based inspection surveys at a constant altitude (2
meters from the seabed) of an area of 36x34 m were performed. The Teledyne
BlueView M900 2D FLS was simulated with a range of 10 m.

The RMPC view planning solution has been developed using the OMPL
library [113]. It was implemented using the C++ programming language and
integrated within the ROS framework, which the FeelHippo AUV software
architecture is based on.

The set of desired control inputs was defined by considering the desired
velocity ud as 0.4 m/s and uniformly sampling nine values of angular rate in
the range [-0.5, 0.5] rad/s. Therefore, for each AUV configuration, nine con-
trol inputs were randomly sampled by using the strategy presented in Section
7.1 (Fig.7.1). The process was repeated to generate as many configurations
as possible within the given computational time, set to 2s. For the sake of
clarity, a visualization of an example of the generated paths is depicted in
Fig.7.2. Please note that when the AUV reached the first configuration of
the selected path, the RMPC was run again, and by using the previously
computed solution to initialize the algorithm, a receding-horizon fashion was
achieved.

To assess the performance of the developed RMPC strategy, since it is
a probabilistic method, the same approach utilized for the RRT-based algo-
rithm was used. Ten simulations with random starting AUV positions were
performed. The inspection surveys were evaluated in terms of the mean path
length required to achieve the 80%, 90%, and 95% of coverage of the area.
Besides, to have a benchmark to compare the RMPC method with a state-
of-the-art solution, the experimental results achieved with the lawnmower
survey described in Section 5.5 were considered, see Table 7.1.

Firstly, it is worth analyzing the benefits of using the KDE evaluation
strategy (Eq.7.2) compared with the classic ray casting procedure. Using
the latter, the RMPC managed to generate a mean of 70-120 configurations
within the given computational time (2s), which was not enough for finding
good solutions. In fact, it resulted in a short prediction horizon, and the
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Figure 7.2: Example of the generated paths (in yellow) by the developed
RMPC. In the depicted case, five control for each configuration were ran-
domly sampled. The green lines delimit the inspection area. Each yellow
point represents an AUV configuration. The blue line depicts the selected
inspection path.
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AUV was not able to achieve the target coverage levels. The developed KDE
evaluation strategy speeded up the process. It allowed to generate a mean of
12k configurations for each run of the RMPC algorithm, and thus it increased
the performance of the conducted coverage surveys.

Table 7.1 reports the outcomes of the inspection mission autonomously
conducted by the AUV using the developed RMPC view planning algorithm
with the KDE evaluation strategy.

Although the mean values of the RMPC strategy are greater than the
ad-hoc designed lawnmower path, it could represent an alternative since it
eliminates the pre-mission time. Indeed, it does not require a skilled operator
for designing the survey and thus could easily be used by non-specialized end-
users.

It is worth noting that the tests were conducted in smooth simulated sea
bottom scenarios. When the outcomes of the FLS measurements are not
predictable, the RMPC solution, as the RRT-based algorithm, could avoid
repeated attempts.

The results of the RMPC should be compared with the RRT solution
(Section 6.1). The RMPC algorithm, based on a different approach, achieved
similar results to the RRT-based solution when the Voronoi-biased expan-
sion is utilized. However, the RRT view planning algorithm utilizing the
informed and the balanced expansion represent the best solutions. These
latter methodologies, by guiding the tree expansion toward the unexplored
areas, outperformed the RMPC algorithm.

Finally, it is worth highlighting that the fast evaluation methodology
allowed to generated a wide set of viewpoint candidates, but it does not
consider the effect of possible protruding objects and only evaluates whether
a viewpoint steers the robot toward unexplored areas. On the other hand, the
ray casting routine, by computing the visibility of a viewpoint, can estimate
the effect of protruding objects and deal with more complex environments.
However, it is time expansive and limits the number of generated viewpoints.
Thus, a combined strategy that uses the fast evaluation methodology for
generating a plethora of paths, and then the ray casting routine executed
only for the most promising directions could be a solution for enhancing the
performance of both the RMPC and RRT methodologies.

To enhance the performance of the RMPC solution, the use of the esti-
mated map distribution for generating the control inputs could be investi-
gated.
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Table 7.1: RMPC outcomes

Coverage level 80%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 65.34 -

RHCA - RMPC 92.76 15.40
RHCA - RMPC - best run 66.88 -

(a) Results for 80% of coverage

Coverage level 90%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 72.37 -

RHCA - RMPC 118.65 24.65
RHCA - RMPC - best run 75.89 -

(b) Results for 90% of coverage

Coverage level 95%
Path length Path length

Method mean [m] standard deviation [m]
Lawnmower 76.39 -

RHCA - RMPC 137.07 22.42
RHCA - RMPC - best run 98.70 -

(c) Results for 95% of coverage

7.4 Major contribution

The use of an RMPC algorithm for conducting autonomous seabed inspec-
tions exploiting an FLS was investigated in this Chapter. Firstly, a sampling
strategy for randomly generating possible inspection paths that well explore
the workspace was developed. Then, the KDE solution for estimating the
density of the discovered map has been used for creating a fast methodol-
ogy for evaluating the generated paths. Thanks to this evaluation strategy,
the RMPC algorithm managed to generate several more configurations than
by using a ray casting procedure and achieved outstanding results. The
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developed view planning algorithm was validated with realistic simulations
made through the UUV Simulator and the inspection framework presented
in Chapter 5. In particular, the RMPC algorithm was used as the High-level
planner, instead of the RRT-based solution.

The solution presented in this Chapter will be tested in real sea trials
as soon as possible. A combined solution that fuses the advantages of the
designed KDE evaluation methodology and the ray casting procedure will be
investigated. Besides, future works could also involve using a Reinforcement
Learning technique to make the robot able to learn the best control inputs.



Chapter 8

Sensor-driven target-aware
autonomous inspections

This research work has been driven by two aspects that have become of
utmost importance in the field of modern robotics: meaningfully perceiving
and modeling the surroundings and autonomously conducting the assigned
task.

Regarding the former, i.e., understanding the environment, a CNN-based
ATR strategy for recognizing OPIs was presented in Chapter 4. Such a
solution enables an AUV to meaningfully gather knowledge of the surround-
ings. However, it does not fulfil all the required tasks. In particular, it
does not create a model of the environment that can be used to achieve the
assigned task and allows to define the areas containing the localized OPIs.
This could be pivotal for various applications ranging from defining high-risk
areas in MCM applications (and thus guiding the interventions or designing
safe routes), to guide divers for archaeological missions, or planning more
accurate inspections paths using different sensors, to mention a few.

The latter aspect was tackled in Chapter 5 (and then in Chapter 6 and
Chapter 7), where the development of a framework for sensor-driven coverage
surveys was reported. The framework was used for autonomously conduct-
ing FLS seabed inspections. To guarantee an adequate coverage of the area
of interest, the framework, based on a receding horizon approach, utilizes
an occupancy map that modelled the discovered regions for computing the
inspection survey. The map provided feedback of the already enlightened
seabed to the planning algorithm that could thus guide the AUV towards
complete coverage of the area of interest. Besides, the reconstructed map

109
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could be employed to predict possible collisions of the vehicle and thus plan
feasible paths online. The mapping solution also provides as output a recon-
struction of the seabed. Nevertheless, it does not consider the presence of
OPIs. That is, a semantically annotated occupancy map is not realized ([67],
[68]), limiting the information contained in the created model of the world.
Such knowledge could help human operators in analyzing the collected data
and could be employed by a robot to achieve complex tasks, e.g., exploring
unknown environments and simultaneously searching OPIs.

As a consequence of these considerations, a semantically annotated occu-
pancy map could represent a solution for the highlighted deficiencies of the
two aspects discussed above. In particular, by considering the ATR find-
ings into the mapping strategy, the regions that are most likely to contain
OPIs can be identified and used to design more detailed inspections or de-
lineate potentially hazardous areas. Therefore, in this Chapter a framework
for creating a semantically annotated map that fuses the ATR methodology
detailed in Chapter 4 and the sensor-driven inspection framework reported in
Chapter 5 is investigated. The proposed strategy is validated with realistic
simulations made by means of the UUV Simulator. The results reported in
Section 8.3 show that the developed solution allows the AUV to cover the
inspection area and recognize and localize the OPIs.

8.1 Semantically annotated occupancy map

To realize the semantic occupancy mapping strategy, the OctoMap frame-
work [66], which constitutes the backbone of the solution presented in [9]
and used in this work (see Chapter 5), has been extended. In its standard
version, as described in Section 3.3, OctoMap allows to represent free and oc-
cupied areas using nodes, usually known as voxels, which represent the space
contained within a cubic volume. OctoMap utilizes the octree data struc-
ture to efficiently update the voxels probability of being occupied by using a
Bayesian approach. Thus, each voxel has a probability Po of being occupied.
The semantic occupancy map was obtained by adding the semantic data to
the voxels. In detail, each voxel was extended to include the probability Pa
of belonging to an OPI. Therefore, each voxel holds:

• the probability Po of being occupied;

• the probability Pa of containing an OPI.
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Figure 8.1: The voxel classification policy used to create a semantically an-
notated map. It extends the standard OctoMap label map by adding to each
occupied voxel the probability of belonging to an OPI. This probability is
updated by using the outputs of the ATR system detailed in Chapter 4. The
developed semantic mapping strategy allows creating a meaningful model of
the area of interest that can be used to localize the OPIs and for planning
and executing object-aware tasks.

The here proposed mapping strategy was developed to create a semantic
model of the world that could be used for identifying the regions that are
most likely to contain OPIs or exploited on-board by a fully autonomous
AUV. Therefore, the goal is to classify the voxels of the area of interest as
free or occupied and determine which occupied voxel belongs to an OPI.
As a consequence, each voxel can be labeled as unexplored, free, occupied-
environment, occupied-uncertain, and occupied-OPI. In detail, occupied vox-
els are classified considering Pa as follows. While small values of Pa determine
occupied-environment voxels, Pa close to one determines occupied-OPI vox-
els. Intermediate values are used to define occupied-uncertain, which are
voxels with a non-negligible probability of containing an OPI but are not
well classified yet. Fig. 8.1 summarizes the utilized voxel policy.

While the voxels’ occupancy is updated by the mapping solution pre-
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sented in [9], Pa is based on the results of the ATR solution. To this end, an
update procedure shall be defined. Firstly, it is worth to note that by utiliz-
ing the fundamental assumptions on which the occupancy grid theory relies
on, discussed in Section 3.3, Pa can be updated following the Bayesian law
of Eq.3.10. Then, given the definition of the log-odds ratio, the elegant and
numerically efficient update formulation of Eq.3.12 can be used. Thus, by
applying the clamping policy, Pa can be updated by means of Eq.3.13. Since
the mapping strategy was developed for mapping completely unknown envi-
ronments, the non-informative prior assumption is employed for initializing
Pa, i.e., pa(mi) = 0.5.

8.1.1 Generating ATR-based point clouds

Regarding the measurement generation process, the ATR findings were used
for computing the point clouds. The ATR system makes use of CNNs to
detect and localize OPIs and it outputs the predicted object bounding boxes
with the computed confidence level (see Section 3.2.2). As described in Sec-
tion 3.1, assuming that the sea bottom imaged within a frame is dominantly
flat, each bounding box can be accurately localized with respect to the FLS
reference frame (< F >) (see Section 3.1), and thus by knowing the sensor
mounting pose, with respect to the body frame (< b >). Then, for each
ATR finding a point cloud can be generated by dividing the bounding box
into cells and considering the center of each cell. For the sake of clarity, each
cell center that represents the position of an element of the point cloud is
expressed in spherical coordinates. Finally, the ISM for updating Pa is cal-
culated by associating at each point the probability of belonging to an OPI,
which is computed considering a Gaussian distribution as follows:

pa
(
mi | zATRt

)
≈ pa (mi, cbb) = pc e

− 1
2

(
|mi−cbb|

σc

)2

, (8.1)

where cbb denotes the center of the detected OPI’s bounding box, and pc
the computed confidence level. For the sake of simplicity, a constant variance
σc is considered, and its value was selected so that pc is distributed over the
entire bounding box area.

It is worth noting that the noise and the lack of details in FLS images
makes the OPIs recognition task challenging. Besides, the OPIs’s render-
ing depends on the FLS characteristics and the insonification angle, i.e., the
viewpoint. In fact, during an inspection survey, the AUV could enlighten the
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same OPI from different viewpoints. All these patterns can lead to non de-
tected objects or wrong detections. Therefore, for each FLS image for which
the ATR system does not find any targets, the enlightened voxels are up-
dated with pa

(
mi | zATRt

)
= 0.45 that, in the Bayesian context, reduces the

probability of belonging to an OPI. This strategy was adopted to reduce the
effects of wrong detections on the reconstructed semantic map and increase
the OPIs localization accuracy.

8.2 Object uncertainty-aware view planning

for coverage

The modified mapping solution was employed with the autonomous inspec-
tion framework (see Chapter 5). The view planning algorithms were designed
to cover the area of interest with a given sensor, which in the context of this
research an FLS was considered. As detailed above, the developed algo-
rithms aim at optimizing the inspection survey by using the reconstructed
map as feedback. That is, they realized a sensor-driven solution that ensured
adequate coverage levels. In particular, in FLS inspections, it corresponds
to ensuring that the seabed is enlightened. Therefore, if during the mis-
sion the ATR solution is exploited, the target of interest can be recognized
and localized. Besides, the semantically-annotated mapping strategy allows
determining the regions that are most likely to contain OPIs. However, as
presented in the previous Chapters, the view planners cannot consider the
knowledge provided by the advanced mapping solution and only tried to
compute the shortest path for covering the area. Thus, they did not consider
the goal of reconstructing a semantic map of the environment actively. With
regard to the mapping solution described above, this corresponds to classify
the voxels as free, occupied-environment, and occupied-OPI and reducing as
much as possible the voxels labelled as occupied-uncertain.

To enable the view planner to consider the object uncertainty into the
map, the optimization function was modified. The RRT-based algorithm
with the balanced KDE expansion strategy (see Chapter 6) was considered.
Therefore, Eq.5.2 has been modified. By using the concepts introduced in
Section 3.4.2, the voxel uncertainty of containing an OPI can be expressed
by its entropy:
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Ia(x) = −Pa(x)ln(Pa(x))− P a(x)ln(P a(x)) , (8.2)

where P a(x) is defined as P a(x) = 1− Pa(x).
Thus, the uncertainty observed along a branch can be estimated as:

GBa =
∑

∀x∈XB

Ia(x) , (8.3)

where XB denotes the observable voxels along the branch B (as in Section
5.2).

This target uncertainty-based component can be combined with the BIG
in Eq.5.1 for defining an appropriate branch gain model. Regarding this
research work, GBa was utilized to promote branches that lead the AUV
toward unexplored regions and allow to reduce the target uncertainty. Thus,
the branch gain was designed as follows:

LB = GBeλaGBa . (8.4)

GB denotes the gain function defined in Eq.5.2 and used for carrying the
autonomous coverage surveys; λa > 0 ∈ R is a tuning parameter weighing
the target uncertainty.

While by using GB the algorithm selects the shortest path that guides the
vehicle toward unexplored regions, LB promotes solutions that allow explor-
ing the area and simultaneously reduces the OPIs localization uncertainty.
Thus, it is worth highlighting that LB could lead to longer inspection surveys.
In fact, enhancing the localization of the OPIs could require the vehicle to
re-observe already explored areas.

8.3 Autonomous inspections for localizing tar-

gets

The proposed methodology for autonomous underwater inspections and si-
multaneously looking for object of interest has been validated with realistic
simulations made by means of the UUV Simulator, where a dynamic model
of FeelHippo AUV was implemented. The RHCA framework detailed in Sec-
tion 5.1 was used together with the ATR strategy presented in Chapter 4.
In detail, the developed semantically annotated occupancy mapping solution



8.3. AUTONOMOUS INSPECTIONS FOR LOCALIZING TARGETS 115

utilized the seabed reconstruction strategy detailed in [9] and the outputs
of the ATR system. The Faster R-CNN architecture was selected for recog-
nizing the OPIs in the FLS images. Regarding the view planning strategy,
the RRT-basd algorithm made used of the object uncertainty-aware branch
gain function described in Eq.8.4. The KDE balanced informed expansion
methodology (see Section 6.2.2) was selected since it resulted as the best
coverage solution (Section 6.3 and Section 6.4).

To create an appropriate simulation environment, three objects resem-
bling a truncated cone and whose dimensions are 0.30 m of minor radius
(top), 0.49 m of major radius (bottom), and 0.44 m height were placed on
the sea bottom. It is worth highlighting that the selected object shape is
a rendering of the OPI utilized in Section 4.3 to quantify the localization
accuracy of the ATR system. To validate and asses the performance of the
developed methodology, four inspections were conducted with a fixed AUV
starting position and the three OPI placed in known positions, whose coor-
dinates in the NED reference frame are reported in Table 8.1. Autonomous
coverage surveys at a constant altitude (2 meters from the seabed) of an area
of 36x34 m were performed. The BlueView M900 2D FLS with a range of 10
m was considered.

Table 8.1: OPI positions in the NED frame

Position [m]
OPI 1 (10, -5, 4)
OPI 2 (-10, -4, 4)
OPI 3 (-2, 6, 4)

To quantitatively evaluate the proposed strategy, the travelled path length
to achieve the 90% and 95% of the coverage were considered. In addition,
to assess the OPIs localization precision, when the AUV reached the latter
threshold, euclidean clusters were extracted from the voxels with Pa > 0.7.
The centroid of each cluster has been considered as the closest OPI esti-
mated position. Then, in order to define the regions containing the OPIs, for
each cluster, the distance along the North and East directions of the cluster
farthest point from the centroid has been calculated. Therefore, at the end
of the survey, the regions that are most likely to contain the OPIs can be
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identified. Table 8.2 summarizes the results of the simulations.
As the coverage task is concerned, although the uncertainty-aware gain

function lead the RRT view planning solution to slightly longer paths com-
pared with the outcomes shown in Chapter 6, the AUV managed to ensure
the coverage of the area of interest. During the autonomous surveys, the three
OPIs were detected by the ATR system and the semantically annotated map
was updated. Regarding the localization accuracy, all the targets of interest
were localized with a maximum error of about 2 m. Besides, the identified
object areas ensures that the OPIs are well localized. In fact, given the target
dimensions and the computed maximum distance of the cluster points from
the centroid, the OPIs were contained within the defined regions. This is of
utmost importance in several applications, e.g, MCM operations for defining
safe routes and plan intervention operations, archaeological campaigns for
designing more accurate inspections, and so on.

In Fig. 8.2, the semantic map reconstructed during a survey is shown.
Occupied voxels belonging to the environment are reported in grey, while
coloured cubes depict voxels with a probability of containing an OPI greater
than 0.7. In particular, green turns to red as the probability increases. Such
a semantic map can be helpful for operators for the aforementioned tasks,
or it can be used online by the robot. In particular, in this research work,
the target uncertainty was used by the AUV to plan the inspection path. As
discussed above, the exploitation of the gain function LB (Eq.8.4) promotes
branches that lead the AUV toward unexplored regions and allow to reduce
the target localization uncertainty. Fig. 8.3 and Fig. 8.4 highlight this
behavior. In fact, instead of selecting the shortest path to complete the
coverage task, the view planning algorithm preferred a slightly longer pattern
(in blue) that permits observing the uncertain areas. That is, the vehicle
selected a path that enables it to first re-observe the targets in order to
reduce their localization uncertainty and then complete the coverage task.
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Figure 8.2: The semantically annotated map created during an autonomous
coverage survey. Grey voxels depict occupied voxels belonging to the environ-
ment (seafloor). Coloured voxels delimit the regions with a high probability
of containing an OPI. Green turns to red as the probability increases.
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Figure 8.3: The semantic map is used online by the AUV. The knowledge
about the OPIs is exploited for planning the survey. By using the target
uncertainty-aware gain function, the planner selected a path (in blue) that
both steers AUV toward the coverage task and allows to re-observe the most
uncertain areas. For the sake of completeness, the green lines delimit the
inspection area, while in yellow the generated view planning tree is reported.
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Figure 8.4: The snapshot highlights the effect of the proposed gain function.
Although among the generated possible paths, shown in yellow, there are a
few that can briefly guide the vehicle to complete the coverage task, a solution
that also considers the map uncertainty is selected (depicted in blue).
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8.4 Contribution

The solution presented in this Chapter represents the junction between the
ATR and RHCA methodologies investigated during the Ph.D. period. The
OctoMap-based mapping system was extended for considering the ATR find-
ings and thus, creating a semantic model of the environment. To this end,
the standard OctoMap node was modified to include the probability of con-
taining an OPI. The reconstructed semantically annotated map can be used
online by a robot to achieve complex tasks. For what this research is con-
cerned, the probabilistic semantic map was utilized for realizing an object
uncertainty-aware view planning algorithm for coverage surveys. In partic-
ular, the knowledge about the OPIs was used to design a gain function to
promote branches that steer the robot toward unexplored regions and si-
multaneously allow to correctly localize the targets. In fact, the proposed
gain function makes the view planning algorithm select branches that reduce
the map uncertainty due to both the unexplored areas and OPIs localiza-
tion. That is, it enables the robot to achieve the goal of reconstructing a
semantic map of the environment, i.e., covering the inspected area and well-
determining regions that are most likely to contain the targets of interest.

Realistic simulations validated the proposed solution. The results show
that the planning solution allowed the AUV to both cover with the FLS the
90% and the 95% of the inspection area, and recognize and localize the OPIs.

In conclusion, by fusing the proposed ATR methodology and the RHCA
strategy, a solution for conducting autonomous coverage surveys and simul-
taneously looking for targets of interest was developed. Therefore, it endows
a robot with the ability to meaningfully perceive and model the surroundings
and autonomously conduct the assigned task.
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Table 8.2: Simulation results

Test 1
Coverage level 90% Path length [m] 93.37
Coverage level 95% Path length [m] 138.92

OPI 1
Centroid (9.64, -5.42)

Distance [m] (2.11, 1.67)

OPI 2
Centroid (-9.52, -2.79)

Distance [m] (1.74, 2.04)

OPI 3
Centroid (-2.54, 5.29)

Distance [m] (1.29, 1.54)

(a) Outcomes of Test 1

Test 2
Coverage level 90% Path length [m] 119.59
Coverage level 95% Path length [m] 147.62

OPI 1
Centroid (10.03, -5.36)

Distance [m] (1.75, 1.89)

OPI 2
Centroid (-9.95, -6.58)

Distance [m] (1.30, 1.33)

OPI 3
Centroid (-1.54, 6.31)

Distance [m] (1.79, 1.56)

(b) Outcomes of Test 2

Test 3
Coverage level 90% Path length [m] 132.47
Coverage level 95% Path length [m] 141.81

OPI 1
Centroid (10.65, -4.99)

Distance [m] (1.58, 1.79)

OPI 2
Centroid (-9.98, -3.60)

Distance [m] (2.23, 2.15)

OPI 3
Centroid (-2.59, 5.59)

Distance [m] (1.34, 1.65)

(c) Outcomes of Test 3

Test 4
Coverage level 90% Path length [m] 102.18
Coverage level 95% Path length [m] 112.73

OPI 1
Centroid (7.98, -5.91)

Distance [m] (1.26, 1.34)

OPI 2
Centroid (-10.28, -4.04)

Distance [m] (1.03, 1.79)

OPI 3
Centroid (-1.62, 5.36)

Distance [m] (1.63, 2.39)

(d) Outcomes of Test 4





Chapter 9

Conclusions

This thesis reports the results carried out during the Ph.D. period in the
years 2018-2021. The work represents the first effort of the MDM Labora-
tory of UNIFI DIEF to develop a fully autonomous vehicle for underwater
operations. A fully autonomous vehicle requires several complex systems
acting together for tackling the challenging scenarios it must face. The focus
of this work has shifted on two aspects that were identified as fundamental
importance as they represent the foundations of complex fully autonomous
systems: meaningfully perceiving and modelling the environment, and au-
tonomously planning and re-planning the mission for carrying the assigned
tasks.

To make a mobile robot able to gather knowledge of the surroundings,
an ATR strategy for onboard applications was developed. As the analysis of
state of the art highlighted the supremacy of CNN architectures over other
approaches, the ATR strategy, detailed in Chapter 4, was based on CNN
image-based detectors. Considering the requirements of onboard online ap-
plications in terms of speed and accuracy, usually imposed by the limited
hardware capabilities available on compact vehicles, such as FeelHippo AUV,
selected as the testing platform, state-of-the-art architectures were selected
for the ATR framework. As far as this work is concerned, the ATR method-
ology was utilized for detecting and localizing OPIs in FLS images onboard
in real-time. In particular, various objects of comparable size but different
shapes were considered, and the ATR solution was used for determining the
presence and the position of the objects, and not for classifying the different
object types.

After the training phase, the selected networks were first evaluated offline
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to assess the performance, intended as the networks precision and inference
speed. Then, the ATR solution was validated with real tests at sea. In par-
ticular, during the experimental campaign, an OPI was placed in a known
position to evaluate the localization accuracy. Then, FeelHippo AUV was
utilized to find possible targets in an area of interest. The results achieved
during the experimental campaign have highlighted the capability of the pro-
posed architecture to autonomously inspect an unknown underwater scenario
by effectively detect and localize targets of interest.

Several efforts have been made during the Ph.D. period for enabling an
AUV to autonomously conduct FLS seabed inspections. A sensor-driven
framework based on a receding horizon approach was realized. The frame-
work, described in Chapter 5, is composed of a Mapping module, a Motion
planner, and a High-level planner. Regarding the former module, a prob-
abilistic 3D occupancy mapping system for FLS based reconstructions had
already been realized in previous works ([9]). The Motion planner was used
to generate the Dubins path that connected the AUV position to the target
configuration. The main focus has shifted to view planning algorithms to
be used as the High-level planner, in charge of computing and updating the
survey for achieving the task. Firstly, an RRT-based solution was developed
and tested in realistic simulations and real trials at sea. An analysis and
a benchmark of information gain metrics for AUV coverage tasks were pro-
vided. Then, advancements for enhancing the performance of the coverage
solution has been proposed in Chapter 6. In detail, the RRT algorithm has
been redesigned to speed up the procedure. In addition, a novel method-
ology based on the KDE technique for estimating the density function of
the discovered map was proposed. Such a technique was used to develop an
innovative informed expansion strategy for steering the tree toward the un-
explored regions. It represents an alternative to the standard Voronoi-biased
expansion approach. As the results of the realistic simulations and the con-
ducted experimental campaign have shown, the proposed advances enhanced
the performance of the RHCA framework by reducing the travelled path
length required to achieve the target coverage.

Moreover, a novel view planning approach was investigated during the
Ph.D. period. A RMPC algorithm for FLS autonomous seabed inspections
was presented in Chapter 7. To this end, a sampling strategy for randomly
generating possible inspection paths that well explore the workspace was de-
veloped. The KDE solution for estimating the density of the discovered map
has been used for creating a fast methodology for evaluating the generated
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paths. The RMPC algorithm was employed as the High-level planner in the
RHCA framework, instead of the RRT-based solution, and it was validated
with simulations performed by means of the UUV Simulator. It will be tested
at field as soon as possible.

It is worth highlighting that all developed inspection algorithms do not
rely on any assumption regarding the monitored area shape and sea bottom
profile, and thus, they can potentially be used in any scenario, and the results
presented in this thesis have general validity.

Finally, in Chapter 8 to fulfil the requirements of the topics identified as
goals of this thesis, the proposed ATR methodology and the RHCA strategy
were combined to realize a target-aware planning solution for autonomously
inspecting an area of interest. The ATR findings were employed to create and
update a semantic map of the environment. The probability of containing
an OPI was added to the standard occupancy mapping strategy. This addi-
tional information was used by the RRT view planner to generate paths that
cover the area of interest and simultaneously reduces the target localization
uncertainty. Realistic simulations validated the proposed solution, and the
results showed that it allowed the AUV to both covers the inspection area
and recognized and localized the OPIs.

In conclusion, this thesis presented the development of strategies for mak-
ing FeelHippo AUV able to meaningfully perceive and model the surround-
ings and autonomously conduct inspections surveys, paving the way for the
development of fully autonomous AUVs.

Nonetheless, progress still needs to be made. First of all, the proposed
target-aware view planning solution for coverage surveys shall be tested in a
real experimental campaign conducted in a controlled environment, i.e., with
the OPIs placed in known positions (in order to have a good ground truth).
In addition, to create a multi-labeled semantic map of the environment, the
task of classifying different objects could be tackled. Then, a methodology
for accelerating the nodes’ visibility computation could be investigated. In
fact, it is the most computationally expensive process of view planning algo-
rithms, which limits the number of generated viewpoints. By generating more
viewpoints, the algorithm could achieve better results. Future trends could
also involve the extension of the combined ATR and coverage methodologies
to other exteroceptive sensors, such as SSSs and optical cameras. Besides, a
multi-sensor strategy could be deepened. Finally, a multi-vehicle solution for
autonomously inspecting and modeling the underwater environment could
represent a coherent continuation of the research activity carried out so far.
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chitectures for sonar-based diver detection and tracking,” in OCEANS
2019-Marseille, pp. 1–6, IEEE, 2019.

[44] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in European confer-
ence on computer vision, pp. 21–37, Springer, 2016.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1–9, 2015.

[47] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[48] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fis-
cher, Z. Wojna, Y. Song, S. Guadarrama, et al., “Speed/accuracy
trade-offs for modern convolutional object detectors,” in Proceedings



REFERENCES 133

of the IEEE conference on computer vision and pattern recognition,
pp. 7310–7311, 2017.

[49] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, pp. 91–99, 2015.

[50] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[51] X. Li, M. Shang, H. Qin, and L. Chen, “Fast accurate fish detection
and recognition of underwater images with Fast R-CNN,” in OCEANS
2015-MTS/IEEE Washington, pp. 1–5, IEEE, 2015.

[52] Z. L. Cao, Y. Huang, and E. L. Hall, “Region filling operations with
random obstacle avoidance for mobile robots,” Journal of Robotic sys-
tems, vol. 5, no. 2, pp. 87–102, 1988.

[53] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, no. 1-4, pp. 113–126,
2001.

[54] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–
1276, 2013.

[55] D. P. Williams, F. Baralli, M. Micheli, and S. Vasoli, “Adaptive un-
derwater sonar surveys in the presence of strong currents,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2604–2611, IEEE, 2016.

[56] E. Galceran, R. Campos, N. Palomeras, M. Carreras, and P. Ridao,
“Coverage path planning with realtime replanning for inspection of
3D underwater structures,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6586–6591, IEEE, 2014.

[57] N. Palomeras, N. Hurtós, M. Carreras, and P. Ridao, “Autonomous
mapping of underwater 3-D structures: From view planning to execu-
tion,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1965–
1971, 2018.



134 REFERENCES

[58] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[59] M. Trummer, C. Munkelt, and J. Denzler, “Online next-best-view plan-
ning for accuracy optimization using an extended e-criterion,” in 2010
20th International Conference on Pattern Recognition, pp. 1642–1645,
IEEE, 2010.

[60] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa, “Efficient next-
best-scan planning for autonomous 3D surface reconstruction of un-
known objects,” Journal of Real-Time Image Processing, vol. 10, no. 4,
pp. 611–631, 2015.

[61] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “View plan-
ning for 3D object reconstruction with a mobile manipulator robot,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4227–4233, IEEE, 2014.

[62] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A comparison
of volumetric information gain metrics for active 3D object reconstruc-
tion,” Autonomous Robots, vol. 42, no. 2, pp. 197–208, 2018.

[63] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An informa-
tion gain formulation for active volumetric 3D reconstruction,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp. 3477–3484, IEEE, 2016.

[64] C. Papachristos, S. Khattak, and K. Alexis, “Uncertainty-aware re-
ceding horizon exploration and mapping using aerial robots,” in 2017
IEEE international conference on robotics and automation (ICRA),
pp. 4568–4575, IEEE, 2017.

[65] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon path planning for 3D exploration and surface in-
spection,” Autonomous Robots, vol. 42, no. 2, pp. 291–306, 2018.

[66] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.



REFERENCES 135

[67] K. Liu, Z. Fan, M. Liu, and S. Zhang, “Object-aware Semantic Mapping
of Indoor Scenes using Octomap,” in 2019 Chinese Control Conference
(CCC), pp. 8671–8676, IEEE, 2019.

[68] T. Dang, C. Papachristos, and K. Alexis, “Autonomous exploration
and simultaneous object search using aerial robots,” in 2018 IEEE
Aerospace Conference, pp. 1–7, IEEE, 2018.

[69] R. Ashour, T. Taha, J. M. M. Dias, L. Seneviratne, and N. Almoosa,
“Exploration for Object Mapping Guided by Environmental Semantics
using UAVs,” Remote Sensing, vol. 12, no. 5, p. 891, 2020.

[70] G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza,
“Perception-aware path planning,” arXiv preprint arXiv:1605.04151,
2016.

[71] Z. Zhang and D. Scaramuzza, “Beyond point clouds: Fisher informa-
tion field for active visual localization,” in 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 5986–5992, IEEE, 2019.

[72] M. Massot-Campos and G. Oliver-Codina, “Optical sensors and meth-
ods for underwater 3D reconstruction,” Sensors, vol. 15, no. 12,
pp. 31525–31557, 2015.

[73] M. Johnson-Roberson, M. Bryson, A. Friedman, O. Pizarro, G. Troni,
P. Ozog, and J. C. Henderson, “High-resolution underwater robotic
vision-based mapping and three-dimensional reconstruction for archae-
ology,” Journal of Field Robotics, vol. 34, no. 4, pp. 625–643, 2017.

[74] A. Palomer, P. Ridao, and D. Ribas, “Inspection of an underwater
structure using point-cloud SLAM with an AUV and a laser scanner,”
Journal of Field Robotics, vol. 36, no. 8, pp. 1333–1344, 2019.

[75] E. Hernandez, P. Ridao, A. Mallios, and M. Carreras, “Occupancy grid
mapping in an underwater structured environment,” IFAC Proceedings
Volumes, vol. 42, no. 18, pp. 286–291, 2009.

[76] Y. Wang, Y. Ji, H. Woo, Y. Tamura, A. Yamashita, and A. Hajime,
“3D occupancy mapping framework based on acoustic camera in under-
water environment,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 324–330,
2018.



136 REFERENCES

[77] J. D. Hernández, E. Vidal, M. Moll, N. Palomeras, M. Carreras, and
L. E. Kavraki, “Online motion planning for unexplored underwater
environments using autonomous underwater vehicles,” Journal of Field
Robotics, vol. 36, no. 2, pp. 370–396, 2019.

[78] P. V. Teixeira, M. Kaess, F. S. Hover, and J. J. Leonard, “Under-
water inspection using SONAR-based volumetric submaps,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4288–4295, IEEE, 2016.

[79] P. Sodhi, B.-J. Ho, and M. Kaess, “Online and consistent occu-
pancy grid mapping for planning in unknown environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7879–7886, IEEE, 2019.

[80] B.-J. Ho, P. Sodhi, P. Teixeira, M. Hsiao, T. Kusnur, and M. Kaess,
“Virtual occupancy grid map for submap-based pose graph SLAM
and planning in 3D environments,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2175–2182,
IEEE, 2018.

[81] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,”
The Annals of Statistics, pp. 1236–1265, 1992.

[82] C. Yen-Chi, “Lecture 6: Density estimation: Histogram and kernel
density estimator,” 2018.

[83] T. I. Fossen et al., Guidance and control of ocean vehicles. John Wiley
& Sons, 1994.

[84] R. M. Rogers, Applied mathematics in integrated navigation systems.
American Institute of Aeronautics and Astronautics, 2007.
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