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Abstract 

In recent years, human water needs have been steadily increasing and they are currently 

dominated by agricultural activities for food production worldwide. Furthermore, the increase 

in population and climatic change are expected to raise the current demand of water highlighting 

the necessity for more efficient irrigation systems. In this context, the combined effect of human 

pressure (i.e. irrigation) and the increase of extreme natural phenomena, such as drought events, 

has a strong impact on the global water budget with a local depletion of water resources, 

especially groundwater. However, our understanding of the impact of human activities on the 

water cycle is challenged by the lack of data (such as irrigation benchmark data) and by the 

difficulty of land surface models (LSM) to represent human processes like irrigation. These 

knowledge gaps affect water and food security, because they undermine both the ability to 

accurately monitor and forecast drought events, and the capacity to safely manage water 

resources.  

This thesis aims at shedding light on the utility of new earth observation (EO) data to characterize 

agricultural drought conditions and to detect water cycle modifications induced by 

anthropogenic activities like irrigation in order to help models to improve their ability to more 

realistically represent the terrestrial water cycle. Based on that, this research work tries to address 

two main important research questions: 

1) What is the added value of new EO data (i.e., satellite-based soil moisture) in drought 

monitoring and to which extent are these data able to provide potential information on 

crop production with respect to LSMs? 

2) Can the new generation of high resolution EO data help LSMs to better represent the 

impact of human activities like irrigation on the terrestrial water cycle? 

To answer question (1) the activity focuses on the use of an innovative long-term record of 

satellite-based soil moisture for the development of a standardized agricultural drought index 

for a regional scale analysis. The novelty of this research is to establish the relation between 

drought indices and crop yields, through a comparison with a benchmark crop dataset, as well 
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as to analyze the additional information contained in satellite observations about agricultural 

productivity and water uses as compared to ground-based rainfall and modeled soil moisture. 

The main findings highlight the crucial role of soil moisture in limiting the crop productivity 

during drought periods and consequently its key contribution for agricultural drought analysis. 

Another important aspect highlighted in the results is that satellite estimates of soil moisture 

contain added information about both water scarcity conditions and anthropogenic impacts on 

water resources (i.e., irrigation), compared to soil moisture estimates based on model simulations 

(which do not account for human-related processes). Those outcomes strongly link the 

agricultural drought analysis with the second part of this research. 

To answer question (2), the activity explicitly focuses on the quantification of the water used for 

agricultural purposes. Hydrological studies are converging on the synergistic use of models and 

satellite data to detect and quantify irrigation. The parameterization of irrigation in large-scale 

LSMs is improving but not sufficient by themselves to provide correct irrigation estimates, 

because they are still hampered by the lack of information about dynamic crop rotations, and by 

out-of-date maps of irrigated areas as well as unknown timing and amount of irrigation. On the 

other hand, satellite observations are directly affected by, and hence potentially able to detect, 

irrigation. Therefore, combining LSMs and satellite information through data assimilation (DA) 

can offer the optimal solution to quantify water used for irrigation at the desired spatio-temporal 

scale. This research aims at building an innovative and reliable DA system able to investigate the 

potential of high-resolution microwave EO data from the Sentinel-1 mission to improve irrigation 

quantification. The main assumption is that the joint update of soil moisture and vegetation 

model states, through the ingestion of 1-km radar backscatter, can improve irrigation estimation. 

This is a topic which was not investigated in previous literature. In this context, the optimization 

of a coupled system comprising a LSM and a backscatter observation operator, is firstly 

investigated. Results highlight the importance of equipping the LSM with an irrigation scheme 

to avoid strong biases between satellite observations and backscatter model predictions over 

intensively irrigated areas, where anthropogenic activities cannot be neglected. Secondly, 

backscatter observations are assimilated in the calibrated DA system, taking into account the 

effects of different backscatter polarizations. DA introduces both improvements and 
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degradations in soil moisture, vegetation and irrigation estimates. The spatial and temporal scale 

of the results have a large impact on the analysis and more contradicting results are found for an 

analysis at the plot scale, which highlights the need for very high-spatial resolution EO data and 

model parameterizations. Above all, this study sheds light on the limitations resulting from 

poorly-parameterized irrigation schemes included in LSMs which prevents large improvements 

in the irrigation simulation due to DA and points out on future implementations and input 

developments needed to improve LSM estimates of hydrological variables. 

The research activities focus on regions characterized by a significant human pressure on the 

terrestrial water cycle. The first part includes the Karnataka and Maharashtra states, located in 

central India, whereas the second part includes irrigated areas with a different climate in Europe, 

i.e. Po Valley, in northern Italy, and Niedersachsen in Germany.  
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Sommario 

Il fabbisogno idrico è in costante aumento e attualmente dominato dalle attività agricole 

finalizzate alla produzione di cibo a scala globale. Si prevede inoltre che l'aumento della 

popolazione globale in condizioni di cambiamento climatico aumenterà l'attuale prelievo di 

acqua mettendo in evidenza la necessità di sistemi di irrigazione più efficienti. Il forte impatto 

dell'irrigazione sul bilancio idrico globale è evidenziato anche da un generale esaurimento delle 

risorse idriche a larga scala, soprattutto per quel che riguarda le acque di falda. La riduzione delle 

risorse idriche è il risultato dell'effetto combinato dell’attività antropica e del cambiamento 

climatico. Tuttavia, la capacità di quantificare l'impatto umano, ed in particolare l’impatto delle 

pratiche agricole, sul ciclo idrologico è limitata dalla mancanza di dati osservati (principalmente 

dati di irrigazione) e dalla difficoltà che i modelli di superficie terrestre (LSM) hanno nel 

rappresentare pratiche antropiche. Queste limitazioni hanno un impatto significativo sulla 

sicurezza idrica e alimentare, minando la capacità di monitorare e prevedere eventi di siccità, così 

come la capacità di gestire in sicurezza la risorsa idrica.  

Questa tesi mira a far luce sull'utilità di innovativi dati satellitari di rilevamento da remoto per 

caratterizzare la siccità agricola e per quantificare cambiamenti del ciclo idrologico indotti da 

attività antropiche, in particolare l'irrigazione, al fine di aiutare i modelli a migliorare la loro 

capacità di rappresentare più realisticamente il ciclo idrologico terrestre. Sulla base di ciò, 

l’attività di ricerca affronta due importanti tematiche: 

1) Qual è il valore aggiunto di dati satellitari di ultima generazione (nello specifico l'umidità 

del suolo da satellite) nel monitoraggio della siccità e in che misura questi dati sono in 

grado di fornire informazioni potenziali sulla produttività delle colture rispetto ai dati 

ottenuti da LSM? 

2) Dati satellitari ad alta risoluzione possono aiutare a rappresentare l'impatto delle attività 

umane sul ciclo idrologico terrestre nei LSM? 

Per rispondere alla domanda (1) un innovativo dataset di umidità del suolo da satellite a lungo 

termine è stato selezionato per lo sviluppo di un indice standardizzato di siccità agricola da 
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utilizzare in un’analisi a scala regionale. L’aspetto innovativo di questa ricerca è quello di stabilire 

la relazione tra indici di siccità agricola e dati di raccolto, nonché di analizzare le informazioni 

aggiuntive contenute nelle osservazioni satellitari riguardo la produttività agricola e l’uso 

antropico di acqua, rispetto a dati in situ di precipitazione e all'umidità del suolo modellata. I 

risultati principali evidenziano il ruolo cruciale dell'umidità del suolo nel limitare la produttività 

delle colture durante i periodi siccitosi e di conseguenza il contributo chiave di questa variabile 

climatica per l'analisi della siccità agricola. Un altro aspetto importante che si evidenzia nei 

risultati è il grado di informazione contenuto nelle stime di umidità del suolo ottenute da dati 

satellitari, sia sulle condizioni di scarsità d'acqua che sull’impatto delle attività umane sul ciclo 

idrologico, rispetto alle stime di umidità del suolo modellato. Tali risultati collegano fortemente 

l'analisi della siccità agricola alla seconda parte di questa ricerca. 

Per rispondere alla domanda (2) l'attività si è concentrata esplicitamente sulla quantificazione 

della risorsa idrica utilizzata a scopo agricolo. Negli ultimi anni, gli studi idrologici stanno 

convergendo sull'uso sinergico di modelli e dati satellitari per rilevare e quantificare l'irrigazione. 

La parametrizzazione dell'irrigazione nei LSM su larga scala è migliorata nell’ultimo decennio, 

ma non è ancora sufficiente a fornire stime corrette di irrigazione, in quanto ostacolata dalla 

mancanza di informazioni aggiornate sulla rotazione annuale delle colture, aree irrigue e dal fatto 

che tempi e quantità di irrigazione sono essenzialmente sconosciuti. D'altra parte, le osservazioni 

satellitari sono direttamente influenzate dall'irrigazione e quindi potenzialmente in grado di 

rilevarla. Pertanto, l’assimilazione di tali dati (DA) all’interno di modelli può offrire la soluzione 

ottimale per quantificare l'acqua utilizzata a scopo irriguo alla scala spazio-temporale desiderata. 

Questa ricerca mira dunque a costruire un sistema di DA innovativo in grado di studiare il 

potenziale delle osservazioni satellitari alle microonde ad alta risoluzione della missione Sentinel-

1 per migliorare la quantificazione dell'irrigazione. L'ipotesi principale è che aggiornando 

congiuntamente gli stati di umidità del suolo e vegetazione di un LSM, attraverso assimilazione 

di dati radar di retrodiffusione (backscatter) alla risoluzione di 1 km, possa migliorare 

l'irrigazione. Tale aspetto non è stato precedentemente analizzato in letteratura. Nell’ambito di 

questa attività è stato quindi sviluppato un sistema che accoppia un LSM ed un operatore di 

osservazione (observation operator) per l’assimilazione di dati di backscatter. I risultati 
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evidenziano l'importanza di dotare il LSM anche di uno schema di irrigazione per ridurre 

significativamente il bias tra osservazioni satellitari e previsioni del modello su aree intensamente 

irrigate, dove le attività antropiche hanno un ruolo non trascurabile. Una volta calibrato il 

sistema, le osservazioni di backscatter sono state assimilate, tenendo conto dell’effetto delle 

diverse polarizzazioni del segnale osservato. L’assimilazione sembra introdurre sia 

miglioramenti che riduzione delle performance nelle stime di umidità del suolo, vegetazione ed 

irrigazione. È inoltre possibile osservare come la scala spaziale e temporale dell’analisi abbia un 

forte impatto sui risultati. In tal senso, l’attività fa luce su vantaggi e limitazioni derivanti dall’uso 

di schemi di irrigazione caratterizzati da una parametrizzazione semplice, mettendo in evidenza 

gli step futuri necessari per migliorare la stima di irrigazione e delle variabili idrologiche. 

L’ attività di ricerca è stata svolta su due regioni caratterizzate da una significativa pressione 

umana sul ciclo idrologico. Nella prima parte si fa riferimento agli stati di Karnataka e 

Maharashtra, situati nell'India centrale, mentre la seconda parte della ricerca è stata realizzata su 

aree irrigate in Europa, caratterizzate da condizioni climatiche differenti, ovvero, la Valle del Po, 

nell'Italia settentrionale, ed il sito di Niedersachsen in Germania. 
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Samenvatting 

De vraag naar water blijft stijgen. Wereldwijd is het vooral de landbouw die grote hoeveelheden 

water vraagt om voedselproductie te garanderen. Bovendien dreigen de populatiegroei en 

klimaatveranderingen de waterbehoeften nog te versterken, waardoor efficiënte 

irrigatiesystemen steeds belangrijker worden. De globale waterverdeling staat onder druk van 

zowel menselijke activiteiten (e.g. irrigatie) als van toenemende extreme natuurverschijnselen 

(e.g. droogtes), met lokaal een vermindering van watervoorraden in bijvoorbeeld het grondwater. 

Onze kennis over de impact van menselijke activiteiten is echter beperkt door het gebrek aan data 

(e.g. irrigatie referentie data) en de gebrekkige weergave van menselijke processen zoals irrigatie 

in landoppervlakte modellen (LM). Dit gebrek aan inzicht vormt een bedreiging voor water en 

voedselveiligheid, omdat we zonder dit inzicht droogtes niet goed kunnen voorspellen en 

opvolgen, en watervoorraden niet goed kunnen beheren. 

Deze thesis wil het nut van nieuwe aardobservatie (AO) data bestuderen voor het karakteriseren 

van droogtes en het detecteren van veranderingen in de watercyclus door menselijke activiteiten, 

zoals irrigatie. Deze data kunnen dan vervolgens numerieke modellen helpen om de watercyclus 

beter te simuleren. Dit onderzoek behandelt twee belangrijke onderzoeksvragen: 

1) Wat is de toegevoegde waarde van recente AO data, i.e. satelliet-gebaseerd bodemvocht, 

voor het monitoren van droogtes, en wat is het potentieel van deze AO data vergeleken 

met LSM schattingen van bodemvocht voor gewas voorspellingen? 

2) Kunnen hoge-resolutie AO data LMs helpen om menselijke activiteiten, zoals irrigatie, 

beter te schatten in de terrestrische watercyclus? 

De eerste vraag (1) wordt in deze thesis beantwoord door lange-termijn satelliet data van 

bodemvocht te gebruiken voor de berekening van een gestandaardiseerde landbouwkundige 

droogte-index op een regionale schaal. Dit onderzoek verbindt droogte-indexen met 

gewasopbrengsten, via een vergelijking met veld data van gewassen. De resultaten tonen ook dat 

bodemvocht een limiterende factor is voor gewasproductie tijdens droogtes en dus effectief kan 

gebruikt worden in landbouwkundige droogte analyses. Daarnaast wordt aangetoond dat, 
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vergeleken met in situ neerslag data en gemodelleerd bodemvocht, satelliet data bijkomende 

informatie bevatten over landbouw productiviteit en watergebruik. Satelliet schattingen van 

bodemvocht bevatten meer informatie over zowel watertekorten als menselijke invloeden op 

watervoorraden (e.g. irrigatie) dan modelsimulaties van bodemvocht (die geen menselijke 

activiteiten bevatten). Dit maakt de brug naar het tweede deel van dit onderzoek. 

De tweede vraag (2) gaat in op de begroting van het watergebruik voor landbouw toepassingen. 

Hydrologische studies convergeren naar het idee dat modellen en satellietdata in synergie 

moeten gebruikt worden om irrigatie te detecteren en de hoeveelheden irrigatiewater te schatten. 

De parameterizatie van grootschalige LMs is momenteel niet toereikend om irrigatie nauwkeurig 

te schatten, omdat er geen dekkende informatie is over gewasrotaties, omdat er geen goede 

kaarten zijn waarop geïrrigeerde land fracties zijn aangeduid, of omdat er te weinig veld data zijn 

om het ogenblik van de toepassing en de hoeveelheid aan irrigatie te kalibreren. Satelliet data zijn 

direct beïnvloed door irrigatie en zouden dus mogelijk irrigatie kunnen detecteren. Het 

combineren van LMs en AO data via data assimilatie (DA) kan een optimale oplossing bieden 

om het watergebruik voor irrigatie te schatten op de gewenste ruimtelijke en temporele schaal. 

In dit onderzoek is een innovatief DA systeem opgezet om het potentieel van hoge-resolutie 

microgolf data van de Sentinel-1 satelliet te gebruiken voor irrigatie schatting. De aanname is dat 

de gezamenlijke toestandupdate van bodemvocht en vegetatie de irrigatie schatting van 

verbeteren na de opname van 1-km observaties van radar terugkaatsing. Dit is niet eerder 

beschreven in de literatuur. Een eerste stap in de ontwikkeling van het DA systeem is de 

koppeling van het LM met een radar terugkaatsing observatiemodel (observation operator). Hierbij 

is het belangrijk dat een ruwe schatting van irrigatie door het LM wordt gesimuleerd om grote 

persistente verschillen in terugkaatsingen van de satelliet data en model voorspellingen te 

beperken over intens geïrrigeerde gebieden. In een tweede stap worden de radar observaties 

geassimileerd in het LM, dat uitgerust is met een ruwe irrigatie simulatiemodule en een 

gekalibreerd terugkaatsing observatiemodel. De assimilatie van terugkaatsingobservaties in 

verschillende polarisaties is bestudeerd, en zowel verbeteringen als degradaties van schattingen 

voor bodemvocht, vegetatie en irrigatie zijn bekomen. De ruimtelijke en temporele schaal van de 

resultaten heeft een grote invloed op de interpretatie van de resultaten. Op de veldschaal zijn de 
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resultaten het meest tegenstrijdig, wat een nood voor zeer hoge resolutie AO data en model 

parameters aangeeft. Deze studie toont bovenal aan dat er beperkingen zijn in de efficiëntie van 

het DA systeem door een gebrekkiger parameterizatie van de irrigatiemodule in LMs. De 

implementatie en input voor deze irrigatiemodules moet in de toekomst dus verbeteren. 

Het onderzoek focust op twee gebieden met een belangrijke druk van menselijke activiteiten op 

de watercyclus. Het eerste deel van de thesis gaat over de Karnataka en Maharashtra staten in 

centraal India. Het tweede deel dekt geïrrigeerde gebieden met verschillende klimaten in Europa, 

i.e. de Po vallei in noord Italië en Niedersachsen in Duitsland. 
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Chapter 1: Introduction 

The large influence of anthropogenic activities on the terrestrial water cycle have led scientists to 

identify a new geological era which has been called Anthropocene (Montanari et al., 2013; 

Savenije et al., 2013; Steffen et al., 2011). Indeed, human water needs have been increasing in 

recent years and the long-term decrease in water availability due to climate change together with 

the impact of anthropogenic processes is leading to hydrological cycle modifications with 

consequent impacts on human well-being. Water resources availability is indeed affected both by 

natural disasters, such as drought events which are increasing in severity (Mishra and Singh, 

2010), and by human water needs for food production worldwide (Wada et al., 2017). In 

particular, the strong impact of irrigation on the global water budget is evidenced by many 

studies and it has been estimated that about 70% of the global freshwater withdrawals are used 

for irrigating crops (Foley et al., 2011; Siebert et al., 2015). Land surface models (LSM) are able to 

simulate the water cycle but simulations are affected by limitations as they miss or poorly-

simulate human activities. Conversely, the new era of earth observations (EO) allows to observe 

the Earth surface (and sub-surface) processes in a more realistic way providing useful information 

on both natural risks (i.e., drought events) and anthropogenic activities (i.e., irrigation). 

This PhD dissertation investigates how innovative EO can be used to: 1) characterize agricultural 

drought; and 2) help models taking into account human impacts and improving their ability to 

better estimate components of the terrestrial water cycle.  

Section 1.1 covers the first point and describes the influence of natural disasters, and more 

specifically agricultural drought events, in the water cycle framework. A review of previous 

studies on drought characterization is provided and particular attention is given to future 

directions that drought analysis should take to understand additional information that EO can 

bring on water scarcity, crop productivity and human impacts on the water resources as 

compared to ground-truth or modeled data.  

Section 1.2 explicitly focuses on human impacts on the terrestrial water cycle, analyzing previous 

studies on irrigation quantification through the use of models and satellite-based EO observations 

as well as methods to combine both information via data assimilation (DA). Limitations of 
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previous studies are highlighted as well as challenges for future DA analysis. Finally, Section 1.3 

discusses objectives and structure of this thesis. 

1.1 Hydrological water cycle and drought 

1.1.1 Hydrological natural hazards: drought events  

The natural hydrological cycle is represented by the endless movement of water from one Earth 

system reservoir to another, with the water status changes regulated by solar energy. The main 

geophysical processes that regulate water exchanges near the land surface are represented by 

precipitation, evapotranspiration, infiltration and runoff which connect the hydrological major 

water storages, such as the soil water content, rivers, lakes, oceans, glaciers, with the atmosphere.  

Extreme anomalies in components of the hydrological cycle are often associated with different 

natural hazards; one of the more complex is represented by drought, an extreme event originating 

from a period of low precipitation (McKee et al., 1993). The scientific community generally 

recognizes three types of drought occurring at different timescales: meteorological, agricultural 

and hydrological. A meteorological drought starts with a deficit in precipitation and can evolve 

in an agricultural drought, proceeding in a period of declining soil moisture and consequent crop 

failure (Mishra and Singh, 2010). An additional evolution in time of precipitation deficit can lead 

to a hydrological drought, represented by an abnormally low streamflow in rivers and 

abnormally low levels in lakes, reservoirs, and groundwater (Van Loon, 2015). The evolution in 

time of drought events implies indeed an involvement of various environmental systems 

(Vicente-Serrano et al., 2020). 

Agricultural droughts, in particular, assume key importance from a societal point of view, with 

crop-yield reductions, economic losses and famine episodes. Since the 1960s, drought events have 

been one of the main drivers of crop failure worldwide (Cottrell et al., 2019) and with the world’s 

increasing population to 9.1 billion by 2050 foreseen by the Food and Agriculture Organization 

(FAO, 2009), understanding the impact of drought events on food production has a crucial 

importance for countries relying on both rain-fed and irrigated agricultural production such as 

for instance India, or the Mediterranean region (Tramblay et al., 2020).  
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1.1.2 Agricultural drought indices 

Since the 1990s, many drought indices have been developed, using different indicators to 

characterize and quantify different types of drought (Zargar et al., 2011). Among indicators most 

commonly used by the scientific community is the Standardized Precipitation Index (SPI, McKee 

et al., 1993). Developed using long-term rainfall records, this statistics-based index is 

recommended as a key drought indicator for global applications in the Lincoln Declaration on 

Drought Indices (Hayes et al., 2011). SPI’s ability to detect the rapid development of rainfall deficit 

makes it particularly appropriate for monitoring meteorological drought (Farahmand and 

AghaKouchak, 2015) but it can also be used to monitor agricultural drought conditions. Zargar 

et al. (2011) suggest that applying a three-month timescale to SPI can provide a seasonal 

estimation of rainfall, reflecting short- and medium-term soil moisture conditions. The 

advancements of rainfall-based indices have been supported by long-term datasets of rainfall 

measurements obtained through rain-gauge networks, such as the Global Precipitation 

Climatology Center (GPCC; Schneider et al., 2014).. 

Although rainfall-based drought indices are popular, a more appropriate indicator of agricultural 

drought is soil moisture, as it controls the amount of water available to support 

evapotranspiration and, in turn, plant growth (Velpuri et al., 2016). In agriculture, crop failure 

occurs when there is not enough moisture to support production. However, using conventional 

“in situ” soil moisture measurements for monitoring drought at large scale is practically 

impossible. This is due to their point-based nature and limited spatial coverage (Peled et al., 2010), 

as well as there being wide variability in soil moisture levels across a given area of study (Brocca 

et al., 2012). 

To overcome this issue, some authors have proposed using satellite-based soil moisture 

measurements (Carrão et al., 2016; Martínez-Fernández et al., 2016) or land surface model outputs 

(i.e. Farahmand and AghaKouchak, 2015; Dutra et al., 2008; Sheffield et al., 2004). Despite inherent 

uncertainties (such as issues related to satellite retrievals in the first case, and modeling error and 

simplified or absent representation of anthropogenic activities in the second) both types of 
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products guarantee good coverage of the Earth’s surface, and thus are well suited for building a 

spatially consistent representation of drought conditions.  

1.1.3 Satellite soil moisture for agricultural drought 

The use of satellite-based measurements of soil moisture for monitoring agricultural drought has, 

in particular, expanded of late thanks to the increased availability of RS-based products derived 

from active and passive microwave (MW) sensors (Carrão et al., 2016; Mishra et al., 2017; 

Rahmani et al., 2016; Velpuri et al., 2016; Zhu et al., 2019). The main advantage of satellite-based 

soil moisture observations over modeled data is their ability to observe the “true” state of soil 

wetness over the Earth’s surface (i.e., “true” as in potentially also taking into account human-

related processes such as irrigation; Lawston et al., 2017). Despite this advantage, there are 

limitations to use satellite soil moisture observations, such as the relatively short data record 

(which hampers calculation of standardized soil moisture drought indices; Sheffield et al., 2004; 

Martínez-Fernández et al., 2016), the shallow soil penetration depth (i.e., less than 5 cm; Collow 

et al., 2012; Kerr, 2007), and errors related to the retrieval algorithm or instrument radiometric 

inaccuracies, which could partly mask anomalous events (Dorigo et al., 2010; Su et al., 2016; 

Bauer-Marshallinger et al., 2018). 

The interest in retrieving soil moisture data from EO began at the end of 1970s, but the first 

dedicated soil moisture program – the European Space Agency (ESA) Soil Moisture and Ocean 

Salinity (SMOS) mission – was launched only in 2009 (Kerr et al., 2010). However, thanks to the 

work initiated by (Liu et al., 2012), it is now possible to access a long-term (from 1978), consistent 

soil moisture time series based on multiple products derived from historical active and passive 

MW EO data. The ESA Climate Change Initiative (CCI) soil moisture product (Dorigo et al., 2017) 

has such a long coverage, which makes it well suited for implementing soil moisture-based 

drought indices, such as the Standardized Soil Moisture Index (SSI, Farahmand and 

AghaKouchak, 2015), the Empirical Standardized Soil Moisture Index (ESSMI, Carrão et al., 2016), 

the Soil Moisture Deficit Index (SMDI, Narasimhan and Srinivasan, 2005) and the Soil Water 

Deficit Index (SWDI, Martínez-Fernández et al., 2015). More details about soil moisture drought 

indicators will be provided in Section 2.1.5. 
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1.1.4 Agricultural drought indices and crop production 

Although widely applied, there is no clear evidence that such soil moisture indices (including 

those derived from model estimates) can flag-up below-normal soil moisture conditions likely to 

limit crop production, thus forecasting when famine might occur. In this respect, only a few 

studies have tried to relate drought indices with crop-yield data (i.e. Carrão et al., 2016; Gibon et 

al., 2018; Narasimhan and Srinivasan, 2005; Zhang et al., 2017). Moreover, in these studies the 

authors were more interested in using crop-yield data as an indirect validation tool, or for 

comparing the validity of different indices built with different variables (i.e., rainfall, soil 

moisture, Normalized Difference Vegetation Index (NDVI), evapotranspiration). These studies 

were undertaken without considering either the source of soil moisture data (i.e., satellite 

observations or model) used to calculate the indices or the ability of these indices to provide 

information on future crop yields as a function of the drought severity. In this context, particular 

importance is assumed by the additional information that satellite soil moisture dataset can 

provide on agricultural crop production and on human-related water uses, such as irrigation, as 

compared to land surface model (LSM) soil moisture estimates. This is a key research topic 

considering that human activities can mitigate the impact of droughts on crop production, 

through an optimized use of water resources (Tramblay et al., 2020), or exacerbate water scarcity 

(IPCC, 2021). Studies to understand the effects of human activities on the water cycle are of critical 

importance for an optimal water management and EO data play a central role in providing useful 

information at large (global) as well as at small (plot) scale. 

1.2 Human impacts on the water cycle: irrigation quantification 

1.2.1 Irrigation in the water cycle 

Humans represent the largest driver of environmental change worldwide, and therefore the 

current geological epoch has been named Anthropocene (Crutzen, 2002; Falkenmark et al., 2019; 

Steffen et al., 2015). With the increasing population and urbanization, human needs are also 

increasing, producing human pressure on the hydrological cycle at different spatial scales 

(Falkenmark et al., 2019). A consequent decrease in water availability for ecosystem use can lead 

to ecosystem degradation and hydrological cycle modifications with resulting impacts on overall 
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water scarcity, human well-being and many ecosystems worldwide (Abbott et al., 2019; 

Falkenmark, 2003). Thus, it is undeniable that nowadays the interaction between human activities 

and the hydrological cycle is stronger than ever (Montanari et al., 2013). However, this interaction 

is still not well represented in water cycle diagrams. For instance, Abbott et al. (2019) analyzed 

114 English-language diagrams of the water cycle from textbooks, peer-reviewed articles, 

government materials and online sources, surprisingly finding that 85% of the diagrams were 

widely biased, showing no interaction between humans and the water cycle. Those sources of 

uncertainties and inaccuracies should be reduced to allow an optimal water management from 

both policymakers and public perspectives. 

In this context, several studies have analyzed the water resources differentiating them based on 

the different human uses. Three main categories were identified: 1) the blue water is the 

freshwater available for withdrawal in rivers, lakes or shallow aquifers; 2) the green water is the 

freshwater represented by the precipitation water stored in unsaturated soil and later used for 

evapotranspiration and mainly for agricultural (i.e., irrigation) or livestock purposes; and finally, 

3) gray water, the freshwater used to assimilate waste (Falkenmark, 2003; Falkenmark and 

Rockström, 2006; Hoekstra, 2011; Postel et al., 1996). Additionally, humans have interfered in the 

terrestrial water cycle also altering the Earth’s land surface through deforestation and converting 

land uses to agricultural, urban and industrial landscapes (Abbott et al., 2019). Correctly 

quantifying the different sources of water, the human uses (i.e., water abstractions and 

applications) and its effect on the terrestrial water cycle is one of the main challenges for the 

hydrological community.  

In recent years, several studies have focused on the quantification of green and blue water 

resources using LSMs, but a conspicuous source of uncertainties seems to be related to poorly-

modeled or unmodeled human processes, such as water abstractions, irrigation and water 

management (Ozdogan et al., 2010a). Particularly, irrigation represents one of the most impactful 

human interventions, and consequently disturbance, in the terrestrial water cycle. Foley et al. 

(2011) reports that irrigated lands are only 17% of global croplands although they produce 40% 

of the world’s food. Those percentages are expected to increase in the next decades due to 
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population growth and dietary shifts as highlighted by Ozdogan et al. (2010b) and in Matthews 

and Germain (2007), pointing to an increasing need in quantifying irrigation on a regional to 

global scale. 

Correctly estimating irrigation in LSMs can serve two main purposes. On the one hand, it can 

help improving the water management (Bretreger et al., 2020; Le Page et al., 2020), on the other 

hand, it allows to quantitatively assess its effects on the terrestrial water, carbon and energy cycles 

(Breña-Naranjo et al., 2014; Haddeland et al., 2014; Hu et al., 2016; Qian et al., 2020). In this context, 

results of large-scale irrigation studies using LSMs have demonstrated that irrigation increases 

soil moisture and evapotranspiration (ET), and consequently latent heat flux with a decrease in 

sensible heat flux (i.e., Badger and Dirmeyer, 2015; Lawston et al., 2015; Ozdogan et al., 2010a). 

1.2.2 Irrigation in models 

Despite the significant impact of irrigation on the water and energy cycles, its simulation within 

LSMs is not yet common practice (Girotto et al., 2017). In earlier studies, attempts to simulate 

irrigation in LSMs have relied on different parameterizations of well-known irrigation systems 

(like sprinkler, flood, and drip systems; Evans and Zaitchik, 2008; Ozdogan et al., 2010a), making 

simplifying assumptions. For instance, in Ozdogan et al. (2010a) irrigation water is not 

withdrawn from a source (such as a river) but instead added as fictitious rainfall. In contrast, Nie 

et al. (2018) accounted for source water partitioning, albeit only partially, by considering 

groundwater irrigation. Irrigation is normally applied when soil moisture drops below a user-

defined threshold (Ozdogan et al., 2010a), typically dependent on the soil properties obtained via 

soil texture maps.  

Moreover, LSMs equipped with irrigation schemes need to be provided with auxiliary 

information about crop types and whether or not the crops are irrigated. This is because different 

crop types are characterized by different rooting depths, which means they require more or less 

water to restore root zone field capacity (FC). This information is normally gathered from static 

maps derived from statistical analysis and/or EO (Monfreda et al., 2008; Ozdogan et al., 2010a; 

Salmon et al., 2015) collected during specific historical periods which are normally different to 

the desired period of analysis. It is thus clear that the modeling of irrigation is subject to many 
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simplifying assumptions, which span from neglecting the year-to-year crop variability and the 

irrigation system used to the definition of irrigation application times based on water availability 

and crop conditions rather than actual farmer decisions.  

1.2.3 Irrigation in observations from space 

RS technologies are potentially able to monitor irrigated lands worldwide (Ambika et al., 2016; 

Bazzi et al., 2019; Bousbih et al., 2018; Dari et al., 2020; Gao et al., 2018; Le Page et al., 2020). In the 

last decade, some authors used visible and near infrared EO jointly with in situ data collected 

from inventories to map areas equipped for irrigation (Ambika et al., 2016; Ozdogan and Gutman, 

2008). Kumar et al. (2015) were the first to propose the use of coarse resolution satellite MW 

sensors to detect irrigation. The authors compared different coarse-scale active and passive MW 

surface soil moisture (SSM) retrievals with SSM simulations from the Noah LSM (Ek et al., 2003) 

without activating an irrigation scheme over a continental US domain. Areas where the 

distributions of model and EO data sets deviated (based on a Kolmogorov-Smirnov test) were 

assumed to be irrigated. Even though some of the products showed a potential ability to detect 

irrigation, the authors concluded that the spatial mismatch between the satellite footprint and the 

irrigated fields, radio-frequency interference (RFI), vegetation, and topography could all 

deteriorate the accuracy of the results. Similar conclusions were found over the same area by 

Zaussinger et al. (2019) who compared coarse-scale satellite SSM products with soil moisture 

predictions from the Modern-Era Retrospective analysis for Research and Applications 2 

(MERRA-2; Gelaro et al., 2017) in the absence of precipitation, and Escorihuela and Quintana-

Seguí (2016) who additionally compared a downscaled version of SMOS SSM to SURFEX LSM 

simulations. Brocca et al. (2018), Jalilvand et al. (2019) and Dari et al. (2020) used a conceptually 

different approach with the same coarse scale MW SSM products and estimated irrigation by 

directly inverting a simple water balance equation (Brocca et al., 2014). 

The Copernicus Sentinel-1 satellites (Sentinel-1A and Sentinel-1B) offer a new perspective for 

agricultural applications, thanks to the finer spatial resolution (up to 10-20 m) of the Synthetic 

Aperture Radar (SAR) backscatter data. For instance, Gao et al. (2018) proposed an approach to 

map irrigated lands over the Urgell region in Catalonia (Spain), and Le Page et al. (2020) proposed 



 

31 
 

a methodology to detect irrigation timing in south-west France comparing the SSM signal at the 

plot scale, derived using Sentinel-1 backscatter and NDVI from Sentinel-2 (El Hajj et al., 2016), 

with a water budget model forced by Sentinel-2 optical data for the detection of irrigation timing.  

1.2.4 Towards irrigation estimation via data assimilation 

Despite the high potential demonstrated by EO in detecting, mapping and quantifying irrigation, 

the uncertainties of the satellite retrievals, the relatively low revisit time of high-resolution active 

MW products and the too coarse spatial resolution of passive MW products with respect to the 

mean size of irrigated fields represent main limitations for irrigation information retrieval (Le 

Page et al., 2020; Romaguera et al., 2014).  

Data assimilation (DA) is the most viable way to integrate model estimates (which resolve 

processes at the desired spatio temporal scales) and EO (which can track human processes and 

their interaction with the water and energy cycle), and it has been recognized as one of the 

effective methods to improve hydrologic predictions (Liu et al., 2012; Abbaszadeh et al., 2018). 

Several studies have explored applications of DA in hydrology, ranging from characterization of 

soil moisture and/or surface energy balance (i.e., Houser et al.,1998; Dunne et al., 2005) to rainfall-

runoff modeling (Vrugt et al., 2005; Chen et al., 2014; Azimi et al., 2019; De Santis et al., 2021 to 

cite a few). Providing superior hydrologic state estimates, DA can consequently help in 

optimizing real world applications such as agricultural production and water management 

(Houser et al., 2012) 

In land surface modeling as well, DA is used to reduce predictions’ uncertainties. Contrasting 

LSM simulations with EO offers an opportunity to correct for unmodeled processes or missed 

events, such as irrigation (Girotto et al., 2017; S. V. Kumar et al., 2015). More generally, DA of 

satellite-based observations has shown the potential to update soil moisture (De Lannoy and 

Reichle, 2016a; Kolassa et al., 2017) and vegetation (Albergel et al., 2018; Kumar et al., 2019, 2020) 

and important impacts have been reported over agricultural areas (Kumar et al., 2020). 

Furthermore, the assimilation of total water storage (TWS) from the Gravity Recovery and 

Climate Experiment (GRACE) mission in LSMs has proven to provide important implication in 

understanding the human impacts on the water cycle (Girotto et al., 2017; Nie et al., 2019) but the 
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coarse resolution of this product (~1°) limits its direct usefulness for agricultural applications at 

the district or field level. 

The assimilation of MW EO in LSMs often involves retrieval assimilation. However, assimilating 

retrievals (i.e., SSM or vegetation optical depth rather than MW brightness temperature or 

backscatter measurements) can be problematic as the retrievals may have been produced with 

ancillary data that are inconsistent with those used in the LSM (De Lannoy and Reichle, 2016b). 

This is particularly true for passive MW retrievals while active MW retrievals generally rely on 

change detection methods that lack land-specific ancillary information altogether. An alternative 

approach is to directly assimilate MW observations and equip the LSM with an observation 

operator that links land surface variables of interest (e.g., soil moisture and vegetation) with EO 

data. This allows to obtain consistent parameters and to reduce the chance of cross-correlated 

errors between model states and corresponding geophysical satellite retrievals. The direct 

assimilation of MW observations has already been demonstrated successfully for the update of 

soil moisture by using Tb derived from the SMOS and the Soil Moisture Active Passive (SMAP) 

missions (Carrera et al., 2019; De Lannoy and Reichle, 2016b; Reichle et al., 2019), as well as using 

radar backscatter from the Advanced SCATterometer (ASCAT) (Lievens et al., 2017a), and 

backscatter from Sentinel-1 in synergy with SMAP Tb (Lievens et al., 2017b). However, to our 

knowledge, none of these studies considered the joint updating of soil moisture and vegetation, 

and none specifically focused on the performance over irrigated areas. The backscatter from 

Sentinel-1 contains information on both soil moisture (Bauer-Marschallinger et al., 2018; Li and 

Wang, 2018; Liu and Shi, 2016; Zribi et al., 2011) and vegetation (Vreugdenhil et al., 2020, 2018) 

and assimilating this data in a land DA system could allow to correct for missed irrigation events.  

1.3 Objectives and structure of the thesis 

1.3.1 Objectives 

The main objective of this research is to exploit innovative remotely-sensed data and test their 

ability to provide useful information on drought anomalies and on the impacts of agricultural 

human activities on the water cycle, with particular attention on developing methods to address 
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how much water is actually used for agricultural practices such as irrigation. This work can be 

divided into two main parts.  

The first part (Chapter 2), aims at exploiting how the information contained in satellite EO can be 

used for monitoring agricultural drought events and crop yield production. In this context, three 

aspects are addressed: 1) is SSM (~5 cm depth) appropriate for assessing agricultural drought? 

2) What is the added value of using soil moisture data, as opposed to rainfall-based drought 

indices, for monitoring agricultural drought events? 3) What information do satellite SSM 

yield on crop production and on human activities over irrigated crops in comparison to LSM 

estimates, especially during drought conditions?  

The second part (Chapter 3 & 4) of this thesis, aims at developing a DA system able to merge LSM 

estimates and information contained in satellite observations for the quantification of the water 

used for agricultural practices (i.e., irrigation). The main target is to assimilate 1-km Sentinel-1 

radar backscatter observation for a joint update of soil moisture and vegetation in order to inform 

the model about actual irrigation application and improve irrigation estimates, as well as land 

surface variables. The assimilation is realized by coupling a LSM with a backscatter 

observation operator which maps land surface state variables to backscatter predictions 

(forecast). The main aspects analyzed in this part of activity are: 1) What is the optimal 

procedure to calibrate the backscatter observation operator and, can activating an -even poor- 

parameterized irrigation scheme into the LSM provide the optimal calibration over irrigated 

areas? 2) Can the sequential assimilation of Sentinel-1 backscatter to update soil moisture and 

vegetation improve LSMs irrigation simulations and what is the influence of different 

backscatter polarizations? 3) Which are the main limitations of the analysis (i.e., temporal and 

spatial scale, DA consistency and LSM parameterization)? 

1.3.2 Thesis structure 

Based on the objectives, the structure of the thesis is as follows. Chapter 2 describes the 

agricultural drought analysis of Modanesi et al. (2020), which was conducted over a large study 

area in India, particularly prone to severe droughts in recent decades. Such events increased in 

severity, frequency and areal extent between 1961 and 2015 (Mishra et al., 2018). For example, 
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between 2002 and 2012 India was affected by major droughts in 2002, 2009 and 2012 (D Udmale 

et al., 2014). These and past events have caused many problems for the population, whose 

livelihoods largely depend on agriculture. In this analysis, the link between crop production and 

drought severity predicted by three different standardized drought indices is investigated. These 

indices were obtained using: 1) satellite-based SSM from the ESA CCI soil moisture product, 

version 201706.0 (https://climate.copernicus.eu/) which provides a long-term data record (from 

1978 to date) feasible for statistical drought analysis; 2) NASA’s model-based soil moisture 

estimates from MERRA-2. Even though previous studies stated that this reanalysis product is 

affected by limitations (i.e., bias in precipitation over Asia; Yoon et al., 2019) its potential for 

drought characterization was assessed in recent studies (Le et al, 2020; Chen et al., 2018); and 3) 

ground-based rainfall data provided by the Indian Meteorological Department. Focusing on the 

states of Karnataka and Maharashtra, two crop types were considered: maize cultivated during 

the monsoon season (rainfed), and wheat produced in the dry winter season (usually irrigated). 

Potentials and limitations of satellite data and models to provide information on agricultural 

practices (i.e., irrigation) have driven the second part of this dissertation, where the main 

assumption is that ingesting EO into a LSM can improve the water cycle description and the 

detection/quantification of irrigation over intensively irrigated areas. 

Chapter 3 focuses on coupling a LSM and a backscatter observation operator, based on Modanesi 

et al. (2021), in preparation for subsequent backscatter DA. Different backscatter models have 

been proposed to simulate the backscattering contributions of soil and vegetation (Attema and 

Ulaby, 1978; Baghdadi et al., 2017; Bai and He, 2015; Oh, 2004; Zribi et al., 2005). Most commonly 

used, the Water Cloud Model (WCM; Attema and Ulaby, 1978) represents the vegetation canopy 

as a homogeneous cloud containing randomly distributed water droplets. In order to use the 

WCM as forward operator in a backscatter DA system, it first needs to be calibrated to account 

for biases between the LSM simulations and satellite observations. However, calibrating a WCM 

over irrigated areas represents a key research problem if the same satellite backscatter signal is 

used for calibration and later for DA. Equipping the LSM with an irrigation module that makes 

the WCM less constrained by inconsistencies between simulated and observed backscatter during 

irrigation periods is the calibration strategy that was investigated in this activity. The analysis 

https://climate.copernicus.eu/
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was carried out over the Po Valley, one of the more intensively irrigated areas in Europe (water 

withdrawal in the Po basin is estimated to be 20.5 billion m3/year, of which 16.5 billion m3/year is 

withdrawn for irrigation; Po River Watershed Authority, 2016). We used the Noah-MP LSM 

(Noah-MP hereafter) as part of the NASA Land Information System (LIS) framework (Kumar et 

al., 2008) together with the WCM for the simulation of both backscatter vertical send and receive 

(VV) and vertical send and horizontal receive (VH) polarization. Level-1 Sentinel-1 backscatter is 

used to calibrate the WCM at 1-km resolution, using simulated SSM and Leaf Area Index (LAI) 

estimates from Noah-MP. The WCM is calibrated for a total of four calibration experiments for 

each polarization: 1) with or without activating an irrigation scheme within Noah-MP; and, 2) 

testing two different cost functions.  

Finally, Chapter 4 focuses on the DA of Sentinel-1 backscatter, using Noah-MP, equipped with 

the sprinkler irrigation scheme and a calibrated WCM in the NASA LIS framework, based on 

Modanesi et al. (2022, submitted). The ensemble Kalman Filter (EnKF; Evensen 1994) algorithm 

is selected to perform the DA analysis. The EnKF is optimally used for non-linear dynamics and 

it is popular in hydrological and land surface modeling studies (Reichle et al. 2002; De Lannoy 

and Reichle, 2016a, Kumar et al. 2019, 2020; De Santis et al., 2020 to cite a few works). It uses an 

ensemble of model trajectories to represent the background error covariance at each time of an 

update. The main assumption in the performed DA analysis is that when coupling the Noah-MP 

DA system with a simple parameterized sprinkler irrigation module, irrigation water amounts 

can be optimally estimated when optimal soil moisture and vegetation estimates are available 

from DA. Additionally, the direct assimilation of Level-1 observations through a backscatter 

observation operator (here the WCM) allows to avoid bias correction between model states and 

the RS product before DA, as the bias is previously compensated through the WCM calibration 

(Chapter 3). This approach reduces the chance of cross-correlated errors between model states 

and satellite retrievals, as required by classical Bayesian-based filters (the reader can refer to 

section 1.2.4 for more details). The analysis is carried out over two irrigated pilot sites, the first 

one sited in the Po Valley and a second one located in northern Germany. Two DA experiments 

are realized over the two pilot sites, i.e. using Sentinel-1 backscatter in either VV or VH 

polarization, to update both soil moisture and vegetation. The DA experiments were compared 
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with the reference Open Loop (OL) run, i.e. a model-only simulation which does not assimilate 

any satellite data. The main conclusions are drawn in Chapter 5 together with future perspectives 

and outlooks of this research. 
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Chapter 2: Remote sensing for monitoring agricultural 

drought 

This chapter describes the analysis and results published in the following journal article: 

Modanesi, S., Massari, C., Camici, S., Brocca, L., G. Amarnath. Do satellite surface soil moisture 

observations better retain information about crop-yield variability in drought conditions? 

Water Resour. Res., 56, (2), Article e2019WR025855,  https://doi.org/10.1029/2019WR025855, 2020. 

The analysis provides insights on information obtained from satellite surface soil moisture (SSM) 

observations (as compared to modeled soil moisture and observed ground precipitation) on 

water stress and its impact on crop production variability in India. In particular, this activity aims 

at showing to what extent satellite soil moisture may help to improve the efficiency of agricultural 

and irrigation management practices. The analysis involved generating a Standardized Soil 

Moisture Index (SSI) using 1) satellite soil moisture observations from the European Space 

Agency (ESA) Climate Change Initiative (CCI); and 2) the Modern-Era Retrospective Analysis for 

Research and Applications, version 2 (MERRA-2) soil moisture dataset; as well as producing a 

Standardized Precipitation Index (SPI) using ground-based rainfall observations from the Indian 

Meteorological Department (IMD). Spanning the period from 1998 to 2015, the study covers 

Maharashtra and Karnataka states. These states were recently hit by a severe drought, resulting 

in significant crop failure and human losses. Chapter 2 is organized as follows: i) Section 2.1 

describes data and methodologies used; ii) Section 2.2 presents results and discussion and finally 

iii) conclusions are drawn in Section 2.3. 

2.1 Data and methodology 

2.1.1 Study area 

The analysis was carried out in the states of Maharashtra and Karnataka in India (Figure 2.1), the 

economies of which are mainly based on agriculture. Located on the Deccan Plateau, a large plain 

covering part of western and southern India, the study area is bordered to either side by the 

Western and Eastern Ghats chains and by the Satpura Range in the north. Maharashtra is India’s 

https://doi.org/10.1029/2019WR025855
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third-largest state, with a total of 34 districts and a surface area of 307,713 km2. It experienced 

droughts in 2012 (D Udmale et al., 2014) and 2015 (Mishra et al., 2016). Karnataka, lying south of 

Maharashtra, covers 191,976 km2 and encompasses 27 districts. It experienced severe consecutive 

droughts in 2001-02, 2002-03, 2003-04, 2009 and 2012 (Jayasree and Venkatesh, 2015). 

The major part of India has a tropical monsoon climate that supports rainforests, with the rest 

defined as semi-arid tropics (in accordance with Koppen-Geiger climate types; Peel et al., 2007). 

The climate is dominated by the summer monsoon, with the year divided into two main seasons: 

(1) winter or rabi season, from October to March; and (2) summer monsoon or kharif season, 

between June and September.  

 
Figure 2.1. Topographic maps showing the states of Maharashtra (green boundary) and Karnataka (red boundary), 

which are divided into 34 and 27 districts respectively. Topographic data from ETOPO1 1 Arc-Minute Global Relief 

Model (Amante and Eakins, 2009) 

The study area spans two agro-climatic zones. The Western Plateau and Hills zone includes the 

Deccan Plateau within northern Maharashtra. Here, the July temperature varies between 24°C 

and 41°C, while in January it ranges from 6°C to 23°C. Major crops cultivated in rainfed areas are 

wheat, gram, millets, cotton, pulses, groundnut and oilseeds, while wheat, sugarcane and rice are 

produced in irrigated areas (Ahmad et al., 2017). Maharashtra contributes 9.1% of India’s total 

maize production (https://farmer.gov.in/M_cropstaticsmaize.aspx). The Southern Plateau and 

Hills agro-climatic zone comprises southern Maharashtra and the greater part of Karnataka. Here 

the mean July temperature ranges between 25°C and 40°C, while in January it varies between 

https://farmer.gov.in/M_cropstaticsmaize.aspx
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10°C and 20°C. It is a dry zone, where millets, oilseeds and pulses are major crops (Ahmad et al., 

2017). Karnataka contributes 16.5% of India’s total maize production 

(https://farmer.gov.in/M_cropstaticsmaize.aspx) and, together with Maharashtra, it is one of six 

major areas of wheat cultivation (https://farmer.gov.in/M_cropstaticswheat.aspx ). 

2.1.2 Crop yield data 

A dataset of annual yields (tonnes/ha) for the districts of Maharashtra and Karnataka was 

provided by the International Water Management Institute (IWMI) of Sri Lanka (Source: SDDS-

DES, Ministry of Agriculture, Govt. of India & Ministry of Communications & IT, Govt. of India). 

These data are available at: https://data.gov.in/resources/district-wise-season-wise-crop-

production-statistics-1997. 

The analysis was carried out separately for the summer and winter growing seasons. Maize was 

assessed for the summer (kharif) growing season, corresponding with the southwest monsoon, 

as more than three-quarters of India’s maize is produced in this season 

(http://ficci.in/spdocument/22966/India-Maize-Summit.pdf) mostly under rainfed conditions 

(http://ficci.in/spdocument/20386/India-Maize-2014_v2.pdf). Kharif maize is generally sown 12-

15 days before the onset of monsoon (i.e., last week of June to first fortnight July; 

https://farmer.gov.in/imagedefault/pestanddiseasescrops/normalmaizeproductiontechnologies.

pdf)  

For the winter (rabi) season, wheat was selected, which in India is usually planted in October and 

harvested in April (Zhang et al., 2017). As one of the country’s main dry-season crops, it is 

cultivated predominantly in irrigated areas (Krishna Kumar et al., 2004). With specific 

information about irrigated wheat fields not available, wheat harvests were assumed as entirely 

irrigated as an additional hypothesis. We realize that recognizing wheat as an irrigated crop 

might be not completely accurate. However, there is a high chance that wheat crops are irrigated 

during winter, as rainfall is very low at this time and irrigation is generally the only way to 

achieve successful production. Annual yields for maize and wheat were obtained for each district 

for the period 1998–2015; this is therefore the study period of our analysis. 

https://farmer.gov.in/M_cropstaticsmaize.aspx
https://farmer.gov.in/M_cropstaticswheat.aspx
http://ficci.in/spdocument/20386/India-Maize-2014_v2.pdf
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2.1.3 Soil moisture and rainfall data 

Different datasets were used in this study to estimate drought indices. Specifically, the satellite-

based ESA CCI soil moisture product, and the modeled product MERRA-2 were used to estimate 

the SSI index. Ground-based rainfall observations were used for the SPI computation. A brief 

description of the main characteristics of each dataset is provided below. 

● The ESA CCI product is a complete soil moisture dataset spanning 40 years from 1978. It 

is derived from data observed by active and passive microwave sensors (http://www.esa-

soilmoisture-cci.org/). In this study, we used the version 201706.0 at 0.25°/dekadal (10-day) 

spatial/temporal resolution, which was created by merging the active and passive products 

(available at https://climate.copernicus.eu/). Using a combined product such as this 

increases the likelihood of having at least one observation for a given day and pixel, thereby 

reducing the number of data gaps. Furthermore, merged products generally perform better 

than single-sensor products (Dorigo et al., 2017). The dekadal product was selected, as daily 

satellite observations are not needed when computing a standardized drought index at a 

monthly time scale. It should be noted that CCI soil moisture data are characterized by 

irregular temporal coverage prior to 2002. However, as the analysis was carried out on a 

monthly time scale and spatially averaged at district-level (ensuring that multiple 

overpasses were considered temporally and spatially) this issue should have a limited 

impact. Moreover, the choice of the study region and an analysis mask helped us to limit 

some issues related to reduced accuracy of satellite soil moisture products over snow-

covered or densely vegetated areas (Dorigo et al., 2017; Liu et al., 2012; Wagner et al., 1999). 

Given the climatic characteristics of the study region, inaccuracy of satellite data over frozen 

soils was not significant, and limiting the analysis to croplands enabled us to significantly 

reduce (but not eradicate) issues connected to areas of dense vegetation and high 

topographic complexity. For further details regarding the ESA CCI soil moisture product 

the reader is referred to Liu et al. (2012, 2011), Dorigo et al. (2017, 2015) and Wagner et al. 

(2012). 

● The MERRA-2 product is an atmospheric reanalysis product produced by Nasa’s Global 

Modeling and Assimilation Office (GMAO) with version 5.12.4 of the Goddard Earth 

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
https://climate.copernicus.eu/
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Observation System (GEOS-5) atmospheric data assimilation (DA) system (Gelaro et al., 

2017). It provides global estimates of land SSM conditions from 1980 to present, at 

0.5°x0.625°/1-hourly spatial/temporal resolution. In this study, we focused on the daily level 

of soil moisture at 00:30 UTC from the surface soil layer (0-5 cm). We used data from the 

Root Zone (RZ) soil layer of MERRA-2 (0-100 cm) as an additional experiment to further 

test the relationship between soil moisture within different soil layers and vegetation 

species. For further details regarding MERRA-2 retrospective analysis data products the 

reader is referred to Gelaro et al. (2017) and Reichle et al. (2017). 

● The Indian Meteorological Institute rainfall gridded dataset (IMD, 

https://mausam.imd.gov.in/) is prepared using daily rainfall data from 6329 stations, 

archived at the National Data Center, IMD, Pune. Out of these 6329 stations, 537 stations 

are IMD observatory stations, 522 are operated under the Hydro-meteorology program and 

70 are Agriculture meteorological stations. The remaining stations are rainfall-reporting 

stations maintained by state governments. The product has a 25 km spatial resolution and 

spans the years 1901 to 2017. 

Hereinafter, the three datasets will be indicated as ESA CCI SM, MERRA-2 SM and IMD Rainfall. 

2.1.4 Land cover and irrigation maps 

The extent of the study area was limited to croplands to focus the analysis on crop yield and 

ensure good- quality satellite observations, reducing dense vegetation and topography issues. 

For this, annual ESA CCI Land Cover (ESA CCI LC) maps version 2.0.7 on a global scale were 

selected. Data products can be downloaded from 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php. The dataset is available for the whole study 

period (1998-2015) at a spatial resolution of 300 m. These maps describe the Earth’s terrestrial 

surface in 37 land-cover classes based on the United Nations Land Cover Classification System 

(UN-LCCS; Di Gregorio, 2005). 

An additional analysis, considering only irrigated areas, was carried out for wheat growing 

during the drier winter period (assumed to be a potentially irrigated crop). High 

resolution/annual irrigated-area maps are now available through the work of Ambika et al. 

https://mausam.imd.gov.in/
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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(2016). The maps, with a spatial resolution of 250 m, were developed using 250 m Normalized 

Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer 

(MODIS) and 56 m land use/land cover data. 

2.1.5 Standardized drought indices: SSI and SPI 

Computing a Standardized drought index follows defined steps, which are almost analogous for 

SSI and SPI. The rainfall and soil moisture datasets used are summed and averaged, respectively, 

on a monthly basis, and successively summed (rainfall) or averaged (soil moisture) over k 

months, called accumulation periods or time scales. A statistical distribution function is fitted to 

the rainfall/soil moisture values for the different months of the year. The percentile value from 

this probability distribution is then transformed to the corresponding value in the standard 

normal cumulative probability distribution function, to obtain a Standardized drought index 

(Guttman, 1999; McKee et al., 1993). One of the main limitations when computing SPIs, as 

compared to SSIs, is the presence of long periods with zero rainfall in the time series, especially 

for short-accumulation periods. This is a common issue in regions that have seasons with 

extremely low precipitation, as it is the case with the Indian winter. To overcome this limitation, 

we referred to the work of Stagge et al. (2015), which used the equation (2.1) for computing SPI: 

𝑝(𝑥) = {
𝑝0 + (1 − 𝑝0)𝐹(𝑥𝑝>0, 𝜆)                                𝑥 > 0

𝑛𝑝=0+1

2(𝑛+1)
                                                                  𝑥 = 0   

  (2.1) 

In this equation, p is the probability distribution, F(x,λ) represents a parametric probability 

distribution function, np=0 is the number of samples in the reference period where total 

precipitation equals zero, n represents the total number of samples and p0 is the probability of 

zero precipitation following the Weibull plotting position function (p0= np=0/n+1). When x=0 the 

equation becomes equal to the mean probability of multiple zeros based on the Weibull plotting 

position formula. 

According to previous literature studies (McKee et al., 1993; Stagge et al., 2015), the gamma 

distribution function can be used to fit rainfall datasets, as it provides a reliable fit to rainfall 

distribution. Conversely, the selection process of a statistical distribution to be used for soil 

moisture data requires more attention. Indeed, only a few authors have evaluated SSI, and some 
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of them (Carrão et al., 2016; Farahmand and AghaKouchak, 2015) made use of a non-parametric 

empirical distribution approach. In this study, a test using the plotting position formula 

(Farahmand and AghaKouchak, 2015) to fit soil moisture datasets was carried out. This resulted 

in SSI peaks being cut in the range [-2,2] and the general loss of exceptional drought events. 

According to Sol’áková et al. (2014), this can partly be explained by extreme values being better 

represented by parametric distributions than non-parametric ones. Zhang et al. (2017) used the 

gamma distribution to fit both rainfall and soil moisture data from the Indo Gangetic Plain of 

northern India. Following their work, and also to allow a robust comparison between the SSIs 

and the SPI, we selected the gamma parametric approach for calculating both types of indices. In 

addition, the Kolmogorov- Smirnov (Massey Jr, 1951; Stephens, 1974) and Shapiro-Wilk (Shapiro 

and Wilk, 1965) tests were applied to check the fit and normality of the distributions, respectively, 

for time scales of 1, 3, 6, 12 and 24 months (the reader can refer to  Stagge et al., 2015 for further 

details on the procedure). For short accumulation periods (1-3 months), the soil moisture indices 

performed well, while the SPI showed acceptable results for time scales of three months or longer. 

As a general observation, 99.9% of Standardized index values lie in the range [-3,3] and 

negative/positive SPI and SSI values indicate an accumulated deficit/surplus of precipitation or 

soil moisture over a specified period. More specifically, we used the SPI classification system 

proposed by McKee et al. (1993), which enables drought conditions to be determined at different 

time scales, and facilitates monitoring of different drought types. The same system was used for 

SSI following the work of Carrão et al. (2016). Based on that, hereinafter periods characterized by 

SPI/SSI<0 will be considered as “drought” conditions – i.e., drought events from mild to extreme 

as denoted by McKee et al., (1993). Conversely, periods characterized by SPI/SSI>0, will be 

denoted as “non-drought” conditions. 

2.1.6 Experimental setup 

The methodological approach used for this study was chosen in line with the main objective of 

this work, i.e. to highlight the added-value of information about crop yields in drought and non-

drought conditions contained within satellite-based soil moisture observations, as compared to 

reanalysis-based soil moisture and rainfall observations. To fulfill the purpose, we took the 
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following steps (summarized in Figure 2.2): 

Step 1. Indices computation: This is a preliminary step for obtaining SSI and SPI drought indices 

from the ESA CCI SM product, MERRA-2 SM estimates and IMD Rainfall observations. To 

compare soil moisture products and rainfall at the same spatial resolution, MERRA-2 SM was re-

gridded over the ESA CCI SM product spatial grid (0.25°) using the nearest-neighbor approach. 

Three indices (SSI CCI, SSI MERRA2 and SPI) were calculated using the methodology described 

in Section 2.1.5. The cropland mask and the identification of irrigated areas were considered as 

source information to limit the extension of the indices data within the study area in case of an 

analysis over all croplands, or considering irrigated conditions respectively. ESA CCI LC maps 

available for the study period were used to derive the percentage of cropland, averaged over 

time, within each pixel of the SSI and SPI drought indices. In the UN-LCCS classification, 

cropland areas refer to four different classes: 1) cropland rainfed; 2) cropland irrigated or post-

flooding; 3) >50% mosaic cropland / <50% natural vegetation; and 4) >50% mosaic natural 

vegetation / <50% cropland. Pixels of yearly ESA CCI LC maps accounting for these classes were 

selected by counting the number included in the 0.25°x0.25° area of each SSI and SPI pixel, and 

averaging them over the study period. Finally, cropland percentage was calculated for each pixel 

of the indices, with only ones having a percentage of >50% cropland retained. Creating such an 

agricultural mask can partly overcome limitations related to soil moisture (linked particularly to 

microwave retrievals) such as complex topography, surface water, urban structures (Wagner et 

al., 1999) and vegetation density (Liu et al., 2012). Additionally, irrigated areas of croplands were 

identified using high-resolution irrigated-area maps (Ambika et al., 2016). The same 

methodology applied to the ESA CCI LC maps was used, selecting only those pixels having a 

percentage of irrigated area higher than 2%. This threshold better reproduced the pattern of 

irrigated area maps from Ambika et al. (2016). 

Step 2. Indices intercomparison: The SSI and SPI were evaluated at different time scales to find the 

appropriate scale for each index to be used for agricultural drought analysis. This highlighted the 

main difference between the two indices: SPI commonly represents the rapid development of 

meteorological drought resulting from rainfall deficit, while reduced soil moisture (agricultural 
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drought) may occur with some time lag (Farahmand and AghaKouchak, 2015). The basic 

assumption is that a 1-month time scale (SSI-1 – derived from monthly soil moisture values) is an 

appropriate indicator of soil moisture deficit for assessing agricultural drought, similar to a Soil 

Water Deficit Index (i.e. SWDI; Martínez-Fernández et al., 2015). For this study, a correlation 

analysis was conducted between SSI-1 and SPI at different time scales to select the SPI 

accumulation period that correlated most closely with SSI-1, and was thus more suitable for 

agricultural drought assessment. The analysis was realized averaging the indices over the study 

area (considering the cropland mask). 

Step 3. Sensitivity analysis: In this step, a spatial average of indices on a district basis was computed 

to obtain a single monthly time series for SSI CCI, SSI MERRA2 and SPI over each district. Then, 

the relation between values of the indices for each month of maize/wheat agricultural production 

and annual yield data was investigated by calculating the Pearson correlation coefficient (R). This 

was carried out to identify months in which crops were more sensitive to SSI/SPI indices and in 

this context, the term “sensitivity analysis” refers to the identification of months showing a high 

correlation between indices and crop yields. Months characterized by the highest number of 

districts having Pearson R-values higher than 0.5 were selected to obtain a seasonal average for 

each drought index and, therefore, a district-level annual time series related to crop-yield data. 

Note that hereinafter the term “annual” will refer to the seasonal average carried out on the 

months selected in this step. Values above the 0.5 R-value threshold can be considered medium-

high correlated (Hinkle et al., 2003) and therefore are deemed sufficiently indicative of a relation 

between drought indices and crop-yield data. 

Step 4. correlation analysis: In accordance with previous literature studies (Carrão et al., 2016; 

Narasimhan and Srinivasan, 2005; Zhang et al., 2017), a correlation analysis between the indices 

and crop-yield data was performed to investigate the link between drought conditions and crop 

production. In a previous phase, crop data series were converted into yield anomalies to get rid 

of the potential impact of technological advancement during time on crop production. Following 

the work of Gunst et al. (2014) a linear regression was applied to crop-yield data to remove 

potential linear trends with a Pearson R-value significance level of 0.05 (when p-value<0.05).  
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Figure 2.2. Experimental set-up tuned to study objectives: STEP 1 – Indices computation (SSI CCI, SSI MERRA2 and 

SPI); STEP 2 – Indices intercomparison; STEP 3 – Sensitivity analysis; and STEP 4 – Correlation analysis with crop yield 

anomalies. Note: * indicates spatially and annually averaged indices time series, for each district, using an appropriate 

time scale selected for agricultural drought analysis. 

When linear trends were not found, the mean was removed from the yield’s time series. As an 

example, plots providing maize and crop yield anomalies for five districts of Maharashtra and 

Karnataka states are shown in Figure 2.3. Subsequently, the relation between yield anomalies and 

indices values was explored during the following stages: a) a first correlation analysis at district 

level over the cropland mask was conducted. Districts characterized by p-value<0.05 were 
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identified, and the data (index and yield anomalies values) were used to build samples for a 

further analysis over the whole study area; b) the distributions of crop-yield anomalies in drought 

and non-drought conditions were investigated; c) same-data samples were used additionally for 

a linear regression analysis between drought indices and yield anomalies. Plots containing linear 

regression parameters were also divided into two bands, evaluating the Pearson R-values in 

drought and non-drought conditions.  

The same analysis was then conducted considering only irrigated areas for wheat. 

 

 

Figure 2.3. Maize and wheat anomalies, respectively in red and green for three districts of Karnataka (Belgaum, 

Dharwad and Gadag) and two districts of Maharashtra (Ahmednagar and Bid). 

2.2 Results and discussion 

2.2.1 Assessment of drought indices 

The Standardized drought indices were calculated by applying the methodology described in 

Step 1 of Section 2.1.6. The maps presented in Figure 2.4 show the SSI and SPI pixels belonging to 

the cropland mask (Figure 2.4a) and to the irrigated areas (Figure 2.4b) over the two Indian states. 
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Figure 2.4. Maps of: (a) SSI and SPI pixels (0.25° spatial resolution) belonging to the cropland mask; (b) SSI and SPI 

pixels (0.25° spatial resolution) belonging to irrigated areas. Pixels with more than 50% of the total area used for 

agricultural purposes were selected to create the cropland mask, while for the irrigated areas a threshold of 2% was 

selected. 

In this analysis, SSI-1 was chosen as reference for agricultural drought analysis. Assuming that 

SPI is commonly considered as a meteorological drought index, a correlation analysis was carried 

out between SSI-1 and SPI time series at different time scales (1, 3, 6, 12 and 24 months) in order 

to detect the lag time between the two indices for agricultural drought analysis, thus ensuring a 

meaningful comparison between them. The relation between SPI and SSI-1 CCI showed R-values 

varying from a maximum of 0.6 for SPI-3 and a minimum of 0.4 for SPI-24. Similarly, in the 

analysis between SPI and SSI-1 MERRA2, the highest R-value was equal to 0.72 for SPI-3 (Figure 

2.5). Based on that, SPI-3 was assumed to be representative for describing agricultural drought 

conditions. Previous works on agricultural drought analysis also selected SPI-3 (i.e., Bachmair et 

al., 2018; Lim et al., 2019; Sigdel and Ikeda, 2010), supporting our decision. For example, Bachmair 

et al. (2018) performed a correlation analysis between SPI at different time scales and RS-based 

vegetation indices (VIs) for Europe. They showed that short accumulation periods of SPI (in 

particular three months) relate well to crop vegetation stress in most cases. 
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Figure 2.5. Pearson R-values obtained by the correlation analysis between (a) SSI-1 CCI and SPI-1,3,6,12 months’ time 

scale; (b) SSI-1 MERRA2 and SPI-1,3,6,12 months’ time scale. The results showed the best correlation between SSI-1 

and SPI-3, assuming a lag time of three months between the two indices. 

Thereafter, a comparison between the SSI-1 and SPI-3 indices was carried out. The time series of 

SSI-1 CCI, SSI-1 MERRA2 and SPI-3, averaged over croplands for the two states of Maharashtra 

and Karnataka in the period 1998-2015 are displayed in Figure 2.6 (a-f). The color blue depicts 

wet or healthy conditions, while red denotes drought conditions. 

 

Figure 2.6. Time series of the indices averaged over Karnataka: (a) SSI-1 CCI; (c) SSI-1 MERRA2 and (e) SPI-3. Time 

series of the indices averaged over Maharashtra: (b) SSI-1 CCI; (d) SSI-1 MERRA2 and (f) SPI-3. Blue depicts wet 

conditions; red denotes drought conditions. 

The time series follow a similar temporal pattern but with some exceptions, particularly in 

Maharashtra where SSI-1 CCI shows wetter conditions from 1998 until 2000, as compared to the 

other indices (Figure 2.6b). Otherwise the three indices show good agreement in correctly 
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detecting typical drought events: 1) for Karnataka (Figure 2.6a, c, e) in 2001, 2002, 2003, 2004 and 

2012. Additionally, the 2009 drought event reported by Jayasree and Venkatesh (2015)can be 

identified as a mild drought; and 2) for Maharashtra (Figure 2.6b, d, f) in 2012 and 2015 (D Udmale 

et al., 2014; Mishra et al., 2016). Soil moisture and precipitation indices show a different behavior 

during typical drought events. A good example is given by the consecutive droughts that 

occurred in Karnataka from 2002. The 2002 event was quite important, having a seasonal rainfall 

deficit of 21.5% and being 56% below normal for the month of July (Bhat, 2006). SSI-1 CCI shows 

one big drought event from mid-2002 to the beginning of 2004, reaching extreme drought 

conditions in 2003, while SPI-3 displays almost two recoveries in the same period with higher 

index values. Considering the same time window, SSI-1 MERRA2 shows a short recovery in 2003, 

followed by an extreme drought event. Analogous conditions are shown in 2015 when a drought 

occurred during the monsoon season and affected the agriculture sector in many parts of the 

country, including Maharashtra state (Mishra et al., 2016). Figure 2.6b, d and f show that this 

event persisted until the end of 2015. In general, all the indices identify this event but lower values 

are displayed by SSI-1 indices as compared to SPI-3. The difference between SSI and SPI in 

relation to the duration of drought events could be due to the ‘persistence’ property of soil 

moisture, which exhibits less variability in time than precipitation (Hao and AghaKouchak, 2013). 

On the other hand, the higher severity of drought denoted by the soil moisture indices could 

relate to the low depth of the surface soil layer (0-5 cm), which is more reactive to atmospheric 

factors (e.g. rainfall events or dry spells). For a supplementary comparison between the time 

series we calculated the Pearson correlation coefficient (considering p-values<0.05). As expected, 

highest R-values of 0.78 and 0.74 were obtained for SSI-1 CCI against SSI-1 MERRA2 in Karnataka 

and Maharashtra, respectively. Also, SSI-1 MERRA2 compared to SPI-3 showed relatively high 

R-values of 0.69 for Karnataka and 0.71 for Maharashtra. The weaker relation was instead found 

for SSI-1 CCI against SPI-3 although the Pearson R-value did not drop below 0.55 in both the 

states. 

Thereafter, the spatial distribution of two main drought events was analyzed: 1) the 2003 event 

which involved mainly Karnataka; and 2) the 2015 event in Maharashtra, which started in the 

monsoon season and also affected the emergence stage of winter crops (i.e., wheat). In the maps 
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of Figure 2.7a-c the spatial and frequency distributions for SSI-1 CCI, SSI-1 MERRA2 and SPI-3, 

respectively, are shown for July 2003. Water stress at this time of year can affect crops cultivated 

during the monsoon season (i.e., maize). The three indices detect the event in Karnataka. In 

particular, SSI-1 CCI (Figure 2.7a) and SPI-3 (Figure 2.7c) show more severe drought conditions 

in Karnataka and in southwestern and western parts of Maharashtra than SSI-1 MERRA2 (Figure 

2.7b), which displays the same pattern in Karnataka but with index values closer to -1. The 

frequency distributions, included in the maps, are skewed to the left in the case of the two soil 

moisture indices, while SPI-3 shows a more symmetrical distribution, with most of the values 

lower than zero. Similarly, SSI-1 CCI (Figure 2.7a) displays an asymmetric distribution, featuring 

more severe drought conditions and reaching index values below -3. For the event of 2015, the 

spatial distribution of the indices’ values during November 2015 was reported, corresponding to 

the emergence stage of wheat. In Figure 2.7d-f results are shown for SSI-1 CCI, SSI-1 MERRA2 

and SPI-3. Here SPI-3 (Figure 2.7f) displays a mild drought in Maharashtra, while the soil 

moisture indices show the persistence of more severe drought conditions. In particular, the 

frequency distribution of SSI-1 MERRA2 (Figure 2.7e) is almost totally shifted to the left. The 

results for November 2015 agree with the averaged time series in Figure 2.6, where the higher 

severity is reflected by the modeled soil moisture index. It should be noted, with regard to the 

two soil moisture products, that the maps in Figure 2.7 clearly show the influence of the original 

coarser resolution of MERRA-2, compared to the highest resolution of satellite soil moisture 

observations. 



 

52 
 

 

Figure 2.7. Maps and frequency distributions of drought indices: (a) SSI-1 CCI, (b) SSI-1 MERRA2 and (c) SPI-3 in July 

2003. Maps and frequency distribution of drought indices: (d) SSI-1 CCI, (e) SSI-1 MERRA2 and (f) SPI-3 in November 

2015. Maps of Pearson temporal correlation pattern over the study area between: g) SSI-1 CCI and SPI-3; h) SSI-1 CCI 

and SSI-1 MERRA2; and i) SSI-1 MERRA2 and SPI-3. In the last three figures, all R-values are taken at a significance 

level of 5%. In each plot, the x- and y-axes represent longitudes and latitudes in degrees east and north, respectively. 

The temporal correlation between the indices over each pixel of the study area was also 

investigated (Figure 2.7g-i). The map of SSI-1 CCI against SPI-3 (Figure 2.7g) shows a median R-

value of 0.46, with lower correlations on the boundaries of the study area and in particular in the 

western, north-western and northern parts of Maharashtra. A similar but less extensive pattern 

is found in Figure 2.7h, where SSI-1 CCI is compared to SSI-1 MERRA2. The weaker relations 

between SSI-1 CCI and the other two indices in these areas could be due to the coarse resolution 

of the ESA CCI SM product over topographically complex and densely vegetated areas, 

particularly over the Western Ghats chain and Satpura range. In these regions the cropland mask 

computational process can be affected by uncertainties in reducing typical satellite soil moisture 

issues. Based on our hypothesis that at least 50% of each pixel area should be covered by crop in 

order to consider the pixel itself as cropland, we have to be aware that other land uses can be 

embedded in 0.25° spatial resolution pixels, and they may marginally affect satellite soil moisture 

retrievals. In contrast, the map of SSI-1 CCI against SPI-3 shows R-values higher than 0.5 over the 
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Deccan Plateau, where the issues related to topographic complexity and dense vegetation have 

negligible relevance. A similar pattern was observed for SSI-1 CCI against SSI-1 MERRA2, with 

higher R-values (ranging from 0.6 to 0.8). Finally, in the map of Figure 2.7i, showing SSI-1 

MERRA2 against SPI-3, R-values between 0.5 and 0.8 are homogeneously distributed over the 

Deccan Plateau, with lower correlation coefficients in the southwestern part of the study area. 

Although topography and vegetation can affect satellite retrievals in the study area, problems 

related to frozen soils, snow and ice (Ulaby et al., 1982) are not significant, given the climatic 

characteristics of the study region. 

2.2.2 Crop yields vs drought indices 

In this section, we examine results showing the relation between crop yield and drought indices 

to understand if satellite SSM observations can provide additional information on crop 

production, particularly in drought conditions, when compared to soil moisture estimates from 

land surface models (LSMs) and rainfall-based indices. Following Step 3 in section 2.1.6, the 

SSI/SPI indices were averaged at district level to obtain a monthly time series for each district for 

which crop-yield data were available. Then, the sensitivity analysis was performed to select the 

months for which crops were most sensitive to SSI/SPI (results are shown in Table 2.1).  

For maize, all the indices identify these months as being July, August and September (monsoon 

period). These months correspond with the later growth stage of maize, starting when potential 

plant parts are developed and ending when the actual kernel weight is determined. In this period, 

soil moisture plays a central role warding off potential yield losses; see Darby and Lauer (2004) 

for more information regarding growing stages of maize. Conversely, for wheat the sensitivity 

analysis gave a higher number of districts with R-values>0.5 for the soil moisture indices, mostly 

in the months of October, November and December. As an exception, SSI-1 CCI showed 

acceptable results also in February. This is consistent with Zhang et al. (2017) who found a close 

relation between a soil moisture drought index (SSI) and wheat during October, November and 

February in the Indo-Gangetic Plain, the northern region that separates the Peninsula from the 

Himalayan chain. Meanwhile, SPI-3 only showed a conspicuous number of correlated districts 

for the month of October. We decided then to retain the months of October and November. These 
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months correspond with the emergence stage of wheat; an analysis related to this period could 

be interesting to understand the positive or negative evolution of the harvest. Note that, given 

the extension of the study area and the potential differences in timing of rainfall occurrence both 

within the district and within the entire study area, a monthly time scale seems to be the most 

appropriate scale to carry out the analysis. Conversely for analyses at smaller spatial scales, a 

shorter accumulation period should be considered. 

Table 2.1. Number of districts with Pearson R-values higher than 0.5 over each month of the growing seasons of 

maize and wheat for the three drought indices. 

 

 Wheat growing season  Maize growing season  

Drought 

index Oct. Nov. Dec. Jan. Feb. Mar. Apr. Jun. Jul. Aug. Sept. 

SSI-1 CCI 11 14 16 9 10 8 3 5 16 19 20 

SSI-1 

MERRA2  16 16 12 6 2 1 5 2 13 15 14 

SPI-3 8 3 2 2 1 1 0 1 10 14 13 

 

The correlation analysis between indices and yield anomalies at district level (described in Step 4 

of Section 2.1.6) was conducted over cropland areas, without specific distinction being made 

between rainfed and irrigated conditions. The analysis was then carried out on 50 and 43 districts 

for maize and wheat, respectively, corresponding to croplands where crop-yield data were 

available. Figures 2.8a to 2.8c show the number of districts characterized by correlations with a 

significance level of 0.05 (p-value<0.05) and the respective R-values obtained for maize. Light 

brown was used to display the 50 districts over which the analysis was conducted, with blue 

shades used to identify the value of Pearson correlation (p-value<0.05) between crop-yield 

anomalies and the indices. The correlation patterns are similar for the three investigated indices. 

However, SSI-1 CCI (Figure 2.8a) provided the best performance, with the 54% of the districts (27 

districts) showing R-values greater than 0.4, and 21 districts with R-values higher than 0.5. SSI-1 

MERRA2 (Figure 2.8b) and SPI-3 (Figure 2.8c) display lower performances, with 32% and 30% of 

significantly correlated districts, respectively (16 and 15 districts). 

Results for wheat are displayed in Figure 2.8d to 2.8f. Soil moisture indices in general seem to 
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obtain better agreement with yield anomalies than SPI (Figure 2.8f), which accounts only for 

16.3% of the districts (7 districts) with Pearson R-values higher than 0.4. Similar results were 

found for SSI-1 CCI (Figure 2.8d) and SSI-1 MERRA2 (Figure 2.8e), where 34.9% and 39.5% of the 

districts’ (15 and 17 districts, respectively) crop-yield data and indices are significantly correlated. 

 

Figure 2.8. Maps showing the relation between district mean annual values of the three indices and crop yield 

anomalies: maize anomalies against (a) SSI-1 CCI, (b) SSI-1 MERRA2 and (c) SPI-3; wheat anomalies against (d) SSI-1 

CCI, (e) SSI-1 MERRA2 and (f) SPI-3; and wheat anomalies against (g) SSI-1 CCI, (h) SSI-1 MERRA2 and (i) SPI-3 over 

irrigated areas. The tested districts (light yellow) on the maps (a) – (f) represent croplands where crop-yield data were 

available. The tested districts in the maps (g) – (i) represent irrigated areas where wheat-yield data were available. Only 

districts characterized by R-values with a significance level of 0.05 (p-values<0.05) are displayed in different blue 

shades, depending on the Pearson R-values. 

One of the most striking aspects of this analysis is that there is a different geographic distribution 

of districts with significant correlations for the three indices, and this is particularly evident for 

wheat. In this case, SSI-1 MERRA2 (Figure 2.8e) and SPI-3 (Figure 2.8f) seem to follow the same 

geographic pattern, even though SPI-3 shows poor performance. A slightly different distribution 

of significant R-values is instead displayed in the map of SSI-1 CCI (Figure 2.8d). Generally, 

discrepancies between the two soil moisture indices can be due to the uncertainties of satellite 

retrievals in areas characterized by complex topography and dense vegetation, along with 
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uncertainties related to model input data for MERRA-2 soil moisture estimates. For maize, 

dissimilarities can be detected in the distribution and R-values for significantly correlated 

districts between SSI-1 CCI (Figure 2.8a) and SPI-3 (Figure 2.8c). Although SPI-3 performs less 

well, it seems to agree better with maize yield anomalies in four districts: one in the center of 

Maharashtra, two in the north-eastern Maharashtra and one in the south-eastern Karnataka (this 

last one in proximity to the eastern Ghats). Considering that maize grows during the monsoon 

season and that satellite soil moisture can be affected by retrieval uncertainties, the precipitation 

index can, in practice, show good agreement with crop yields in the rainy season. In this respect, 

it is worth mentioning that DA techniques could represent a viable solution to integrate model 

and satellite observations, in order to improve model predictions and to overcome satellite 

observation limitations. 

To further explore the results achieved by the indices for wheat (i.e., irrigated) an additional 

correlation analysis between indices and yield anomalies was carried out for irrigated areas only. 

The aim was to investigate whether satellite soil moisture, albeit at coarse resolution, is able to 

give additional information on harvest data compared to MERRA-2 modeled soil moisture and 

observed precipitation data, which do not include information on irrigation. For this purpose, 

high-resolution irrigated-area maps available for the study period (Ambika et al., 2016) were used 

to find the percentage of irrigated areas over each pixel of the three indices (see Figure 2.4b for 

the map of irrigated SSI and SPI pixels). Thirty-six districts were selected for this analysis, 

corresponding to irrigated areas where crop-yield data were available. We obtained significant 

R-values in 12 districts for SSI-1 CCI (Figure 2.8g), 15 districts for SSI-1 MERRA2 (Figure 2.8h) 

and 6 districts for SPI-3 (Figure 2.8i), which correspond to the 33.3%, 41.66% and 16.66% of the 

total number of districts, respectively. At this level of analysis, we did not find improvements in 

the use of the satellite-based drought index as compared to SSI-1 MERRA2 and SPI-3. This could 

be explained by the inherent uncertainty associated with the identification of irrigated areas 

versus the relatively coarse spatial resolution of the satellite soil moisture product. In this respect, 

it is worth mentioning that irrigation detection is not always straightforward and can lead to 

significant uncertainties (Brocca et al., 2018; Lawston et al., 2017). 
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Note that before focusing on modeled SSM, we compared its performance at district level, with 

that of a RZ-based SSI MERRA2, as crop yield is expected to be physically related to deeper soil 

layers. After calculating the index, we investigated the correlation between SSI-1 MERRA2 RZ 

and crop-yield anomalies. Unexpectedly, we found the performance of this index to be lower in 

terms of R-values as compared to the SSM SSI-1 MERRA2, particularly for wheat. In this case 

many of the districts significantly correlated are characterized by R-values lower than 0.5. This 

additional analysis further justified our choice of using the modeled SSM of MERRA2 (0-5 cm) 

and also highlighted the key role of SSM in the growing process of the selected crops. Details are 

reported in Figure 2.9. 

 

Figure 2.9. Maps showing the relationship between district mean annual values of SSI-1 MERRA2 RZ against (a) maize 

anomalies; (b) wheat anomalies and (c) wheat anomalies over irrigated areas. The tested districts (light yellow) in the 

maps (a) – (b) represent croplands where crop-yield data were available. The tested districts in the map (c) represent 

irrigated areas where wheat-yield data were available. Only districts characterized by R-values with a significance level 

of 0.05 (p-values<0.05) are displayed in different blue shades, depending on the Pearson R-values. 

After the first screening process, all the indices data of the districts with significant R-values over 

the cropland mask were compared to the related yield anomalies. The analysis was carried out as 

a function of the drought severity in two main classes, i.e., drought (SSI/SPI<0) and non-drought 

conditions (SSI/SPI>0). For that, we calculated crop data distributions associated to the two classes 

(Figure 2.10). For the soil moisture indices (Figure 2.10a for SSI-1 CCI and 2.10b for SSI-1 

MERRA2), plots between the first and the third quartile show a distinct separation between 

drought and non-drought conditions for positive and negative maize anomalies, respectively. 

The same is obtained for wheat (Figure 2.10d-2.10e), although the pattern is less distinct than that 

of maize. Conversely, for SPI-3 (Figure 2.10c and f) the two distributions intercross each other 

(especially for wheat), indicating reduced ability for SPI to explain positive and negative crop 
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anomalies. The latter analysis provides clear evidence of a relation between soil moisture indices 

and crop-yield anomalies. To understand the strength of this relation, we carried out a linear 

regression analysis (by assuming a simple linear model for describing the relation between crop 

yield and drought indices).  

 

Figure 2.10. Statistics during drought (red) and non-drought (blue) conditions for maize anomalies distribution, with 

respect to (a) SSI-1 CCI, (b) SSI-1 MERRA2 and (c) SPI-3; and for wheat anomalies distribution with respect to (d) SSI-

1 CCI, (e) SSI-1 MERRA2 and (f) SPI-3. Data are related to districts characterized by significant correlation over 

croplands. 
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Figure 2.11. Linear regression analysis with data relative to districts characterized by significant correlation over 

croplands. Samples obtained with maize anomalies and the related SSI-1 CCI, SSI-1 MERRA2 and SPI-3 values are 

shown in a), b) and c) respectively and then divided considering drought (red) and non-drought (blue) conditions in 

d), e) and f). Key: (m) is the slope of the regression line, (N) is the sample size and (R) is the Pearson correlation 

coefficient. Red and blue bands identify the 90th percentiles. Numbers marked as * indicate passing the test of 

significance (p < 0.05). 

It is worth notice that the objective of the linear regression analysis here is not to create a model 

to describe the ability of each index to forecast crop yield, but only to study the sensitivity of 

harvests data to drought conditions. Additionally, autocorrelation in the data (and their errors) 

was not accounted for in the marking of significant correlation values. For maize (Figure 2.11) the 

regression was carried out both regardless of the drought severity (Figure 2.11a-c) and as a 

function of the severity (i.e. drought vs non-drought, Figure 2.11e-f) for the three indices. In the 

first case, all the indices show very similar results with R-values of 0.58 for SSI-1 CCI, 0.6 for SSI-

1 MERRA2 and 0.57 for SPI-3 (note that the correlations were calculated on different sample sizes 

N, as a result of the preliminary screening process). For the second case (Figures 2.11d-f), the 

correlation coefficients are generally lower for the three indices both in drought and non-drought 

conditions (R-values on the top left- and bottom right-side of each figure). In this case, the results 

reveal some interesting features that need discussion. That is, SSI-1 CCI displays an R-value of 

0.49 in drought conditions with the two bands at 90th percentile showing a similar spread when 

moving from drought to non-drought conditions. This value is above the values obtained for SSI-
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1 MERRA2 (R=0.35) and SPI-3 (R=0.42) suggesting that satellite soil moisture observations retain 

useful information about the relation between water stress and crop yield. In addition, as 

correlations during non-drought periods drop significantly for all the three indices, this suggests 

that the water stress is an important limiting factor for crop production (which is expected) 

whereas during non-drought periods it plays a minor role, as other factors (i.e., fertilizers) are 

able to boost the production. 

The analysis carried out for maize was then repeated for wheat. As before, we considered two 

cases: 1) considering all the samples and 2) dividing the samples into drought and non-drought 

conditions. In the first case, SSI-1 CCI (Figure 2.12a) and SSI-1 MERRA2 (Figure 2.12b) display 

the same R-value of 0.54, whereas SPI-3 (Figure 2.12c) achieves lower results with R=0.49. For the 

second case (Figure 2.12d-f), the satellite-based SSI-1 CCI (Figure 2.12d) shows once again highest 

correlation in drought conditions (R=0.63) as compared to SSI-1 MERRA2 (Figure 2.12e, R=0.5) 

and SPI-3 (R=0.44). This confirms and strengthens the conclusions revealed by the analysis on 

maize. 

 

Figure 2.12. Linear regression analysis with data relative to districts characterized by significant correlation over 

croplands. Samples obtained with wheat anomalies and the related SSI-1 CCI, SSI-1 MERRA2 and SPI-3 values are 

shown in a), b) and c) respectively, and then divided considering drought (red) and non-drought (blue) conditions in 

d), e) and f). Key: (m) is the slope of the regression line, (N) is the sample size and (R) is the Pearson correlation 
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coefficient. Red and blue bands identify the 90th percentiles. Numbers marked as * indicate passing the test of 

significance (p < 0.05). 

The same analysis was conducted for wheat in irrigated areas only (Figures 2.13a-c), showing a 

further increase in the R-value for SSI-1 CCI from 0.63 to 0.66 and a slight reduction of correlation 

for SSI-1 MERRA2 and SPI. This suggests that satellite soil moisture observations are better able 

to represent the soil wetness conditions potentially exploited by crops, and related to human 

processes such as irrigation. This aspect, however, needs further investigation and it will be 

assessed in the second part of this work. 

 

Figure 2.13. Linear regression analysis with data relative to districts characterized by significant correlation in irrigated 

areas growing wheat. Samples obtained with wheat anomalies and the related SSI-1 CCI, SSI-1 MERRA2 and SPI-3 

values, divided considering drought (red) and non-drought (blue) conditions, are shown in a), b) and c). Key: (m) is 

the slope of the regression line, (N) is the sample size and (R) is the Pearson correlation coefficient. Red and blue bands 

identify the 90th percentiles. Numbers marked as * indicate passing the test of significance (p < 0.05). 

It is important to highlight that the reliability of crop data at district level may affect the analysis, 

adding additional uncertainties. However, satisfactory results were obtained for SSI-1 CCI, 

especially in drought conditions and particularly regarding wheat. To support our analysis and 

the good performance achieved by SSI-1 CCI we can refer to the study of Carrão et al. (2016). Here 

the authors demonstrated the performance of an Empirical Standardized Soil Moisture Index 

(ESSMI), implemented with the use of ESA CCI SM COMBINED (V02.0), and investigated its 

relation to maize and wheat in Argentina, over two distinct weather stations. They calculated the 

Pearson R-value for the whole data sample and obtained high R-values between the index and 

crop. Although we achieved lower scores than those of Carrão et al. (2016), the performance of 

SSI-1 CCI seems to be promising, especially in drought conditions. 
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2.3 Conclusions 

In the first part of this thesis, three drought indices were calculated, namely, the SSI-1 derived 

from long-term ESA CCI soil moisture product from active and passive microwave sensors 

(combined version), the SSI-1 from MERRA2 reanalysis of SSM estimates, and the SPI-3 from the 

Indian Meteorological Institute rainfall observations (SSI-1 CCI, SSI-1 MERRA2 and SPI-3 

respectively). These indices were examined in relation to maize and wheat crop-yield data in 

Maharashtra and Karnataka states (India) from 1998 to 2015, to understand their ability in 

explaining the variability of crop production, months in advance, and thus helping to forecast 

potential critical situations, such as the drought that hit India in early summer 2019. 

A preliminary and rigorous screening process was carried out to 1) exclude non-cultivated areas 

from index calculations, 2) select meaningful time scales for making comparisons between the 

different indices (SPI-3 best represented agricultural drought among other SPIs and most closely 

related to SSI-1, calculated both with ESA CCI and MERRA-2) and 3) find the months when crop 

production was most sensitive to SSI/SPI indices. For maize these months were July, August and 

September (monsoon period), whereas for wheat the months of October and November were 

most sensitive (correlating with the emergence stage of wheat growth). 

After this screening process, the relation between the indices and crop-yield data was explored, 

as a function of crop type, type of variable (rainfall versus soil moisture), method used to estimate 

soil moisture (satellite versus model), drought severity (drought vs. non-drought conditions) and 

the influence of the human activity (irrigated vs. non-irrigated land).  

Our results show that: 

1) There are two main limitations to this approach, primarily identified in the correlation analysis 

at district level: i) the uncertainties associated to satellite soil moisture retrievals over 

topographically complex and densely vegetated areas; and ii) the reliability of crop-yield data at 

district level and the relatively short record of crop data. The satellite soil moisture monitoring 

depth (0-5 cm) showed good performance in our approach, particularly given the selected crops. 

Indeed, the additional correlation analysis conducted between SSI-1 MERRA2, calculated with 



 

63 
 

the root zone soil moisture estimates (0-100 cm), and yield anomalies showed a deterioration of 

the performances compared to SSI-1 MERRA2 SSM. One of the reasons could be related to model 

limitation; on the other hand, this also highlights that valid information can be obtained from the 

surface soil moisture observations regarding the growing process of the selected crops. 

2) For maize, the overall performance, in terms of linear regression analysis, is comparable among 

the indices in both drought and non-drought years. The three indices are similarly able to predict 

crop yield during rainy periods; the precipitation index also seems to better agree with crop yields 

during these periods. For wheat, an irrigated crop growing during the winter season, soil 

moisture-based indices outperform SPI-3, suggesting that soil moisture is generally more 

informative about crop yield when dealing with non-rainfed crops (for which 

reduction/increments of moisture produce respectively larger decrease/increase of production 

during drought events as compared to rainfed crops), and should be preferred in agricultural 

drought analysis. 

3) By separating the linear regression analysis in two main classes, i.e., drought conditions vs 

non-drought conditions, soil moisture was found to be an important limiting factor for crop 

production during drought years, significantly reducing crop yields as droughts get more severe. 

Conversely, it plays a minor role during non-drought years, as other factors potentially help 

increase production. 

4) The ESA CCI soil moisture product seems to better represent the soil wetness conditions than 

the MERRA-2 LSM estimates. While across a few districts at the boundaries of the study area 

modeled soil moisture shows higher correlations with crop yields than SSI-1 CCI, the linear 

regression analysis highlights a stronger relation between crop yields and the satellite-based soil 

moisture index during drought events, as compared to SSI-1 MERRA2. This is particularly true 

for wheat, growing under irrigated conditions. Here SSI-1 CCI performs better during drought 

years, as compared to the analysis over the whole croplands, while SSI-1 MERRA2 displays a 

slight decrease in performance. A similar result, but in the context of flood forecasting, was found 

by Crow et al. (2017). Further analysis is needed to explore whether this is a limit related to LSM 
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parameterization – and the fact that models simply simulate or do not include human-related 

processes like irrigation – or it is case specific. 

5) The sensitivity of maize and wheat to low levels of soil moisture was identified to start in July 

and October, respectively (months used for the annual average of the indices). While crops are 

inevitably planted before these dates, knowledge of soil moisture levels could be invaluable for 

farmers for planning irrigation to overcome yield losses. 

In conclusion, the results shed some light on the amount of information retained by satellite-

based soil moisture observations, in comparison to rainfall and model-based estimates of soil 

moisture that have largely been used in academic studies to date, given the lack of in-situ soil 

moisture observations and their limited spatial representativeness (i.e., Farahmand and 

AghaKouchak, 2015; Sheffield et al., 2004). Understanding this aspect is important for improving 

the abilities of land surface and numerical weather prediction models in representing and 

predicting droughts, as the use of satellite soil moisture observations via DA (Drusch, 2007) can 

potentially provide additional benefits for forecasting systems. This study is also important for 

understanding the potential role of satellite-based observations for operational drought 

forecasting, given that new products have become available with higher accuracy and spatial 

resolution (Bauer-Marschallinger et al., 2018; Das et al., 2010; Piles et al., 2011). Additionally, this 

analysis provides the foundations for the operational implementation of a crop-forecasting tool, 

as it can drive developers and scientists in the right direction for selecting the best 

variables/periods to consider. This aspect is crucial, as it could help farmers, model forecast 

developers and agricultural managers to better understand, model and allocate water resources 

for future crop yields. This could help to reduce the risk of crop losses and mitigate migration, 

especially in developing regions. 

Although only one model was used and only part of India was explored, results show that a 

question exists on whether drought indices built in different ways with different variables are 

entirely representative of crop-yield reduction, economic losses and famine episodes.  
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Chapter 3: Optimization of a backscatter forward operator 

over irrigated land 

This chapter describes the analysis and results published in the following journal article: 

Modanesi, S., Massari, C., Gruber, A., Lievens, H., Tarpanelli, A., Morbidelli, R., and De Lannoy, G. J. 

M. Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land, 

Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, 2021. 

This analysis represents the first and necessary step towards building a reliable land surface 

model (LSM) data assimilation (DA) system which will investigate the potential of high-

resolution radar backscatter observations from Sentinel-1 to improve irrigation quantification. 

Specifically, the Noah-MP LSM running within the NASA Land Information System (LIS) is 

coupled with a backscatter observation operator for simulating unbiased backscatter predictions 

over irrigated lands. In this context, it was first tested how well modeled SSM and vegetation 

estimates, with or without irrigation simulation, are able to capture the signal of aggregated 1-

km Sentinel-1 backscatter observations over the Po Valley, an important agricultural area in 

Northern Italy. Next, Sentinel-1 backscatter observations, together with simulated surface soil 

moisture (SSM) and leaf area index (LAI), were used to optimize a Water Cloud Model (WCM) 

which will represent the observation operator in the DA experiments (Chapter 4). The WCM was 

calibrated with and without an irrigation scheme in Noah-MP, and considering two different cost 

functions. Chapter 3 is organized as follows: i) Section 3.1 describes data and methodologies used; 

ii) Section 3.2 presents results obtained; ii) Section 3.3 discusses the results obtained and finally 

iii) conclusions are drawn in Section 3.4. 

3.1 Data and methods 

3.1.1 Study area and in situ data 

The analysis was carried out over an area of 24,000 km2 located within the Po Valley, one of the 

most important agricultural areas in Europe (Figure 3.1, left-bottom corner: 44°N, 10.5°W; top-

right corner: 45.5°N, 12.2°W). The Po Valley is part of the Po river basin district (~74,000 km2), a 



 

66 
 

mountain-fed catchment which extends from the Alps in the West, to the Adriatic Sea in the East. 

The Po district is one of the eight districts mentioned in the Water Framework Directive (WFD; 

EC, 2000) initiated by the European Commission and has been hit by seasonal drought events 

which impacted all water use sectors, in particular agriculture (Strosser et al., 2012). The water 

assessment and impact evaluation of human activities over the Po Valley is thus a topic of major 

interest, considering the significant requirements from the agricultural management sector. 

According to the Köppen-Geiger climate classes (Peel et al., 2007) the study area is classified as 

"Cfa" (temperate climate, without dry season and with hot summers). From a geographical point 

of view, the Po river flows from the west to the east, splitting the area of interest in northern and 

southern areas, respectively. North of the Po river, the agricultural plain area can be additionally 

subdivided into the Veneto region to the east and the Lombardy region to the west (Figure 3.1). 

Lombardy lands have a high-water availability, thanks to the presence of several Alpine lakes 

and reservoirs (Musolino et al., 2017), as does the Veneto region. Wine cultivation plays an 

important role, especially in the Garda Lake surroundings (located to the north-west side of the 

study area). In the south, the Emilia Romagna region is an agricultural as well as urbanized-

industrialized area. Compared to Lombardy and Veneto, Emilia Romagna is much poorer both 

in water availability and storage capacity, but its irrigation system is considered the most 

technologically advanced and efficient in the Po river (Musolino et al., 2017). Specifically, it hosts 

the Canale Emiliano Romagnolo (CER, https://consorziocer.it/it/), one of the most important 

Italian hydraulic systems for agricultural water supply. The main crops in the study region 

include general summer and winter crops, orchards (i.e., peach, pear, kiwi), olive groves, and 

vineyards (https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home). The plain area 

is surrounded by a forested hilly and mountainous area of the Tuscan-Emilian Appennine to the 

south/south-west.  

https://consorziocer.it/it/
https://sites.google.com/drive.arpae.it/servizio-climatico-icolt/home
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Figure 3.1. The study area and the two test sites of (a) Budrio and (b) Formellino. Data on the topography are obtained 

from ETOPO1 Arc-Minute Global Relief Model (Amante and Eakins, 2009). Map data ©2015 Google. 

In situ data were collected over two test sites, located in the Emilia Romagna region:  

● For an analysis at plot scale we selected the Budrio test site (Figure 3.1a), an experimental 

farm managed by the CER authority which includes two plots of 0.39-0.49 ha. The main 

crops are maize for field 1 (in yellow) and tomatoes in field 2 (red color). Daily irrigation 

data, in mm, were collected for the summer 2015-2016 over field 1, whereas daily 

irrigation water amounts were collected for the summer 2017 over field 2. Additionally, 

for field 2, hourly in situ soil moisture data, aggregated here at daily scale, were made 

available from the Department of Physics and Earth Science of the University of Ferrara. 

The soil moisture data were derived from an innovative Proximal Gamma-Ray (PGR SM 

hereafter; Filippucci et al., 2020; Strati et al., 2018) station, equipped with a 1L NaI(Tl) 

detector placed at 2.25 m above the ground and a commercial agro-meteorological station 

(MeteoSense 2.0, Netsen; Strati et al., 2018).The PGR is a nuclear non-invasive and non-

contact technique, which allows to overcome the issue connected to in situ point 

measurements, probing soil moisture with a field scale footprint (~104 m2) up to a depth 

of 30 ~ cm. The quantification of PGR soil moisture is derived from measurements of 

gamma signals emitted by the decay of 40K, which is extremely sensitive to different soil 

water contents in agricultural soils (for more information on the PGR soil moisture 



 

68 
 

deriving procedure the reader can refer to Baldoncini et al. (2019). Finally, daily rainfall 

data were collected from the national rainfall network managed by the Department of 

Civil and Environmental Protection (DPC) of Italy, for the irrigated periods. 

● The second test site (Figure 3.1b) is located around the city of Faenza (hereafter Faenza 

test site) and has a total extent of 1051 ha, consisting of two fields which allow an analysis 

at the small-district spatial scale. The first one is called San Silvestro (290 ha) and it is 

located north of the city. The second one is called Formellino (760 ha), located east to the 

San Silvestro field and north-east to the city of Faenza. Fruit trees are prevalent on the 

fields; in particular, pear trees and kiwi dominate the area. The water used for irrigation 

was provided by CER, at hourly time scale and in mm, for the 2-years time period 2016-

2017. Daily rainfall data were collected from the national rainfall network managed by the 

DPC. 

3.1.2 Sentinel-1 backscatter and reference remote sensing products 

The Copernicus-ESA Sentinel-1 backscatter observations were used in this study for the 

calibration of the WCM. The Sentinel-1 constellation consists of two satellites, Sentinel-1A and 

Sentinel-1B, launched in 2014 and 2016, respectively. Each satellite carries a Synthetic Aperture 

Radar (SAR) operating at C-band (5.4 GHz) in the microwave (MW) portion of the 

electromagnetic spectrum. The processing of the ground-range detected (GRD) Interferometric 

Wide Swath (IW) observations in VV- and VH-polarization was done using Google Earth 

Engine’s Python interface and included standard techniques: precise orbit file application, border 

noise removal, thermal noise removal, radiometric calibration, and range-Doppler terrain 

correction. Furthermore, the backscatter observations acquired at 5 × 20 m2 resolution were 

aggregated and projected on the 1 km Equal Area Scalable Earth version 2 (EASE-2) grid (Brodzik 

et al., 2012). After applying an orbit bias-correction (Lievens et al., 2019), the observations (σ0 

hereafter) from different orbits, either from Sentinel-1A or -1B and ascending or descending 

tracks, were combined at the daily time-scale.  

Additionally, EO were used for the evaluation of the SSM and LAI simulated in Noah-MP LSM 

for the period 31 March 2015 - December 2019:  
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● The NASA Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010) is an orbiting 

observatory launched in January 2015 carrying two instruments: a SAR which suffered a 

failure in early July 2015, and a radiometer measuring Tb at L-band, with a native spatial 

resolution of 40 km, a revisit time of 2–3 days, and ascending and descending overpasses 

at 6:00 PM and 6:00 AM (local time), respectively. For this study, the 9-km SMAP 

Enhanced Level-2 SSM version 4 (0-5 cm; SMAP L2 hereafter) product was used (O'Neill 

et al., 2020; Chan et al., 2018). The product is derived from SMAP Level-1B (L1B) 

interpolated antenna temperatures using the Backus-Gilbert optimal interpolation 

technique. Both ascending and descending tracks were collected. 

● The Metop ASCAT SSM Climate Data Records (CDR) H115 and its extension H116 are 

provided by the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) Support to Operational Hydrology and Water Management (H SAF; 

http://hsaf.meteoam.it/, last access 20 May 2021). The SSM is retrieved from backscatter 

using a change detection algorithm (Wagner et al., 1999), and is characterized by a spatial 

sampling of 12.5 km and a temporal resolution of one to two observations per day, 

depending on the latitude.  

● The PROBA-V LAI is derived from the PROBA-V satellite mission (Dierckx et al., 2014; 

Francois et al., 2014) and provided by the Copernicus Global Land Service program 

(CGLS, https://land.copernicus.eu/global/). The CGLS product at 1 km spatial resolution 

and 10-day (dekadal) temporal resolution is developed based on the work by Verger et al. 

(2014).  

In order to compare Noah-MP simulations and reference data at the same spatial resolution, 

Sentinel-1 observations (σ0-VV and -VH), as well as ASCAT SSM, SMAP L2 SSM and PROBA-V 

LAI were extracted over the study domain (left-bottom corner: 44°N, 10.5°W; top-right corner: 

45.5°N, 12.2°W) and re-gridded over the LIS grid domain (0.01°) using the nearest-neighbor 

approach. 

https://www.eumetsat.int/h-saf
http://hsaf.meteoam.it/
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3.1.3 Land surface and irrigation modeling 

3.1.3.1 Noah-MP v.3.6 

The analysis was carried out using the Noah-MP (Niu et al., 2011) LSM, running within NASA's 

LIS 7.2 version (Kumar et al., 2008). LIS is a software framework for terrestrial hydrology 

modeling and DA, which supports different LSMs that can be conditioned on multiple remote 

sensing products from active and/or passive MW sensors. The Noah-MP LSM, which was chosen 

for this study, is an evolution of the baseline Noah LSM (Chen et al., 1996; Chen and Dudhia, 

2001; Mahrt and Pan, 1984) wherein main improvements and augmentations are: 1) the presence 

of four soil layers; 2) up to three snow layers; 3) one canopy layer which allows to dynamically 

simulate the vegetation and to compute separately the ground surface temperature; 4) a two-

stream radiation transfer scheme based on the canopy layer sub-grid scheme; 5) a Ball-Berry type 

stomatal resistance scheme; 6) and finally, a simple groundwater model with a TOPMODEL‐

based runoff scheme (Niu et al., 2007, 2005). The model was set up selecting four soil layers at 

depths 0–10, 10–40, 40–100 and 100–200 cm, a dynamic vegetation model with a Ball-Berry type 

canopy stomatal resistance model (Ball et al., 1987), and TOPMODEL-based runoff.  

The parameterization followed the recommended options provided in the LIS documentation 

(https://modelingguru.nasa.gov/docs/DOC-2634). A model time step of 15 minutes and a 6 hours 

output interval were selected together with a spatial resolution of 0.01°. The meteorological 

forcings used for running Noah-MP LSM were obtained from MERRA-2 (Gelaro et al., 2017). The 

MERRA-2 original spatial resolution of 0.5°x0.625° was re-mapped to 0.01° through bilinear 

interpolation. Land model data and parameters were pre-processed and adapted to the LIS 

longitude/latitude projection using the Land Surface Data Toolkit (LDT; Arsenault et al., 2018) in 

order to run Noah-MP at the chosen spatial resolution.  

For this activity, the default LIS Land Cover (LC) map from the University of Maryland (UMD) 

global land cover product (Hansen et al., 2000) based on the Advanced Very High Resolution 

Radiometer (AVHRR) data was replaced with the 2015 global LC map, available from the CGLS 

at 100 m spatial resolution (Buchhorn et al., 2020; available at 

https://land.copernicus.eu/global/products/lc). The CGLS provides Dynamic Land Cover Layers 

https://land.copernicus.eu/global/products/lc
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at 100 m spatial resolution (CGLS-LC100), obtained by combining information derived from the 

vegetation instrument on board the PROBA-V satellite, a database of high-quality LC reference 

sites, and several ancillary datasets. For a more detailed explanation of the LC maps generation 

process we refer to the Algorithm Theoretical Basis Document (ATBD; Buchhorn et al., 2020). The 

23 classes of the PROBA-V LC map were reclassified to the 14 classes used in the UMD-AVHRR 

classification supported by LIS. Additionally, the LC map was regridded at 0.01° (Figure 3.2a) by 

identifying the most representative class over each LIS grid cell.  

Similarly, the default FAO Soil Map (FAO Soil Map of the World, 1971) was replaced by the 

Harmonized Soil World Database (HWSD v1.21, 1 km; Figure 3.2b) and mapped to 5 soil classes 

over the study region. Other model pre-processed parameters inputs were: i) the Shuttle Radar 

Topography Mission elevation data (SRTM30, 30 m spatial resolution); 2) climatological global 

Greenness Vegetation Fraction (GVF) data (0.144°; Gutman and Ignatov, 1998) derived from 5 

years (1985-1989) of normalized difference vegetation index (NDVI) data from the AVHRR 

(Miller et al., 2006); 3) a snow-free albedo and a Noah-specific maximum snow albedo product 

from NCEP (original resolution 1° and regridded); and finally, 4) soil, vegetation, and other 

general parameter tables for Noah-MP from the LIS official Data Portal 

(https://portal.nccs.nasa.gov/lisdata_pub/data/). 

Figure 3.2. Re-gridded and reclassified input data used in the LIS framework: a) the PROBA-V LC map; and b) the 

HWSD soil texture map. In each plot, the x- and y-axes represent longitudes and latitudes in degrees east and north, 
respectively. 

https://portal.nccs.nasa.gov/lisdata_pub/data/
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3.1.3.2 Irrigation modeling 

The ability of Noah-MP to dynamically simulate the vegetation and the option to activate irrigation 

are particularly important considering an extensively irrigated area such as the Po Valley. Indeed, 

in a recent study by Nie et al. (2018), Noah-MP was coupled with a sprinkler irrigation scheme 

(where irrigation is applied as supplementary rainfall; Ozdogan et al., 2010a), which requires three 

pieces of information:  

● the irrigation location, only occurring over potentially irrigated croplands (expanding over 

grassland if the intensity exceeds the grid cell’s total crop fraction). This information is 

extracted from a LC map associated with an additional dataset providing information on the 

percent of irrigated area per grid cell. In this study, the reclassified PROBA-V LC map was 

coupled with the information contained in the 500 m Global Rain-fed, Irrigated and Paddy 

Croplands data set (GRIPC; Salmon et al., 2015);   

● the timing of irrigation, which is determined by checking the start and end of the growing 

season based on a GVF threshold, separately at each grid cell. Following Ozdogan et al., 

(2010a), we set this threshold to 40% of the GVF;  

● the amount of water used for irrigation. This quantity is derived from the root zone soil 

moisture (RZSM) availability (MA) as MA=(RZSM-SMWP)/(SMFC-SMWP) where RZSM is the 

current RZSM, SMWP is the soil moisture wilting point, and SMFC is the soil moisture field 

capacity. When the MA falls below a user-defined threshold, irrigation is triggered and the 

quantity is defined by calculating the amount of irrigation needed to raise the RZSM to the 

SMFC. For this study, the MA threshold was defined as the 50% of SMFC as in Ozdogan et al. 

(2010a). MA is calculated at each time step but the irrigation is only applied between 06:00 

and 10:00 local time. Following Ozdogan et al. (2010a), this time frame is typically chosen by 

farmers to reduce evaporative losses. In this context, the maximum rooting depth becomes a 

crucial information to compute the amount of irrigation water. This information is related to 

an assigned crop type, cultivated over the study area, through a maximum rooting depth 

table. Considering the high crop variability over the Po Valley as well as the lack of high 

resolution dynamic crop maps for the entire study area, a generic crop type with 1 m root 
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depth was selected for the irrigation simulations. The reference rooting depth was verified 

to be feasible over the study area based on the European Soil Data Center (ESDAC, available 

at https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data) rooting 

depths map (Figure 3.3). 

 

Figure 3.3. 1-km ESDAC root depth data; available at https://esdac.jrc.ec.europa.eu/content/european-soil-database-

derived-data. The x- and y-axes represent longitudes and latitudes in degrees east and north, respectively. 

3.1.4 Water Cloud Model 

The WCM allows to simulate the top-of-vegetation σ0 as a function of SSM and vegetation, using 

empirical fitting parameters. σ0 is modeled as the sum of the backscatter from the vegetation (𝜎𝑣𝑒𝑔
0 , 

in dB) and from the bare soil (𝜎𝑠𝑜𝑖𝑙
0 , in dB), attenuated by the t2 coefficient that describes the two-

way attenuation from the vegetation layer. Scattering interactions between the ground and the 

vegetation are not accounted for. As reported in Baghdadi et al. (2017), for a given polarization 

pq (i.e., VV and VH), the WCM can be written as follows: 

𝜎𝑝𝑞
0 = 𝜎𝑣𝑒𝑔,𝑝𝑞

0 + 𝑡𝑝𝑞
2 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞

0       (3.1) 

where: 

𝜎𝑣𝑒𝑔,𝑝𝑞
0 = 𝐴𝑝𝑞𝑉1𝑐𝑜𝑠𝜃(1 − 𝑡𝑝𝑞

2 )     (3.2) 

𝑡𝑝𝑞
2 = 𝑒𝑥𝑝(

−2𝐵𝑝𝑞𝑉2

𝑐𝑜𝑠𝜃
)       (3.3) 

𝜎𝑠𝑜𝑖𝑙,𝑝𝑞
0 = 𝐶𝑝𝑞 + 𝐷𝑝𝑞 ⋅ 𝑆𝑆𝑀     (3.4) 

https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
https://esdac.jrc.ec.europa.eu/content/european-soil-database-derived-data
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Equations 3.2 and 3.3 describe the vegetation-related terms. V1 and V2 represent two bulk 

vegetation descriptors, the first one accounting for the direct vegetation σ0, and the second one 

representing the attenuation. Apq[-] and Bpq[-] are the two related fitting parameters. Common 

vegetation descriptors used in previous studies are the Vegetation Water Content (VWC, Paloscia 

et al., 2013), the NDVI (El Hajj et al., 2016; Li and Wang, 2018) and LAI (Bai and He, 2015; K. 

Kumar et al., 2015), while θ represents the incidence angle, which is assumed to be 37° for 

Sentinel-1. Following previous studies (see Baghdadi et al., 2017; Li and Wang, 2018; Lievens et 

al., 2017a) we assumed V1=V2 represented by the dynamically simulated LAI vegetation 

descriptor. 

Equation 3.4 describes the soil-related term. Following the work by Lievens et al. (2017a) the 𝜎𝑠𝑜𝑖𝑙
0  

can be described, in a simple linear approach, as a function of the SSM. There are several semi-

empirical models (e.g., the Oh model; Oh et al., 1992) or theoretical models (e.g., the Integral 

Equation Model (IEM), Fung, 1994) which describe the scattering processes related to the bare 

soil, but their application as a forward operator coupled to a LSM has two main limitations: the 

first one lies in the difficulty in retrieving soil roughness values over extended reference areas 

required to parameterize these models; the second one is their saturation of σ0 in moist conditions 

which causes low variability in simulated σ0 if the LSM soil moisture simulations are biased wet 

(for more information see Lievens et al., 2017a). Those limitations justify the use of a linear fitted 

approach. In Equation 3.4, the C and D parameters (here fitted in dB and dB/m3/m3, respectively, 

but 𝜎𝑠𝑜𝑖𝑙
0  is transformed back to the linear scale in Equation 3.1) describe the linear relation 

between 𝜎𝑠𝑜𝑖𝑙,𝑝𝑞
0  and SSM. Those parameters, as well as A(-) and B (-), need to be calibrated 

separately for each polarization. 

3.1.5 Calibration algorithms 

Two different objective functions were considered to optimize the A, B, C and D parameters:  

● a Bayesian solution, which minimizes the Sum of Squared Errors (SSE) between σ0 

observations from Sentinel-1 and WCM simulations. The SSE Bayesian calibration 

solution aims at identifying the optimal parameter vector 𝛂 which maximizes the 

probability of the resulting σ0 simulations 𝑝(𝑦̂−) = 𝑝(𝑦̂−|𝛼)𝑝(𝛼), where 𝑝(𝛼) is the prior 



 

75 
 

parameter distribution and 𝑝(𝑦̂−|𝛼) is the likelihood. Starting from the assumption of an 

independent and identically distributed normal error model, the posterior probability can 

be maximized by maximizing: 

𝑝(𝑦̂−|𝛼)𝑝(𝛼) = ∏ {
1

𝑠𝑖√2𝜋
𝑒𝑥𝑝 (−

(𝑦̂−𝑦̂−)𝑖
2

2𝑠𝑖
2 )}

𝑁𝑖
𝑖 ⋅ ∏ {

1

𝑠𝑗√2𝜋
𝑒𝑥𝑝 (−

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2 )}

𝑁𝛼
𝑗   (3.5) 

i.e., the combination of the likelihood and a prior parameter constraint. The latter helps in 

reducing problems of equifinality. In Equation (3.5), 𝑦̂ represents the observed σ0, 𝑦̂−is the 

simulated σ0, i is the timestep and si is the standard deviation of the residual differences 

between the observed and simulated σ0 values for Ni time steps. Nα is the number of 

parameters to be calibrated, α0 is the prior parameter constraint and the parameter 

deviation is limited by 𝑠𝑗
2, the variance of a uniform distribution 𝑠𝑗

2 = (𝛼𝑚𝑎𝑥,𝑗 − 𝛼𝑚𝑖𝑛,𝑗)
2

/

12 with determined boundaries of the parameters [αmin,αmax]. The maximum likelihood 

solution is found by minimizing the following cost function J: 

𝐽 = ∑ {𝑙𝑛(𝑠𝑖) +
(𝑦̂−𝑦̂−)𝑖

2

2𝑠𝑖
2  }

𝑁𝑖
𝑖 + ∑ {

(𝛼0−𝛼)𝑗
2

2𝑠𝑗
2  }

𝑁𝛼
𝑗 = 𝐽0 + 𝐽𝛼      (3.6) 

where si is assumed to be constant in time and represented by a target accuracy of 1 dB, 

leaving the SSE in the first term of J0 to minimize. The second term (Jα) constrains the 

optimal solution by avoiding strong deviations from initial parameter guesses.  

● a solution that maximizes the Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Even 

though this objective function does not ensure Bayesian optimality, it is a widely used 

metric which could help to better tune the dynamic σ0 behavior: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
<𝑦̂−>

<𝑦̂>
− 1)

2
+ (

𝑠[𝑦̂−]/<𝑦̂−>

𝑠[𝑦̂]/<𝑦̂>
− 1)

2
    (3.7) 

The KGE formulation embeds three terms: 1) the first term accounting for the Pearson 

Correlation (Pearson-R) between the observed (𝑦̂) and simulated (𝑦̂−) σ0 time series; 2) a 

second term accounting for the bias, where the long-term mean is represented as <.>; and 

finally, 3) a term accounting for the variability of the simulated and observed signal 
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through the use of the standard deviation s[.]. KGE = 1 indicates a perfect agreement 

between simulations and observations. Note that KGE redistributes the weight of the bias, 

variance and correlation components, compared to J in Equation 3.6, which can help in 

reducing differences between simulated and observed σ0 also in terms of temporal 

dynamics during the calibration. On the other hand, in the KGE cost function parameters 

are not constrained by prior values α0. This could possibly result in overfitting and a larger 

prediction uncertainty.  

The Particle Swarm Optimization (PSO; Kennedy and Eberhart, 1995) was used to minimize J and 

maximize KGE. For our case study the PSO parameters were set as in De Lannoy et al. (2013).  

3.1.6 Experimental setup 

An optimal DA system requires long-term unbiased σ0 simulations (with respect to the 

assimilated observations). The risk, over an intensively irrigated area, is that an unmodelled 

irrigation signal would manifest itself as a predominant bias in the σ0 simulations. The calibration 

would then inadvertently correct for this supposed bias (i.e., the irrigation signal), thus 

preventing the DA system from propagating the missing irrigation signal from the observations 

into the model. Even though existing irrigation schemes are evidently unrealistic and inaccurate, 

it was conjectured that using such a scheme when calibrating the WCM will more likely yield 

optimal WCM parameters than when neglecting irrigation.  

To that end, two different experiment lines were considered (referred to as Natural and Irrigation, 

respectively) that produced a total of eight different σ0 simulation runs (see Figure 3.4). The 

Natural experiment line differs from the Irrigation line by the activation of an irrigation module in 

Noah-MP, and both are subjected to the calibration algorithms described in Section 3.1.5. The 

Natural line was used as a diagnostic experiment against which to compare Irrigation, which, 

according to our initial hypothesis, should minimize the impact of the irrigation signal contained 

in the σ0 observations on WCM parameters. 
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Figure 3.4. Flow chart of the experimental setup used in this study to calibrate the WCM σ0 signal. A Natural and an 

Irrigation experimental line was performed coupling either Noah-MP Natural or Irrigation simulations with the WCM. 

For each experimental line σ0 simulations are driven by the Sentinel-1 signal using two different cost functions (J and 

KGE) in order to provide eight different calibration experiments. 

As a first step, a model spin up was performed, starting in January 1982 and ending in December 

2014. Then, a study period from January 2015 to December 2019 was selected for the different 

model runs based on the availability of the processed Sentinel-1 σ0 and reference irrigation data 

(see Sections 3.1.1 and 3.1.2). Daily surface model and irrigation outputs were produced. 

Considering that the main source of irrigation in the Po Valley is related to surface water 

abstraction, the sprinkler irrigation scheme did not account for groundwater withdrawals (see 

Nie et al., 2018).  

The A, B, C, and D parameters of the WCM (see section 3.1.4) were fitted separately to Sentinel-1 

σ0 VV and VH observations, during the period January 2017 - December 2019. Following previous 

literature (De Lannoy et al., 2014, 2013; Lievens et al., 2017a), we performed a grid cell-based 

calibration to account for the spatial variability in the simulated and observed σ0 signals that 

stems from specific features within the observed footprints as well as from the soil and vegetation 
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parameterization of Noah-MP. Both the calibration using the SSE with prior constraint (Bayesian 

J) and the KGE were applied to the Natural and Irrigation runs providing eight different 

experiments named J-VV Natural, J-VH Natural, J-VV Irrigation, J-VH Irrigation, KGE-VV Natural, 

KGE-VH Natural, KGE-VV Irrigation and KGE-VH Irrigation.   

Lower and upper boundaries as well as prior guess values of the WCM parameters were defined 

based on the work of Lievens et al. (2017a) and on a sensitivity analysis (not shown here). The 

selected values are displayed in Table 3.1. Finally, it should be noted that all the calibration 

experiments were realized by considering daily values of σ0 simulations and observations. 

Table 3.1. Lower boundaries (LB), upper boundaries (UB), and prior guess values of the WCM parameters for both 

VV and VH polarization 

 A-VV 
[-] 

A-VH 
[-] 

B-VV 
[-] 

B-VH 
[-] 

C-VV 
[dB] 

C-VH 
[dB] 

D-VV 
[dB/m3/m3] 

D-VH 
[dB/m3/m3] 

UB 0.4 0.4 0.4 0.4 -10 -10 80 80 

LB 0 0 0 0 -35 -35 15 15 

GUESS 0 0 0 0 -20 -30 40 40 

 

3.1.7 Noah-MP LSM and WCM evaluations 

The validation aims at i) evaluating the performance of Noah-MP in simulating irrigation, soil 

moisture, and vegetation and the ability of the WCM to simulate radar σ0, and ii) unveiling the 

information about irrigation contained in Sentinel-1 radar σ0 in order to assess its potential to 

improve both soil moisture and vegetation representation within Noah-MP.  

The evaluation was carried out on both the regional scale (i.e., over the entire study area) and on 

the two selected sites, Faenza (small-district scale) and Budrio (plot scale), where irrigation data 

were available. Considering the lack of benchmark data for irrigation evaluation (Foster et al., 

2020) we decided to use in situ data for the small Budrio fields spatial scale (i.e., 0.45-049 ha) even 

though model simulations are made at a much coarser resolution (i.e., ~1 km). We are aware that 

differences in spatial scale can increase the uncertainty of our evaluation, but 0.01° LSM spatial 

resolution is still a good compromise for an analysis at regional, small-district and plot scale. 
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Additionally, limitations are partly reduced by the low chance of including non-irrigated fields 

within the 1 km LIS grid cells within the Po Valley, as the latter is almost entirely irrigated 

(Salmon et al., 2015). Noah-MP (with and without using the irrigation module) SSM and LAI 

simulations were compared with satellite SSM from ASCAT and SMAP, and LAI from PROBA-

V, respectively, during the period 2015-2019. Furthermore, these land surface simulations were 

compared to Sentinel-1 σ0 to understand how much of the SSM and LAI signal was captured by 

Sentinel-1.  

As the irrigation timing is often driven by the stakeholders' turns to withdraw water and by water 

availability rather than by the conditions of the soil and crops themselves, the comparisons 

between simulated SSM and satellite SSM were carried out by aggregating the two variables over 

a bi-weekly time window. On the other hand, the LAI from Noah-MP was aggregated to 10-days 

values in order to match the 10-days PROBA-V LAI values. We used the Pearson-R for SSM and 

LAI evaluation. For SSM, we also computed the Root Mean Square Error (RMSE), calculated 

considering the original temporal resolution of the satellite products, while for LAI, we also tested 

the ratio bias, i.e., the ratio between the long-term mean of the simulations and the long-term 

mean of observations. In particular, this additional score for LAI was used to provide a further 

evaluation of the ability of the Noah-MP to simulate crop phenology during the irrigated vs non-

irrigated periods so as to not rely solely on the evaluation of temporal dynamics, which, due to 

the uncertainty in the Noah-MP crop type parameterization, could be affected by time shifts in 

the LAI climatology. This parameterization uncertainty comes from the lack of knowledge of the 

spatial crop type information and is difficult to be reduced without additional information. Our 

assumption is that radar σ0 assimilation can also correct for this with future DA.  

Following Vreugdenhil et al. (2018) and Vreugdenhil et al. (2020), Noah-MP LAI and PROBA-V 

LAI were also compared with the Sentinel-1 σ0 VH/σ0 VV cross ratio (CR), which was 

demonstrated to have a high agreement with the vegetation signal. Though the σ0 VH was 

demonstrated to increase with the vegetation signal (Macelloni et al., 2001), the CR will be more 

sensitive to vegetation changes as the ratio is less sensitive to changes in soil moisture and soil-

vegetation interaction (Veloso et al., 2017; Vreugdenhil et al., 2020). 
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To evaluate WCM simulations, we used bi-weekly values of σ0 simulations and observations 

considering a two-years period independent from the calibration period: 2015-2016. Statistical 

metrics such as grid-based temporal Pearson-R, KGE, and bias were calculated between Sentinel-

1 σ0 and calibrated WCM simulations. The analysis of the parameters was restricted to the 

cropland area as no difference between our experiment lines exists over other land cover types 

(i.e., the irrigation module is active only over grid points classified as crop). 

3.2 Results 

3.2.1 Noah-MP regional evaluation 

Figure 3.5 shows maps of the Pearson-R between bi-weekly Noah-MP SSM Natural and Irrigation 

simulations and bi-weekly ASCAT and SMAP L2 SSM retrievals, respectively, for April 2015 to 

December 2019. The Noah-MP SSM Irrigation run provides a higher agreement with both satellite 

SSM data sets compared to the Natural run. Indeed, the median Pearson-R between SMAP L2 

SSM and Noah-MP SSM increases from 0.68 to 0.73, for the Natural run (Figure 3.5a) and the 

Irrigation run (Figure 3.5b), respectively. A similar improvement can be observed considering the 

ASCAT reference SSM, with an improvement in the median Pearson-R of 0.08 when irrigation is 

activated in the model (from 0.7 to 0.78; Figure 3.5e). Areas characterized by higher correlation 

when irrigation is simulated are represented in blue in the Pearson-R difference map of Figure 

3.5f (obtained by subtracting the map in Figure 3.5d from the map in Figure 3.5e). Almost all 

cropland areas are characterized by a higher agreement between observations and simulations 

for the Irrigation run. Note that for the evaluation of Noah-MP against SMAP, we relaxed retrieval 

quality flags, which would otherwise mask out almost the entire study area. Figure 3.6 shows the 

SMAP coverage when applying all the recommended quality flags. 
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Figure 3.5. Maps of temporal Pearson-R between bi-weekly values of SSM from Noah-MP and satellite retrievals: a) 

Natural run and SMAP L2; b) Irrigation run and SMAP L2; d) Natural run and ASCAT; e) Irrigation run and ASCAT. 

Maps of the Pearson-R differences display the grid-based difference between: c) map b and map a; f) map e and map 

d. The reference period is April 2015-December 2019. In each plot, the x- and y-axes represent longitudes and latitudes 

in degrees east and north, respectively. 

 

Figure 3.6. Maps of temporal Pearson-R between biweekly values of SSM from Noah-MP: a) Natural run and SMAP 

L2; b) Irrigation run and SMAP L2. Map of the Pearson-R differences display the grid-based difference between: c) map 

b and map a. The maps are obtained applying all the SMAP L2 quality flags. The reference period is April 2015-

December 2019. In each plot, the x- and y-axes represent longitudes and latitudes in degrees east and north, 

respectively. 

Results in Figure 3.5 were confirmed by analyzing the RMSE between satellite SSM products and 

Noah-MP simulations for both the Natural and Irrigation runs, after rescaling them based on their 

mean and standard deviation, because SSM retrievals and SSM simulations do not have the same 
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units. Results are displayed in Figure 3.7 and show, for both the satellite products, a general 

reduction in RMSE when compared with the Irrigation run. An improvement in performances can 

be observed over the entire cropland area, in particular over the central triangle feature where 

sandy-loam soil texture is present and where, consequently, more irrigation is simulated in the 

model due to the higher permeability of the soil.  

 

Figure 3.7. Maps of RMSE between SSM from Noah-MP and satellite retrievals: a) Natural run and SMAP L2; b) 

Irrigation run and SMAP L2; c) Natural run and ASCAT; d) Irrigation run and ASCAT. In each plot, the x- and y-axes 

represent longitudes and latitudes in degrees east and north, respectively. 

The evaluation of the LAI simulation was limited to the regional scale analysis due to a lack of in 

situ vegetation data over the selected test sites. The comparison between 10-days values of Noah-

MP LAI, from both model runs, and the PROBA-V LAI product was carried out over the reference 

period January 2015 to October 2019 using the temporal Pearson-R and the ratio bias, shown in 

Figure 3.8.  

Figure 3.8a and 3.8b show that the Pearson-R for vegetation has a lower median value of 0.67 

when irrigation is simulated in Noah-MP, whereas this value equals 0.72 for the Natural run. The 

difference between the two Pearson-R maps is shown in Figure 3.8c, providing evidence of the 

areas facing a deterioration of the performance in terms of Pearson-R related to the Irrigation run. 

This deterioration is particularly strong over cropland areas south to the Po river (red color) while 

the northern area also shows grid cells where the performance improves (blue color).  
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By contrast, the ratio bias evaluation score (Figures 3.8d, 3.8e, 3.8f) highlights an improvement in 

long-term mean vegetation simulations when irrigation is included (Figure 3.8e). Here the 

optimal condition is represented by a ratio bias equal to 1 when the mean of the simulated LAI is 

equal to the mean of the observed LAI. In this context, Figure 3.8d displays ratio bias values lower 

than one over a large central triangle-shaped cropland area and median ratio bias value of 0.73, 

highlighting an underestimation of the LAI simulation related to the Natural run. Conversely, 

Figure 3.8e shows ratio bias values close to one when irrigation is simulated over an extended 

cropland area and a median bias value of 0.99. The improvement given by the Irrigation run is 

emphasized in Figure 3.8f where the histograms of the ratio bias distributions related to both 

model runs show the higher performance of the Irrigation run (red) compared to the Natural run 

(blue) for which the distribution is more skewed to the zero value.  

 

Figure 3.8. Maps of temporal Pearson-R between 10-days LAI values from PROBA-V LAI and Noah-MP LAI: a) Natural 

run; b) Irrigation run. Map of Pearson-R differences between: c) map b and map a. Map of ratio bias of LAI from PROBA-

V and Noah-MP: d) Natural run; e) Irrigation run. Additional histogram distributions from: f) map d and map e. The 

reference period is January 2015-October 2019. In plots a) to e), the x- and y-axes represent longitudes and latitudes in 

degrees east and north, respectively. 
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3.2.2 Noah-MP site evaluation 

The Noah-MP SSM was evaluated at the Budrio test site field 2 (Figure 3.1a), using the daily 

reference PGR SM for the year 2017. Comparisons between the SSM simulations of the Natural 

and Irrigation runs with in situ PGR SM are shown in Figure 3.9a, while daily observed irrigation 

and rainfall data are compared with daily irrigation simulations in Figure 3.9b. Soil moisture data 

are plotted at their original temporal resolution (i.e., daily) to illustrate an issue related to the 

irrigation timing: SSM simulations in Figure 3.9a show the ability of the sprinkler irrigation 

scheme to simulate irrigation in the summer season, but there is an inevitable problem in 

reproducing the correct timing and magnitude of irrigation. Indeed, the total amount of 

simulated irrigation is 604 mm for the 2017 summer season, which overestimates the total amount 

of observed irrigation, being 349.5 mm. Furthermore, the model simulations not only miss 

irrigation, but also suffer from erroneous precipitation input, such as on the 11th of July 2017, 

where the observed precipitation event in the growing season is not found in the model SSM 

simulations. In any case, bi-weekly Pearson-R between simulated SSM and in situ PGR SM are 

higher for the Irrigation run than for the Natural run (0.54 vs 0.42) suggesting the benefit in 

activating irrigation. 

 

Figure 3.9. Evaluation of SSM over the Budrio field 2, with (green) in situ PGR SM data, (light blue) SSM from Noah-

MP Natural and (orange) SSM from Noah-MP Irrigation. Additional information is provided in the bottom plot: b) 

observed irrigation (green), simulated irrigation (orange) and observed rainfall (magenta) in mm/day. 
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For the Budrio field 1 test site (Figure 3.1a), two summer seasons of irrigation data were available. 

To assess the irrigation information contained in Sentinel-1 σ0 observations (and the potential 

added value for a forthcoming DA experiment) we compared bi-weekly values of Sentinel-1 σ0 

VV and VH with SSM estimates from both the Natural run and Irrigation run (Figure 3.10a) for 

this site. Although the σ0 VV is generally used to retrieve SSM (Bauer-Marschallinger et al., 2018; 

Gruber et al., 2013; Wagner et al., 2013), data at both polarizations were analyzed in order to 

understand the soil contribution contained in the two signals. Information related to the irrigation 

periods are shown in Figure 3.10c, where irrigation observations and irrigation simulations from 

Noah-MP are compared. Figure 3.10a indicates that the SSM simulations are better reflected in 

the Sentinel-1 σ0 VV than σ0 VH data, particularly when irrigation is simulated (orange line). The 

SSM estimates from the Natural run (light blue line) agree poorly with the Sentinel-1 data, with 

Pearson-R values equal to 0.32 and -0.1 for the σ0 VV (blue dots) and σ0 VH (cyan dots), 

respectively. When irrigation is simulated, the σ0 VV data better follow the modeled SSM signal 

(Pearson-R of 0.53) especially during the summer irrigation season when the backscatter signal 

remains higher and stable. On the other hand, σ0 VH seems to provide poor performances also 

when irrigation is simulated, with a Pearson-R value equal to 0.06, confirming findings by 

Baghdadi et al. (2017) which highlighted how the use of VH alone to retrieve SSM is suboptimal 

when vegetation cover is well developed. 
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Figure 3.10. Sentinel-1 σ0 VV and VH data for the Budrio field 1 test site compared with Noah-MP SSM, for a) Natural 

and Irrigation runs. Sentinel-1 CR (VH/VV) compared with PROBA-V LAI and Noah-MP LAI for b) Natural and 

Irrigation runs. Also shown are: c) observed irrigation (in green) and simulated irrigation from Noah-MP (in orange).  

In Figure 3.10b, the Sentinel-1 σ0 CR (VH/VV) is compared with Noah-MP LAI from the Natural 

run (light-blue line) and Irrigation run (orange line). The performance in terms of Pearson-R 

decreases from 0.76 to 0.65, when the irrigation is simulated. This is due to a time shift of the 

Noah-MP LAI growing season in the Irrigation run. PROBA-V LAI (in green) was additionally 

compared with the Sentinel-1 CR (blue dots) showing a Pearson-R of 0.84. The higher agreement 

between EO products (Sentinel-1 and PROBA-V) highlights the strong relation between the σ0 CR 

and the vegetation signal, suggesting a potential benefit of Sentinel-1 assimilation to correct the 

simulated vegetation phenology. 

Finally, Figure 3.10c shows a comparison between 15-days accumulated mm of simulated 

irrigation (in orange) and observed irrigation (in green). The Pearson-R is equal to 0.77, indicating 

that the sprinkler irrigation scheme can provide acceptable irrigation estimates at this temporal 

resolution though absolute irrigation amounts are overestimated. 
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3.2.3 WCM calibration 

The WCM parameters A and B (vegetation parameters), and C and D (soil parameters) were 

calibrated for each grid cell separately during the reference period January 2017 to December 2019 

(Figure 3.5), using daily σ0 simulations and observations. The calibrated parameters related to the 

entire study area for each of the eight experiments are shown in Figure 3.11 where the blue left 

parts of the violin plots identify experiments of the Natural run, while the orange right parts of 

the violin plots are related to the Irrigation run.  

Generally, the J-calibration provides parameter distributions closer around their prior guess as 

compared to the KGE-calibration for which the distributions are often multimodal, especially for 

the C and D parameters (i.e., Figure 3.11d, 3.11h). This is due to the prior parameter penalty, 

which is included in the Bayesian solution but not in the KGE. In general, the calibration of the 

two functions using the Natural run provides wider distributions between lower and upper 

boundaries for the A vegetation parameter with a high number of grid cells characterized by A-

values higher than 0.1 (see KGE-VV Natural and J-VV Natural experiments in Figures 3.11a and 

3.11e respectively). Conversely, the Irrigation run provides A distributions more skewed to the 

lower boundary (being also the guess value in each calibration experiment), with a smaller 

number of grid cells characterized by high A values compared to the Natural run. In a preliminary 

sensitivity study (not shown), we observed that high values of the vegetation parameters A and 

B, as obtained for the Natural run, have the tendency to generate high peaks in the simulated σ0 

during the growing season. Indeed, in the summer, the SSM Natural signal is low and not 

consistent with the Sentinel-1 σ0, which observes irrigation. In order to follow the temporal 

dynamics of the Sentinel-1 σ0, the calibration algorithms attribute a relatively higher weight 

(higher A values) to the LAI than to SSM to compensate for the underestimated SSM in the Natural 

run. By contrast, the Irrigation run provides vegetation parameter distributions more skewed to 

the lower boundaries (see also Section 3.2.4.2). The C and D parameter distributions feature a 

better sensitivity to soil moisture dynamics using the Irrigation run input data, which is the 

expected behavior considering that they describe the σ0soil. This is true especially when using the 

J cost function (see parameters distributions for the J-VV Natural and for the J-VV Irrigation 
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experiments in Figures 3.11g and 3.11h), which results in more spread in the calibrated C and D 

distributions for the Irrigation simulations (especially in VV polarization), whereas the mode of 

the C and D parameter distributions for the Natural experiments is more shifted to the upper and 

lower boundaries, respectively. 

Figure 3.12 shows an example map of the spatial pattern of the parameters over the study area to 

better understand the differences between the Natural and Irrigation calibration runs, for the J-VV 

experiments. We found a connection between the WCM parameters distribution and model 

parameters, in particular with the HWSD soil texture map (shown in Figure 3.2). For both the J-

VV Natural and J-VV Irrigation experiments (Figures 3.12a-h), the activation of the irrigation 

scheme reduces the dependency of the vegetation-related parameters A and B on soil texture 

(Figures 3.12a-b for the J-VV Natural and Figures 3.12e-f for the J-VV Irrigation experiment). This 

is also shown in the parameter maps of the KGE calibration experiments (not shown here). 

Additionally, the activation of the irrigation scheme, more realistically, shifts the soil texture 

dependency towards the soil parameters C and D (Figures 3.12g and 3.12h), highlighting another 

important reason for simulating irrigation.  
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Figure 3.11. Split violin distributions of the calibrated parameters over the entire study area for the eight calibration 

experiments. For both the Natural (blue) and Irrigation (orange) experiments, the distributions are shown for the A, B, 

C, and D parameters, (a, b, c, d) using the KGE objective function for VV polarization, (e, f, g, h) J objective function for 

VV polarization, (i, j, k, l) KGE objective function for VH polarization, and (m, n, o, p) J objective function for VH 

polarization. Note that the areas under the histograms on both left and right sides of the violins are automatically scaled 

for optimizing the visualization. 

 

Figure 3.12. Maps of: a) A parameter, b) B parameter, c) C parameter, and d) D parameter for the J-VV Natural 

calibration experiment; e) A parameter; f) B parameter; g) C parameter; and h) D parameter for the J-VV Irrigation 

calibration experiment. In each plot, the x- and y-axes represent longitudes and latitudes in degrees east and north, 

respectively. 
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Finally, the different polarization experiments generally provided similar distributions for the 

vegetation A and B parameters and the D soil parameter. The largest differences between the VV 

and VH polarizations are identified for the C parameter distributions. This is due to the lower σ0 

signal associated with the VH polarization. Indeed, Figure 3.11c and 3.11g are characterized by 

higher values of the C in VV polarization, as compared to the distributions for VH polarization 

in Figures 3.11k and 3.11o. In the latter, the C-VH distributions are generally more skewed to the 

lower boundary of the parameters, with median values closer to the defined guess parameter 

value. 

3.2.4 WCM evaluation 

3.2.4.1 Regional evaluation  

The regional evaluation of the calibration experiments was carried out during the period January 

2015 to December 2016 for agricultural areas within the study domain (almost 15,000 km2), by 

comparing bi-weekly σ0 simulations with Sentinel-1 σ0 in terms of Pearson-R, KGE, and bias. The 

distribution of the evaluation metrics for the eight experiments is shown in Figure 3.13. A 

comparison of the metrics for the Irrigation and Natural runs confirms better results when 

irrigation is activated, with violin plots skewed towards more positive values for both KGE and 

Pearson-R. When stratified by the cost function, the Pearson-R distribution in Figure 3.13a-d 

indicates slightly higher performance for the KGE (Figures 3.13a and 3.13c) than for J (Figure 3.13b 

and 3.13d). In terms of the KGE score, simulations are naturally closer to the observations when 

the KGE cost function is used. On the other hand, in terms of bias, generally better performances 

are found when the Bayesian solution is used (Figures 3.13i-l). The latter is particularly evident 

for the VH polarization when comparing the KGE-VH and J-VH experiments (Figure 3.13k and 

3.13l). 

The VH simulations exhibit a better performance in the Irrigation run than VV simulations (Figure 

3.13c-d and Figure 3.13a-b). Indeed, considering all the statistical scores, the VV polarization is 

characterized by more similar distributions between the Natural and Irrigation run for both cost 

functions. This suggests a higher sensitivity of the VH polarization to the change of vegetation 

introduced by irrigation, confirming the Sentinel-1 σ0 VH to be strongly influenced by irrigation 
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as witnessed by the larger score improvement obtained for the calibration experiments KGE-VH 

Irrigation (Figure 3.13g) and J-VH Irrigation (Figure 3.13h), compared to the Natural runs 

experiments.  

 

Figure 3.13. Split violin distributions of (a, b, c, d) Pearson-R, (e, f, g, h) KGE and (i, j, k, l) bias calculated between σ0 

simulations and observations for the validation period, for all the calibration experiments and considering only the 

cropland areas, using simulations from the Natural run (left, green) and the Irrigation run (right, violet). The results are 

shown for VV (first two columns) and VH (right two columns), and alternating for both the calibration with a J and 

KGE cost function. Note that the areas under the histograms on both left and right sides of the violins are automatically 

scaled for optimizing the visualization. 

In summary, i) VH polarization is more sensitive to the change in the cost function and input data 

(Irrigation or Natural run) than VV polarization likely due to its higher sensitivity to vegetation 

change (Macelloni et al., 2001; Vreugdenhil et al., 2018) which, in the area, is related to the crop 

development after irrigation, ii) the combination of J with activation of the irrigation scheme is 

able to provide the best unbiased estimates of simulated σ0 for both VV and VH (J-VV Irrigation 

and J-VH irrigation experiments) at the price of generally lower correlations (compared to the KGE 

cost function). This is, however, beneficial for DA as it minimizes the chance of potential error 
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cross correlation between model estimates and observations. Indeed, the match of the temporal 

dynamic of the signals induced by the correlation term is stronger in the KGE than in J, which 

additionally includes a parameter constraint. The higher weight of the correlation in the KGE cost 

function can negatively impact the parameter calibration even when irrigation is turned on in 

Noah-MP because the simulated irrigation applications are in general not temporally consistent 

with those seen by Sentinel-1 (see Figure 3.9). As a general comment, the R and KGE are mainly 

used as reference scores to understand deterioration or improvements of the calibration when 

irrigation is simulated. On the other hand, the reduction of bias between observation and 

simulations is a requested feature for the DA analysis. 

3.2.4.2 In situ evaluation 

The WCM simulations are further analyzed in detail at the Faenza test site (specifically for the 

San Silvestro field), because it has a larger extent than the Budrio site (see Figure 3.1), although 

the same overall conclusions were found for Budrio. Figure 3.14 shows simulated and observed 

σ0 time series for the different experiments highlighted in Figure 3.4, and Table 3.2 summarizes 

the statistics (i.e., Pearson-R, KGE and bias) of each experiment.  

 

Figure 3.14. Comparisons between σ0 observations (VV polarization in blue dots and VH polarization light blue dots) 

and simulations (VV polarization in red and VH polarization in green) in the Faenza San Silvestro field, after calibration 

with a KGE cost function for a) the Natural run, b) Irrigation run, and after calibration with the J cost function for c) the 

Natural, and d) Irrigation run. 

The agreement between simulated and observed σ0 measured by the Pearson-R and KGE in Table 

3.2 generally gives better performances after calibration with the KGE cost function than with the 

J cost function. An example is in the higher correlations found for the KGE-VH Irrigation 
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experiment as compared to the J-VH Irrigation (Figures 3.14b and 3.14d respectively). On the other 

hand, in terms of bias the cost function J significantly outperforms the calibration with KGE in all 

experiments with surprisingly comparable values between Natural and Irrigation runs (Table 3.2).  

One undesirable feature of Natural runs is the presence of high σ0 peaks during the summer, 

clearly detectable over the Faenza test site, especially in the VH polarization, which are less 

evident in the Irrigation run (see Figure 3.14b and 3.14d). A similar behavior was found for Budrio 

(not shown). These peaks are likely attributed to the poor estimation of model vegetation 

parameter values, previously discussed in section 3.2.3, when the WCM attempts to compensate 

for bias in SSM and vegetation input, i.e., input that is not consistent with observations over 

irrigated areas. This is particularly true for the KGE calibration, which does not use a prior 

parameter constraint. In contrast, the J calibration still provides reasonable σ0 simulations that are 

closer to the ones of the Irrigation run due to the Bayesian technique itself. 

Table 3.2. Results of the site WCM evaluation considering the test site Faenza San Silvestro for each WCM experiment  

 KGE-VV 
Natural 

KGE-VV 
Irrigation 

J-VV 
Natural 

J-VV 
Irrigation 

KGE-VH 
Natural 

KGE-VH 
Irrigation 

J-VH 
Natural 

J-VH 
Irrigation 

Pearson-R [-] 0.14 0.27 0.14 0.18 0.33 0.41 0.22 0.38 

KGE [-] 0.12 0.26 0.12 0.03 0.20 0.38 0.22 0.31 

Bias [dB] -0.46 -0.55 0.07 0.09 -0.82 0.38 -0.22 -0.02 

 

3.3 Discussion 

3.3.1 Noah-MP irrigation modeling 

The Noah-MP LSM, used as input for the WCM calibration, was evaluated in two configurations, 

either with a sprinkler irrigation scheme activated or without irrigation (i.e., Irrigation run and 

Natural run). Although not all of the Po Valley is irrigated by sprinkler systems, it most likely still 

leads to more realistic LSM simulations than not considering irrigation at all. 

The main limitation found in the irrigation simulations was related to the irrigation timing and 

magnitude that was inconsistent with observations. Although this finding is based on only a 
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single study site, it is very likely that it is a widespread issue within the study area for several 

reasons. In LSMs, the irrigation application is driven by the RZSM availability and consequently 

by the soil type and the rooting depth parametrizations. Moreover, it is also influenced by the 

accuracy of the meteorological forcing (especially precipitation) which can determine errors in 

the soil moisture representation. The main reason, however, is likely that irrigation is often the 

result of subjective farmer decisions rather than objective rules based on the soil state and crop 

conditions. In theory, the irrigation timing issue could be partly solved by using temporally 

consistent high-resolution crop maps which should provide a more realistic information of crop 

phenology and rooting depth. However, in practice, this is unfeasible over many areas of the 

world given the absence of this information on a large scale. Also, given that irrigation 

applications are mainly linked to unmodelled processes like rotation schedules for farmers to 

withdraw water, the correct simulation of the timing can be unsolvable when using models only. 

Despite the potential problems related to the unrealistic assumptions in the simulation of 

irrigation, results demonstrated that even the use of simple irrigation schemes within Noah-MP 

can be beneficial. In the regional evaluation, SSM simulations of the Natural and Irrigation runs 

were compared with satellite SSM from SMAP and ASCAT (Figure 3.5) on a bi-weekly temporal 

scale. For both products, large improvements in temporal Pearson-R were found when irrigation 

was simulated, confirmed by a decrease in the RMSE values over croplands, suggesting that the 

activation of irrigation modeling provides more realistic SSM estimates. Our findings further 

confirm the potential of coarse resolution datasets for providing irrigation-related information 

over intensively irrigated and relatively large agricultural areas, as was shown by S. V. Kumar et 

al. (2015).  

While the impact of irrigation was clear in terms of SSM, the regional evaluation of the simulated 

LAI against the PROBA-V-based LAI provided contradicting results. In this case, the Pearson-R 

analysis suggested a deterioration of the Noah-MP simulated LAI when irrigation was activated 

over the cropland area. This correlation deterioration was interpreted by the absence of specific 

information about the crop phenology in the model parameterization. In practice, information 

about the specific crop type is not available and the rooting depth is the sole parameter controlling 
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water uptake from the soil layers. Additionally, information on sowing and harvest periods are 

not included in the current version of Noah-MP, while irrigated areas are defined based on a 

global dataset (Salmon et al., 2015) which can suffer accuracy limitations. Indeed, the absence of 

annual dynamic information on irrigated fields, the unknown yearly variability of the crop types 

and the impact of the meteorological conditions in the stakeholders decision process (i.e., sowing) 

make the simulation of Noah-MP prone to LAI peak shifts, as compared to observations, when 

irrigation is simulated. Another important aspect affecting LAI simulations is its sensitivity to 

RZSM, which might be more difficult to simulate than SSM during the irrigation season due to 

larger impacts of the soil texture and transpiration processes along with the high frequency of the 

wetting and drying phases caused by irrigation events. This results in a significant performance 

deterioration (often worse than LAI simulation not including irrigation which are mainly driven 

by seasonality, see Figure 3.10). By contrast, irrigation modeling helps in reducing the bias of the 

LAI simulated time series, which, in the cropland area, show a significant underestimation when 

irrigation is not considered. 

The limitations found in simulating LAI and vegetation by Noah-MP even when irrigation was 

simulated could potentially be overcome by assimilating Sentinel-1 σ0 data. To explore this 

potential, we compared the LAI from both model runs, and from PROBA-V, with the observed 

Sentinel-1 σ0 CR, which should provide information about the vegetation dynamics (Vreugdenhil 

et al., 2020, 2018). The Natural run drastically underestimated the LAI during the late summer 

months which can be explained by the lack of both irrigation simulation and a specific crop model 

in Noah-MP. Indeed, this issue is partly compensated in the Irrigation run. The correlation 

between σ0 CR and LAI from PROBA-V was much higher than that between σ0 CR and the 

simulated LAI by Noah-MP (see Figure 3.10) suggesting that Sentinel-1 σ0 DA could help in 

correcting poor LAI model simulations. Additionally, a higher correlation was found between 

the σ0 VV observations and the simulated SSM when irrigation was turned on than in the absence 

of irrigation, suggesting that the assimilation of σ0 VV could improve SSM where irrigation is 

poorly or not modeled. On the other hand, considering the low correlation between the VH signal 

and SSM in presence of vegetation (Baghdadi et al., 2017), and its close relation with vegetation 
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(Ferrazzoli et al., 1992; Macelloni et al., 2001), future DA experiments will investigate the 

contribution of VH and CR in improving LAI predictions and irrigation quantification. 

Finally, bi-weekly accumulated irrigation estimates in Figure 3.10 agree well with real irrigation 

applications, suggesting that the large-scale LSM irrigation scheme is helpful for intensively 

irrigated areas. On the other hand, the poor soil and crop parameterization along with other 

unknown parameters related to the irrigation management (e.g., the farmers can apply more 

water than actually needed) can cause large biases in these irrigation simulations. Again, 

ingestion of radar σ0 data could correct for unmodelled processes. More specifically, Sentinel-1 σ0 

could correct: (i) for the magnitude and timing of the irrigation simulations; and (ii) for Noah-MP 

irrigation predictions over not irrigated regions. 

3.3.2 WCM backscatter simulation 

The purpose of the presented WCM observation operator calibration and evaluation was to 

optimize the parameters for the future assimilation of the Sentinel-1 σ0 VV and VH into Noah-

MP. Such an optimization would ideally minimize the long-term bias between the simulated and 

observed σ0 signals. This can be achieved by calibrating the observation operator with long-term 

observed σ0 prior to DA, but in this process, it is crucial to avoid potential error cross-correlation 

between model observation predictions and observations. Furthermore, a good observation 

operator should not already compensate for missing processes in the LSM by accepting effective, 

but unrealistic, optimized parameters, because it would then lose its physically-based ability to 

accurately convert misfits between observations and simulations to LSM updates during DA.  

One way to avoid parameters compensation for erroneous LSM input into the WCM would be to 

use observed time series of e.g. LAI. However, LAI products from different sensors have different 

biases themselves which can add bias to the σ0 simulations, and more importantly, replacing 

simulated LAI or SSM with external datasets would undermine the possibility of updating these 

variables in the future assimilation system. Based on that, we performed the WCM calibration 

considering SSM and LAI model input from two different experiments: a Natural run and an 

Irrigation run, as well as two cost functions, a Bayesian solution J and a KGE solution which 
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resulted in four calibration experiments for each polarization (i.e., eight calibration experiments 

in total). 

The calibration experiments using simulations from the Natural run as input showed a limited 

performance and provided presumably bad vegetation parameter estimates which resulted in 

unrealistic peaks in the simulated σ0 during the summer, when driven by higher modeled LAI 

during this period. The inclusion of the irrigation within Noah-MP was very beneficial for all the 

calibration experiments helping in reducing the bias and increasing the correlation with Sentinel-

1 σ0 as well as removing the anomalous σ0 increase during warm periods especially for the KGE-

based calibration. This corroborates our initial hypothesis that, over intensively irrigated areas, 

the simulation of irrigation is a mandatory task for an optimal calibration of the WCM. Irrigation 

modeling, even if only done approximately and perhaps with inaccurate timing, reduces obvious 

land surface (soil moisture, vegetation) bias and avoids that the WCM needs to compensate for 

this bias. 

Our results show overall higher performance in terms of KGE and Pearson-R scores for the KGE-

based calibration, whereas the long-term bias was better reduced for the J-based calibration, 

which is beneficial in anticipation of future DA. This is because in the J cost function i) a target 

accuracy term which takes into account also the Sentinel-1 observations error is present; and, ii) 

a parameter deviation penalty based on the prior parameters constraints is used, which avoid 

parameters to largely deviate to their prior values.  

In terms of polarization, we found σ0 VH simulations much more sensitive to the inclusion of the 

irrigation (vs non inclusion) in Noah-MP, suggesting that observed σ0 VH might also contain 

much more information about irrigation (via the influence of the vegetation change due to 

irrigation) than that contained in σ0 VV which is normally used for SSM retrieval (Vreugdenhil et 

al., 2020). We believe that the cause of this is related to a comparatively larger σ0 of vegetation 

with respect to that of the soil when the crops are well developed. This was also corroborated by 

the better agreement between CR and LAI from PROBA-V in one of the study sites mentioned 

above. Despite this, further investigations are required to confirm this hypothesis and DA will 

certainly help to test this aspect. 
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3.4 Conclusions 

Starting from the hypothesis that satellite observations should contain useful information about 

human impacts such as irrigation on the water cycle, the second part of this thesis addresses the 

potential use of innovative EO for tracking human-induced changes to the terrestrial water cycle, 

and particularly on irrigation quantification. With the specific focus on intensively irrigated land, 

the first step of this activity was to investigate the optimal calibration of the WCM as observation 

operator for the future ingestion of Sentinel-1 backscatter into the Noah-MP LSM via DA. In this 

context, additional objectives were: 1) unveiling strengths and limitations of irrigation simulation 

in LSMs from the perspective of calibrating the WCM; 2) identifying the potential irrigation-

related information contained in the Sentinel-1 backscatter observations to improve soil moisture 

and vegetation states as well as irrigation estimates in a calibrated DA system. 

To reach these objectives the Noah-MP LSM was coupled with a sprinkler irrigation scheme 

within LIS and performed two different simulation experiments, one with and one without 

irrigation (i.e., Natural and Irrigation runs). Moreover, a WCM was coupled with Noah-MP and 

different calibration options were tested to prepare for optimal, future, assimilation of backscatter 

VV and VH to update both soil moisture and vegetation states. 

 The main conclusions drawn from our evaluation are as follows: 

● Over highly irrigated areas, the simulation of irrigation in LSMs helps to provide better 

soil moisture and vegetation simulations which can be used with benefit as input for the 

WCM calibration. However, the performance of the irrigation simulations is limited by 

the simplistic model parameterization of this human process and the necessity to consider 

realistic and updated land cover information (e.g., crop types). This results in poor 

simulations of the irrigation timing and quantities as well as vegetation dynamics.  

● The Sentinel-1 backscatter observations contain useful information about SSM and 

vegetation over highly irrigated areas. This information can be exploited to overcome 

LSM deficiencies in simulating soil moisture and vegetation over highly irrigated regions, 

e.g., when irrigation is unmodeled, or poorly modeled because of uncertainties due to 
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crop types, irrigation timing, and farmer agricultural practices. In particular, there is a 

high chance that the assimilation of Sentinel-1 backscatter can help in correcting LAI 

dynamics. 

● The optimal assimilation of Sentinel-1 backscatter into a LSM must rely upon a well 

calibrated WCM as observation operator to provide unbiased backscatter simulations 

with a minimal chance of having error cross-correlations between model and 

observations, while ensuring a realistic operator controllability or realistic connection 

between observed signals and land surface state variables. Calibrating the WCM with 

inclusion of irrigation modeling consistently led to a better agreement with Sentinel-1 

backscatter. The modeling of irrigation in the LSM simulations, even if not done 

optimally, avoids that the WCM calibration compensates for LSM biases.  

● It was demonstrated that the WCM calibration with a Bayesian cost function, including a 

prior parameter constraint, provides the optimal WCM parameters, able to generate the 

lowest bias in the backscatter simulations for both VV and VH. Although slightly higher 

correlations are obtained when using a KGE cost function, unbiased estimates are 

particularly beneficial for DA as this minimizes the chance of potential error cross-

correlation between model estimates and observations. 

The results obtained in this chapter improve the understanding of the LSM limitations in 

simulating irrigation and highlight the information content in Sentinel-1 backscatter data. The 

latter will be used in a subsequent DA system (Chapter 4).  
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Chapter 4: Data assimilation of Sentinel-1 backscatter 

This chapter describes the analysis and results based on a preprint of the following publication, 

submitted to HESS: 

Modanesi, S., Massari, C., Bechtold, M., Lievens, H., Tarpanelli, A., Brocca, L., Zappa, L. and De Lannoy, 

G. J. M. Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 

backscatter observations into Noah-MP. Submitted to HESS, 2022. 

In this Chapter the potential information contained into Sentinel-1 backscatter observations to 

improve irrigation estimates was tested in the framework of a data assimilation (DA) system 

composed by the Noah-MP land surface model (LSM), equipped with a sprinkler irrigation 

scheme, and a backscatter operator represented by a Water Cloud Model (WCM), as part of the 

NASA Land Information System (LIS) framework. The calibrated WCM was used as observation 

operator in the DA system to map model surface soil moisture (SSM) and leaf area index (LAI) 

into backscatter predictions and, conversely, map observation-minus-forecast backscatter 

residuals back to updates in soil moisture and LAI through an ensemble Kalman filter (EnKF).  

The benefits of Sentinel-1 backscatter observation in two different polarizations (VV and VH) 

were tested in two separate DA experiments, performed over two irrigated sites, the first one 

located in the Po Valley (Italy) and the second one located in northern Germany. Chapter 4 is 

organized as follows: i) Section 4.1 describes data and methodologies used; ii) Section 4.2 presents 

results obtained; ii) Section 4.3 discusses the results obtained; and finally, iii) conclusions are 

drawn in Section 4.4. It is worth noticing that the WCM setup in Chapter 4 slightly differs from 

that in Chapter 3. More details are given in Section 4.1. 

4.1 Data and methods 

4.1.1 Study area and in situ data 

Two European pilot sites characterized by different climatic conditions were selected (Figure 4.1). 

The first one is located in the Niedersachsen region in Northern Germany and has an extent of 

160 km2, marked by the transparent red box in Figure 4.1a. It can be classified as Cfb (temperate 
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oceanic climate) in the Koeppen–Geiger classification (Peel et al., 2007). Mean annual temperature 

and precipitation are around 9 °C and 550 mm, respectively. For more general information on 

this pilot site the reader can refer to the work by Zappa et al. (2021). The test site is composed of 

49 fields (ranging from 1.3 ha to 30 ha) characterized by a wide variety of crops, which include 

potatoes, sugar beet, summer barley and winter wheat. Daily irrigation data, available for each 

field, were provided for the year 2018. 

 

Figure 4.1. Study area composed by the Italian and German pilot sites (represented by the red boxes). The pilot sites 

include three test sites: a) Niedersachsen; b) five fields in Budrio; and c) two small districts close to the city of Faenza, 

called San Silvestro and Formellino. Map data ©2015 Google. 

The second pilot site is located within the Po Valley, one of the most important agricultural areas 

in Italy, intensively equipped for irrigation (Salmon et al., 2015). According to the Köppen-Geiger 

climate classification this area can be ascribed to the Cfa class (temperate climate, without dry 

season and with hot summers). The simulation area (red box on Figure 4.1b-c) is mainly 

characterized by croplands, except the south, south-western area where forests and more 

complex topography are dominant. This pilot site has an extension of 1800 km2; it is located in 

the Emilia Romagna region and is characterized by one of the most technologically advanced 

Italian irrigation hydraulic system - the Canale Emiliano Romagnolo (CER, 
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https://consorziocer.it/it/). In recent years, this area was affected by frequent water scarcity 

periods (Ceppi et al., 2014; Strosser et al., 2012), which have increased the need for optimal water 

management. In situ data, used for evaluation, were collected over the test site of Budrio (Figure 

4.1b) and Faenza (Figure 4.1c). In particular, the Budrio farm is managed by CER and includes 

five small fields extended for 0.4 ha each. The most common crop types are tomatoes and maize 

and daily irrigation data are available for the period 2015-2016 for four out of the five fields and 

for the year 2017 for the last plot. The second Italian test site is located around the city of Faenza, 

consisting of two small-districts: San Silvestro (hereafter Faenza F1) which has an extension of 

290 ha, and Formellino (Faenza F2 hereafter), reaching 760 ha. The crops growing on the Faenza 

small-districts are pear and kiwi which typically require a significant amount of water. The water 

used for irrigation at daily time scale was provided by CER for the two years 2016-2017. 

4.1.2 Remote sensing observations 

The European Space Agency (ESA) and Copernicus Sentinel-1 mission collects active microwave 

(MW) backscatter data at C-band (5.4 GHz) at a high spatial (~ 20 m) and temporal (less than 

weekly) resolution in Interferometric Wide (IW) swath mode. In this Chapter, the backscatter 

observations used in Chapter 3 (sigma-nought [σ0]) were replaced with an improved backscatter 

product (gamma-nought) which takes into account topographic variations. The complete 

processing of the ground-range detected (GRD) backscatter observations in VV- and VH-

polarization was done using the ESA Sentinel Application Platform (SNAP) software and 

included standard techniques: precise orbit file application, border noise removal, thermal noise 

removal, radiometric calibration to backscatter as beta-nought, terrain flattening to backscatter as 

gamma-nought (γ0 hereafter), and range-Doppler terrain correction. Furthermore, the γ0 

observations, originally acquired at ~20 m spatial resolution, were aggregated by multilooking, 

masked for urban area and water bodies, and projected on the 0.01° latitude-longitude grid as 

used in LIS Noah-MP LSM. After applying an orbit bias-correction (Lievens et al., 2019), the 

observations from different orbits, either from Sentinel-1A or -1B and ascending or descending 

tracks, were combined at the daily time-scale.  

https://consorziocer.it/it/
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Additional remote sensing (RS) observations were used for the evaluation of Noah-MP LSM 

simulations:  

● The Metop ASCAT surface soil moisture (SSM) Climate Data Records H115 and its 

extension H116 are provided by the European Organization for the Exploitation of 

Meteorological Satellites (EUMETSAT) Support to Operational Hydrology and Water 

Management (H SAF; http://hsaf.meteoam.it/). The SSM retrieval is characterized by a 

spatial sampling of 12.5 km and a temporal resolution of one to two observations per day, 

depending on the latitude.  

● The PROBA-V Leaf Area Index (LAI) is provided by the Copernicus Global Land Service 

programme (CGLS, https://land.copernicus.eu/global/). The CGLS product at 1 km spatial 

resolution and 10-day temporal resolution is developed based on the work by Verger et 

al. (2014).  

● The Moderate Resolution Imaging Spectroradiometer (MODIS) is a multispectral sensor 

on-board TERRA and AQUA satellites acquiring image data of the Earth's surface 

simultaneously in visible/infra-red bands. For this work the MOD16A2 Version 6 

Evapotranspiration product was used for evaluation. This is an 8-day composite product 

characterized by 500-meter spatial resolution.  

ASCAT SSM, PROBA-V LAI and MODIS ET were extracted over the test sites and re-gridded 

over the LIS grid spatial domain (0.01°) as well as subsampled to a daily time scale in order to 

match the LIS outputs.  

4.1.3 Land surface and irrigation modeling 

The LSM selected for this study is the Noah-MP.v.3.6 (Niu et al., 2011). This model is able to 

dynamically simulate vegetation and soil moisture in 4 layers, i.e., 0–10, 10–40, 40–100 and 100–

200 cm depth. For this study, the Noah-MP model was coupled to a sprinkler irrigation module 

(Ozdogan et al., 2010a) embedded within the NASA's LIS version 7.3 (Kumar et al., 2008). For a 

more detailed description of the Noah-MP parameterization used in this study the reader can 

refer to Modanesi et al. (2021).  

https://www.eumetsat.int/h-saf
https://www.eumetsat.int/h-saf
http://hsaf.meteoam.it/
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The irrigation module adds water as pseudo-precipitation to mimic sprinkler systems (Ozdogan 

et al., 2010a), and does not further change processes related to e.g., vapor fluxes (which would be 

needed for highly efficient drip irrigation systems; Evans and Zaitchik, 2008). In order to identify 

the timing and location of irrigation, four conditions need to be met: (i) irrigable land cover (i.e., 

croplands), (ii) irrigated land fraction, (iii) growing season and (iv) dry enough root-zone soil 

moisture (RZSM). The first two conditions are tested against static land cover (LC) and irrigation 

intensity (areal fraction) maps. The growing season was defined based on a user-defined 

threshold of simulated LAI (LAI>1). The LAI value is then converted to the greenness vegetation 

fraction (GVF) following Fang et al. (2018): 

𝐺𝑉𝐹 = 1 − 𝑒−𝑏∗𝐿𝐴𝐼     (4.1) 

where b [-] is an empirical parameter that depends on plant canopy (Fang et al., 2018; Norman et 

al., 1995). Finally, the irrigation is applied when the RZSM availability falls below a user-defined 

threshold, which has been set to 50% of field capacity (FC) as in Ozdogan et al. (2010) for the 

German pilot site and 45% in Italy (a previous analysis has shown large overestimations using a 

threshold of 50% in the Po Valley). The irrigation amount is determined by the amount of water 

needed to increase the RZSM back to FC. In this context, the maximum rooting depth is an 

important input parameter, impacting the frequency of irrigation events as well as the amount of 

irrigated water.  

The modelled irrigation estimates are thus primarily controlled by five datasets: static LC, 

irrigation fraction, soil texture, crop type, and dynamic meteorological forcing. In this study, the 

static 1-km LC is derived from the CGLS 100 m global LC map for the year 2015 (Buchhorn et al., 

2020; available at https://land.copernicus.eu/global/products/lc). The 23 classes of this global LC 

map were reclassified to the 14 classes supported by LIS and re-gridded to 0.01° (for additional 

details on the reclassification the reader can refer to Modanesi et al., 2021). The global 500-m rain-

fed, irrigated, and paddy croplands dataset (GRIPC) by Salmon et al. (2015) is used to map the 

irrigation fractional area. However, the GRIPC input lacks important information over the 

German test site, which is classified as non-irrigated. In order to allow irrigation simulations over 

Germany, the irrigation fractional area was set to 100% over the known irrigated LIS grid pixels 

https://land.copernicus.eu/global/products/lc
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(based on our irrigation benchmark data). Soil texture and the associated parameters were 

extracted from the 1-km Harmonized Soil World Database (HWSD v1.21) and mapped to discrete 

soil classes with their associated soil hydraulic parameters as in Modanesi et al. (2021). Given the 

lack of European or large-scale dynamic crop map datasets, the crop type was set to a generic 

type with a maximum rooting depth of 1 m in Italy (Modanesi et al., 2021) and 0.8 m Germany. 

In particular, in the Niedersachsen test site, an averaged rooting depth was calculated based on 

the main crop types cultivated at the irrigated fields. 

The dynamic meteorological forcing data were extracted from Modern-Era Retrospective analysis 

for Research and Applications, version 2 (MERRA-2; Gelaro et al., 2017), which is not corrected 

for surface or screen-level observations (and are thus unlikely to contain feedback from -

unmodelled and unobserved- irrigation). The meteorological data were mapped to 0.01° spatial 

resolution via bilinear interpolation.  

4.1.4 Observation operator and calibration  

The observation operator used to ingest Sentinel-1 γ0 observations into the Noah-MP LSM is 

represented by the Water Cloud Model (WCM) introduced by Attema and Ulaby (1978). The 

WCM simulates the total γ0 as the sum of the γ0 from the vegetation (γ0veg) and the γ0 from the soil 

(γ0soil) attenuated by the vegetation (t2) as follows:   

𝛾𝑡𝑜𝑡
0 = 𝛾𝑣𝑒𝑔

0 + 𝑡2𝛾𝑠𝑜𝑖𝑙
0       (4.2) 

For more information on the WCM the reader can refer to Chapter 3 or to Lievens et al. (2017a) 

and Modanesi et al. (2021). The WCM includes four fitting parameters, two of them related to the 

scattering and attenuation by vegetation and the other two parameters to model the soil 

backscatter contribution as a linear function of the SSM. Those parameters were calibrated to limit 

long-term biases between Sentinel-1 observations, which include an irrigation signal over 

irrigated areas, and the LSM simulations. The WCM calibration was performed for each 

individual grid cell using the procedure designed in Chapter 3 and Modanesi et al. (2021) which 

includes: i) the use of Noah-MP SSM and LAI as inputs for the WCM (ensemble mean time series 

from an open loop (OL) simulation); ii) the use of Sentinel-1 γ0 VV and VH separately to tune the 
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parameters for the simulation of γ0 VV and VH independently; iii) the activation of the irrigation 

scheme to reduce seasonal inconsistencies between simulated and observed γ0 during irrigation 

periods; iv) the optimization of a Bayesian objective function represented by the Sum of Square 

Error (SSE) between γ0 observations and simulations, and a constraint on prior parameter 

estimates, using the DiffeRential Evolution Adaptive Metropolis (DREAM(ZS); Vrugt et al., 2008; 

De Lannoy et al. 2014) instead of the PSO used in Chapter 3. In the WCM (see equations 3.1 to 

3.4), the incidence angle was set to zero, considering that the γ0 terrain-flattened version do not 

include information on the incidence angle. As a final note, the WCM calibration procedure 

addresses the general Bayesian assumption of unbiased observations and simulations. Relying 

on that, a subsequent bias correction between simulated and observed backscatter is not needed 

before DA. The calibration was realized for the period January 2018-December 2020. 

4.1.5 Data assimilation 

The DA system was developed in order to directly assimilate Sentinel-1 γ0 observations into 

Noah-MP and sequentially update both soil moisture and vegetation within the LIS framework. 

The direct assimilation of γ0 observations requires that simulated land surface state variables are 

first mapped to γ0 predictions (forecast) via a second modelling step, i.e. via the WCM as 

observation operator. The assimilation was performed via an ensemble Kalman filter (EnKF; 

Evensen, 2003, 1994) which updates the land surface state, where and when satellite-based γ0 

observations are available. Specifically, a 1-dimensional EnKF was applied (Reichle et al., 2002), 

using Sentinel-1 observations at the same spatial grid as that of the model simulations. In this 

study, the updated land surface state variables during the assimilation include both SSM (0-10 

cm) and LAI, and the deeper profile layers are also updated (10–40, 40–100 and 100–200 cm) via 

error cross correlations. All other fluxes and state variables, including irrigation estimates, are 

consistently adjusted via model propagation.  

The EnKF assumes unbiased observations and forecasts. This is achieved by calibrating the WCM 

parameters as described in Section 4.1.4. The optimality of the Kalman filter further strongly 

depends on the characterization of the random component of forecast and observation errors. In 

this context, the forecast errors are diagnosed from an ensemble of 24 land model (including 
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WCM) trajectories from which the error covariances are estimated at the time of an update. The 

ensembles are generated by perturbing selected meteorological input forcings (i.e., rainfall, 

incidence longwave and shortwave radiations) and state variables. The perturbation parameters, 

summarized in Table 4.1, are based on Kumar et al. (2014) aiming at a unit standard deviation of 

normalized γ0 innovations (De Lannoy and Reichle, 2016b; Reichle et al., 2017a). In terms of state 

variables, only the SSM and LAI are perturbed and no temporal autocorrelation is used to avoid 

excessive uncertainty estimates. The observation error standard deviation is set to 1 dB, 

regardless of the polarization or orbit of the γ0 observations. 

The main equation of the EnKF can then be written as follows: 

𝑥𝑖
+̂ = 𝑥𝑖

−̂ + 𝐾𝑖[𝑦𝑜𝑏𝑠,𝑖 − ℎ𝑖(𝑥𝑖
−̂)]     (4.3) 

where i represents the time step, 𝑥𝑖
+̂ is an ensemble of model states after assimilation and 𝑥𝑖

−̂ 

represents the forecast ensemble state (i.e., SSM and LAI), 𝑦𝑜𝑏𝑠,𝑖 are the assimilated observations 

at time i and ℎ𝑖(. ) is the WCM observation operator. The term 𝑦𝑜𝑏𝑠,𝑖 − ℎ𝑖(𝑥𝑖
−̂) is the γ0 observation-

minus-forecast (O-F) residual in dB, and is mapped to updates in the model state via the Kalman 

gain 𝐾𝑖 described as follows: 

𝐾𝑖 = [𝐶𝑌𝑀(𝐶𝑀 + 𝐶𝑣)−1]𝑖     (4.4) 

In Equation (4.4) 𝐶𝑌𝑀,𝑖 is the error cross covariance matrix between the state and observation 

predictions, 𝐶𝑀,𝑖 is the forecast error covariance matrix of the backscatter (observation) 

predictions. 

Generally, DA has the potential to contribute to the estimation of irrigation as follows. First, the 

amount of water or vegetation added to the system via DA (i.e., the increments) could be related 

to irrigation amounts i) if the true precipitation is used as input; ii) if no irrigation is simulated; 

and iii) if the observation operator is also not compensating for irrigation. More specifically, 

positive and autocorrelated increments in the growing season would be indicative of irrigation, 

and this would also be indicative of a suboptimal assimilation system. In this study, we use 

imperfect reanalysis precipitation input and we simulate irrigation through an irrigation scheme. 

Increments of any sign could thus be related to over- or underestimation of irrigation. 
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Table 4.1: Perturbation parameters for forcing (i.e. rainfall, incident and shortwave radiation) and state variables (i.e., 

SSM and LAI) 

Variable Perturbation Type  Standard 

deviation  

Rainfall [kg/m2s]  Multiplicative  0.5 

 Incident longwave radiation [W/m2] Additive   50.0 

Incident shortwave radiation [W/m2]  Multiplicative   0.3 

SSM [m3/m3] Additive   0.012 

LAI [-] Additive 0.04 

 

4.1.6 Experiments 

In this study we considered two different experimental lines: i) the assimilation of Sentinel-1 γ0 

VV (Sentinel-1 γ0 VV DA hereafter), and ii) the assimilation of Sentinel-1 γ0VH (Sentinel-1 γ0VH 

DA hereafter), both to sequentially update SSM and LAI. The DA experimental workflow is 

described in the scheme of Figure 4.2. 

 

Figure 4.2. Workflow of the DA experiments realized within the LIS framework. The scheme describes how the 

Sentinel-1 γ0 (VV or VH) is assimilated into the Noah-MP LSM to sequentially update SSM and LAI using an EnKF.  

It is worth mentioning that Figure 4.2 only includes the workflow related to the DA experiments 

and that the WCM calibration procedure, which is not included, is realized using outputs from a 
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reference Noah-MP OL run (i.e., the ensemble mean SSM and LAI). For each pilot site, the Noah-

MP model was previously spun-up from January 1982 to May 2014. Then, an ensemble spin-up 

was realized in Open Loop (OL) mode using 24 ensemble members from May 2014 to January 

2015, in order to obtain optimal initial conditions. The OL run was continued thereafter from 

January 2015 onwards through December 2020. Similarly, the Sentinel-1 γ0 VV DA and Sentinel-

1 γ0 VH DA experiments were run from January 2015 through December 2020. 

4.1.7 Evaluation 

The evaluation aimed at i) verifying the goodness of the DA system in terms of DA diagnostics; 

ii) highlighting benefits of the Sentinel-1 DA for irrigation, soil moisture and LAI estimation as 

well as testing the differences between the Sentinel-1 γ0 VV DA and the Sentinel-1 γ0 VH DA 

configurations, iii) verifying the influence of the spatial scale of the test sites on the irrigation 

simulation and evaluation, and iv) identifying shortcomings of the system. 

To achieve those targets, two types of evaluation were carried out: 

● The optimality of the DA system design was evaluated regionally for each pilot site, for 

the period January 2015-December 2020. Following Reichle et al. (2017), three different 

filter diagnostics were analyzed. First, the difference between the temporal mean 

ensemble standard deviation (or ensemble spread) of the DA and OL runs was computed 

to test whether the DA system successfully reduces the uncertainties compared to the OL 

run. Indeed, the ensemble spread depends on the perturbed forcing and states (as 

described in Table 4.1) which diagnose the forecast error. An update is provided by the 

EnKF at the time of each observation (analysis), theoretically providing a reduction of the 

spread. Second, the time-series standard deviation of the normalized γ0 O-F residuals was 

computed to check if observation and model errors were adequately chosen. The 

normalized O-F residuals were obtained by normalizing each O-F residual by their 

simulated (expected) (forecast and observation error) standard deviation and then 

calculating the time-series standard deviation (Bechtold et al., 2020; Reichle et al., 2019). 

Third, the time-series standard deviations of the increments (analysis - forecast) in SSM 

and LAI were investigated.  



 

110 
 

● The OL and DA estimates of irrigation, SSM, LAI and ET were evaluated using 

independent reference data for the year 2018 at the German sites, and for the years 2015-

2017 and 2016-2017 at the Budrio and Faenza (Italian) sites, respectively. The evaluation 

of ensemble mean irrigation simulations was assessed in terms of correlation and 

percentage bias (Pearson R and bias hereafter) between estimated irrigation volumes and 

benchmark irrigation data. As the irrigation timing is often driven by stakeholders’ turns 

to withdraw water and by water availability rather than by the RZSM conditions, and 

because short-term DA increments influence short-term activations of the irrigation 

system, the comparisons between simulations and in-situ observations were carried out 

by accumulating irrigation data at bi-weekly time window. An evaluation of daily SSM 

and LAI outputs was performed against ASCAT SSM and PROBA-V LAI, respectively, in 

terms of Pearson-R. The ET outputs were tested against MODIS ET, considering the 

important role that irrigation has in affecting ET (Haddeland et al., 2014; Lawston et al., 

2015). The latter however, must be considered more a comparison than a real validation 

given the inherent uncertainties contained in the MODIS ET product. 

The evaluation of the 0.01° irrigation simulations with benchmark data asks for careful 

data handling and offers opportunities to relate skill metrics to properties of the irrigated 

regions. First, the Italian pilot site is composed of Budrio with five small fields of 0.4 ha 

within one LIS grid cell (0.01°), the Faenza F1 test site of 290 ha, covering three LIS grid 

cells, and Faenza F2 of 760 ha including eight LIS grid cells. The benchmark irrigation data 

for the five fields in Budrio were averaged to obtain a unique time series, whereas at the 

Faenza test sites the LIS simulations were averaged to obtain a single time-series for each 

field (and for each analyzed variable). This allows to relate skill metrics to the spatial scale 

(one pixel at Budrio, to district scale at Faenza) of simulations and reference data. Second, 

the German pilot site is composed of 49 fields, covering 24 LIS pixels. By considering only 

pixels with a percentage of irrigated area larger than 25%, 8 irrigated pixels were retained 

of the 24 pixels. For these 8 pixels, statistical distributions of the skill metrics were 

obtained. 
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4.2 Results 

4.2.1 Data assimilation diagnostics 

The two DA experiments (Sentinel-1 γ0 VV DA and Sentinel-1 γ0 VH DA) were evaluated in terms 

of DA optimality and increments, over the period January 2015-December 2020 for both Germany 

and Italy. Figure 4.3 shows a general reduction in the time-mean ensemble spread in SSM or LAI 

due to DA compared to the spread of the OL runs (ΔSSM Ens. Spread mean; ΔLAI Ens. Spread 

mean), for both the Sentinel-1 γ0 VV and VH DA experiments. In Italy (Figures 4.3a, c, e and g) a 

larger reduction of the ensemble SSM and LAI spread is identified over croplands and 

particularly over the western, north-western part of the study area where a higher number of 

observations is assimilated (maps representing the number of assimilated observations for each 

experiment and each test site are displayed in Figure 4.4i-l). The patches with a lower spread 

reduction are associated to input soil parameters and in particular to the presence of silty-loam 

soil texture which contrasts the sandy-loam soil of the remaining area (LIS input maps for Italy 

are shown in figure 4.4a-d). The two texture classes lead to very different soil moisture time series. 

In a previous study Modanesi et al. (2021) a lower agreement of calibrated WCM simulations with 

Sentinel-1 observations was found over the silty-loam soil texture, and this reflects in the lower 

reduction of SSM spread when assimilating Sentinel-1 (Figures 4.3a and 4.3c). These features are 

much less visible in the difference of LAI spreads (LAI is mainly associated with the almost 

homogenous vegetation class, not so much with texture). Furthermore, the Sentinel-1 γ0 VH DA 

displays larger spread reduction in terms of LAI over croplands compared to the Sentinel-1 γ0 

VV DA experiment, showing a large influence of the vegetation in the γ0 VH signal. For Germany 

the results show a similar link between the soil texture and the SSM spread reduction, especially 

for the Sentinel-1 γ0 VV DA experiment (Figure 4.3b) where pixels with a stronger spread 

reduction are associated to sandy-loam soil texture (LIS input is shown in Figure 4.4e-h for 

Germany). The absolute mean decrease in spread (m) over Germany is less pronounced than for 

the Italian pilot site (e.g. for Sentinel-1 γ0 VH DA, ΔLAI Ens. Spread mean m=-0.1 for Italy and  m=-

0.05 for Germany), which is partly due to the state-dependency of the spread (e.g. higher LAI 

values and larger spreads in Italy than in Germany).  
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Figure 4.3. Maps of the difference in time-mean ensemble spread between the DA and OL runs for (top) SSM (ΔSSM 

Ens. Spread) and (bottom) LAI (ΔLAI Ens. Spread). ΔSSM Ens. Spread after Sentinel-1 γ0 VV DA a) in Italy, b) in 

Germany; Sentinel-1 γ0 VH DA c) in Italy, d) in Germany. (e,f,g,h) Similar to (a,b,c,d) but for ΔLAI Ens. Spread. m is 

the mean over the entire study area. The reference period is January 2015-December 2020. In each plot, the x- and y-

axes represent longitudes and latitudes in degrees east and north, respectively. 

 

Figure 4.4. LIS input data over the Italian pilot site: a) Elevation from the Shuttle Radar Topography Mission (SRTM); 

b) Proba-V LC; c) HWSD soil texture; and d) GRIPC irrigation fraction map. Same in e), f) g) for Germany, except for 

the h) irrigation fraction, equally defined at 100% over the irrigated pixels. Maps of the number of assimilated Sentinel-

1 observations for: Sentinel-1 γ0 VV DA i) in Italy and j) in Germany; Sentinel-1 γ0 VH DA k) in Italy and l) in Germany. 

m is the mean over the entire study area. The reference period is January 2015-December 2020. In each plot, the x- and 

y-axes represent longitudes and latitudes in degrees east and north, respectively. 
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Figure 4.5 shows the time series standard deviation of the normalized O-F residuals, for both the 

Sentinel-1 γ0 VV DA and Sentinel-1 γ0 VH DA. In an optimal DA system these values should be 

equal to 1 over the entire study area for an agreement between the actual and simulated 

(expected) forecast and the observation errors. In Italy, m=0.83 and m=0.82 are obtained for the 

Sentinel-1 γ0 VV DA and the Sentinel-1 γ0 VH DA experiments respectively but, once again, the 

spatial patterns are consistent with the soil texture distribution. The large ellipsoid feature, in the 

northern side of the study area, is characterized by values exceeding the unity, meaning that the 

sum of observation and forecast error, prescribed in the ensemble perturbation, underestimates 

the actual errors. Similarly, in Germany we obtain near-optimal results in terms of m values over 

the entire study area but larger error underestimations are observed over the silty-loam soil 

texture, with values larger than 1.5 for both DA experiments (Figures 4.5b and 4.5d). In Germany 

an additional source of uncertainty is related to the irrigation fraction information, which is zero 

over the entire cropland area, except for the pixels for which we collected irrigation benchmark 

data (see discussion on GRIPC input, Section 4.1.3). We hypothesize that the lack of accurate 

information on the irrigated fraction over other pixels can negatively affect the WCM calibration 

and indeed the results in terms of DA diagnostics. It has to be noted that over white pixel any 

observation was assimilated (Figure 4.4i-l). 

 

Figure 4.5. Maps of the standard deviation (STD) of the O-F residuals for: Sentinel-1 γ0 VV DA a) in Italy and b) in 

Germany; Sentinel-1 γ0 VH DA c) in Italy and d) in Germany. m is the mean over the entire study area. The reference 

period is January 2015-December 2020. Over white pixels observations were not assimilated. In each plot, the x- and y-

axes represent longitudes and latitudes in degrees east and north, respectively. 

Finally, we analyzed the increments of SSM and LAI over the study area. In a well-calibrated DA 

system, the long-term mean of the increments is expected to be close to zero at each pixel. As 

explained in Reichle et al. (2019), values close to zero indicate that no long-term net addition or 
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subtraction of water (or vegetation) is generated by the analysis. As expected, the temporal mean 

values of SSM and LAI analysis increments vanish in the regional average (results not shown). 

 

Figure 4.6. Maps of the standard deviation (STD) of the O-F residuals for: a) Sentinel-1 γ0 VV DA in Italy; b) Sentinel-1 

γ0 VV DA in Germany; c) Sentinel-1 γ0 VH DA in Italy; d) Sentinel-1 γ0 VV DA in Germany. m is the mean over the 

entire study area. The reference period is January 2015-December 2020. In each plot, the x- and y-axes represent 

longitudes and latitudes in degrees east and north, respectively. 

However, the standard deviation of the analysis increments provides valuable information which 

has been summarized in Figure 4.6. Maps of SSM (Figure 4.6a-d) and LAI (Figure 4.6e-h) show 

generally small increment standard deviations for both DA experiments and both the study areas. 

Note that zero standard deviations are found where no data were assimilated (see Figure 4.4i-l). 

For both areas, complementary patterns are observed for SSM and LAI increments. Larger SSM 

variances can be observed over the cropland area characterized by sandy soil (e.g., north-west in 

Italy) and where a higher number of observations are assimilated (especially in Italy), whereas 

larger LAI updates are related to the silty-loam soil type (e.g. ellipsoid-shaped area in Italy), 

corresponding to the patterns in O-F (not shown, but the pattern of standard deviations of 

normalized O-F in Figure 4.5 is similar to that of O-F). This is particularly true for the Sentinel-1 

γ0 VH DA experiment.  

Although the DA diagnostics show satisfactory results in terms of consistency of the system, 

input parameters, such as soil texture and vegetation (i.e., lack of dynamic crop maps in the 

model) seem to have a strong impact on the performance of the DA systems. In this context, the 

red squares in Figure 4.5a-b and Figure 4.6a-b show areas where the test sites are located. In Italy 
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(Figure 4.5a or Figure 4.6a) the Budrio test site (north-west square) is placed over an area where 

results are close to optimal in terms of standard deviation of normalized O-F. On the other hand, 

the Faenza test site shows a certain overestimation of the actual observation error (south-east 

square in Figure 4.5a). In any case, although influences related to the mentioned input data are 

present, overall, the results are acceptable and near-optimal over both the Italian and German test 

sites. 

4.2.2 Noah-MP evaluation: DA vs OL 

In this section results of the DA and OL runs are shown in terms of SSM, LAI, ET and irrigation. 

We first discuss the Italian pilot site, where the longest record (2-3 year) of benchmark data is 

available for 3 test sites with different spatial extents. This allows us to focus on the impact of the 

spatial scale on the performance of the DA system. Next, we discuss the pilot site in Germany 

where the availability of 1 year of data for 49 irrigated fields (24 LIS pixels, of which only 8 were 

selected considering a percentage of irrigated area larger than 25%) allows for a statistical 

interpretation of the results. 

4.2.2.1 Italy 

Figure 4.7 shows an example time series of SSM, LAI, ET and irrigation at the Budrio farm for the 

OL and Sentinel-1 γ0 VV DA experiment, including a comparison in terms of γ0 observations and 

forecasts. Also shown are the reference data of ASCAT SSM, PROBA-V LAI and MODIS ET 

observations at daily time scale. For irrigation, the benchmark reference data, OL and DA output 

are aggregated to a bi-weekly time scale.  

The irrigation simulations (Figure 4.7e) show a general deterioration of the performance with DA, 

with a decrease in Pearson-R from 0.78 (OL) to 0.65 (DA). However, the DA run provides better 

results in terms of irrigation quantities, with accumulated benchmark irrigation equal to 917.2 

mm against the 842.5 mm of the DA run (as compared to the large overestimation provided by 

the OL run with 1220.1 mm). Figure 4.7e additionally shows the time series of rainfall from rain-

gauge observations and MERRA-2 forcing (upper axes). It is worth noting that the precipitation 

from MERRA-2 during the summer is typically less than in situ rainfall and this aspect could also 
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contribute to create underestimations in irrigation simulation, which is partly corrected by the 

Sentinel-1 γ0 VV DA.  

Figure 4.7b shows the impact of DA in the SSM dynamics during both the summer and winter 

seasons. The Sentinel-1 γ0 corrects a dry winter bias that is observed in the OL run SSM time-

series, while during the summer the increments affect mainly the short-term dynamics. The LAI 

time-series are less affected by the ingestion of Sentinel-1 during the growing season (Figure 4.7c) 

than SSM. The larger updates in terms of SSM are also reflected in a larger improvement in terms 

of Pearson-R for SSM as compared to LAI: for SSM, the Pearson-R increases from 0.74 for the OL 

to 0.78 for the DA, while for LAI (Figure 4.7c) the increase in Pearson-R is smaller (from 0.69 to 

0.71). This is also explained by the results shown in Figure 4.7a where the daily WCM γ0 VV 

forecast time-series are compared with Sentinel-1 observations: it is worth noting that the soil 

contribution in both the simulated and observed γ0 signal is much higher than the vegetation 

contribution, confirming what was highlighted in previous studies (i.e., Bauer-Marschallinger et 

al., 2018; Modanesi et al., 2021; Wagner et al., 2013). By design, the DA run provides better 

agreement (Pearson-R=0.81) between the WCM forecasts and Sentinel-1 observations than the OL 

run (Pearson-R=0.67).  

When comparing the ET results against MODIS ET, a general improvement is observed when DA 

is performed (Figure 4.7d; Pearson-R increases from 0.69 to 0.72), and a general overestimation in 

the model outputs was observed for both the OL and DA runs over the late summer months (from 

July to October of each year). The general decrease of MODIS ET during the late summer is not 

explained by the irrigation benchmark time series reported in Figure 4.7e, and shows a dubious 

response to irrigation events. This highlights possible uncertainties related to reference ET 

observations or benchmark irrigation data, and we believe that in this case the ET estimates are 

the least reliable.  
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Figure 4.7. Evaluation of the OL (blue lines) and DA (orange lines) results at the Budrio test site for the Sentinel-1 γ0 

VV DA experiment: a) Sentinel-1 γ0 VV against WCM γ0 VV; b) ASCAT SSM against simulated SSM; c) PROBA-V LAI 

against simulated LAI; d) MODIS ET against simulated ET; e) Irrigation benchmark against simulated irrigation, with 

an indication of MERRA2 and in situ rainfall estimates. 

Table 4.2 summarizes the results obtained for the 3 test sites within the Italian pilot site. For the 

Faenza sites, the results are first spatially aggregated over 3 or 8 pixels before computing time 

series metrics. The uncertainty in the reference data and the relatively short data records prevent 

a statistically significant evaluation, but overall, the DA runs provide a slight improvement of 

SSM and LAI for both the DA experiments compared to the OL run. As expected, Sentinel-1 γ0 

VV DA provides better results in terms of SSM temporal dynamics while the Sentinel-1 γ0 VH 

DA shows larger improvements for LAI and ET. These findings confirm that γ0 VV contains more 

information about SSM (Bauer-Marschallinger et al., 2018; Modanesi et al., 2021; Wagner et al., 

2013), whereas γ0 VH is more related to vegetation (LAI) (i.e., Macelloni et al., 2001; Vreugdenhil 

et al., 2018). Due to the effect of LAI and SSM on plants transpiration, ET is also minimally 

improved. In terms of irrigation temporal dynamics, the DA experiments slightly deteriorate the 

temporal dynamics for all the test sites but reduce the bias in the irrigation estimates. 
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Table 4.2: Evaluation results at all the Italian test sites and for both the DA experiments. 

ITALIAN  

TEST 

SITES 

Benchmark 

period 

Model run SCORE 

SSM  

Pearson-

R [-] 

LAI 

Pearson-

R [-] 

ET 

Pearson-

R [-] 

Irrigation 

Pearson-

R [-] 

Irrigation 

Bias [%] 

Irrigation  

Amount 

[mm] 

Budrio 2015-2017 OL VV 

DA VV 

0.74 

0.78 

0.69 

0.71 

0.70 

0.71 

0.78 

0.65 

33.00 

-8.10 

1220.10 

842.50 

OL VH  

DA VH 

0.74 

0.76 

0.69 

0.72 

0.70 

0.72 

0.79 

0.55 

33.00 

-20.60 

1220.00 

842.50 

Benchmark / / / / / 917.20 

Faenza F1 2016-2017 OL VV 

DA VV 

0.78 

0.81 

0.73 

0.74 

0.65 

0.66 

0.9 

0.75 

121.90 

54.36 

753.60 

524.10 

OL VH  

DA VH 

0.78 

0.79 

0.73 

0.76 

0.65 

0.67 

0.9 

0.64 

121.90 

26.32 

753.60 

428.92 

Benchmark / / / / / 339.50 

Faenza F2 2016-2017 OL VV 

DA VV 

0.78 

0.80 

0.86 

0.86 

0.79 

0.8 

0.88 

0.86 

115.20 

83.60 

751.00 

641.00 

OL VH  

DA VH 

0.78 

0.79 

0.86 

0.87 

0.79 

0.81 

0.88 

0.80 

115.20 

51.26 

751.00 

528.00 

Benchmark / / / / / 349.00 

Figure 4.8 summarizes the Pearson-R and bias scores for the irrigation simulations for all 

experiments, and for the 3 Italian test sites. Even though DA always reduces the R-values 

compared to those of the OL, Figures 4.8a and 4.8c suggest that the R-values for the DA 

experiments increase when moving from the small area of Budrio (1 LIS pixel) to Faenza F2 (8 LIS 

pixels), and that the skill reduction introduced by DA is only marginal for the largest Faenza F2 

field. An explanation could be related to the spatial mismatch between the 1-km Sentinel-1 signal 

and the small Budrio fields (~2 ha in total) together with to the poor model ability to reproduce 

stakeholder’s decisions (i.e., irrigation timing) in areas extended over few ha, such as in Budrio. 

Even though DA deteriorates the irrigation results in terms of R, it improves the results in 

percentage bias (Figures 4.8b and 4.8d). In general, the Noah-MP LSM overestimates irrigation 

over all the test sites in the OL run. Here, the Sentinel-1 γ0 VH DA provides more reliable 

irrigation quantities. We think this could be attributed to the ability of the Sentinel-1 γ0 VH to 

introduce stronger updates in LAI, which is more linked to RZSM under well-developed crops 

than SSM (Modanesi et al. 2021). Results in terms of bias show another important aspect: although 

many limitations in the simulation of the irrigation dynamics are related to the spatial scale, the 



 

119 
 

quality of the benchmark irrigation data also has an important impact. For a small site such as 

Budrio, irrigation benchmark is expected to be more precise, explaining lower biases in terms of 

irrigation quantities. 

 

Figure 4.8. Evaluation results in terms of irrigation simulations for the three Italian test sites based on the extent of the 

fields in terms of LIS pixels. Blue bars refer to the OL run while orange bars refer to the DA run. The Pearson-R values 

are reported for: a) the Sentinel-1 γ0 VV DA; and c) for the Sentinel-1 γ0 VH DA experiments. (b,d) Same as (a,c), but 

for percentage bias. 

4.2.2.2 Germany 

In the Niedersachsen test site, the evaluation in terms of SSM and LAI using ASCAT SSM and 

PROBA-V LAI (not shown) does not display substantial differences in terms of Pearson-R 

between the OL and the DA runs (median Pearson-R equal to ~0.8 for SSM and ~0.7 for LAI, 

across 8 pixels). Regarding irrigation estimates, Figures 4.9a and 4.9b display the Pearson-R and 

percentage bias distributions over the 8 selected irrigated pixels for the OL and the Sentinel-1 γ0 

VV DA experiment, while Figures 4.9c and 4.9d refer to the Sentinel-1 γ0 VH DA. In particular, 

Figure 4.9a and 4.9c show improved irrigation estimates for both Sentinel-1 γ0 VV DA (Pearson-

R increases from 0.47 to 0.61) and Sentinel-1 γ0 VH DA (Pearson-R increases from 0.47 to 0.65).  

Unlike the Italian site, the Niedersachsen site suffers from an irrigation underestimation by the 

model, in line with a previous study by Zappa et al. (2021) which used Sentinel-1 SSM retrievals 
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to detect and quantify irrigation at the Niedersachsen test site. Figure 4.9b shows that the median 

bias is reduced from a value of -40.8% for the OL to a value of -24.6% for Sentinel-1 γ0 VV DA and 

Figure 4.9d shows a reduction from -40.8% for OL to -7.6% for Sentinel-1 γ0 VH DA. Despite the 

improvement in median values for the bias, the overall distribution of the bias is wider than for 

the OL. Reasons for that might be related to the specificity of the different fields and the difference 

in the performance for different spatial scales (see section 4.2.2.1) when different fields of different 

size are bulked altogether. Beyond this, also the consistency between simulated backscatter by 

the coupled Noah-MP-WCM and Sentinel-1 data for some specific pixels might exert a role in 

spreading the distribution of the bias with respect to the OL. The latter can be caused by both 

poor model performance (due to the quality of the forcing, model parameters and static maps) 

and the quality of the Sentinel-1 γ0 data.  

 

 

Figure 4.9. Evaluation in terms of (left) Pearson-R and (right) percentage bias of irrigation simulations for the German 

test sites, containing the 8 irrigated LIS pixels with percentage irrigated area larger than 25%. Blue bars refer to the OL 

run while orange bars refer to the DA run, with (a-b) the Sentinel-1 γ0 VV DA and (c-d) for the Sentinel-1 γ0 VH DA. 
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4.3 Discussion 

4.3.1 Data assimilation 

In this study a DA system was built for the ingestion of Sentinel-1 γ0 both in VV and VH 

polarization into the Noah-MP LSM in order to test the ability of Sentinel-1 γ0 to improve 

irrigation quantification through the update of both SSM and LAI. The regional scale analysis of 

internal DA diagnostics provided evidence that the DA system is self-consistent and near-

optimal. Local deviations from desirable reductions in ensemble spread or from optimal O-F 

statistics, or higher absolute SSM or LAI increments were mainly related to poor input data to the 

Noah-MP LSM. Confirming what was previously found in Modanesi et al. (2021), soil texture 

uncertainties play an important role in reducing (or increasing) the effectiveness of the DA 

system. This is because the soil texture affects the RZSM and FC, which contribute to the 

activation of the irrigation scheme. The silty-loam soil texture generally shows a reduced 

variability in the soil moisture dynamics as compared to more sandy textures, providing lower 

amount of irrigation, especially over wetter climates (i.e., Germany). Assuming that the Sentinel-

1 γ0 contains information on irrigation, the DA system should correct poorly simulated irrigation, 

e.g. due to poor input parameterization or errors in MERRA-2 precipitation input as compared 

to observed precipitation (which was observed in the evaluation over the Italian test sites). 

However, this seems to be challenging in our experiments. Another important factor that 

influences regional DA diagnostics is the irrigation fraction information. This information was 

lacking in the GRIPC input for the pilot site in Germany, which forced us to simulate irrigation 

only over pixels where known irrigated fields were located, notwithstanding that also other 

cropland pixels could be irrigated, especially during the drier conditions that affected the 

northern countries during the 2018 summer months in northern European countries (i.e., the 2018 

north-western Europe drought; Drouard et al., 2019). The standard deviation of normalized O-F 

higher than unity in the eastern area of the German pilot site could thus be related to the absence 

of irrigation simulations over areas which are actually irrigated. The lack of updated irrigation 

fraction input at global scale is still a strong limitation, although many studies have focused on 
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monitoring irrigated lands worldwide in the last decade (Ambika et al., 2016; Bazzi et al., 2020; 

Dari et al., 2020; Gao et al., 2018).  

In the test site analysis, we focused on three different aspects: i) the added value of the DA 

experiments compared to the OL runs and the role of the Sentinel-1 γ0 polarization; ii) the 

limitation of the Noah-MP parameterization and, more generally, of the DA system in improving 

irrigation simulations; and finally, iii) the spatial scale difference between the irrigation 

benchmark and irrigation simulations.  

In Italy, we found an improvement due to DA in terms of SSM, LAI and ET, compared against 

RS retrievals (i.e., ASCAT SSM, PROBA-V LAI and MODIS ET). Sentinel-1 γ0VV DA provided a 

larger contribution to SSM performances whereas Sentinel-1 γ0VH DA improved mostly the 

vegetation and vegetation-related states (LAI and ET). This could be expected based on previous 

literature (i.e., Bauer-Marschallinger et al., 2018; Vreugdenhil et al., 2020, 2018) and the previous 

study by Modanesi et al. (2021) over the Italian test sites. Our findings also showed how the 

Sentinel-1 γ0 VV DA has a larger impact on the temporal dynamics of irrigation, whereas the VH 

polarization has a stronger influence in adjusting the bias due to the high sensitivity of the 

vegetation to RZSM and vice versa (Modanesi et al., 2021). 

Following the rationale that weather forecasts would be improved if land surface conditions are 

better constrained, the hope was to also improve irrigation forecasts with better constrained land 

surface conditions. However, the latter is only true if the assumption holds that the irrigation 

model produces the best irrigation estimates for the best estimates of land surface state variables. 

The latter assumption strongly depends on a good characterization of soil, vegetation and 

irrigation parameters which was found to be a limitation for the DA system. For instance, the OL 

run provided a large overestimation or underestimation of the irrigation quantities (depending 

on the study area) that can be attributed to limited parameterization of the irrigation scheme like 

for instance, detailed information on irrigation fraction input, dynamic crop rotation and rooting 

depths, as well as a poor description of the crop phenology in Noah-MP. The DA experiments 

helped in reducing the irrigation overestimation (or underestimation) at some, but not all, sites. 

This means that, if the sprinkler irrigation scheme is not well parameterized, the DA system is 
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not able to strongly correct the OL runs. In case of biased state variables or flux simulations, it is 

generally more interesting to study the effect of DA on anomalies from (multi-year) climatological 

conditions, but such an analysis could not be performed with the limited amount of available 

benchmark data. 

The limited spatial coverage and scale of the benchmark data is another reason of concern in the 

evaluation of the DA results. The Sentinel-1 DA appears to degrade the temporal dynamics 

(Pearson-R) of the bi-weekly irrigation estimates relative to the OL, when compared to small-

scale (Budrio) benchmark. This can be explained by the spatial mismatch between the 1-km 

Sentinel-1 signal (which can include multiple fields irrigated at different times) and the irrigation 

information related to the small Budrio fields. However, this degradation is not significant or not 

found, when the simulations at multiple LIS pixels are aggregated (Faenza) or the statistics for 

multiple sites are lumped (Niedersachsen), respectively.  In Germany, the median Pearson-R over 

the irrigated pixels increased especially for the Sentinel-1 γ0 VV DA experiment, and a reduction 

of the median bias was found for the Sentinel-1 γ0 VH DA experiment.  

4.3.2 Limitations and shortcomings 

The evaluation highlighted many aspects that can be improved for a more reliable irrigation 

estimation in a DA system which involves the Noah-MP LSM, with an irrigation scheme and 

innovative Sentinel-1 γ0 observations. Although good results were obtained in terms of average 

DA diagnostics, it should be noted that the system is influenced by errors from the LSM, the 

irrigation scheme and the observation operator, which can interact and compensate each other 

providing suboptimal assimilation results. Based on Modanesi et al., (2021) the best unbiased 

WCM parameters were obtained, but a single parameters set was used for each model grid cell 

regardless of the crop type year variability. Especially over the Po Valley, agricultural practices 

are characterized by crop rotation and the different structural effects of crop types on γ0 

observations can lead to an interannual variability that is only partly represented by SSM and 

LAI, and that could deteriorate model estimates (i.e., irrigation) in the DA runs. Additionally, the 

Sentinel-1 γ0 data show slightly different statistics for different orbits and their combination 

results in a reduction of the signal-to-noise ratio, impacting time series analysis. We think that 
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the inclusion of dynamic crop information (even at 1 km spatial resolution and not at field scale) 

and the assimilation of γ0 data per orbit would improve the results and this is a future step of this 

work that we are currently investigating. 

In terms of irrigation simulations, we found that absolute irrigation amounts and timing of 

irrigation estimated by the irrigation scheme strongly depend on soil (e.g., texture), vegetation 

(e.g., crop type) and irrigation (e.g., ‘intensity’ or area fraction) parameters. These parameters are 

now based on global datasets that might not be ideal for regional to local applications, being not 

dynamic and updated. Likewise, irrigation estimates depend on a correct representation of 

natural forcing input, here re-analysis data, which is unlikely to be accurate at the local scale 

(where the weather is itself influenced by irrigation). 

Furthermore, the irrigation estimates obtained with inclusion of DA are not always 

outperforming the model-only estimates. The main reason is that the irrigation model does not 

necessarily produce the best irrigation estimates for the best estimates of land surface state 

variables at the test sites due to uncertainties in irrigation parameterization or difficulties in 

reproducing farmer’s decision. Thus, in line with the suggestions by Lawston et al. (2017), besides 

optimizing the DA itself, future research should also focus on improving the irrigation model to 

optimally use the observational information contained in the Sentinel-1 γ0. 

Another important aspect is related to the temporal and spatial variability of irrigation. We found 

that irrigation results become increasingly uncertain (and depend more on the irrigation 

parameterization) at shorter, e.g., daily, timescales. Soil moisture and vegetation increments can 

indeed affect the irrigation dynamics at short-term periods (i.e., daily time scale), and the 

benchmark data are also not representative of the effective irrigation needs at the short-term 

because of water management policies. It can be expected that the interannual variability in 

irrigation can be better estimated, as also suggested by Lawston et al. (2017). Furthermore, we 

found that the agreement between benchmark data and simulations of irrigation quantities 

increases in an analysis at pixel-level or at small-district spatial scale (Italy), showing the 

limitation of the system in providing information at plot scale, when simulations and RS 

observations are provided at coarser spatial resolution (i.e., 0.01°). 
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Three last aspects need to be highlighted: i) a robust evaluation analysis of land surface variables 

is not straightforward considering that RS observations at coarse spatial resolution (i.e., ASCAT) 

or constrained by reanalysis data (i.e., MODIS ET) do not necessarily provide accurate 

information on irrigation (Zaussinger et al., 2019); ii) additionally, evaluating irrigation estimates 

is also more challenging due to the scarce availability of information on the irrigation 

management (Massari et al., 2021); and iii) finally, the disagreement between in situ reference 

data and irrigation estimates obtained from the model-only or DA system can be also partly 

explained by the actual in situ irrigation system management, which depends on water 

availability and policies unknown by the modelling system. Although irrigation data are 

compared at bi-weekly time scale and DA is overall expected to improve the simulation of 

irrigation temporal dynamics, the temporal resolution of the Sentinel-1 backscatter (~3 days over 

the study areas) could imply to miss irrigation events and affect the results.  

4.4 Conclusions 

Information on the actual irrigation quantities used for agricultural purposes is still missing and 

a correct quantification of irrigation is a challenging topic. The joint use of models and EO 

observations (which contain irrigation information) can help to fill this gap, while also providing 

irrigation estimates at high temporal scale and medium-high spatial resolution.  

In this study we assimilated, in two different experiments, 1 km Sentinel-1 γ0 VV and VH 

polarization into the Noah-MP LSM, equipped with a sprinkler irrigation scheme, for the joint 

update of soil moisture and vegetation state variables. The main research question focused on 

testing if irrigation water amounts, simulated by the irrigation scheme, can be optimally 

estimated when optimal soil moisture and vegetation estimates are available through DA. 

Additionally, we aimed at: i) testing the consistency of the DA system; ii) the effects of DA on 

irrigation and model states predictions with a specific focus on differences due to the ingestion 

of Sentinel-1 γ0 in co- or cross-polarization; and finally, ii) unveiling the limitation of the system 

in terms of input parameters, DA shortcomings, spatial scale analysis and benchmark 

uncertainties. 
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The main conclusions drawn from our evaluation highlight shortcomings of the system and can 

be summarized as follows: 

● The developed DA system is consistent and close to optimal, but it could benefit from 

enhanced model inputs, such as more reliable soil texture maps or the introduction of 

dynamic and high-resolution crop maps which could improve both soil moisture and 

vegetation simulations (input for the WCM calibration). Additional effort will also be 

needed in future research to account for different Sentinel-1 orbits, both in the WCM 

calibration and in the DA system, which will provide a gain of the signal-to-noise ratio 

with a general benefit in time series analysis. 

● The Sentinel-1 γ0 observations contain useful information about SSM and LAI over 

irrigated areas, confirming Modanesi et al. (2021), and the γ0 polarization has a 

considerable influence on the DA results. For instance, the Sentinel-1 γ0 VV DA mainly 

improves temporal dynamics of SSM and irrigation, whereas the Sentinel-1 γ0 VH DA 

seem to have a stronger influence on vegetation and in adjusting negative/positive bias 

due to the high sensitivity of the vegetation to RZSM (and vice versa). 

● The Noah-MP LSM input and irrigation parameterization affect the OL and DA estimates, 

providing strong over- or underestimations of irrigation, depending on the study area. 

Those limitations are mainly related to soil texture uncertainties, lack of crop type inputs 

and outdated irrigated fractional area information which affect the results of the reference 

OL run. In this context, the DA can only correct the estimates of irrigation amounts, if the 

irrigation simulation is not excessively biased, meaning that future research should focus 

on improving the irrigation model. Alternatively, even with biased irrigation simulations, 

the DA should be able to correct for the interannual variability in irrigation estimates, but 

the record of available benchmark data on irrigation is insufficient at this time to confirm 

this hypothesis. 

● When comparing irrigation simulations and benchmark data, the spatial and temporal 

resolution play an important role. Irrigation estimates were here evaluated at a bi-weekly 

scale, to limit the influence of short-term analysis increments on the activation of the 

irrigation scheme, and to reduce mismatches with benchmark data due to human choices 
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in the timing of irrigation application. In any case, results in terms of temporal dynamics 

and bias could also be partly affected by the temporal resolution of Sentinel-1 observations 

(~3 days) which could miss some daily irrigation events. Additional improvements could 

be obtained in DA analysis with higher-temporal resolution products as also 

demonstrated by Azimi et al. (2020). Furthermore, the evaluation in terms of irrigation 

quantities provides better results when irrigation benchmark data and the model have a 

similar spatial resolution. Evaluation is generally difficult due to the scant reporting of 

irrigation and extra uncertainty can derive from the reliability of in situ irrigation 

estimates. 

● Finally, we want to highlight the important role of RS reference observations in the 

evaluation of DA results. The coarse resolution and retrieval uncertainties of satellite SSM 

products and the dependency of MODIS ET on ancillary data (i.e., reanalysis product), 

can reduce their ability to detect irrigation over small test sites or over areas which are not 

irrigated as extensively as the Po Valley.  
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Chapter 5: Conclusions and outlook 

This Chapter concludes this PhD thesis by summarizing the key findings and main contributions 

of this study, based on the research questions described in Chapter 1. New scientific findings, 

limitations and weaknesses highlighted during this three-years activity will be summarized and 

finally outlooks for future research will be discussed, based on the obtained results.  

This thesis explored the utility of a new generation of EO data to monitor agricultural droughts 

and to help models account for the effects of anthropogenic activities on the water cycle, 

particularly from an agricultural perspective. It linked the effects of the water scarcity to crop 

production and to the current need to provide reliable estimates of the water actually used for 

agricultural purposes (i.e., irrigation). To reach those objectives the activity was divided into two 

parts: 1) a first part focusing on agricultural drought analysis; and 2) a second part – more 

significant – related to the irrigation quantification through the development of an innovative DA 

system which ingests high-resolution radar observations into a LSM. Both analyses demonstrated 

how models (i.e., LSM) alone have difficulties to resolve the water cycle and might miss to 

reproduce important processes like irrigation. 

The agricultural drought analysis in India in the first part of this thesis (Chapter 2) highlighted 

interesting aspects of the information included in EO data to monitor drought events and to 

detect human activities. In particular, satellite SSM was found to be more representative of soil 

wetness conditions and crop productivity than modeled soil moisture and ground-based 

precipitation data, when applied to develop drought indicators. This highlights the potential of 

leveraging satellite SSM for operational drought forecasting. Furthermore, even though a 

relatively coarse-spatial resolution satellite SSM product (~25 km) was used, its closer relation 

with crop productivity than SSM estimates from models or precipitation over irrigated cropland 

suggests that the satellite signal contains useful information on irrigation. This was also 

confirmed by the analysis carried out in the second part of this activity over the Po Valley. Here, 

coarse-resolution satellite SSM products from SMAP and ASCAT were compared with the SSM 

from the Noah-MP LSM, equipped with a sprinkler irrigation scheme. The results showed a better 

agreement between the model and satellite products when irrigation was simulated in Noah-MP.  



 

129 
 

While useful, coarse-scale satellite products have strong limitations for precision agriculture 

applications. Therefore, in the second part of the thesis the ability of new higher resolution EO 

data to correct potentially misrepresented model estimates of key agriculture variables (like soil 

moisture, LAI, ET) over intensively irrigated areas was explored. In particular, a DA system 

merging the Noah-MP LSM and 1-km radar backscatter data from Sentinel-1 through an 

observation operator (being the WCM) was built, calibrated and tested to improve irrigation 

quantification (Chapter 3 & 4). Unlike classical DA of SSM retrievals, the direct ingestion of MW 

radar backscatter observations was performed to remove the risk of inconsistent parameters and 

avoid cross-correlated errors between the model state and satellite retrievals of geophysical 

variables. Additionally, an irrigation scheme was activated within the LSM with the objective to 

directly correct irrigation simulation through the update of soil moisture and vegetation state 

variables, with the goal to improve the initial conditions for subsequent irrigation simulations. 

To our knowledge this is the first high-spatial resolution study which developed this type of 

approach. The backscatter DA introduced both improvements and degradations in irrigation 

estimates as well as in other LSM variables (i.e., soil moisture, LAI and ET). The results also 

highlighted the key-role of the spatial and temporal scale on the analysis. Ultimately, the DA 

experiments carried out over two highly irrigated European regions revealed a good potential of 

Sentinel-1 MW observations to improve LSM variables and irrigation estimates but also rose 

several issues:  

• In situ data have a key role in both the agricultural drought analysis and in the irrigation 

quantification analysis. Crop yields and irrigation benchmark data are often not available 

(unless regional-national aggregated scale is considered) for an assessment of agricultural 

drought indices and to test the goodness of LSM simulations (i.e., irrigation estimates) 

respectively. Particularly, there is a real challenge to obtain reference irrigation data for 

two main reasons: i) the limited availability of measurements (applied irrigation volumes 

are often not measured); and ii) hesitance to share information about water consumption 

at the plot- or small-district scale. Note that, a decision to irrigate or not is commonly 

driven by management, economic and societal reasons instead of soil wetness or crop 

conditions (i.e., Foster et al., 2020; Massari et al., 2021) – another aspect that  reduces the 
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ability of models in reproducing irrigation. In this context, two types of problems can 

arise: the evaluation of LSM simulations is affected by the availability or reliability of 

benchmark data, and models that parameterize human activities are not able to reproduce 

the correct timing and amounts of irrigation. 

• Both the agricultural drought and irrigation quantification research activities 

demonstrated how models might fail to provide valuable information on irrigation.  This 

is because they typically use unrealistic soil texture maps (e.g., too coarse with respect to 

the scale of agricultural applications), static land cover and crop type information and too 

simple irrigation parameterization schemes. Despite the valuable information contained 

in Sentinel-1 backscatter data (see Chapter 3), attempting to correct these issues with DA 

is difficult, because models are biased and produce results that are too far from reality. So, 

prior to DA a maximal effort should be put in improving open loop LSM simulations by 

using the best available ancillary data. For instance, accounting for dynamic crop maps 

from EO data could provide a substantial improvement of irrigation simulations, and thus 

make the successive DA problem better posed (by reducing the chance of unrealistic and 

biased surface states and fluxes). The spatial and temporal resolution of LSMs input and 

satellite products are additional key aspects when applied to field-scale agriculture 

analysis. High-temporal resolution EO data (i.e., daily revisit time as compared to ~3 to 

~6 days of Sentinel-1) could improve the results in terms of irrigation quantifications and 

thus increase the probability to capture irrigation events. From the agricultural drought 

analysis point of view, 1-km satellite products are preferred but additional limitations can 

derive from the lack of long-term records of satellite soil moisture from relatively new 

satellite missions. From a LSM perspective, an analysis at 1-km spatial resolution or at 

district scale seems to improve the description of the hydrological cycle, but contradicting 

results are obtained for a detailed study at the plot scale. In this context, improving the 

modeling analysis in terms of spatial resolution is not straightforward given the lack of 

high resolution input data (i.e., forcings). 
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• The DA system could benefit from an improvement by accounting for different Sentinel-

1 orbits in both the WCM calibration and DA. Currently, by design, the orbit bias 

correction applied to Sentinel-1 backscatter processing (Lievens et al., 2019) rescales the 

first two order moments (temporal mean and standard deviation) such that time series for 

all orbits have the same mean and standard deviation. Seasonally varying deviations 

between orbits, that e.g. originate from vegetation effects at different incidence angles, 

remain present in the time series for the different orbits. In this context, we assume that 

(i) a calibration that takes into account the incidence angle of each orbit in the WCM or (ii) 

a per-orbit WCM calibration with consequent improvement of the DA system through 

per-orbit ingestion of the Sentinel-1 could provide help to improve the backscatter DA 

performance. This aspect involves further developments in the LIS framework and 

deserves more research in the future. Additionally, separating the contribution of the soil 

and vegetation in the backscatter is challenging when the vegetation is well developed 

and further complicated by poorly-simulated vegetation of Noah-MP. We found different 

issues which prevented an optimal calibration of the WCM. Future research should 

consider the use of more sophisticated backscatter operators (also assisted or replaced by 

machine learning) and the use of vegetation descriptors directly from EO data to avoid 

the influence of suboptimal model parameterization.  

• Finally, the assimilation of backscatter data only is likely not sufficient to improve 

irrigation estimation. Recent studies demonstrated how collecting irrigation information 

using multiple RS techniques (i.e., thermal, optical and MW observations) can be 

advantageous. For instance, Lei et al. (2020) demonstrated that incorporating satellite-

based thermal infrared (TIR) imagery and radar information into a soil-vegetation-

atmosphere-transfer (SVAT) model through DA could provide spatially high-resolution 

(less than 100 m) soil moisture maps to optimize irrigation allocation. Indeed, satellite-

based SSM provides information on the first cm of the soil and if vertical coupling of soil 

layers is weak the DA system will have few chances of updating RZSM (Chen et al., 2011; 

Lievens et al., 2015). On the other hand, over densely vegetated areas, soil moisture TIR-

based estimates (e.g., derived from the ratio of actual-to-potential ET) could better 
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represent soil moisture conditions within the entire effective vegetation rooting zone 

(Fang et al., 2016). This could lead to a better representation of the RZSM, which directly 

affects vegetation health and irrigation applications.  

The limitations found in this activity allow us to focus on outlooks, future challenges and 

developments that will be needed to improve the analysis and to provide a better description of 

the water cycle.  

5.1 Importance of ground and EO data in irrigation information retrieval 

Collecting reliable irrigation reference data is crucial to support further development of irrigation 

estimates from satellite retrievals, modeling and DA analysis. In this context, it is worth 

mentioning that this research was also conducted in the framework of the Irrigation+ project 

(https://esairrigationplus.org/), funded by ESA. The project which aims at exploring, developing 

and validating advanced EO-based algorithms for retrieving information on irrigation from field 

to regional/global scale, is now at its final stage providing large-scale science cases analysis and 

demonstration cases. The project planned activities to collect a huge amount of data over the Ebro 

basin within the HyMeX (HYdrological cycle in the Mediterranean Experiment) LIAISE 

campaign which will provide meteorological data, surface energy budget data, soil moisture, 

land surface temperature and reference irrigation data. Testing the system over such an 

instrumented area would allow to overcome some of the issues related to missing reference data 

for evaluation and to have a better control on the experiments.  

The collection of reference data should ideally not be limited to some test areas selected for 

research projects. Despite this, regional or global detailed information on irrigated lands and on 

the volumes of water withdrawn for irrigation practices is generally poor or lacking. Currently, 

existing data sets containing irrigation information (such as the Global Map of Irrigated Area 

(GMIA) developed by the Food and Agriculture Organization (FAO) of the United Nations 

(Siebert et al., 2015) or the Global Rainfed and Paddy Cropland (GRIPC; Salmon et al., 2015)) only 

show areas equipped for irrigation (AEI) and almost no spatial information of real water volumes 

used for irrigation. On the other hand, European statistics only provide annual volumes of 

irrigation water for some European countries and some years (the reader can refer to 
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https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/644216/EPRS_BRI(2019)644216_EN

.pdf for further details) so they are of little utility to study spatial and temporal irrigation patterns 

as well as to grasp relationships between irrigation and environmental and societal factors on a 

local scale. Reference ground-truth data also, despite ideal to validate irrigation retrieval, will 

never be available all the time for all locations on Earth. In this respect, satellite data can be used 

as alternative validation datasets and to extrapolate knowledge gained at the local scale to larger 

scales.  

Future satellite missions are expected to widen our opportunities to better estimate vegetation, 

evaporation and soil moisture at higher spatial resolutions and thus provide an indirect way to 

understand if a certain area is irrigated and, more importantly, how much it is irrigated (see 

Massari et al., 2021). For instance, one of the most innovative missions for vegetation monitoring, 

planned to be launched by 2025, is represented by the FLuorescence EXplorer (FLEX) mission 

which will fly in tandem with the Copernicus Sentinel-3 mission, working in combination with 

the Ocean and Land Color Instrument (OLCI) and Land Surface Temperature Radiometer 

(SLSTR). FLEX will provide global maps of vegetation fluorescence that will reflect the plants 

photosynthetic activity as well as plant health and stress and that could be directly linked to 

irrigated crops. The exploitation of these new data will require advancements also for the 

vegetation modeling perspective as, to make them ready to ingest fluorescence data, they should 

at least dynamically simulate vegetation (as Noah-MP already does).  Other future planned 

missions such as TRISHNA (Lagouarde et al., 2019) or the ESA land surface temperature 

monitoring (LSTM) will also provide enhanced high spatial-temporal resolution LST which could 

be used in synergy with other EO as mentioned earlier (Lei et al., 2020) with the aim to improve 

RZSM and evaporation even over small irrigated areas. 

On the microwave side, high resolution backscatter data will benefit from the launch of Sentinel-

1C and Sentinel-1D satellites that will extend the Sentinel-1 monitoring system, at least until the 

end of 2030, providing a long term record of radar observations that could be used for precision 

agriculture and irrigation monitoring. Additionally, the future launch of the US-Indian NASA-

ISRO SAR (NISAR) and Radar Observing System for Europe—L-band (ROSE-L) SAR missions 

https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/644216/EPRS_BRI(2019)644216_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/644216/EPRS_BRI(2019)644216_EN.pdf
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(https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf), planned to be 

launched in 2022 and 2028, are expected to provide improved observations of soil moisture given 

the better penetration depth and the less sensitivity to vegetation of L-band observations (as 

compared to Sentinel-1 products in C-band). 

As previously mentioned, higher temporal resolution is also needed to improve DA and 

irrigation information retrievals. In this context, a new era of small, lightweight satellites 

represented by the low-cost constellations of CubeSats is a future opportunity for hydrological 

sciences (McCabe et al., 2017) and a trade-off to optimize temporal and spatial resolution of EO 

opening new opportunities for high precision agriculture (Aragon et al., 2018). 

5.2 Improving models 

LSMs offer the opportunity to estimate land surface variables beyond what can be observed, i.e. 

at times and locations that are unobserved, or variables that are not observed. Irrigation 

represents one of the most difficult fluxes to model given that it is not only induced by water 

stress but is driven by economic and societal factors. Therefore, improving model ability to 

simulate irrigation is one of the most important research challenges that the model community 

should solve in the future. The improvement of irrigation quantification and estimation of land 

surface variables requires an additional effort to obtain high-quality LSM parameter input 

datasets such as: i) soil texture maps; ii) maps of the crop types; iii) updated information on 

irrigated areas; and iv) information on the irrigation types (i.e., sprinkler, drip, or flood) which 

affect the daily timing and quantity of irrigation water applied. All this information should be 

synergistically used within models to provide a more realistic representation of natural and 

human processes and in order to achieve the ability to provide a faithful digital (hydrological) 

replica of the Earth (DARTH, Rigon et al., 2022). For this, model and EO communities should 

have stronger and closer collaborations. 

Furthermore, the meteorological input given to LSMs could be refined to better estimate the needs 

for irrigation. Large-scale re-analysis data are typically of a coarse resolution and are often 

corrected with local measurements. Such data are thus likely less certain in Africa or South 

America than over the study areas included in this PhD thesis. Additional structural model 
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changes are also needed in the next future to account for the actual source of applied water (i.e., 

surface water or groundwater) which currently do not allow an integrated water resource 

analysis. 

The above discussion focuses on the prognostic LSM and irrigation model. However, the use of 

satellite data and their conversion to useful geophysical information requires diagnostic radiative 

transfer models. In this thesis, MW backscatter data were related to soil moisture and vegetation 

via the WCM, but preliminary results show that machine learning could possibly outperform the 

WCM. Active MW signals are still not fully understood and further developments of backscatter 

models would be a good investment for future research. 

5.3 Data assimilation 

In addition to the improvements needed in model structure, parameters and input data, land 

surface estimates can be enhanced via state updating through DA. In this thesis, a filtering 

approach was used, but alternative solutions such as smoothers could be more beneficial for e.g. 

vegetation updating. While DA experiments that ingest post-retrieval RS observations might be 

impacted by inconsistencies between model structure and retrieval assumptions, DA of raw MW 

data also strongly depends on the ability of the observation operator (WCM within this thesis) to 

represent the physical processes related to emitted or reflected radiations such as the influence of 

different satellite orbits, soil roughness and texture, vegetation structure, etc. For instance, future 

analyses of this work will consider the implementation of routines to take into account different 

satellite (Sentinel-1) orbits, because differences in backscatter statistics for different orbits were 

found to have an impact on DA results and on the choice of the best way to consider the 

vegetation descriptor within the WCM calibration (i.e, from model or from satellite observations). 

This and other issues could be solved via well designed synthetic experiments (planned in the 

near future). 

The DA system developed in this research will be additionally tested and improved in the 

framework of international research projects such as the ESA 4D-MED project, recently started 

and led by the CNR-Irpi in a collaboration with different partners, including KU Leuven. The 

project aims at facing one of the main challenges in hydrological research which is to develop an 
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advanced, high-resolution, and consistent reconstruction of the Mediterranean terrestrial water 

cycle and to test the ability of new EO to improve predictions of hydrology extremes (floods, 

landslides and drought). The system implemented within this doctoral activity will serve as a 

basis to include the assimilation of multiple EO data next. For instance, the joint assimilation of 

Sentinel-1 backscatter to update soil moisture and vegetation states together with ingestion of 

Sentinel-1 snow depth (Lievens et al., 2019) is expected to significantly enhance model simulation 

of the water cycle. Indeed, an improvement in snow water equivalent simulation will impact the 

soil moisture after snowmelt. New developments in the project framework will theoretically 

enhance the water cycle description and the water resources management, in order to create a 

closer link between science and society via science-based tools compatible with decision making 

processes. 

5.4 Impacts 

This research activity has important scientific, technological, economic and societal impacts. A 

better estimation of the water used for irrigation as well as better estimates of LSM variables are 

necessary conditions to provide an optimal water management and help in predicting water 

scarcity conditions. Furthermore, a good management of water abstractions can prevent adverse 

events such as river degradation, groundwater depletion and human-driven alteration of land 

uses. From the technological point of view, the implementation of an open source DA system able 

to produce better estimates of LSM variables in a flexible DA framework, open to further 

developments, such as the NASA LIS framework can provide a solution for the current 

fragmentation of tools and services for water resource management (which negatively impacts 

every water resource management practice). In this context, the structure of LIS allows 

researchers contributing to future developments of the DA components, addressing this study in 

the direction of a Digital Twin Earth (DTE) for Hydrology system. As described in Rigon et al. 

(2022) a DTE should be developed with the final aim to accelerate the transition from fragmented 

hydrologic DA research towards community-supported and open-source systems that can 

operate an efficient ingestion of satellite data. In this context, an additional step forward is 

represented by also taking into account the influence of atmospheric processes, through a coupled 
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land-atmosphere system. For instance, LIS can be coupled with the NASA-Unified Weather 

Research and Forecasting (NU-WRF) model as in Lawston et al. (2015).  

Finally, on the economic and societal perspective, the objective to realistically characterize the 

different components of the terrestrial water cycle will help in minimizing future water conflicts 

within poorly gauged regions of the planet, and in understanding potential environmental 

human migrations. In this context, the complex links between climate change impacts and its 

induced environmental human mobility need to be considered. Water scarcity and drought 

events, declining crop yields and biodiversity, land degradation as well as sea level rise are 

among the major potential climate impacts that are shifting patterns of migrations (UNEP, 2016; 

World Bank, 2018). In other words, this approach of this PhD thesis, further corrected for the 

above-identified limitations and applied over large scale areas, could ensure a better management 

of water resources to supply food, water and energy security to human needs, especially in 

developing countries. 
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