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Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies

greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to

develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients

with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27

demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large

global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency,

conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discon-

tinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce

model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity

was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the

Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response

comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous

therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher

probability of disability progression during treatment with injectable therapies was predominantly associated with a greater dis-

ability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with

lower pretreatment relapse activity. The probability of disability regression was predominantly associated with pre-baseline dis-

ability, therapy and relapse activity. Relapse incidence was associated with pretreatment relapse activity, age and relapsing disease

course, with the strength of these associations varying among therapies. Accuracy and internal validity (n = 1196) of the resulting

predictive models was high (480%) for relapse incidence during the first year and for disability outcomes, moderate for relapse

incidence in Years 2–4 and for the change in the cumulative disease burden, and low for conversion to secondary progressive

disease and treatment discontinuation. External validation showed similar results, demonstrating high external validity for disabil-

ity and relapse outcomes, moderate external validity for cumulative disease burden and low external validity for conversion to
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secondary progressive disease and treatment discontinuation. We conclude that demographic, clinical and paraclinical information

helps predict individual response to disease-modifying therapies at the time of their commencement.

1 CORe, Department of Medicine, University of Melbourne, 300 Grattan St, Melbourne, 3050, Australia
2 Department of Neurology, Royal Melbourne Hospital, 300 Grattan St, Melbourne, 3050, Australia
3 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE-17177, Sweden
4 Department of Neurology and Center of Clinical Neuroscience, General University Hospital and Charles University in Prague,

Katerinska 30, Prague, 12808, Czech Republic
5 Department of Statistics and Probability, University of Economics in Prague, Winston Churchill Sq 1938/4, Prague, 13067, Czech

Republic
6 Department of Medicine, University of Melbourne, 300 Grattan St, Melbourne, 3050, Australia
7 University of Bari, Via Calefati 53, Bari, 70122, Italy
8 Hospital Universitario Virgen Macarena, Amador de los Rios 48-50. 4a, Sevilla, 41003, Spain
9 Department of Neuroscience, Imaging and Clinical Sciences, University ‘G. d’Annunzio’, Via dei Vestini, Chieti, 66100, Italy
10 Department of Biomedical and Neuromotor Sciences, University of Bologna, Via dei Vestini, Bologna, 66100, Italy
11 Hopital Notre Dame, 1560 Sherbrooke East, Montreal, H2L 4M1, Canada; CHUM and Universite de Montreal, Montreal,

Canada
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Introduction
Multiple sclerosis is the second most common cause of dis-

ability in young adults and is associated with significant

societal costs (Noseworthy et al., 2000). At the present

time, no neuroregenerative or remyelinating therapies are

available for clinical use and so the core of multiple scler-

osis management lies in preventing episodic inflammation

and relapse-related disability accrual.

Despite the rapid development of multiple sclerosis

pharmacotherapy over the past 5 years, prevention of dis-

ability in patients with multiple sclerosis has been subopti-

mal. The most effective of the available immunotherapies

mitigate the short-term risk of disability progression by

30–42% (Wingerchuk and Carter, 2014). This imperfect

result is mainly attributed to the large interindividual vari-

ability in the clinical multiple sclerosis phenotype and the

treatment response (Hegen et al., 2016). From the patients’

perspective, the time while exposed to multiple sclerosis

disease-modifying therapies (DMTs) with a suboptimal in-

dividual effect translates into ongoing loss of capacity.

While an enormous effort is being invested into developing

new, more potent DMTs for multiple sclerosis, it is of para-

mount importance that use of the currently available DMTs

is optimized. Therefore, accurate and timely detection of

individual response to these DMTs is an essential requisite

of efficient personalized multiple sclerosis therapy. Even

though prediction of individual disease course has now

become feasible (Tintore et al., 2015; Spelman et al.,

2016), prediction of individual treatment response remains

an area of unmet need.

‘Real-world’ data have now established their role in the

evaluation of the effectiveness and safety of multiple scler-

osis DMTs (Kalincik and Butzkueven, 2016). Large repre-

sentative observational cohorts systematically followed for

long intervals of time provide a unique opportunity to de-

cipher the patterns of disease phenotypes, which act as

modifiers of treatment effect and are indicative of individ-

ual responsiveness to therapy (Waldman and Terzic, 2016).

In this study, we used MSBase, a global multiple sclerosis

cohort study to evaluate demographic, clinical and simple

paraclinical predictors (treatment) of future response to

DMTs for multiple sclerosis and to develop a predictive

algorithm applicable in clinical practice.

Materials and methods

Ethics statement

The MSBase cohort study (Butzkueven et al., 2006) (registered
with WHO ICTRP, ID ACTRN12605000455662) was
approved by the Melbourne Health Human Research Ethics
Committee, and by the local ethics committees in all partici-
pating centres (or exemptions granted, according to applicable
local laws and regulations). Written informed consent was ob-
tained from enrolled patients as required.

Study design

This study evaluated demographic, clinical and paraclinical
predictors of treatment outcomes (confirmed progression or
regression of disability, relapse incidence, conversion to sec-
ondary progressive multiple sclerosis, change in the cumulative
disease burden, and DMT discontinuation) at the time of initi-
ating new DMT. All eligible patients from the global MSBase
cohort who had commenced a new DMT during the prospect-
ively recorded follow-up were included. Forty-two models (one
for each combination of DMT and outcome) were built. The
models were applied in prediction of treatment outcomes in
individual patients and their accuracy was evaluated. Internal
validity was established in a separate, non-overlapping MSBase
cohort. External validity was established in the Swedish
Multiple Sclerosis Registry (Hillert and Stawiarz, 2015).

Patients and follow-up

Longitudinal demographic, clinical, and paraclinical data from
117 multiple sclerosis centres in 34 countries were extracted
from the MSBase cohort study in November 2015. Patients
were enrolled based on the following inclusion criteria: diag-
nosis of multiple sclerosis or clinically isolated syndrome based
on the 2005 or 2010 revised McDonald criteria (Polman et al.,
2005, 2011), commencement of an index DMT during the
prospectively recorded follow-up (irrespective of their previous
exposure to DMTs), minimum pre-DMT follow-up of
6 months (with the exception of the patients with 56-month
disease duration), minimum on-treatment prospective follow-
up of 6 months, availability of the minimum dataset [i.e. pa-
tient sex, year of birth, year of the first clinical presentation,
disease course, treating centre and at least two clinical visits
with recorded Extended Disability Status Scale (EDSS) scores],
and a disability score (EDSS) recorded between 6 months prior
to and 1 month following the index DMT commencement.
Patients with inactive primary progressive multiple sclerosis
were excluded (Lublin et al., 2014). Objective data quality
assessment was conducted using a data quality and generaliz-
ability process identifying any incomplete, invalid or inconsist-
ent entries (Kalincik et al., 2017) (Supplementary Table 1).

The analysed data were recorded as part of quality clinical
practice, mostly at large tertiary multiple sclerosis centres, typ-
ically with near-real time data entry (at the time of clinical
visits). The MSBase protocol stipulates minimum annual up-
dates of the minimum dataset, but patients with less frequent
visits were not excluded from the analysis. Data entry portal
was either the iMed patient record system or the MSBase
online data entry system. The prospective follow-up was
defined as the time between the first and the last EDSS entries
(which typically coincide with objective neurological
assessment).

Disability was assessed by the treating neurologists using
EDSS, with Neurostatus certification required at each centre
(Kurtzke, 1983). Relapse was defined as occurrence of new
symptoms or exacerbation of existing symptoms persisting
for at least 24 h, in the absence of concurrent illness or
fever, and occurring at least 30 days after a previous relapse
(Schumacher et al., 1965). Disease course was evaluated using
the diagnostic criteria by Lublin and colleagues (2014).

The results of MRI acquired up to 2 years before the DMT
commencement were included. Brain and spinal cord MRIs

2428 | BRAIN 2017: 140; 2426–2443 T. Kalincik et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/140/9/2426/4061515 by U

N
IVER

SITA D
EG

LI STU
D

I D
I FIR

EN
ZE, BIBLIO

TEC
A BIO

M
ED

IC
A user on 27 April 2022



were reviewed by the treating physicians at each participating
centre and qualitative results were recorded (normal/abnormal-
multiple sclerosis/abnormal non-multiple sclerosis). Further
more, presence/absence of any contrast-enhancing lesions or
new hyperintense T2 lesions on brain and spinal cord MRIs
was recorded.

Qualitative results of a CSF analysis prior to the DMT com-
mencement were reported by treating physicians as normal/ab-
normal-multiple sclerosis/abnormal non-multiple sclerosis.

Study outcomes

For each therapy, only outcomes recorded during a treated
period (i.e. between treatment commencement and treatment
cessation or the last recorded EDSS entry, whichever occurred
first) were taken into account. Progression of disability was
defined as increase in EDSS score by 1.5 steps if previous
EDSS was 0, increase by 1 step if previous EDSS was 1–5.5
and increase by 0.5 steps if previous EDSS was 56. Only the
progression events confirmed over 56 months (with the con-
firmation EDSS recorded 430 days following a previous re-
lapse and irrespective of treatment status at the time of
confirmation) and sustained for the duration of the follow-up
were considered (Kalincik et al., 2015a).

Similar to the disability progression, regression of disability
was defined in three strata (decrease in EDSS by 1.5 steps if
EDSS was �1.5, 1 step if EDSS was 2–6 and 0.5 step if EDSS
was 56.5), confirmed over 56 months and sustained for the
duration of the follow-up.

Relapses, including dates of onset, were recorded.
Conversion to secondary progressive multiple sclerosis was

evaluated among patients diagnosed with clinically isolated
syndrome or relapsing-remitting multiple sclerosis using an ob-
jective definition developed and validated in the MSBase
cohort (Lorscheider et al., 2016). The definition requires dis-
ability progression by 1 EDSS step in patients with EDSS� 5.5
or 0.5 EDSS steps in patients with EDSS5 6 in the absence of
a relapse, a minimum EDSS score of 4, a minimum pyramidal
functional system score of 2, and confirmed progression over
53 months, including confirmation with the leading func-
tional system score.

Change in the cumulative disease burden (due to both flux in
disability and multiple sclerosis relapses) was quantified as the
annualized change in the area under EDSS-time curve relative
to the pre-DMT EDSS score (�AUC) (Liu and Blumhardt,
2000; Kalincik et al., 2015b).

Discontinuation dates of DMTs were recorded.

Statistical analysis

Statistical analyses were carried out using R, version 3.0.3 (R
Development Core Team, 2011). The point and interval esti-
mates of data distributions were expressed as means with 95%
confidence intervals, or medians with interquartile range, as
appropriate.

The analysis was completed in three stages. First, a series of
predictive models were built using training cohorts, which for
each therapy consisted of 90% of the eligible patients. A pre-
dictive model was designed for each DMT (using a subgroup
commencing the corresponding DMT during the prospective
follow-up) and study outcome (see above). Patients who suc-
cessively commenced multiple treatments were allowed to

contribute to models for multiple therapies but a maximum
of one entry per patient was allowed in each model. The as-
sociation of a recent treatment switch and its likely reason
with disease activity on the current index DMT was accounted
for by including in the models the patients’ previous treatment
status and on-treatment disease activity. Second, internal val-
idity of the predictive models was tested in independent, non-
overlapping testing cohorts that consisted of 10% of the eli-
gible patients for each DMT. Third, external validity of the
predictive models developed in the training MSBase cohorts
were applied in an independent cohort consisting of all eligible
patients commencing the respective therapies in the Swedish
Multiple Sclerosis Registry.

The probabilities of experiencing on-treatment disability pro-
gression, disability regression, or relapses and their determin-
ants were evaluated with a series of univariate marginal
proportional hazards models (Andersen-Gill models with one
variable per model and cluster term for patient). The probabil-
ities of conversion to secondary progressive multiple sclerosis,
or discontinuing therapy and their determinants were evalu-
ated with a series of univariate Cox proportional hazards
models. The hazard function for each survival model was esti-
mated as:

ŜiðtÞ ¼ eð�Â0ðtÞÞ
eðx0

i
b̂ Þ

ð1Þ

where Si represents the cumulative hazard of event at time t, xi

is the vector of principal components, � is the vector of coef-
ficients estimated by maximizing partial likelihood and A0 is
the baseline hazard function. The baseline hazard function was
estimated with the Nelson-Aalen non-parametric estimator of
the hazard function:

Â0ðtÞ ¼
X

j:tj�t

dj

rj
ð2Þ

where di is the number of events and ri is the number of pa-
tients at risk at ti (Nelson, 1972). The proportional hazards
assumption was tested by evaluating Schoenfeld residuals and
where violated the coefficients were excluded. The candidate
predictor variables are shown in Table 2. The relationship
between �AUC and its potential determinants was evaluated
with a series of univariate linear regression models.

Multivariable analyses of the study outcomes were con-
ducted using the models as described above, including all the
potential determinants of multiple sclerosis outcomes.
Dimensionality of the multivariable analyses was reduced by
a non-linear principal component analysis (package ‘homals’)
in the pooled training cohort, including categorical and con-
tinuous variables, with components identified by an eigenvalue
40.001, explaining 45% of the variance in the model, and
containing at least two variables with loadings 40.1. Non-
linear principal component analysis is a homogeneity analysis
with restrictions on its quantification matrix, which uses non-
linear transformations (i.e. categorization) of the observed
variables (de Leeuw and Mair, 2009). The criterion of mini-
mizing the departure from homogeneity is measured by a loss
function, which in ‘homals’ is based on indicator matrices of
binary dummy variables for the number of variable
levels � the number of observations. This structure allows
for data missingness and as a result, values of the principal
components can be estimated even for patients with incomplete
data (de Leeuw and Mair, 2009).

Predicting response to multiple sclerosis therapy BRAIN 2017: 140; 2426–2443 | 2429

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/140/9/2426/4061515 by U

N
IVER

SITA D
EG

LI STU
D

I D
I FIR

EN
ZE, BIBLIO

TEC
A BIO

M
ED

IC
A user on 27 April 2022



The calculated principal components were used as independ-
ent predictors of cumulative hazards or �AUC in the multi-
variable models. In addition to the principal components for
the treatment effect modifiers of interest, two ‘adjustment com-
ponents’ were defined using the variables specific to the train-
ing cohort–multiple sclerosis centre, treatment start date,
frequency of the on-treatment visits, and the number of re-
corded pretreatment EDSS scores, in order to mitigate the con-
founding associated with the variability in local clinical
practice and the flux in diagnostic and management strategies.
As a result, each multivariable model of study outcomes con-
sisted of three principal components, two adjustment compo-
nents and an error term. Compound symmetry covariance
structure was used, given the use of the Andersen-Gill
models and the orthogonality of the principal components
(Supplementary Fig. 3).

Predictive modelling of treatment
outcomes in individual patients

A predictive model was built for every combination of the
seven studied DMTs and the six defined treatment outcomes
for which sufficient information was available in the training
cohort. The structure of the predictive models corresponded to
the structure of the models described above. The individual
probabilities of the outcomes were estimated using the b coef-
ficients and the error terms estimated for the three principal
components by the above described multivariable models
(excluding the ‘adjustment components’ as these were not
available for the prediction of outcomes). The accuracy of
the predictions was assessed in the training cohort and the
internal validity was evaluated in the testing cohort, comparing
the estimated outcomes to the observed outcomes for every
patient. External validity of the predictive models was evalu-
ated in the Swedish Multiple Sclerosis Cohort.

The individual value of the principal components was recon-
structed for each patient using the loadings generated by the
principal component analysis and individual values of the con-
tributing variables. The values of the principal components
were then substituted into the predictive models in order to
calculate mean estimated hazard of the study outcomes or the
mean �AUC over the following 4 years, and their 95% pre-
diction intervals, for each individual patient.

For the repeated events (disability progression, disability re-
gression, or relapses), the predictive accuracy and validity at
each year was quantified as the proportion of patients in
whom the observed number of events was equal to predicted
mean rounded to the nearest integer (where that integer was
�0.33 points from the predicted mean) or either of the two
neighbouring integers (where the predicted mean was 40.33
points from either integer). For the unique events (conversion
to secondary progressive multiple sclerosis or discontinuation
of DMT), the prediction accuracy and validity at each year
was quantified using the Harrell’s C (with the area under the
curve for the receiver operation characteristic converted into
percentage). For �AUC, accuracy and validity at each year
was quantified as the proportion of patients with the observed
�AUC falling within the interval determined by the lower
and the greater half-integer nearest to the predicted mean
�AUC.

Results

Patients and follow-up

Overall, 9193 patients with cumulative prospective follow-

up of 81 933 patient-years (mean 9.0 years, median 8.1

years, quartiles 5.0–12.0 years) fulfilled the inclusion cri-

teria (Supplementary Figs 1, 2 and Supplementary Table 2

show patient disposition by DMT, centre, and start and

end of the analysed on-treatment period, respectively).

The sample was representative of the population treated

in tertiary multiple sclerosis centres, with 72% of the pa-

tients being female, median age at switching therapy of 38

years, time from the first clinical multiple sclerosis presen-

tation of 7 years and median EDSS score of 2.5 (Table 1).

The pooled training cohort included 8513 patients and the

testing cohort consisted of 1196 patients of similar charac-

teristics (Table 1). The former was used to develop the

predictive models and test their individual predictive accur-

acy, and the latter was used to assess their internal validity.

Characteristics of training cohort stratified by study ther-

apy are shown in Supplementary Table 3. External validity

was evaluated in 2945 eligible patients from the Swedish

Multiple Sclerosis Registry.

Predictors of treatment response

In this exploratory step, all baseline demographic, clinical

and paraclinical patient characteristics (Table 2) were eval-

uated for their associations with the defined on-treatment

disease outcomes (cumulative probability of disability pro-

gression or regression, multiple sclerosis relapses, conver-

sion to secondary progressive disease, �AUC, or

probability of treatment discontinuation) in a series of uni-

variate models. A large number of associations were iden-

tified. As an example, the variables associated with the

probability of disability progression events for each of the

studied DMTs are shown in Table 2. A number of associ-

ations were consistent between DMTs, such as, a greater

risk of disability progression in older age, secondary pro-

gressive multiple sclerosis, more severe disability, more pro-

nounced impairment of gait, or history of relapses with

incomplete recovery. These variables can therefore be con-

sidered as prognostic markers of disease outcomes. Several

other variables showed differential associations with dis-

ability progression hazard across DMTs (in terms of both

the strength and the direction), such as the most recent

DMT. These variables therefore acted as modifiers of treat-

ment effect (Sormani, 2017). The above exploratory ana-

lyses were unadjusted for the numerous confounders

inherent in the observational data and therefore are not

to be interpreted as independent predictive markers.

Principal components

To evaluate independent predictors of disease outcomes

without the risk of model overparametrization,
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Table 1 Characteristics of the study population at the start of the study therapy

Training cohort Testing cohort Validation cohort

Source MSBase MSBase Swedish Multiple

Sclerosis Registry

Patients (% female) 8513 (72) 1196 (73) 2945 (72)

Age, yearsa 37.9 � 10.2 37.2 � 10.0 39.1 � 10.8

Disease duration, yearsb 6.6 (2.5, 12.4) 7.0 (1.8, 12.2) 6.6 (2.4, 12.3)

Disease course, patients

Clinically isolated syndrome (%) 609 (7) 90 (8) n/a

Relapsing-remitting (%) 7167 (84) 1014 (85) 2886 (98)

Secondary progressive (%) 634 (7) 86 (7) n/a

Active primary progressive (%) 103 (1) 6 (0.5) 59 (2)

Disability, EDSS stepb 2.5 (1.5, 4) 2.5 (1.5, 4) 2.5 (1.5, 3.5)

Functional system score: pyramidalb 1 (1, 3) 2 (1, 3) n/a

Functional system score: sensoryb 1 (0, 2) 1 (0, 2) n/a

Functional system score: visualb 0 (0, 1) 0 (0, 1) n/a

Functional system score: cerebellarb 0 (0, 2) 0 (0, 2) n/a

Functional system score: brainstemb 0 (0, 1) 0 (0, 1) n/a

Functional system score: sphinctericb 0 (0, 1) 0 (0, 1) n/a

Functional system score: cerebralb 0 (0, 0) 0 (0, 0) n/a

Functional system score: ambulatoryb 0 (0, 0) 0 (0, 0) n/a

EDSS trajectory, slopeb + 0.3 (0.1, 0.7) + 0.3 (0.1, 0.6) + 0.3 (0.1, 0.8)

EDSS change in the previous year

Increase, patients (%) 1847 (22) 245 (21) 615 (21)

Decrease, patients (%) 627 (7) 95 (8) 177 (6)

Total number of previous relapsesb 3 (2, 6) 4 (2, 6) 2 (1, 3)

Annualized relapse rateb 1.1 (0.7, 2.0) 1.1 (0.7, 2.0) 0.95 (0.4, 1.7)

Prior on-treatment relapsesb 0 (0, 2) 0 (0, 2) 0 (0, 1)

Relapses in the preceding earb 1 (0, 2) 1 (0, 2) 1 (0, 2)

Predominant relapse phenotype

Pyramidal (%) 2161 (25) 317 (27) n/a

Sensory (%) 2515 (30) 372 (31) n/a

Visual (%) 1073 (13) 135 (11) n/a

Brainstem (%) 862 (10) 130 (11) n/a

Cerebellar (%) 353 (4) 44 (4) n/a

Sphincteric (%) 94 (1) 5 (0.4) n/a

Cerebral (%) 22 (0.3) 4 (0.3) n/a

Brain MRI

Active (%) 1491 (18) 197 (17) 591 (20)

Missing (%) 4347 (51) 612 (51) 1278 (43)

Spinal MRI

Active (%) 427 (6) 48 (4) 66 (2)

Missing (%) 7609 (89) 1074 (90) 2768 (94)

Follow-up duration, yearsa 9.0 � 5.1 9.4 � 5.2 9.4 � 4.8

Number of on-study visitsb 8 (4, 14) 9 (5, 15) 7 (4, 10)

Treatment persistence, yearsb 2.3 (1.3, 4.2) 2.3 (1.2, 4.0) 3 (1.5, 5.1)

Number of previous DMTsb 1 (0, 1) 1 (0, 2) 1 (0, 2)

Time from discontinuing previous DMT, yearsb 0 (0, 0.1) 0 (0, 0.1) 0 (0, 0.1)

On-study DMT, patients

Interferon b-1a, IM 1720 191 678

Interferon b-1a, SC 2660 295 265

Interferon b-1b 1317 146 242

Glatiramer acetate 1792 199 523

Fingolimod 1483 164 530

Natalizumab 1431 159 1231

Mitoxantrone 404 44 217

aMean � standard deviation.
bMedian (quartiles).

IM = intramuscular; n/a = data not available; SC = subcutaneous.
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Table 2 Predictors of disability progression events for each of the analysed therapies

Interferon

b� 1a, IM

Interferon

b� 1a, SC

Interferon

b�1b

Glatiramer

acetate

Fingolimod Natalizumab Mitoxantrone

Demographic and general clinical information

Sex

Female Ref Ref Ref Ref Ref Ref Ref

Male � � � np � 0.35 � 0.15 �

Age 0.03 � 0.01 �0.04 � 0.01 0.03 � 0.00 0.02 � 0.01 n/a 0.03 � 0.01 �

Disease duration np �0.07 � 0.02 0.03 � 0.01 0.03 � 0.01 � � �

Disease course

Relapsing-remitting Ref Ref Ref Ref Ref Ref Ref

Clinically isolated syndrome �0.54 � 0.17 � �0.51 � 0.26 � � �14.00 � 0.43 �14.57 � 0.53

Secondary progressive 0.61 � 0.24 � 0.76 � 0.12 0.72 � 0.18 1.16 � 0.19 0.67 � 0.27 1.03 � 0.30

Progressive-relapsing � � 0.86 � 0.33 0.92 � 0.31 � � �

First symptom:

Supratentorial � � � � � � �

Optic pathways � � � � � � �

Brainstem � � � � �0.39 � 0.2 � �

Spinal cord � 0.45 � 0.17 � � � � �1.14 � 0.46

Disability

Disability, EDSS np 0.38 � 0.04 0.14 � 0.03 0.15 � 0.03 0.10 � 0.04 � �

EDSS trajectory, slope �0.18 � 0.04 0.28 � 0.03 �0.14 � 0.05 �0.15 � 0.06 � � �

EDSS change

None Ref Ref Ref Ref Ref Ref Ref

Increase 0.49 � 0.16 �1.37 � 0.59 � � 0.85 � 0.23 0.87 � 0.25 �

Decrease � 1.08 � 0.15 np � �0.42 � 0.22 � �

EDSS functional system score:

Pyramidal 0.14 � 0.06 0.17 � 0.07 0.23 � 0.04 np 0.14 � 0.07 � �

Sensory � 0.35 � 0.08 � � � �0.19 � 0.07 �

Visual �0.22 � 0.09 � � � � � �

Brainstem 0.18 � 0.08 � � 0.25 � 0.06 � � �

Cerebellar np 0.29 � 0.08 0.18 � 0.05 0.29 � 0.05 0.24 � 0.07 0.17 � 0.06 �

Sphincteric np � 0.26 � 0.06 � � 0.15 � 0.07 �

Cerebral � � � � � � �

Ambulatory � 0.21 � 0.05 0.09 � 0.03 0.09 � 0.03 0.12 � 0.04 0.06 � 0.03 0.11 � 0.05

Therapy

Previous DMTs, number 0.11 � 0.06 �0.35 � 0.13 � 0.15 � 0.04 � � �

Time from the previous DMT �4�10�4
� 10�4

� � 4x10�4
� 10�4

� � �

Most recent prior DMT

None

Stem cell therapy n/a n/a n/a 1.47 � 0.70 n/a n/a n/a

Interferon b - 1a, IM � �0.56 � 0.21 � 0.47 � 0.17 � np �

Interferon b - 1a, SC � �0.53 � 0.21 � 0.39 � 0.15 � � �

Interferon b - 1b np �1.73 � 0.72 �0.37 � 0.18 0.50 � 0.17 � � �

Glatiramer acetate � � 0.44 � 0.19 � � � �

Teriflunomide n/a n/a n/a n/a n/a n/a n/a

Dimethyl fumarate n/a n/a n/a n/a n/a n/a n/a

Fingolimod � � � n/a � 0.83 � 0.43 1.49 � 0.59

Cladribine n/a n/a n/a n/a � � n/a

Natalizumab � � � 0.96 � 0.34 � � �

Alemtuzumab n/a n/a n/a n/a n/a n/a n/a

Rituximab n/a n/a n/a n/a n/a n/a n/a

Mitoxantrone � � � � � � �

Most active prior DMT

None

Interferon b-1a, IM � �0.43 � 0.21 � � � � �

Interferon b-1a, SC � �0.49 � 0.21 � � � �0.57 � 0.19 �0.78 � 0.35

Interferon b-1b n/a n/a n/a n/a n/a n/a n/a

Glatiramer acetate � � � � � � �

Teriflunomide n/a n/a n/a n/a n/a n/a n/a

Dimethyl fumarate n/a n/a n/a � n/a � n/a

Fingolimod 1.7 � 0.88 � n/a n/a n/a � n/a

(continued)
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dimensionality of the multivariable models was first

reduced by principal component analysis. Three principal

components (PC1–3) were identified, with the eigenvalues

of 0.0019, 0.0013 and 0.0010, and with the proportion of

explained variance of 13%, 9% and 7%, respectively. The

loadings of the variables into the three components are

shown in Table 3. PC1 is representative primarily of the

overall neurological disability, its components, the previous

therapy and the previous treatment response. PC2 repre-

sents mainly the frequency, severity and impact of the pre-

vious multiple sclerosis relapses, patient age and multiple

sclerosis course. PC3 represents mainly the first multiple

sclerosis presentation. Categorized outcomes of brain and

spinal MRI scans contributed small loadings to all three

Table 2 Continued

Interferon

b� 1a, IM

Interferon

b� 1a, SC

Interferon

b�1b

Glatiramer

acetate

Fingolimod Natalizumab Mitoxantrone

Cladribine n/a n/a n/a n/a n/a n/a n/a

Natalizumab n/a � � 1.06 � 0.33 � � �

Alemtuzumab n/a n/a n/a n/a n/a n/a n/a

Mitoxantrone � � � � � � �

Disease activity

Annualized relapse rate 0.10 � 0.03 np � 0.09 � 0.02 � � �

Relapses in the previous year � 0.42 � 0.06 � � �0.33 � 0.10 �0.35 � 0.08 �0.23 � 0.11

Relapses with impact on

activities of daily living

� 0.19 � 0.06 � � � � �

Relapses with impact on

activities of daily living

(last 2 years)

� 0.51 � 0.12 �0.46 � 0.20 � � � �

Severe relapses � � � � � � �

Severe relapses (last 2 years) �0.28 � 0.13 0.25 � 0.09 � � � � �

Relapses with poor recovery 0.20 � 0.05 0.16 � 0.04 np 0.14 � 0.03 0.10 � 0.04 � �

Relapses with poor recovery

(last 2 years)

0.21 � 0.10 0.46 � 0.09 � 0.23 � 0.08 � � �

Relapses on DMTs 0.12 � 0.03 � � 0.05 � 0.02 �0.06 � 0.03 � �0.14 � 0.06

Predominant relapse phenotype

None Ref Ref Ref Ref Ref Ref Ref

Pyramidal � � � � � � �

Sensory np � �0.45 � 0.16 �0.37 � 0.16 �0.71 � 0.23 �0.82 � 0.25 �0.88 � 0.41

Visual �0.41 � 0.19 � �0.50 � 0.20 �0.91 � 0.25 �0.74 � 0.33 �0.88 � 0.40 �

Brainstem �0.41 � 0.20 �0.87 � 0.35 �0.66 � 0.22 �0.53 � 0.23 �0.93 � 0.4 � �

Cerebellar � � � � � � �

Sphincteric 0.89 � 0.34 � � � np n/a n/a

Cerebral � n/a n/a � n/a � n/a

Relapses in the last 2 years

Pyramidal 0.27 � 0.08 0.21 � 0.08 � 0.19 � 0.07 � � �

Sensory � 0.23 � 0.06 � np �0.47 � 0.14 �0.39 � 0.09 �0.51 � 0.24

Visual � � �0.63 � 0.17 � �0.70 � 0.29 � �

Brainstem � � �0.39 � 0.12 � � � �

Cerebellar � 0.46 � 0.16 � 0.38 � 0.11 �1.03 � 0.38 � �

Sphincteric 0.45 � 0.14 � � 0.51 � 0.16 � � �

Cerebral � � � � n/a � �

Brain MRI

Active � 0.61 � 0.20 �0.66 � 0.22 � � � �

Inactive � � � � � � �

Spinal MRI

Active � 0.62 � 0.27 � � � � �

Inactive � 0.66 � 0.30 � � � � �

CSF

Abnormal, multiple

sclerosis-typical

� � � np � � �

Abnormal, multiple

sclerosis -atypical

� � � � np � �

The table shows the b coefficients � standard error for univariate Andersen-Gill regression models. Only the coefficients that reached the level of statistical significance a� 0.05 are shown.

IM = intramuscular; n/a = insufficient data/poor model fit; np = violation of the proportionality of hazards assumption; Ref = Reference value; SC = subcutaneous.
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Table 3 Variable loadings into the three principal components

Principal component PC 1 PC 2 PC 3

Demographic and general clinical information

Sex �0.003 �0.009 �0.002

Age 0.044 �0.058 0.002

Disease duration 0.019 �0.026 0.016

Disease course 0.066 �0.057 �0.006

First symptom: supratentorial (y/n) 0.003 0.043 0.123

First symptom: optic pathways (y/n) 0.002 0.039 0.115

First symptom: brainstem (y/n) 0.002 0.041 0.122

First symptom: spinal cord (y/n) 0.005 0.042 0.120

Disability

Disability, EDSS 0.121 �0.054 �0.014

EDSS trajectory, slope �0.030 0.049 �0.032

EDSS change (increase/decrease) 0.046 0.001 �0.004

EDSS functional system score:

Pyramidal 0.101 �0.048 �0.005

Sensory 0.071 �0.018 0.001

Visual 0.033 �0.015 �0.015

Brainstem 0.052 �0.031 �0.011

Cerebellar 0.088 �0.041 �0.010

Sphincteric 0.086 �0.043 �0.007

Cerebral 0.056 �0.032 �0.016

Ambulatory 0.101 �0.051 �0.012

Therapy

Previous DMTs, number 0.087 �0.032 0.041

Time from the previous DMT 0.052 �0.030 0.027

Most recent prior DMT 0.088 �0.047 0.049

Most active prior DMT 0.066 �0.032 0.043

Disease activity

Annualized relapse rate 0.024 0.068 �0.019

Relapses in the previous year 0.033 0.108 �0.030

Relapses with impact on activities of daily living 0.065 0.043 �0.013

Relapses with impact on activities of daily living (last 2 years) 0.058 0.073 �0.029

Severe relapses 0.081 0.054 0.003

Severe relapses (last 2 years) 0.072 0.090 �0.019

Relapses with poor recovery 0.086 0.040 �0.009

Relapses with poor recovery (last 2 years) 0.070 0.074 �0.029

Relapses on DMTs 0.085 0.010 0.028

Predominant relapse phenotype 0.050 0.034 0.034

Relapses in the last 2 years

Pyramidal 0.076 0.070 �0.016

Sensory 0.028 0.087 �0.006

Visual �0.002 0.050 �0.021

Brainstem 0.013 0.052 �0.018

Cerebellar 0.048 0.039 �0.028

Sphincteric 0.032 0.037 �0.020

Cerebral 0.020 0.017 �0.021

Brain MRI 0.018 �0.002 �0.011

Brain MRI activity �0.004 �0.023 �0.006

Spinal MRI 0.020 0.009 0.016

Spinal MRI activity �0.011 �0.017 �0.009

CSF 0.004 �0.011 �0.014

The table shows loadings of the variables included in the non-linear principal component analysis into the three principal components. The variables with the largest loadings into each

of the principal components are shown in bold.
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principal components. Distribution of the principal compo-

nents in the training cohort is shown in Supplementary Fig.

3. The estimated principal components and the principal

components reconstructed using the individual patient char-

acteristics and their loadings were highly correlated

(Supplementary Fig. 4). In addition, two adjustment com-

ponents were calculated as described above.

Multivariable predictive models

The independent associations between the principal compo-

nents and the probability of the defined multiple sclerosis

outcomes for each DMT and treatment outcome are shown

in Table 4. Several consistent patterns were identified

across the treatment groups. PC1 (representing mainly dis-

ability and previous therapy) was positively associated with

disability progression, regression, relapse incidence, second-

ary progressive multiple sclerosis and DMT discontinu-

ation, and negatively associated with �AUC for

interferon b and glatiramer acetate. It was also associated

with some of the above outcomes for fingolimod and nata-

lizumab. PC2 (representing mainly the relapse-related vari-

ables) was positively associated with on-treatment relapse

incidence and regression events (across all DMTs), and

negatively associated with progression events, secondary

progressive multiple sclerosis and �AUC mainly for

interferon b and glatiramer acetate, but partly also for fin-

golimod, natalizumab, and mitoxantrone. PC3 (represent-

ing mainly the multiple sclerosis onset phenotype) was

positively associated with �AUC, and negatively associated

with disability regression events mainly for interferon b.

Importantly, associations specific for the different DMTs

were observed (Table 4), indicating that the models did

not merely predict overall disease outcomes but estimated

DMT-specific outcomes.

Individual prediction of multiple
sclerosis outcomes

The coefficients presented in Table 4 and their margins or

error formed the basis for the 42 predictive models

(Supplementary Table 4). Figures 1 and 2 show two ex-

amples of prediction of treatment outcomes for interferon

b-1a subcutaneous and natalizumab. The figures show the

most likely number of events experienced by a patient trea-

ted with either DMT over up to 4 years, or the predicted

area under disability-time curve. The first patient, with

moderately advanced, active relapsing-remitting multiple

sclerosis, is likely to derive a relatively greater benefit

from natalizumab—in terms of minimising relapse fre-

quency, progression of disability and, notably, the risk of

Table 4 Associations between the principal components and treatment outcomes for each of the analysed therapies

Interferon

b-1a, IM

Interferon

b-1a, SC

Interferon

b-1b

Glatiramer

acetate

Fingolimod Natalizumab Mitoxantrone

Disability progression events

PC 1 29 � 9 23 � 7 14 � 7 31 � 6 � � �

PC 2 � �31 � 9 �36 � 10 � �48 � 16 �39 � 15 �41 � 17

PC 3 48 � 18 � � � � � �

Disability regression events

PC 1 38 � 12 49 � 9 42 � 9 30 � 9 34 � 8 34 � 8 �

PC 2 � 45 � 10 50 � 11 � 33 � 10 � 69 � 18

PC 3 �57 � 12 �43 � 10 �27 � 12 � � � �

Incidence of relapses

PC 1 28 � 4 23 � 3 � 25 � 4 28 � 4 32 � 5 �

PC 2 44 � 6 38 � 4 41 � 5 39 � 6 20 � 6 20 � 7 43 � 12

PC 3 � � �19 � 7 � � 38 � 19 �

Conversion to secondary progressive multiple sclerosis

PC 1 109 � 15 93 � 10 58 � 11 79 � 11 78 � 13 52 � 12 57 � 22

PC 2 �69 � 22 �60 � 14 �67 � 16 �35 � 16 �64 � 19 �84 � 16 �81 � 27

PC 3 � � � � � � �

Annualized change in the area under disability–time curve

PC 1 �15 � 3 �14 � 2 �13 � 3 �9 � 2 �13 � 2 �15 � 3 �

PC 2 � �13 � 3 �17 � 4 �8 � 4 �10 � 3 �11 � 4 �13 � 4

PC 3 17 � 4 16 � 3 9 � 4 � � 17 � 8 �

Discontinuation of therapy

PC 1 39 � 5 17 � 3 17 � 4 16 � 4 24 � 7 � �

PC 2 � � 11 � 5 � � � �

PC 3 � � � � 64 � 32 � �

The table shows b coefficients for multivariable Andersen-Gill, Cox or linear regression models (as appropriate for the distribution of the outcome variables, see the ‘Materials and

methods’ section). Only the coefficients that reached the level of statistical significance a� 0.05 are shown.

IM = intramuscular; n/a = insufficient data; PC = principal component; SC = subcutaneous.
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conversion to secondary progressive multiple sclerosis. In

contrast, the second patient, who is treatment-naı̈ve and

at the early stage of her disease, is likely to experience

similar disability outcomes on either therapy, only with a

relatively greater suppression of relapse frequency by nata-

lizumab. Supplementary Fig. 5 illustrates the effect of data

missingness on the predictive models. When only patient

sex, age, disease duration and the number of previous re-

lapses is considered, the ability of the models to differenti-

ate between the two therapeutic approaches diminishes—in

particular, it affects the prediction of conversion to second-

ary progressive disease and �AUC. Figure 3 presents an

example of a full prediction of disability progression

events for the seven DMTs in a patient with active second-

ary progressive multiple sclerosis, for whom the hazard of

disability progression events is likely to be better mitigated

by high-efficacy DMTs compared with injectable platform

therapies (Lizak et al., 2017). An example of a full predic-

tion of all six treatment outcomes in seven DMTs is given

in Supplementary Fig. 6.

Prediction accuracy and validity

Accuracy of the predictive models in the training cohorts is

shown in Supplementary Table 5 and their validity in the

testing cohorts is shown in Supplementary Fig. 7. The ac-

curacy and internal validity of the predictive models was

high for disability progression, disability regression and re-

lapse incidence during the first year, moderate for relapse

incidence for Years 2–4 and �AUC, and low for conver-

sion to secondary progressive multiple sclerosis and treat-

ment discontinuation.

Figure 1 An example of individual prediction of response to interferon b-1a and natalizumab in moderately advanced, active

multiple sclerosis. Six treatment outcomes are predicted for a 43-year-old female with relapsing-remitting multiple sclerosis, with an EDSS

score of 5 (with sensory functional score of 4, and pyramidal, cerebellar and ambulatory functional scores of 3) and increase in the EDSS score

within the previous year, who first presented with spinal cord symptoms at the age of 33. The patient had previously experienced 10 multiple

sclerosis relapses, mostly with pyramidal symptoms, six of these of high severity and one while treated with DMTs, with the most recent relapse

having occurred 51 days before the date of the prediction. She was previously treated with two DMTs, her most aggressive DMTwas natalizumab

and she discontinued interferon b-1a subcutaneous 51 days before the prediction. Her brain and spinal cord MRI showed abnormal findings in

keeping with the diagnosis of multiple sclerosis and her CSF showed oligoclonal bands that were not present in the serum. Information about 74–

93% of the variables informing the predictive models was available. The curves represent the most probable number of outcome events or area

under EDSS-time curve (�95% prediction interval) over the next 4 years if recommencing natalizumab or interferon b-1a subcutaneous. The

shading of the curves illustrates the robustness of the prediction (quantified as the product of the size of the training cohort and the accuracy of

the prediction in the testing cohort).
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Table 5 shows the results of the evaluation of external

validity of the predictive models in an independent database

(Swedish Multiple Sclerosis Registry). Between 217 and

1231 eligible patients were identified for the studied thera-

pies. Similar to the results of accuracy and internal validity,

the overall 4-year prediction was highly accurate for disabil-

ity progression, disability regression and relapse incidence.

The external validity was moderate for the prediction of

�AUC and low for the prediction of conversion to second-

ary progressive disease and treatment discontinuation.

Discussion
Using MSBase, a large global cohort study, and Swedish

Multiple Sclerosis Registry, a population-based national

registry, we have designed and validated comprehensive

predictive models of the outcomes of treatment with

seven commonly used disease modifying therapies for mul-

tiple sclerosis.

Modifiers of treatment outcomes

The multivariable models confirmed our hypothesis that

treatment outcomes vary with respect to patients’ demo-

graphic and clinical characteristics. Moreover, we have

observed that the associations between these demographic

and clinical treatment effect modifiers and the treatment

outcomes vary among DMTs, an observation that is the

key to individualized therapy (Sormani, 2017). For ex-

ample, the higher probability of disability progression

during treatment with interferon b or glatiramer acetate

was predominantly associated with a greater disability at

the treatment commencement and high severity and poor

Figure 2 An example of individual prediction of response to interferon beta-1a and natalizumab in early multiple sclerosis. Six

treatment outcomes are predicted for a 35-year-old female with relapsing-remitting multiple sclerosis, with an EDSS score of 2.5 (sensory and

cerebellar functional system scores of 2 and cerebral functional system score of 1) and a mean increase in EDSS by 2.5 steps during the previous 6

months, who presented with the first multiple sclerosis symptoms less than a year ago. The patient has experienced two relapses, both with

incomplete recovery, the most recent relapse recorded 15 days prior to the prediction date. She was not previously treated. Her brain and spinal

cord MRI showed abnormal findings in keeping with the diagnosis of multiple sclerosis and her CSF showed oligoclonal bands that were not

present in the serum. Information regarding 74–93% of the variables informing the predictive models was available. The curves represent the most

probable number of outcome events or area under EDSS-time curve (�95% prediction interval) over the next 4 years if switching to natalizumab

or interferon b-1a subcutaneous. The shading of the curves illustrates the robustness of the prediction (quantified as the product of the size of the

training cohort and accuracy of the prediction in the testing cohort).
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recovery from prior relapses. During treatment with fingo-

limod, natalizumab or mitoxantrone, higher risk of disabil-

ity progression was mainly associated with lower relapse

activity within the year prior to commencing therapy. The

probability of disability regression was predominantly asso-

ciated with pre-baseline disability, therapy and high relapse

activity. As expected, incidence of relapses was associated

with pretreatment relapse activity, younger age and relap-

sing-remitting disease course for all therapies, however, the

strength of these associations varied among DMTs.

Similarly, conversion to secondary progressive disease

showed variable associations with higher disability scores

Figure 3 An output of the models predicting 6-month confirmed disability progression for seven DMTs in a 43-year-old male

with highly active secondary progressive multiple sclerosis. He experienced nine multiple sclerosis relapses since disease onset 10 years

prior to the prediction, predominantly with pyramidal symptomatology, including a relapse 29 days prior to the prediction date. Five relapses were

recorded as severe, with seven occurring while treated with DMTs. Four relapses were followed by incomplete recovery and the current EDSS

step was 5. Until 11 days prior to the prediction, he was treated with interferon b-1a subcutaneously. Brain MRI showed findings typical for

multiple sclerosis. The curves represent the most probable number of confirmed disability progression events (�95% prediction interval) over

the next 4 years. The shading of the curves illustrates the robustness of the prediction (quantified as the product of the size of the training cohort

and accuracy of the prediction in the testing cohort).

Table 5 External validity of the predictive algorithm

DMT External

validation

cohort

Relapses,

%

Disability

progression,

%

Disability

regression,

%

Annualized

change in AUC,

%

Secondary

progressive

disease, %

Discontinuation,

%

Interferon b-1a, IM 678 79 93 96 39 19 9

Interferon b-1a, SC 265 83 91 96 31 42 10

Interferon b-1b 242 82 89 94 41 19 5

Glatiramer acetate 523 79 92 96 40 9 9

Fingolimod 530 92 96 95 39 33 13

Natalizumab 1231 95 95 86 47 18 3

Mitoxantrone 217 94 86 95 34 7 6

Proportion of the eligible patients from the Swedish National Multiple Sclerosis Cohort in whom the predictive outcomes over 4 years after commencing index therapy fulfilled the

definition of accurate prediction. IM = intramuscular; SC = subcutaneous.
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and lower relapse activity. Increase in the overall disability

burden was associated with lower pretreatment disability

and relapse activity, less aggressive therapy, younger age

and relapsing-remitting disease course. The associations

for the discontinuation of therapy were highly variable

among DMTs.

Previous studies have evaluated modifiers of composite

treatment outcomes, defined as ‘treatment response’. The

definitions typically consisted of combinations of relapse ac-

tivity, its reduction, relapse severity, disability accrual and

radiological activity (Trojano et al., 2003; Waubant et al.,

2003; Portaccio et al., 2006; Horakova et al., 2012;

Prosperini et al., 2012; Sargento Freitas et al., 2013).

These studies identified indicators of poor response to inter-

feron b as younger age at treatment start (Waubant et al.,

2003) or disease onset (Fromont et al., 2008), shorter

(Waubant et al., 2003) or longer (Trojano et al., 2003) dis-

ease duration, low (Trojano et al., 2003; Waubant et al.,

2003; Portaccio et al., 2006; Fromont et al., 2008) or high

(Coppola et al., 2006; Portaccio et al., 2006; Sellebjerg et al.,

2014) pretreatment relapse activity, greater disability

(Coppola et al., 2006; O’Rourke et al., 2007), and mono-

symptomatic multiple sclerosis onset (Fromont et al., 2008).

In addition, two studies identified lower (Sargento Freitas

et al., 2013) or higher (Prosperini et al., 2012) relapse ac-

tivity, and higher disability (Prosperini et al., 2012) as indi-

cators of poor response to natalizumab over 2 years. The

variability among the published studies is most likely attrib-

utable to the variability in the definition of treatment re-

sponse and study populations. Our present study confirms

a number of the above observations and provides a compre-

hensive prediction of individual treatment outcome metrics

rather than a composite prediction of overall treatment re-

sponse. The individual outcome metrics are of a greater rele-

vance to neurologists than composite classifiers (such as the

presence or absence of treatment failure) as they facilitate

more granular discussion, beyond the broad terms of the

‘poor versus good’ response dichotomy.

Numerous other molecular, genetic and quantitative

radiological modifiers of treatment outcomes have been

proposed (Bosca et al., 2010; Vosslamber et al., 2011;

Horakova et al., 2012; Malhotra et al., 2013; Mahurkar

et al., 2014; Matas et al., 2014; Uher et al., 2014; Charbit

et al., 2015; Hegen et al., 2016; Kuhle et al., 2017). While

these modifiers could add significantly to the predictive

models by incorporating pathophysiological mechanisms

of on-treatment multiple sclerosis activity, their availability

in clinical practice is at the present time limited, as many

are still awaiting validation.

Analytical approach

Observational data are subject to multiple biases, including

indication and detection bias, and Will Rogers phenom-

enon (Kalincik and Butzkueven, 2016). Relative to com-

parative studies of treatment outcomes, the impact of

these biases on the modifiers of treatment outcomes in a

non-comparative setting is less pronounced. To ameliorate

the bias, all multivariable models were adjusted for a large

number of potential confounders, including sex, age, dis-

ease duration, disability, previous disease activity and MRI

(indication bias), centre, visit frequency, and the number of

EDSS scores (detection bias), and the date of treatment

start (Will Rogers phenomenon). We have shown that, at

least in some situations, reduced information limits the abil-

ity of the models to differentiate between outcomes of dif-

ferent treatment strategies. Therefore, access to

comprehensive information about patients and their disease

is a key to robust prognostics.

To prevent overparametrization, whose risk would be

high in the inclusive multivariable models, we have reduced

dimensionality of the models using principal component

analysis. While this approach has resulted in good model

fit and better control of missing data, it precludes detailed

evaluation of the independent associations between the

treatment modifiers and treatment response. Instead, the

models are based on cumulative information represented

in the three principal components, which mirror the

known epidemiology and pathophysiology of multiple

sclerosis: (i) patients’ disability and previous exposure and

response to DMTs; (ii) history of relapses (including their

frequency, severity and recovery), age, disease phenotype;

and (iii) the initial multiple sclerosis symptoms.

In addition, the models included cohort-specific adjust-

ment in order to mitigate the effects of the geography-

and site-specific variability, and flux in diagnostic and man-

agement strategies. This adjustment was used in the study

models but not in the implemented predictive models, as

outside the training cohort it would introduce extrapolation

beyond the available data.

Accuracy of the predictive models

We have addressed the issue of internal validity by evalu-

ating the accuracy of the predictive models in validation

cohorts that were separate from the training cohorts. The

observed accuracy and validity were satisfactory, in par-

ticular for the 4-year prediction of disability progression

and regression and 1-year incidence of relapses.

Importantly, evaluation of external validity in a geograph-

ically non-overlapping cohort (Swedish Multiple Sclerosis

Registry) showed prediction accuracy that was very similar

to the results of internal validation from the MSBase

cohort. This result represents an independent replication

of the primary analyses and demonstrates broad generaliz-

ability of its results.

The criteria for evaluating the internal and external val-

idity of the predictive models were focused on point pre-

dictors. This is a conservative approach, as in addition to

the mean predicted event incidence, clinicians are also pro-

vided with the indication of uncertainty of each prediction

in the form of the 95% prediction intervals. This facilitates

a realistic interpretation of the predicted mean values in the

context of their accuracy and robustness (Fig. 3).
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Limitations

It should be noted that for some DMTs, such as cladribine,

alemtuzumab, teriflunomide or dimethyl fumarate, the

available treated cohorts were either too small or the re-

corded follow-up was too short to enable development of

informative predictive models. These models will be

included in the future iterations of the predictive

algorithm.

Data missingness for brain and spinal MRI was high.

Furthermore, the classification of MRI activity was binary

(present/absent). Finally, the MRI data were physician-re-

ported and therefore subject to inter-scanner and inter-rater

error. These factors may lead to underestimation of the true

predictive value of these variables in relation to the treat-

ment outcomes. The fact that the predictive analysis is

based entirely on demographic, clinical and paraclinical in-

formation precludes evaluation of any underlying patho-

physiological mechanisms of treatment response. These

will be enabled by future inclusion of molecular or genetic

markers in the existing models. For example, the risk of

adverse events could not be predicted based on the avail-

able information (data not shown). On the other hand, like

the models predicting conversion to definite multiple scler-

osis (Tintore et al., 2015; Spelman et al., 2016), our models

of individual treatment response use commonly accessible

information and are therefore readily applicable in clinical

practice.

Conclusion
The Multiple Sclerosis Brain Health initiative has high-

lighted the importance of ‘treating the right patient with

the right drug at the right time’ in order to prevent accu-

mulation of irreversible neurological and cognitive disabil-

ity and maximize outcomes in patients with multiple

sclerosis (www.msbrainhealth.org; accessed on 30/08/

2016). Our present study identifies patterns in the prevalent

multiple sclerosis population, whose predictive value ex-

ceeds that of the isolated individual variables. It addresses

the area of need, moving from cohort to patient, by trans-

lating disease patterns into individual treatment response.

Importantly, we provide detailed information about the ac-

curacy and robustness of the predictions, which is specific

to each patient’s individual scenario and treatment choice.

The models will be made available to physicians in the

form of a web-based tool and will be incorporated in the

MSBase data entry software (where it will not request any

additional data entry from the physicians in order to con-

duct a prediction) with the aim of providing supporting

information to complement treatment decision process.

Finally, the models provide a framework for implementa-

tion of novel molecular, genetic and radiological modifiers

of treatment effect into a comprehensive predictive

algorithm.
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