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Abstract

Covariate-dependent Bayesian Models for Heterogeneous Populations

by

Matteo Pedone

In this thesis, we propose two novel Bayesian models for the analysis of health and
genomic data, for which traditional methods are often found to be inefficient or
unsuitable. Our approaches are motivated by the emerging field of precision medicine,
whose ultimate goal is to select the optimal treatment accounting for patient and
disease’s variability. The main distinctive mark of statistical methodology in the
precision medicine paradigm is to leverage patients’ heterogeneity to obtain subject-
specific inference.

First, motivated by a microbiota study on patients affected by colorectal cancer,
we propose a model designed to analyze data that exhibit a hierarchical structure
induced by measurements from multiple tissues of the same patient. Our goal
is to capture patients’ heterogeneity and similarities in terms of effects altering
microbiota composition. Building upon the Dirichlet-multinomial model, we propose
a flexible regression model, where coefficients are allowed to be smooth functions
of the covariates. This results in a subject-specific model where varying coefficients
include two-way linear and non-linear interactions as special cases. This allows us to
recover associations and interactions patterns that may be specific for each individual
rather than estimated at population level.

In the second contribution, we develop a predictive model for the selection of
the personalized optimal treatment in oncology, when a predictive signature and a
set of prognostic biomarkers are available. Predictive covariates are used to drive
a clustering process that results in homogeneous groups of patients. This step is
integrated into a prognostic model to predict response to competing treatments
for new untreated patients. Finally, a utility-based approach allows us to select
the treatment that ensures the larger predicted utility for new patients, based on
their genetic profiles. We employed a Bayesian nonparametric model for random
partition to build our integrative approach. In particular, we explored the use of the
Normalized Generalized Gamma process as cohesion function in a product partition
model with covariates. In contrast with existing methods, we jointly estimate model-
based clustering and treatment assignment from the data, and hence treatment
selection fully accounts for patients’ variability.
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Chapter 1

Introduction

In this chapter, we will detail the scientific and methodological reasons that motivated
the projects collected in the dissertation. In particular, in Section 1.1 we illustrate
that the development of a methodology able to account for heterogeneity in the
population is crucial in the emerging field of precision medicine. The proposed
methods are developed under the paradigm of Bayesian inference. This choice is also
discussed. Section 1.2 introduces some of the modeling tools that we will use in the
following chapters. In Section 1.3, we finally give an overview of the projects.

1.1 Scientific Background and Motivating Studies

The past decade has witnessed impressive advances in the understanding of molecular
mechanisms underlying cancer, leading to some remarkable clinical successes in
molecularly targeted cancer therapy (Ke and Shen, 2017). Nonetheless, successes
in the development of targeted therapies are restricted to limited cases, as the
moderate response rate across an unselected population confirms (Huang et al., 2014).
The complexity that characterizes oncological diseases stems from the fact that
heterogeneity arises from both patients with the same type of cancer and between
cells within one patient. This makes population-based approaches unsuitable for an
adequate understanding of oncogenesis and to devise appropriate cancer therapies
(Betensky et al., 2002). Thus, the approach to cancer treatment is evolving from the
traditional “one-size fits all” toward tailored treatments that account for individual
variability in genes, clinical, and environmental features, termed precision medicine
(De Bono and Ashworth, 2010).

Statistical methodology research in precision medicine is devoted to the develop-
ment of personalized treatment rules to inform decision-making. Broadly speaking,
the main distinctive mark of statistical inference in the precision medicine paradigm
is to disregard heterogeneity as a nuisance to inference, but rather to take advantage
of it to improve therapeutic strategies (Kosorok and Laber, 2019). This approach can
shape the statistical methodology through the different stages of oncological studies.
In fact, estimating average effects (that is population-level effects) using linear or
constant-effects models for heterogeneous populations may result in biased estimates
(Pearl, 2017). As a consequence, neglecting heterogeneity may lead inference to
invalid conclusions.

In this sense, precision medicine represents a challenging discipline and specific
statistical literature is now emerging to develop adequate methodologies. This
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1.1. Scientific Background and Motivating Studies

dissertation consists of two projects in which we develop statistical models that aim
at providing contributions to this area of research and that are specifically devised
for motivating applications.

Motivating study 1. Niccolai et al. (2020) provide a microbiome study conducted
on patients affected by colorectal cancer (crc). For each patient, up to three
biological samples have been collected from different districts (tumor, fecal and
salivary samples), and dietary habits have been measured along with clinical factors.
Due to tumor heterogeneity, even patients with the same type of cancer may feature
diverse microbial alteration, determined by their specific genomic profiles. Moreover,
clinical covariates and dietary habits may produce alterations in the microbiota
composition that either vary across districts or are district-specific.

We propose a hierarchical regression model in Chapter 2 to detect significant
associations between covariates and microbial composition. The proposed method
accounts for heterogeneity through the use of varying coefficients that include two-way
interactions as a special case. Interactions among continuous covariates are modeled
with a penalized splines (P-splines) approach for flexible modeling of continuous
interactions.

Motivating study 2. The Cancer Genome Atlas (tcga) provides clinical and
level 3 protein expression data for patients affected by lower-grade glioma (lgg).
We are interested in personalized optimal treatment selection, that is detecting
the therapy ensuring the largest benefit for each patient, integrating predictive
and prognostic biomarkers in the decision-making process. However, this poses
a challenging statistical problem, since oncological patients should not be always
regarded as exchangeable, since each tumor is unique, due to its large heterogeneity.

Our approach consists in identifying, for each treatment, a group of historical
patients to which the new untreated patient should be considered exchangeable based
on a measure of molecular similarity. Building on this, the treatment that ensures
the largest predicted utility is to be considered the optimal one. In Chapter 3, we
develop a predictive model for treatment selection that employs a covariate-dependent
random partition model to obtain homogeneous groups of patients with respect to
predictive biomarkers.

1.1.1 Bayesian paradigm

The Bayesian approach is particularly suited for the statistical challenges which
we aim to address in the two projects. It allows to easily incorporate biological
assumptions into the model structure, through prior distribution and flexible modeling
techniques. The main challenges posed by the motivating examples are:

1. Heterogeneity. Biological data are intrinsically heterogeneous. Each patient
has unique features and conducting inference at the population level may
neglect the inherent patients’ diversity and potential latent structure in the
data.

2. Sparsity. In biomedical applications, sparsity is a fair prior expectation. Al-
though complex, biological phenomena are usually explained by sparse represen-
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1.2. Technical Background

tations. Moreover, sparse solutions improve statistical models’ interpretability
and inference accuracy.

3. Nonlinearity. Complex biological mechanisms suggest nonlinear relationships
between outcome and clinical factors. Approaches that fail to account for such
nonlinear dependencies may lead to erroneous inference.

In addition, the Bayesian paradigm offers a sound framework for decision-making.
The decision-making process relies on a posteriori quantities of unknown parameters
estimated on available evidence. As a consequence, the decision fully accounts for the
uncertainty that characterizes our knowledge, leading to a decision-making process
that is reliable and evidence-based.

Finally, mcmc procedures developed for fitting Bayesian models can easily be
derived to implement fairly complex models tackling above listed challenges.

1.2 Technical Background

In this section, we briefly introduce some modeling tools that we use in the dissertation
to obtain flexible models. What follows has no claim to completeness: the goal is
to provide a brief overview of techniques the statistical methods developed in the
following chapters build upon. In particular, we will present Varying Coefficient
Models (Section 1.2.1), P-Splines (Section 1.2.2), and Product Partition Models with
Covariates (1.2.3).

1.2.1 Varying coefficient models

Varying Coefficient Models (vcm) are a useful tool to explore dynamic patterns in the
data. In particular, they are a flexible extension of classical linear regression models,
of which they retain interpretability. vcms were firstly proposed by Cleveland et al.
(1991). In their original formulation, considering a scalar X and a P−dimensional
vector of covariates Z, the vcms assumes the form of a multivariate regression
function:

E(y|X,Z) = Z>β(X),

for unknown functional coefficients β(X) = (β1(X), . . . , βP (X))>.
vcms and approaches for their estimation received great interest in recent years

(see Fan and Zhang (2008) for a comprehensive review). vcms are of particular
interest to us because they allow the coefficients to vary smoothly over the groups
stratified by X and hence permits nonlinear interactions between X and Z.

Here we focus on the vcm generalization proposed by Hastie and Tibshirani
(1993) where, in the framework of glms, they defined a class of models that are
linear in the regressors, but their coefficients are allowed to change smoothly with
the value of other variables termed “effect modifiers”.

Considering n observations, indexed by i = 1, . . . , n, assume we observe a response
vector y = (y1, . . . , yn)> and P covariates z1, . . . ,zP , where zip is the value of
the p−th covariate observed for subject i. Considering a vector of coefficients
β = (β1, . . . , βP )>, in the setting of glms we relate the linear predictor ηi = z>i β to

9



1.2. Technical Background

the mean µi = E(yi|zi) via the link function g(·), that is g(µi) = ηi. In vcms the
linear predictor is defined as

ηi = β0 + zi1β1(xi1) + zi2β2(xi2) + · · ·+ ziPβP (xiP ), (1.1)

where xi1, . . . , xiP are the effect modifiers. Basically, they are additional predictors
that alter coefficients for zi1, . . . , ziP through unspecified functions β1(·), . . . , βP (·).

Effect modifiers can be both continuous or categorical variables. When x1, . . . ,xP
are continuous, then is natural to assume βp(xp), for p = 1, . . . , P to be smooth
functions. Otherwise, if the effect modifiers are categorical variables such that
xip ∈ {1, . . . , K}, then βp(xip) are step functions of the form

∑K
k=1 βpk1[xip=k], where

1[·] is an indicator function. Given parameters βp1, . . . , βpK , the p−th component of

the linear predictor is zipβp(xip) =
∑K

k=1 zipβpk1[xip=k]. For categorical effect modifiers,
such a structure leads to the identification of clusters of patients that share same
effects.

Note that the unspecified functions β(·) can be modeled in a variety of ways
and no predetermined form needs to be assumed on this function. This leaves great
freedom in its specification and hence a careful construction of β(·) permits the
pursuit of several modeling objectives.

It is straightforward to see two-way interactions as a special case of (1.1). De-
pending on the specification adopted for β1(·), . . . , βP (·), the interactions arising
from (1.1) can be linear or non-linear (or both).

Finally, equation (1.1) can be seen as a generalization of several classes of models.
In particular, the following models fall under the vcms class:

glm if βp(xip) = βp for p = 1, . . . , P , that is βp(·) is a constant function and the
terms are linear in z1, . . . ,zP ;

gam (Generalized Additive Models) if zp = 1 for p = 1, . . . , P , then βp(xp) is an
unspecified function of x1, . . . ,xP ;

dglm (dynamic Generalized Linear Models (West and Harrison, 1989)) if data consist
of repeated measurements of y and z1, . . . ,zP over S time points t ∈ (t1, . . . , tS)
(time is the effect modifier), then (1.1) may be defined over time as

ηit = β0(t) + zi1(t)β1(t) + · · ·+ ziP (t)βP (t).

In the context of behavioral sciences, this class of model is also known as
time-varying effect models (tvem) (Tan et al., 2012).

1.2.2 P-splines

In many practical regression situations, common regression models, such as glms,
may not be appropriate. This may be due, without limitation, to correlation patterns
among observations, complex interactions among covariates and large heterogeneity
among individuals. Proposing a more general class of models, Generalized Additive
Models (gam), Hastie and Tibshirani (1986) consider a general regression problem
where observations (yi,xi), i = 1, . . . , n, on a continuous response y and a vector of
continuous covariates x = (x1, . . . , xP )> are given. We also assume responses to be
independent with predictor

ηi = f1(xi1) + · · ·+ fp(xip) + · · ·+ fP (xiP ), (1.2)

10



1.2. Technical Background

for i = 1, . . . , n, and p = 1, . . . , P with common variance across observations.
Assuming the same number of knots for each function, fp can be approximated

by a spline of degree l partitioning the domain of the variable xp with r + 1 equally
spaced knots (Eilers and Marx, 1996)

xp,min = ξp,0 < ξp,1 < · · · < ξp,r−1 < ξp,r = xp,max.

This spline can also be represented as a combination of D = r + l B-spline basis
functions:

fp(xp) =
D∑
ρ=1

βpρBpρ(xp),

where βp = (βp1, . . . , βpD)> is a vector of unknown regression coefficients to be
estimated. The basis functions Bpρ are defined only locally (they are nonzero only
on a domain spanned by 2 + l knots). Moreover, we define the n×D design matrices
Xp, that are constructed such that the element in row i and column ρ is given by
Xp(i, ρ) = Bpρ(xip). We can then rewrite the predictor (1.2) in matrix notation as

η = X1β1 + · · ·+XPβP . (1.3)

In the frequentist setting, regression coefficients are estimated using standard
maximum likelihood algorithms for linear models.

The crucial point of spline regression is the selection of the number of knots and
their positioning. In fact, the number of basis functions must be large enough to
allow for sufficient flexibility, so that the estimated function provides an adequate fit.
Nonetheless, a large number of basis may incur in overfitting, resulting in variable
estimates. Eilers and Marx (1996) proposed the P-spline approach to approximate
fp(xp) using a linear combination of B-spline basis functions. Smoothness is achieved
by imposing a roughness penalty based on differences of adjacent B-Spline coefficients;
in order to guarantee sufficient smoothness of the fitted curves. This leads to penalized
likelihood estimation where the penalized likelihood

L = l(y,β1, . . . ,βP )− λ1

M∑
ρ=k+1

(∆kβ1ρ)
2 − · · · − λP

M∑
ρ=k+1

(∆kβPρ)
2 (1.4)

is maximized with respect to the unknown regression coefficients β1, . . . ,βP . More-
over, ∆k denotes the difference operator of order k. P-splines performances are
highly dependent on the choice of λps, usually selected via cross validation or on
the ground of a goodness-of-fit criterion. However, for a large number of smoothing
parameters, these procedures fail since the effort to compute an optimal solution (if
there is any) becomes intractable. To overcome this limitation Lang and Brezger
(2004) and Brezger and Lang (2006) developed a Bayesian approach to P-splines.
Consistently with the Bayesian paradigm, the unknown parameters β1, . . . ,βP are
random variables and priors are defined by replacing penalties in (1.4) with first or
second order random walk. The general form of the prior for βp is given by

p(βp|τ 2
p ) ∝ 1

(τ 2
p )rank(Kp)/2

exp
(
− 1

2τ 2
p

β
′
Kpβp

)
,

11



1.2. Technical Background

where Kp is an appropriate penalty matrix. Since Kp is rank deficient, the prior is
improper. Finally, the variance parameter τ 2

p is distributed as an Inverse Gamma
p(τ 2

p ) ∼ IG(ap, bp). It controls the trade-off between flexibility and smoothness,
hence it corresponds to the (inverse) smoothing parameter in a penalized likelihood
approach. The Gaussian prior proposed by Brezger and Lang (2006) results in a
conditionally Gaussian prior. Scheipl et al. (2012) show that such prior can always
be recast based on i.i.d. priors, through a suitable spectral decomposition. The
procedure to obtain proper Gaussian priors proposed by Scheipl et al. (2012) is
thoroughly described in Section 2.2.1.

Interestingly, Lang and Brezger (2004) extend their formulation to vcms. In
particular, they adopt a flexible approach based on nonparametric two-dimensional
surface fitting to estimate the interaction between two continuous covariates xp and
xq. The interaction term is modeled by a two-dimensional smooth surface fpq(xp, xq)
leading to a predictor of the form

ηi = · · ·+ fp(xip) + fiq(xiq) + fpq(xip, xiq).

Furthermore, they assume that the unknown surface can be approximated by the
tensor product of two one-dimensional B-spline used to model fp(xp) and fq(xq),
respectively.

1.2.3 Covariate informed random partition

Probability models for random partitions are routinely used in Bayesian data analysis
to uncover latent groups suspected in the data or to discover groups of homogeneous
observations. The groups forming the partition are also referred to as clusters.

Random partition models are employed to obtain a partition of the data such that
the non-overlapping groups are as dissimilar as possible and that the observations
within the same group are as similar as possible. Similarity within groups (dissimi-
larity across groups) can be defined with respect to some covariates. In this case,
covariates guide the construction of the partition to reveal a latent group structure
that corresponds to unobserved heterogeneity. In this sense, the partition depends
on available covariates.

Note that the field of dependent random partition is a very active area of research
and several useful methods have been developed, see Park and Dunson (2010); Blei
and Frazier (2011); Dahl et al. (2017); Paganin et al. (2021). The purpose of this
section is not to give a comprehensive nor exhaustive review of the advancements in
this field, but rather to provide some background context to covariate dependent
partitions used in the following chapters.

In Section 1.2.3 we will present Random Partition Models that implicitly define
a distribution on the partitions set, induced by a discrete random measure. Product
partition models (Section 1.2.3), instead, explicitly define a distribution on the set
of all partitions. Finally in Section 1.2.3 we present product partition models with
covariates (ppmx), a prior on the partition that is informed by covariates, that is a
model-based clustering approach.

Random Partition Models

Let us start with some notation. Let [n] = {1, . . . , n} denote a set of n subjects.
A cluster arrangement Πn = (S1, . . . , SCn) is a partition of [n] into a set of groups
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1.2. Technical Background

{Sj} where j = 1, . . . , Cn, with Sj ∩ Sj′ = ∅ for j 6= j
′

and ∪Cnj=1Sj = [n]. That is
Πn consists of Cn nonempty and mutually exclusive subsets. Also, let nj = |Sj|
denote the size of the j−th cluster. Moreover, we denote with Pn the set of all
partitions of [n], whose size is Bn, the n−th Bell number. It is often convenient to
represent a partition Πn by cluster membership indicators e1, . . . , en with ei ∈ [Cn]
and ei = j ⇐⇒ i ∈ Sj, for i ∈ [n] and 1 ≤ j ≤ Cn.

A random probability model is a probability distribution over Pn:

{p(Πn) : Πn ∈ Pn}.

A common approach to defining p(Πn) is through discrete random probability
measures (rpm). Let us consider a discrete distribution G(·) =

∑∞
h=1 ωhδψh(·) with

probability masses ωh in locations ψh with P (
∑∞

h=1 ωh = 1) = 1. A simple Bayesian
Nonparametric model is

θ1, . . . ,θn | G
iid∼ G

G ∼ RPM
(1.5)

Equation (1.5) indirectly defines a random partition model. In fact, sampling

θi | G
iid∼ G for i = 1, . . . , n results in ties among θ1, . . . ,θn due to the discreteness of

G. Denoting with θ?1, . . . ,θ
?
Cn

the unique values, then Πn can be obtained through
cluster membership indicators:

ei = j ⇐⇒ θi = θ?j or equivalently θi = θ?ei .

Hence, Sj = {i ∈ [n] : θi = θ?j} defines a random partition of [n].
The partition structure can also be investigated considering the exchangeable

partition probability function (eppf). Denoting with (N1, . . . , NCn) = (n1, . . . , nCn)
the relative frequencies of the Cn distinct values in θ1, . . . ,θn, the eppf is the
probability of observing a specific sample (θ1, . . . ,θn) with Cn unique values θ?j with
frequencies n = (n1, . . . , nCn). Let N? = ∪∞k=1Nk and let nj+ denote n with the
j−th cluster size incremented by 1. Formally the eppf p(·) is a symmetric function
p : N? → [0, 1] with

p(n) =
Cn+1∑
j=1

p(nj+) ∀ n ∈ N?

and p(1) = 1. This condition formalizes coherence across sample sizes. This
implies that a random partition model can be expressed as p(Πn = (S1, . . . , SCn)) =
P (n1, . . . , nCn) for any eppf p(·).

The eppf is not always available, but a popular case is the Dirichlet Process (dp)
Random Partition.

Example 1

The random partition induced by a dp random probability measure is known as the
Pólya Urn:

G|κ,G0 ∼ DP (κG0)

θi|G
iid∼ G, for i = 1, . . . , n,

13
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where κ is the concentration parameter. Assuming that cluster labels are indexed
by appearance, the implied prior is of the form

p(Πn) =
κCn−1

∏Cn
j=1(nj − 1)!∏n

i=1(κ+ i− 1)!
.

Product Partition Model

Hartigan (1990) and Barry and Hartigan (1993) proposed the product partition
model (ppm), where the clustering is not induced by a discrete random measure, but
p(Πn) is explicitly defined over Pn. ppm defines a product partition probability for
the random partition:

p(Πn) ∝
Cn∏
j=1

ρ(Sj), (1.6)

where ρ(Sj) is a non–negative function, called the cohesion function, that measures
how strongly one believes elements in Sj are to co-cluster a priori. The normalization

constant in (1.6) is
∑

Πn∈Pn
∏Cn

j=1 ρ(Sj).
Assume we have a set of responses y = (y1, . . . , yn) and let y?j = (yi : i ∈ Sj)

denote the responses arranged by cluster. Conditional on a given partition, ppm
assumes independence across clusters:

p(y|Πn) =
Cn∏
j=1

p(y?j |θ?j ),

where θ?j are cluster-specific parameters. Exchangeability of yi across i ∈ Sj can
be leveraged assuming that yi are independent given θ?j . The posterior distribution
p(Πn|y) is again of product form, that is ppm is conjugate. The updated cohesion
functions are ρ(Sj)p(y

?
j ), where p(y?j ) is the marginal sampling model for yi, i ∈ Sj

given partition Πn. Finally, the Pólya Urn implied by the dp is a special case of
a ppm, with cohesion function ρ(Sj) = κ(nj − 1)!. Also the eppf of a Gibbs-type
prior takes the form of a product partition distribution with cohesion function
ρ(Sj) = (1− σ)nj−1, where (a)k = Γ(a+ k)/Γ(a) denotes a rising factorial.

Covariate-Dependent PPMs

When for inferential purposes there is the need to define subpopulations of subjects
that are homogeneous with respect to some baseline characteristics, it is useful to
add dependence on covariates to the ppm model.

Müller et al. (2011) extended the ppm specifying a probability model for random
partitions that favors clusters that are homogeneous in the covariates x. That is,
using a model p(Πn|x) together with a sampling model p(y|Πn). Note that the
conditioning of the partition on the covariates is just to stress this dependence and
there is no notion of x being random. Let xi = (xi1, . . . , xiQ) be a Q−dimensional
vector of covariates and let x?j = (xi, i ∈ Sj) denote covariates arranged by clusters.
The product partition model with covariates (ppmx) introduces a non-negative
function g(x?j) that formalizes homogeneity among covariate vectors, that is the
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larger values of g(x?j) indicate that subjects in cluster j are judged to be similar. A
ppmx model with similarity function g(x?j), g(·) ≥ 0 is a random partition:

p(Πn|x) ∝
Cn∏
j=1

g(x?j)ρ(Sj),

with normalization constant
∑

Πn∈Pn
∏Cn

j=1 g(x?j)ρ(Sj).
Müller et al. (2011) provide a discussion on the theoretical properties the similarity

function should satisfy and some guidelines for its choice, but any non-negative
function that guarantees an increasing value for close covariate values is suitable
(Page and Quintana, 2018).

The default choice proposed by Müller et al. (2011) is to define g as the marginal
probability of an auxiliary Bayesian model

g(x?j) =

∫ ∏
i∈Sj

Q∏
q=1

q(xiq|ξ?j )q(ξ?j )dξ?j ,

even if xi are not considered random.
Choosing q(xiq|ξ?j ) and q(ξ?j ) as a conjugate pair greatly simplifies analytical

evaluation of g(x?j).

1.3 Overview of Projects

This thesis consists of two projects in which we develop flexible statistical models
for populations that feature significant heterogeneity. Motivated by the challenges
that the emerging field of precision medicine poses, we formulate suitable methods
to deliver personalized inference, taking advantage of the Bayesian framework.

In Chapter 2 we propose a model motivated by a microbiota cancer study designed
to analyze data that exhibit a hierarchical structure induced by measurements from
multiple body tissues. We develop a flexible regression model that accounts for
patients’ heterogeneity and microbial variability across districts to select significant
associations between microbial compositions and covariates. Such flexibility is
achieved by defining varying coefficients that include two-way interactions as a
special case. We use penalized splines to model continuous interactions and penalize
spline coefficients, preventing overfitting. Moreover, continuous interactions can be
classified into linear or nonlinear ones by imposing a suitable prior on the smoothing
parameter of the splines. Finally, varying coefficients depend on subject-specific
parameters so that the resulting model captures dependence structures that vary
across patients. This work is co-authored with Amedeo Amedei (University of
Florence) and Francesco C. Stingo (University of Florence).

In Chapter 3 we present a predictive model for optimal treatment selection
for oncological patients. The motivation for this method comes from an open
problem in cancer genomics and personalized medicine. We devise a model to assign
untreated patients to the treatment that ensures the largest benefit among the possible
therapies. We account for various sources of heterogeneity by integrating prognostic
and predictive biomarkers. Namely, predictive markers are useful for the identification
of patients that are more likely to benefit from a particular therapy. Homogeneous
groups of patients are obtained by constructing a random partition model, whose
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cluster production is driven by predictive covariates. In particular, the class of
product partition model with covariates (ppmx) induces a partition distribution that
encourages patients with close covariates to co-cluster. This strategy is adopted to
characterize the extent of benefit offered by each therapy on groups of patients with
similar predictive determinants. This work is co-authored with Raffaele Argiento
(University of Bergamo) and Francesco C. Stingo (University of Florence).

Chapter 4 concludes this thesis with a brief discussion and indicates directions
for future research.
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Chapter 2

Subject-specific
Dirichlet-multinomial regression
for multi-district microbiota data
analysis

2.1 Introduction

The human microbiota is the set of microbes that the human body harbors. Its
composition is highly diverse due to several host traits such as genotype, physiological
status, and lifestyle (Turnbaugh et al., 2007; Sanz et al., 2015). Microbiota’s impor-
tance in disease and metabolic dysfunction has been increasingly recognized (La Rosa
et al., 2012; Li, 2015). Understanding microbiome dynamics can provide precious
insights on human health. In fact, changes in the regular microbiome composition
have been reported to be correlated with many diseases, including diabetes, obesity,
inflammatory bowel disease, autoimmune diseases, and neurodegenerative disease
(Vieira et al., 2014; Matsuoka and Kanai, 2015; Tai et al., 2015; Mandrioli et al.,
2019). In addition, investigating the genetic diversity of microbial populations and
their role is now crucial in non-infectious diseases such as cancer, where specific
bacteria have been demonstrated to influence the carcinogenesis’ process (Zhang and
Sun, 2018), especially in colorectal cancer (crc) (Russo et al., 2018; Niccolai et al.,
2020).

Recent dna sequencing technologies can be used to evaluate the composition
of the microbiome; statistical analysis of these measurements can shed light on
interactions between microbiota and host. Microbiota data are usually obtained
targeting 16s rrna. The 16s rrna gene of the bacteria in the samples is sequenced
and the resulting reads are clustered into operational taxonomic units (otus). otus
are defined as a cluster of reads that show 97% similarity. The membership count of
sequences in each cluster is considered to measure the abundance of taxa in each
sample. From this procedure an n×J otus table is obtained, where n is the number
of samples read and J is the number of taxa. otus abundance table can be used to
identify which factors regulate microbiota composition and whether any associations
may be established between biological or genetic traits and microbiota abundance.
Microbiome data are typically challenging as otus tables exhibit zero-inflation,

17



2.1. Introduction

overdispersion, complex correlation structures, and high-dimensionality. Moreover,
microbiome data have compositional structure, due to fixed sequencing depth.

The relationship between predictors and microbe abundance is often explored
through regression models for multivariate count data. Chen and Li (2013b) proposed
a Dirichlet-multinomial (dm) regression to test the association between microbiome
composition and covariates and developed a penalized likelihood approach to induce
sparsity by imposing a `1 penalty. Regularization and different penalties are explored
in Zhang et al. (2017), where generalized linear models that incorporate various
correlation structures among counts have been studied and compared. Bayesian
methods have proved to capture model selection uncertainty better than constrained
optimization approaches, especially in high-dimensional and highly-correlated settings.
Wadsworth et al. (2017) adopted a dm regression framework imposing spike-and-
slab priors, which led to better significant associations recovery. Ren et al. (2020)
proposed a generalized mixed-effects linear model where the marginal prior on each
microbial composition is a Dirichlet process and dependence across compositions
is induced through a linear composition of individual covariates and latent factors.
In a longitudinal setting, considering a negative binomial regression model, Shuler
et al. (2018) extended conventional nonlocal priors (Rossell and Telesca, 2017) where
the hierarchical model construction fosters borrowing strength across otus, while
Martin et al. (2019) extended dm regression by using random effects to account for
correlation between time points in the repeated-measurement setting.

Several methods exploit microbial abundances (compositional covariates) to
explain clinical variables, this approach is called compositional regression. Lin
et al. (2014) formulates a `1 regularization method for the linear log-contrast model
taking otus tables as compositional covariates. In this context, Bayesian methods
successfully account for the whole phylogenetic tree, using structured prior for joint
selection of closely related organisms (Zhang et al., 2020), or focusing on the difference
in microbiota composition across groups with graphical models that takes advantage
of a phylogenetic scan test (Tang et al., 2018; Mao and Ma, 2020). An interesting
approach that unifies multivariate regression for count data and compositional
regression is a Bayesian joint model proposed by Koslovsky et al. (2020) that performs
variable selection on clinical covariates associated with microbial compositional data
that are concurrently used for the prediction of continuous response.

The objective of this project is to develop a hierarchical Bayesian model for the
analysis of hierarchically structured microbiota count data. We apply our approach
to available measurements of dietary habits and biological samples collected in a
study conducted on patients affected by crc from the Florence metropolitan area in
central Italy (Niccolai et al., 2020). The study was designed to assess associations
between available covariates and different microbiota districts counts. In fact, for each
patient up to three biological samples have been collected (tumor, fecal and salivary
samples). The proposed method accommodates both the hierarchical structure of
the data and the correlation structure induced by repeated measurements on the
same patients.

Cancer is inherently heterogeneous, and the approach to cancer treatment is
evolving from standard procedures like chemotherapy to tailored treatments termed
personalized medicine (De Bono and Ashworth, 2010). Different patients have
diverse responses to the same treatment, even for the same type of cancer, due to
individual variability in genes, clinical variables, and environmental features. The
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proposed approach takes into account patients’ heterogeneity even for small sample
sizes. This is possible because subject-specific parameters are allowed to vary across
patients to accommodate for their heterogeneity, while patients with similar profile
are encouraged to have close effects. Note that subject-specific here does not refer to
the subject-level effect as is typical in mixed models, but rather to coefficients that
vary as a function of a subject’s covariate pattern.

Our approach builds upon the Dirichlet-multinomial regression framework (Wadsworth
et al., 2017) and provides three novel features. Firstly, our approach includes subject-
specific coefficients that can capture a wide range of heterogeneous effects, borrowing
strength among patients with similar clinical profiles and close dietary regimes. Con-
sequently, coefficients are allowed to vary at the subject level; the model can identify
subgroups of patients characterized by similar biological mechanisms (precision
medicine). Secondly, microbial community composition and function is not constant
across body districts; the proposed method combines information from multiple body
districts and learns which effects change and which ones remain constants. Finally,
our method explicitly models two-way interactions. Dealing with interactions is
equivalent to assuming that the effects of predictors depend on the value of other
covariates; specifically, interactions among predictors are modeled as subject-specific
coefficients, hence the proposed model captures dependence structures that vary
across patients.

The rest of the Chapter is organized as follows. Section 2.2 contains the model
formulation, Section 2.3 introduces prior specification; we briefly outline the posterior
computation steps in Section 2.4. In Section 2.5, finite sample performances are
evaluated via simulation studies. In Section 2.6, we illustrate and discuss our analysis
of the crc data. Section 2.7 concludes the chapter with a brief discussion.

2.2 Bayesian Hierarchical Subject-specific Dirichlet-

multinomial Regression Model

In this section we describe our methodological approach. In Section 2.2.1 we review
the Dirichlet-multinomial distribution, and highlight the features that make this
model appropriate for the analysis of microbiota data. In Section 2.2.2, we present
our novel approach, a Dirichlet-multinomial regression model with subject-specific
coefficients.

2.2.1 Dirichlet-multinomial model for microbiota composi-
tion

Considering J microbial taxa, let Y = (Y1, . . . , YJ) be the random vector of the
corresponding counts that follows a multinomial distribution:

fY |φ(y1, . . . , yJ |φ) =

(
y+

y

) J∏
j=1

φ
yj
j
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where y+ =
∑J

j=1 yj and φ = (φ1, . . . , φJ) are taxa proportions defined on the
J−dimensional simplex

SJ−1 = {(φ1, . . . , φJ) : φj ≥ 0,∀j,
J∑
j=1

φj = 1}.

Note that in our notation upper case letters denote random variables, and we refer
to their particular realization with the corresponding lower case letter.
Since microbiota compositions are highly heterogeneous we need to let proportions
vary across samples. To account for overdispersion a conjugate prior is imposed
on the taxa proportions, that is φ ∼ Dirichlet(γ), where γ = (γ1, . . . , γJ) is a
J−dimensional vector with generic strictly positive entry γj > 0 (Chen and Li,
2013b). This hierarchical structure leads to the Dirichlet-Multinomial distribution,
introduced by Mosimann (1962). In fact, integrating the weights φ out we have:

fY |γ(y1, . . . , yJ |γ) =
Γ(y+ + 1)Γ(γ+)

Γ(y+ + γ+)

J∏
j=1

Γ(yj + γj)

Γ(γj)Γ(yj + 1)

where γ+ =
∑J

j=1 γj and Γ(·) is the Gamma function. The first two moments of the
dm distribution are

E(Y ) = y+ γ

γ+
, cov(Y ) = y+γ

+ + y+

γ+ + 1

{
diag

(
γ

γ+

)
−

(
γ

γ+

)(
γ

γ+

)T}
.

The correlation among counts is negative and is affected by the variance inflating
factor γ++y+

γ++1
(Wadsworth et al., 2017; Zhang et al., 2017). Note that γ+ controls the

degree of overdispersion; larger values of γ+ correspond to smaller variances.

2.2.2 Dirichlet-multinomial subject-specific regression model

The dm distribution is more flexible than other models for multivariate count data
since it can account for extra variation in the proportions and overdispersion. This
implies that a dm distribution is particularly suited for the analysis of ecological
count data, and microbiome in particular (Harrison et al., 2020).

The aim of our method is to select associations between covariates and taxa abun-
dances. Suppose we have n microbiome samples and J taxa. Let yi = (yi1, . . . , yiJ)
represent the J−dimensional response vector of microbial taxa abundance counts,
where yij denotes the observed count of otu j collected from the i−th sample, with
i = 1, . . . , n, that is:

Yi ∼ Multinomial(y+
i | φi), (2.1)

with y+
i =

∑J
j=1 yij and φi defined on the J−dimensional simplex SJ−1. To account

for overdispersion in the counts we specify a conjugate prior on the taxa probability:

φi ∼ Dirichlet(γi),

with the J−dimensional vector γi = (γi1, . . . , γiJ), γij > 0 ∀ j. Let γj = (γ1j, . . . , γnj)
be the n−dimensional vector of strictly positive parameters for the dm distribution.
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In order to relate covariates to taxa abundances, we assume that the parameter γij
in the dm model depends on the covariates via a log-linear regression model (Chen
and Li, 2013b; Wadsworth et al., 2017; Koslovsky et al., 2020):

log(γij) = gj(ui), (2.2)

where gj(·) is a generic function, and ui is the 1 ×M vector of the observed M
covariates for sample i. The growth of a bacterial population usually occurs in at
exponential rate, when placed in a favorable medium. Hence the log-linear link is an
assumption commonly considered as appropriate (Chen and Li, 2013b).

The function gj(·) captures the effect that each covariate has on the abundances
of each patient, and it is usually set to be a linear combination of the covariates. In
our framework, we let gj(·) depend on a set of subject-specific coefficients.

Subject-specific coefficients arise when constraints on the parameters need to be
relaxed. In certain applications, it is reasonable to let parameters change with covari-
ates. In particular, we let covariates affect the parameters linearly and nonlinearly.
We assume that subjects with similar covariate patterns are likely to have similar
values of the parameters; this approach allows the model to borrow strength from
similar individuals. Moreover, the model includes body district (i.e., tumor, fecal,
and salivary) specific coefficients that can additionally vary at the patient level, in
an effort to fully account for patient heterogeneity. In summary, we want to investi-
gate whether similar clinical profiles result in similar alterations of the microbiota
composition; an approach based on subject-specific associations provides the needed
flexibility and avoids the “one-size-fits-all” approach of models with only population-
level parameters. Specifically, let ui = (xi, zi) be the observed values of continuous
covariates xi = (xi1, . . . , xip, . . . , xiP ) and binary factors zi = (zi1, . . . , ziq, . . . , ziQ)
for sample i, with M = P + Q. Moreover, let xp and zq denote n samples of the
p−th continuous covariate and q−th factor, respectively. Given the large number of
possible effects, we want the model to select which effects are relevant. In order to
achieve this goal, we let gj(·) depend on varying coefficients and selection mechanisms.
Varying coefficients will vary with the data, both in terms of sparsity and magnitude:

log(γij) = µj +
M∑
m=1

βmj(ui)uim, (2.3)

where the subject-specific coefficient βmj(ui) is an unknown smooth function of u
(Ni et al., 2019a). The summation term in equation (2.3) is defined as follows:

M∑
m=1

βmj(ui)uim =
P∑
p=1

βpj(xi, zi)xip +

Q∑
q=1

βqj(zi)ziq. (2.4)

Note that equation (2.4) includes linear interactions as a special case; moreover,
our approach based on varying coefficients (Hastie and Tibshirani, 1993) can include
more flexible (nonlinear) interaction terms. In our approach, covariates serve two
purposes: on one hand, they enter equation (2.4) as linear predictors with associated
linear/main effects, on the other hand, coefficients change smoothly with the values
of the remaining covariates, i.e., all remaining covariates can potentially act as effect
modifiers (Hastie and Tibshirani, 1993). This double role poses identifiability issues:
when covariates are either main effects or effect modifiers, like in Ni et al. (2019a)
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and Ni et al. (2019b), no identifiability issue occurs. In our model, we develop a
careful construction of subject-specific coefficients to ensure identifiability in the
likelihood. The subject-specific coefficients, as introduced in equation (2.4), depend
on generic functions {βpj(·)}, {βqj(·)} of the covariates. Specifically, we model these
functions as:

βpj(xi, zi) = θpj + h

(
Q∑
q=1

bpqjziq +
P∑
k>p

fpkj(xik), tx

)
(2.5a)

βqj(zi) = θqj + h

(
Q∑
l>q

bqljzil, tz

)
. (2.5b)

The subject-specific coefficient is a structured additive model defined by two sets of
parameters: main effects {θpj}, {θqj} and interactions effects {bpqj}, {bqlj}, {fpkj(·)},
plus a thresholding function h(·) described at the end of this Section. In equations
(2.5a) and (2.5b), {bpqj} and {bqlj} are parameters that estimate the adjustment
provided by discrete covariates {zq} to main effects of continuous and discrete
covariates, {θpj} and {θqj} respectively. Note that the {bqlj} coefficients are included
in the model only if l > q; this simple constrain ensures model identifiability.

We take a semiparametric approach to model the adjustment provided by con-
tinuous covariates to {θpj} and set {fpkj(·)} to be penalized splines. The functions
{fpkj(·)} can effectively capture nonlinear interactions; in order to make the likelihood
identifiable, we include in the model only {fpkj(·)} such that k > p. Moreover, contin-
uous covariates are effect modifiers of the main effect of other continuous covariates
through the term

∑
k>p fpkj(xik) in equation (2.5a); continuous covariates do not

modify the main effects of binary factors. This construction results in an “asymmet-
ric” definition of {βpj(·)} and {βqj(·)}, that nevertheless ensures identifiability for
model parameters in the likelihood. In fact, including continuous covariates as effect
modifiers also for {θqj} would have resulted in a clear overparameterization of the
model. Simulation studies to assess inference invariance to both the ordering of the
covariates and to ties imposed to ensure identifiability in the likelihood are reported
in Appendix A.1 along with a detailed discussion. The functions f(·) are specified
following the penalized spline approach proposed by Scheipl et al. (2012). Specifically,
we set fpkj(xk) = x̃kαpkj, where x̃k represents the design matrix of the spline bases
for xk and αpkj are the corresponding spline coefficients. P-splines can be treated as
a Bayesian hierarchical model (Ruppert et al., 2003) assuming αpkj ∼ N(0, sK−)
with the singular penalty matrix K constructed from the second-order differences of
the adjacent spline coefficients. Since the coefficients that parameterize the constant
and linear trends of {fpkj(·)} are in the null space of K, they are not penalized.
Then we take a spectral decomposition of the covariance of x̃kαpkj:

cov(x̃kαpkj) = sx̃kK
−x̃Tk = s[uk u0]

[
dk 0
0 0

]
[uk u0]T ,

where uk is the orthonormal matrix of eigenvectors with corresponding positive
eigenvalues along the diagonal of matrix dk, while u0 are the eigenvectors associated
with the zero eigenvalues. The smooth functions {fpkj(·)} can now be re-defined as
the sum of nonlinear (penalized) term and a linear (non-penalized) term, that is

fpkj(xk) = x?kα
?
pkj + xkα

0
pkj. The penalized term is x?kα

?
pkj, with x?k = ukd

1
2
k that is
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the orthogonal basis. In particular, α?pkj, the nonlinear effect, is a rk−dimensional
vector, where rk is the number of eigenvectors and eigenvalues that explain a majority
of the variability of fpkj(xk). In fact, to enhance computational efficiency we retain
only the first several eigenvectors and eigenvalues that explain 99% of the variability
of fpkj(xk), obtaining substantial reduction in dimensionality. Finally, α0

pkj is the
coefficient associated with the linear term xk. The varying-coefficients for the
continuous covariates are as follows:

βpj(xi, zi) = θpj + h

(
Q∑
q=1

bpqjziq +
∑
k>p

(x?ikα
?
pkj + xikα

0
pkj), tx

)
. (2.6)

The intercepts are merged into the global term θpj. With respect to standard ap-
proaches for P-splines, the procedure proposed by Scheipl et al. (2012) results in
separate coefficients for linear and nonlinear effects. We can then assign specific
selection priors to α0

pkj and α?pkj; consequently, interactions among continuous covari-
ates can have linear or nonlinear forms, or be excluded from the model, as detailed
in Section 2.3.

We finally comment on the selection mechanisms. The subject-specific coefficients
feature a thresholding function h(·); this function h(ϑ, t) = ϑ1[|ϑ|>t] depends both on
its argument ϑ, which in our case is a combination of covariates value and regression
parameters, and the random thresholding parameter t, and it is discussed in Section
2.3 along with variable selection and shrinkage priors that jointly induce model
sparsity.

2.3 Prior Distributions

In this section, we discuss the prior choice for all parameters and detail the thresh-
olding and selection mechanisms. Hyperparameter setting and sensitivity analysis
are presented and discussed in Section 2.5.2 and Appendix A.2, A.3.

2.3.1 Main effects

The main effects {θpj} and {θqj} represent the associations between the multivariate
response and the continuous and binary variables, respectively. Note that main effects
do not directly produce subject-specific effects, that are only driven by the interaction
parameters. We implement an approach based on spike-and-slab priors, i.e., a two-
component mixture prior (Mitchell and Beauchamp, 1988; George and McCulloch,
1997). We introduce J latent P−dimensional indicator vectors ξj = (ξ1j, . . . , ξPj)
such that:

θpj | ξpj, τ 2
j ∼ ξpjN(θ0, τ

2
j ) + (1− ξpj)δ0(θpj),

for p = 1, . . . , P, j = 1, . . . , J , where δ0(θpj) is a Dirac delta function at 0. If ξpj = 1,
the p−th covariate affects the abundance of the j−th taxon, and if ξpj = 0 otherwise.
We assume independent Bernoulli priors for the latent vectors:

p(ξj | ωj) =
P∏
p=1

ω
ξpj
pj (1− ωpj)(1−ξpj)
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where ωpj ∼ Beta(aω, bω); this prior has been shown to provide an automatic
adjustment for multiplicity (Scott and Berger, 2010) and it is equivalent to placing a
Beta mixed Binomial on ξpj . Prior distributions on the {θqj} are analogously defined.

2.3.2 Interactions parameters

Accounting for potential relationships among predictors could avoid inaccurate
estimates and erroneous best subset selection; excluding interactions is equivalent
to assuming that there is a lack of synergistic or antagonist effects, which is often
a questionable assumption (Chipman, 1996; Gustafson, 2000). We will discuss
the priors associated with the function f(·) later and we now focus on the prior
placed on {bpqj}, {bqlj}. These coefficients represent interaction terms that involve
discrete covariates. Whereas the main effects previously discussed are population-
level parameters (i.e., they are constant across subjects), the inclusion of these terms
into the model results in subject-level coefficients.

In order to build a computationally efficient approach, we opt for a horseshoe
prior (Carvalho et al., 2009, 2010), an absolutely continuous mixture distribution
that belongs to the class of global-local scale mixtures of normals. The prior for
{bpqj} can be summarized as follows:

bpqj ∼ N(0, λ2
pqjζ

2
qj)

λpqj ∼ C+(0, 1),

ζqj ∼ C+(1/n, 1),

where C+ denotes a half-Cauchy distribution, {λpqj} are local shrinkage parameters,
and {ζqj} are global shrinkage parameters. All coefficients will be nonzero, nonethe-
less, only associations supported by the data will have large values, due to the heavy
tails of the prior. The interaction terms among discrete variables {bqlj} follow this
same prior construction.

The decomposition and reparameterization of {fpkj(·)} -detailed in equation
(2.5a)- defines linear effects {α0

pkj} and nonlinear effects {α?pkj}. In our model, we
assume that the relationship between covariates and counts is sparse, that is, only
a small number of association is non-zero. To define a suitable prior we impose
a parameter-expanded normal-mixture-of-inverse-gamma (penmig) prior on both
{α0

pkj} and {α?pkj}. This prior is particularly suited for the simultaneous selection,
or exclusion, of vectors of coefficients, such as coefficients associated with spline basis
functions or with the levels of random intercepts (Gelman et al., 2008; Scheipl et al.,
2012). We expand α?pkj = ηpkjψ̃pkj to be a product of a scalar ηpkj and a vector ψ̃pkj
with the same size as α?pkj (that is rk). This technique enables us to select jointly the
batch of coefficients for each penalized term. The scalar ηpkj is assigned a spike-and-
slab prior, while ψ̃pkj distributes ηpkj across the entries of α?pkj. This construction
induces on α?pkj a parameter-expanded normal-mixture-of-inverse-gamma (penmig)
prior (Scheipl et al., 2012). The hierarchical structure of these prior distributions is
summarized as follows:
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ηpkj | ξ̃pkj, τ̃ 2
pkj ∼ N(0, s̃2

pkj), with s̃2
pkj = ξ̃pkj τ̃

2
pkj

ξ̃pkj | ω̃pj ∼ ω̃pjδ1(ξ̃pkj) + (1− ω̃pj)δv0(ξ̃pkj)
τ̃ 2
pkj ∼ Inverse-gamma(aτ̃ , bτ̃ )

ω̃pj ∼ Beta(aω̃, bω̃).

The hyperparameter v0 is set to a small positive constant; this choice was proposed
by George and McCulloch (1993) and has the advantage, with respect to the setting
v0 = 0, that transdimensional mcmc are avoided. Entries of the vector ψ̃pkj are
identically and independently distributed as N(mpkj, 1) with prior mean mpkj ∼
0.5δ1(mpkj)+0.5δ−1(mpkj). This discrete mixture implies E[ψ̃pkj | mpkj] = ±1, hence
the gain is twofold: i) since | ψ̃pkj |= 1, the scale and then the interpretation of α?pkj
is preserved; ii) very little mass is given to values close to zero a priori, an approach
that helps the model to identify non-zero effects. A Beta hyperprior is assumed
for {ω̃pj}, which automatically adjusts for multiplicity. Through this hierarchical
prior we easily select a batch of coefficients through a single latent indicator ξ̃pkj.
If ξ̃pkj = 1, then the vector α?pkj is included in the model as a nonlinear effect.

If ξ̃pkj = v0 then p−th continuous predictor’s interactions with other continuous
covariates will have a negligible effect. The parameter α0

pkj follows the same prior
as α?pkj. In this way, we can explore the potential interactions among continuous
covariates in several directions, namely whether the interaction exists, whether the
interaction term is linear, or whether it exhibits nonlinearity.

The inclusion of interaction effects may depend on the inclusion of the correspond-
ing main effects. A common assumption made on two-way interactions is strong
heredity, which states that an interaction term can be included only if both its main
effects are in the model. Weak heredity is a lesser stringent assumption and requires
only one of the main effects to be included in the model to admit the interaction
term (Griffin et al., 2017). Depending on the analysis of interest, these additional
assumptions can be made part of the proposed model.

The need for different sparsity-inducing priors is due to the diverse inferential
goal we want to achieve through each model component. We chose a spike-and-slab
priors for main effects’ coefficients in order to obtain truly sparse solutions. This is
possible because the latent indicators {ξpj, ξqj} allow to sharply include or exclude
the effect of a covariate on a given taxon. This feature (that is not shared by
horseshoe priors) turns out to be particularly useful as the inclusion of the interaction
effect between two covariates is conditioned on the inclusion of their main effects,
according to a given hereditary assumption (Griffin et al., 2017). We closely follow
the approach developed by Scheipl et al. (2012) for {fpkj(·)}. In fact, this hierarchical
prior allows us to simultaneously select the batch of coefficients associated with the
spline bases obtained from each continuous covariate that act as effect modifier for
the varying coefficient for continuous covariates. Adopting a spike-and-slab prior
for interaction terms involving discrete covariates would have led to a more unified
strategy. Nonetheless, the computational cost would have been excessive, as it would
have required the specification of a latent indicator parameter of inclusion for each
interaction term associated with each taxon. The horseshoe prior represented a more
computationally efficient solution. On the other hand, we could have adopted the
horseshoe prior even for main effects, as in Griffin et al. (2017), but it would have
been rather complex, if not unfeasible, to impose any given hereditary assumption.
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2.3.3 Thresholding mechanism

An unconstrained estimation of {βmj(u)} may result in many effects with negligible
magnitudes. In fact both the horseshoe and the penmig prior do not set coefficients
exactly to zero. We do not expect variables to have a little or negligible effect on each
patient; we then include a soft thresholding mechanism that operates at the subject
level, so that small effects are set to zero. The threshold parameters tx, tz are latent
variables with a straightforward interpretation as minimum effect size parameters.
Note that for threshold parameters to be identifiable, it is sufficient that a single
interaction in equations (2.5a, 2.5b) exceeds them. A key feature of this thresholding
mechanism is the randomness in both the argument and the threshold parameter
(i.e., both are random variables); consequently, the thresholding mechanism accounts
for both the magnitude and the variability of the effects. Since we have no prior
knowledge of the true minimum effect size, we chose a noninformative prior on the
threshold parameters: tx, tz ∼ Unif(0, bt). Finally, note that since covariates enter
the first argument of the thresholding function, consequently the resulting coefficients
are subject-specific. The sparsity induced by the thresholding function depends on
the covariates that act as effect modifiers, hence the varying coefficient will be able
to consider as negligible dissimilar effects for each patient. Hypothetically, threshold
functions and horseshoe priors could be replaced by spike-and-slab-like priors. This
modeling approach would have required 60, 610 latent indicators instead of the 330
needed by the proposed model to obtain subject-specific coefficients.

2.3.4 Intercepts

Samples obtained from different districts (tumor, fecal and salivary samples) of
the same patient are not independent. To deal with correlation due to repeated
measurements within the same subject, Martin et al. (2019) proposed an extension of
the dm regression model that includes a normally distributed random effect. In order
to account for the correlation structure existing among counts of samples collected
from different districts of the same patient we introduce a random intercept ιs(i) in
the linear predictor, where the subscript s(i) denotes the patient from whom the
i−th sample is taken. Conditional on this random effect, counts are independent
(Martin et al., 2019). The variance of this random effect captures the correlation
between the counts of the same subject across districts (Gelman et al., 2006):

ιs(i) ∼ N(0, σ2
ι ), σ

2
ι ∼ Inverse-gamma(aσ2

ι
, bσ2

ι
).

Note that the random intercept ιs(i) is univariate, hence it is shared by all taxa. In
fact, as an alternative, it could be defined as a J−dimensional vector of random
effects. Since the variance of the random effect σ2

ι captures the correlation structure
among the samples of the same subject, rather than extra-heterogeneity, we avoided a
category-specific random term to escape computational burden, since a multivariate
random vector would have required a J × J covariance matrix. We complete the
model specifying the global intercept term µj , which is taxon-specific and corresponds
to the log baseline parameter for the taxon j. We assume the intercept terms µj
follow a N(0, σ2); we set σ2 to a large value to make this prior weakly informative.
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We can now define the linear predictor introduced in equation (2.2):

log(γij) = µj + ιs(i) +
M∑
m=1

βmj(ui)uim. (2.7)

The telescopic structure of the linear predictor is apparent here. In fact, recalling
equations (2.5a, 2.5b), while the global intercept µj is the “coarser” effect on the j−th
category, main effects of the covariates are population-level parameters that model
associations between covariates and taxa. Finally interactions among covariates
represent the finer level, and are modeled with subject-level effects. A thresholding
function is employed to ensure truly sparse solutions; finally, a random intercept
accounts for the correlation among counts obtained from the same individual.

2.4 Posterior Computation

We implement a Markov Chain Monte Carlo (mcmc) algorithm to obtain the
posterior distribution of the parameters of interest. To construct an efficient algorithm
and improve computational feasibility we adopt the data augmentation approach
implemented in Wadsworth et al. (2017) and detailed in Koslovsky et al. (2020); this
approach is based on the representation of the Dirichlet distribution via independent
latent Gamma random variables, and greatly facilitates the sampling procedure.
In the following we outline the implemented Metropolis-Hastings within Gibbs
algorithm:

1. Jointly update {(θpj, ξpj)} and {(θqj, ξqj)} with the two-step scheme proposed
in Savitsky et al. (2011) by Metropolis-Hastings with adaptive proposal;

2. Update {bpqj} and {bqlj} by Metropolis-Hastings with adaptive proposal;
hyperparameters are updated through slice sampler (Neal, 2003), as suggested
in Polson et al. (2014);

3. Update {α0
pkj} and {α?pkj} by Metropolis with random walk proposal. Accord-

ingly to Scheipl et al. (2012) and Ni et al. (2019a) we updated the parameters
involved in the penmig hierarchical structure by Gibbs;

4. Update tx, tz by Metropolis with random walk proposal;

5. Update {µj} by Metropolis with random walk proposal;

6. Update {ιs(i)} by Metropolis with random walk proposal.

A detailed description of this algorithm can be found in Appendix A.4. The algorithm
is initialized at a random point in the parameter space and then it is repeatedly
used to generate draws from the posterior distribution. After burn-in and thinning,
inference is carried out on the remaining samples. Model selection for main effects
and for varying coefficients of the continuous covariates can be based on the marginal
posterior probability of inclusion (mppi); a mppi can be computed by taking the
average of sampled values of the corresponding inclusion indicator. We evaluate the
inclusion of interaction terms conditional on the inclusion of corresponding main
effects (see also Stingo et al., 2011). According to the strong or weak heredity
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assumption, an interaction term is not included if one or both the correspondent
main effects are not in the model. For coefficients representing interactions of discrete
covariates, mppi cannot be computed, since their prior is an absolutely continuous
mixture distribution. We follow the procedure proposed by van der Pas et al. (2017)
based on credible sets, and include in the model the interaction parameters {bpqj}
and {bqlj} if their marginal credible interval does not include zero. For example,
under the strong heredity assumption, the parameter {bqlj} is selected if:

0 /∈
[
Pr

(
bqlj ≤ q1 | {zq}, θqj, θlj, tz,1[ξqjξlj=1]

)
, P r

(
bqlj ≤ q3 | {zq}, θqj, θlj, tz,1[ξqjξlj=1]

)]
,

where q1, q3 are two arbitrary quantiles. An analogous condition is specified for
{bpqj}. It should be pointed out that this procedure may result in the selection of
interaction terms that do not respect the strong heredity assumption.

2.5 Simulation Studies

We carry out a comparative study on simulated data to evaluate the performances
of our method on finite samples. We compare the proposed subject-specific dm
approach (ssdm) with three other methods specifically developed for the analysis of
microbiome data or multivariate count data, namely Dirichlet-multinomial Bayesian
Variable Selection (dmbvs) (Wadsworth et al., 2017), the sparse group `1 penalized
likelihood procedure for variable selection for the dm (pen-cl) (Chen and Li, 2013b)
and the penalized likelihood approach by Zhang et al. (2017) (pen-z).

2.5.1 Generating mechanism

The simulation scenarios considered in our studies closely follow the ones presented in
Chen and Li (2013b). We simulate n samples with P continuous covariates, Q binary
factors, and J bacterial taxa to emulate the motivating data set. The covariates and
the factors are generated from a multivariate normal distribution with mean 0 and
covariance matrix Σij = ρ|i−j|. Binary factors are generated by first drawing random
samples from the same normal distribution used to generate continuous covariates,
and then setting to 1 all the positive values and to 0 the negative ones. The global
intercept is sampled from a Uniform distribution such that µj ∼ U(−2.3, 2.3) (Chen
and Li, 2013b), so that the base taxa abundances can differ up to 100 folds, while
the random intercept is drawn from a standard Normal distribution ιs(i) ∼ N(0, 1).
5% of the associations between covariates and taxa are selected and equally spaced
over the interval [0.25, 1.5] with alternate signs. Note that in our approach two-way
interactions are explicitly modeled; this additional flexibility results in an increased
complexity of the model. In these simulation studies, interaction effects are generated
according to the heredity assumption made. Half of the possible two-way interactions
are randomly selected and their value are sampled from [0.25, 1.5]. Linear and
nonlinear interactions among continuous covariates are generated by emulating the
structure of the varying coefficient βpj(xi, zi). Following the strategy adopted for
other linear interactions, we set 25% of the interaction coefficients between continuous
covariates ({α0

pkj} in equation (2.6)) to non-zero values. Specifically we set α0
pkj =

θpjθkj. We then added to the linear term xikα
0
pkj the function f̃pkj(xik) = 1.5(x2

ik−1),
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hence the nonlinear component is not simulated from our model. We then generate
counts using the dm model for a given overdispersion parameter θ0 ∈ [0, 1], where
θ0 = 1/(1 + γ+). The parameter θ0 controls overdispersion in the samples: a large
value will lead to severe overdispersion, while values close to zero make the generating
mechanism similar to the Multinomial distribution. The linear predictor γij can
be then set accordingly to equation (2.3). For i = 1, . . . , n we draw samples from
a Multinomial distribution, yi ∼ Multinomial(Ni,π

?), where the row sum Ni is a
sample from a discrete Uniform distribution Ni ∼ DiscreteUniform(υ, 2υ), υ = 1000
and π? = (π?i1, . . . , π

?
iJ) ∼ Dirichlet(γ?). The vector γ? = (γ?1 , . . . , γ

?
J) is obtained

from the simulated data and the fixed coefficient setting γ?j =
γj
γ+

1−θ0
θ0

, for j = 1, . . . , J .
In order to simulate the latent random threshold, subject-specific effects with an
absolute value smaller than 0.5 are set to 0.

2.5.2 Hyperparameter settings

Hyperparameters aω, bω are set to induce a weakly informative Beta prior. Specifically,
we set aω + bω = 2, and the prior expected mean m = aω/(aω + bω) to a small value
m = 0.025 which corresponds to a 2.5% prior probability of inclusion of the main
effect (Wadsworth et al., 2017). The parameters {τ 2

j } are set to 10, a large value
that induces a vague prior on the regression coefficients {θpj} and {θqj} (Chipman
et al., 2001). Hyperparameters of the penmig priors, for both linear and the
nonlinear effects, are set following the guidelines provided by Scheipl et al. (2012):
(aω̃, bω̃) = (1, 1), v0 = 0.00025, (aτ̃ , bτ̃ ) = (5, 25). Threshold parameters are assumed
to be uniformly distributed in the unit interval. Finally, the hyperparameters for the
variance of the subject-specific random intercept are set to aσ2

ι
= bσ2

ι
= 1, and the

variance for the global intercept is set to a large value σµj = 10 (Wadsworth et al.,
2017). For more details on hyperparameter settings please refer to Appendix A.2.

2.5.3 Simulation scenarios and results

We start from a reference scenario that mimics our case study and evaluate the
competing methods on an array of scenarios of increased complexity. Complexity is
defined in terms of the number of covariates or taxa considered, by the interaction
pattern, or by the level of overdispersion. Note that among the competing methods
only the proposed ssdm includes subject-specific coefficients; in order to perform a
fair comparison, methods are evaluated only based on inference on population-level
parameters. Subject-specific parameters recovery is still evaluated for our model. For
the same reason, no random intercept is used to generate the data in these scenarios;
we study the proposed method on data with repeated measurements for each sample
in Appendix A.5. The reference scenario (scenario a) in Table 2.1) is defined by the
following setting: n = 100, P = 10, Q = 5, J = 10, ρ = 0.4. Moreover, overdispersion
is set at a low level, θ0 = 0.01, and strong heredity is assumed. A list of all scenarios
is given in Table 2.1. In particular, scenarios b) and c) are defined by an increased
number of covariates and dimensions of the response, respectively. In scenario d),
response variables are generated given the covariates observed in the case study, while
in scenarios e) and f) data are generated with different interactions assumptions:
in the first one no interactions among covariates are assumed, while in the latter
the less stringent weak heredity assumption is considered. Microbiome data usually

29



2.5. Simulation Studies

Table 2.1: List of simulation scenarios and their characteristics. Scenario a) is regarded as
reference scenario.

Scenario n P Q J θ0 Interaction Assumption
a) 100 10 5 10 0.01 strong heredity
b) 200 10 10 10 0.01 strong heredity
c) 200 5 5 20 0.01 strong heredity
d) 100 5 5 11 0.01 strong heredity
e) 100 5 5 10 0.01 no interactions
f) 100 5 5 10 0.01 weak heredity
g) 200 5 5 10 0.1 strong heredity
h) 200 10 10 10 0.1 strong heredity

exhibit both overdispersion and zero-inflation, while dm model can explicitly account
only for overdispersion. In order to test our method under scenarios resembling our
case of study, in scenarios g) and h) we generate counts under settings that exhibit
large overdispersion (θ0 = 0.1). In these simulation scenarios, zero-inflation goes
from 17.2% to 45.95% in settings with low overdispersion (a-f), and from 44.25% to
53.55% in settings with large overdispersion (g-h).

Results for the selection of subject-specific and population-level parameters are
reported in Table 2.2 and Table 2.3, respectively. Comparisons are made in terms
of true positive rates (tpr), false positive rate (fpr), and Matthew’s Correlation
Coefficient (mcc) a measure of overall selection accuracy, that takes into account
true and false positives and negatives (tp, fp, tn, fn, respectively),

TPR =
TP

FN + TP
, FPR =

TN

FP + TN
,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

For ssdm and dmbvs, covariates are selected if they belong to the median probability
model (Barbieri et al., 2004). Reported values are averaged over 100 replicates, with
standard errors in parentheses. dmbvs results in the highest tprs in scenarios a) and
c) (see Table 2.3). Both dmbvs and pen-cl tend to include more false associations,
resulting in larger fpr and smaller mcc compared to ssdm. This discrepancy is

Table 2.2: Selection of subject-specific parameters: mean across 100 replicated datasets
(standard errors are in parentheses). We evaluate the performances of the proposed
approach ssdm in terms of tpr, fpr and mcc.

tpr fpr mcc

a) 0.6446 (0.0090) 0.1282 (0.0089) 0.3986 (0.0110)
b) 0.7795 (0.0168) 0.1206 (0.0087) 0.4020 (0.0150)
c) 0.7142 (0.0113) 0.0673 (0.0058) 0.4553 (0.0179)
d) 0.7345 (0.0430) 0.1134 (0.0093) 0.4173 (0.0290)
e) - - 0.0579 (0.0059) - -
f) 0.7332 (0.0272) 0.3330 (0.0281) 0.2908 (0.0263)
g) 0.5713 (0.0098) 0.0490 (0.0030) 0.4630 (0.0122)
h) 0.6046 (0.0298) 0.0561 (0.0036) 0.4285 (0.0247)
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clearer in scenario b), where, given the larger number of covariates, the interaction
terms play a bigger role. In scenario d), the covariates observed in the case study are
used to generate the response variables; the proposed method ssdm, which has been
designed explicitly for these data structures, outperforms all other methods in terms
of mcc. In scenarios e-f) performance are evaluated for contexts that show different
assumption on the generating mechanism of the interactions’ pattern. While our
model outperforms other methods in case of no interactions, it fails to account for
the weak heredity assumption, despite being the only method that is not agnostic
with respect to heredity assumption.

In scenarios g-h) performances are evaluated on scenarios that show overdispersion
levels closer to the one in crc data. In scenario g) dmbvs has the better recovery of
associations, despite the larger overdispersion. In scenario h), the larger number of
covariates leads all methods to poorer performances, even though ssdm’s loss is the
less severe of all.

In order to evaluate both the flexibility and the robustness of our method, we
ran further simulations. Firstly, following Chen and Li (2013b), we evaluated the
sensitivity of the proposed approach to model misspecification by analyzing data
generated from the linear growth model instead of the exponential growth model. To
evaluate the robustness of our approach for an increasing number of taxa, we tested
our method in scenarios where J > n. Even if it is not the case in our case study,
oftentimes, when microbial counts are collected at a lower level of the phylogenetic
tree, the number of taxa can exceed the number of samples. To assess our approach’s
ability to capture flexible relationships between outcomes and covariates, we matched
it with a nonparametric kernel-based method developed for compositional data
(Tsagris et al., 2021). Details on these additional three simulation studies and results
are reported in Appendix A.5. Finally, we perform a sensitivity analysis with respect
to the global intercept variance, the variance hyperparameters of the spike-and-slab
prior, hyperparameters on the Beta priors for main effects, and the upper bound for
the threshold parameter. Results are presented in Appendix A.3; we find little or
negligible sensitivity.

2.6 Case Study

The motivating study involves patients affected by either adenocarcinoma or diver-
ticulosis, a condition that may eventually lead to tumor development. A total of
36 adult patients were enrolled in the study, between the ages of 36 and 85 years
old; approximately a quarter of enrolled patients are female. Clinical and behavioral
covariates measured by protocol consist of 5 continuous covariates and 5 binary
factors: frequency (weekly basis) of dietary intake for Vegetables and Meat, frequency
of Physical Activity (weekly basis), Body mass index (BMI), Age, Gender (Male
category used a baseline), daily use of Mouthwash (binary variable), presence of
Adenocarcinoma (binary variable). Continuous variables were standardized. For
each patient, up to 3 samples were collected (for a total of 100 records), specifically
tumor, fecal and salivary samples. Information regarding the district of each sample
is encoded in two binary variables (Stool and Saliva), using tumoral tissue as baseline.
Microbiota measurements were obtained as follows: dna from biological samples
was measured through spectrophotometer. Samples underwent total genomic dna
extraction and 16s rdna sequencing. In particular, amplification of bacterial dna
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Table 2.3: Model selection performance: mean across 100 replicated datasets (standard errors are in parentheses). In each scenario and for
each index the best performance is in bold. Evaluation is carried out on population parameters only.

a) n = 100, P = 10, Q = 5, J = 10 b) n = 200, P = 10, Q = 10, J = 10

tpr fpr mcc tpr fpr mcc

ssdm 0.5308 (0.0125) 0.0123 (0.0006) 0.5833 (0.0124) 0.5639 (0.0235) 0.0081 (0.0006) 0.4227 (0.0170)
dmbvs 0.6186 (0.0129) 0.0295 (0.0008) 0.5351 (0.0103) 0.5745 (0.0388) 0.1011 (0.0200) 0.1965 (0.0287)
reg-Z 0.1363 (0.0064) 0.0049 (0.0003) 0.3304 (0.0104) 0.1442 (0.0095) 0.0012 (0.0002) 0.2755 (0.0168)

pen-CL 0.5104 (0.0309) 0.1535 (0.0125) 0.2476 (0.0076) 0.6808 (0.0387) 0.1267 (0.0139) 0.2045 (0.0113)

c) n = 200, P = 5, Q = 5, J = 20 d) n = 100, P = 5, Q = 5, J = 11

tpr fpr mcc tpr fpr mcc

ssdm 0.6990 (0.0145) 0.0113 (0.0009) 0.5038 (0.0170) 0.6551 (0.0172) 0.0056 (0.0020) 0.6150 (0.0388)
dmbvs 0.7696 (0.0148) 0.0222 (0.0013) 0.4612 (0.0123) 0.7017 (0.0480) 0.1132 (0.0429) 0.3804 (0.0622)
reg-Z 0.2194 (0.0090) 0.0014 (0.0001) 0.3740 (0.0135) 0.2915 (0.0262) 0.0055 (0.0011) 0.4038 (0.0278)

pen-CL 0.5337 (0.0464) 0.1127 (0.0147) 0.1446 (0.0094) 0.4606 (0.0523) 0.0683 (0.0143) 0.2349 (0.0119)

e) n = 100, P = 10, Q = 5, J = 10, no interactions f) n = 100, P = 5, Q = 5, J = 10, weak heredity

tpr fpr mcc tpr fpr mcc

ssdm 1.0000 (0.0000) 0.0689 (0.0003) 0.7800 (0.0079) 0.5888 (0.0170) 0.0478 (0.0068) 0.4094 (0.0248)
dmbvs 0.8962 (0.0202) 0.0328 (0.0063) 0.7115 (0.0330) 0.7668 (0.0414) 0.1023 (0.0340) 0.4425 (0.0485)
reg-Z 0.4111 (0.0095) 0.0018 (0.0002) 0.5669 (0.0105) 0.3660 (0.0329) 0.0094 (0.0018) 0.4533 (0.0356)

pen-CL 0.8388 (0.0192) 0.1081 (0.0074) 0.5850 (0.0070) 0.5540 (0.0668) 0.0858 (0.0105) 0.2811 (0.0281)

g) n = 200, P = 5, Q = 5, J = 10, θ0 = 0.1 h) n = 200, P = 10, Q = 10, J = 10, θ0 = 0.1

tpr fpr mcc tpr fpr mcc

ssdm 0.5294 (0.0147) 0.0043 (0.0003) 0.5716 (0.0157) 0.4713 (0.0329) 0.0030 (0.0005) 0.4579 (0.0420)
dmbvs 0.6652 (0.0141) 0.0085 (0.0004) 0.5900 (0.0116) 0.5596 (0.0462) 0.0319 (0.0250) 0.4220 (0.0572)
reg-Z 0.1491 (0.0075) 0.0012 (0.0001) 0.3079 (0.0119) 0.0904 (0.0108) 0.0009 (0.0003) 0.2162 (0.0181)

pen-CL 0.4601 (0.0217) 0.0916 (0.0060) 0.1550 (0.0060) 0.4604 (0.0535) 0.0565 (0.0078) 0.1515 (0.0183)
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was performed by pcr, targeting v3 region, encoding 16s rdna. This region is
particularly suited for microbiota assessment because it is phylogenetically well
conserved, and allows the investigators to clearly identify bacteria present in the
biological samples. All measurements analyzed were collected at baseline. We focus
on estimating associations between phylum-level counts and covariates. Among the
28 phyla, there were 2 with missing names and 16 whose count was nonzero in less
than 3% of the samples. To preserve compositionality the latter 18 phyla were
aggregated in a Residual category. These phyla have up to 83% of zeros (four have
more than 50% of zeros). Overdispersion is estimated to be large: θ0 = 0.11. A
detailed discussion on overdispersion and zero-inflation in the case study data is
reported in Appendix A.6.1.

The goal of our analysis is to identify clinical and dietary covariates that influence
microbiota composition in the three districts of interest.

2.6.1 Inferring associations between taxonomic abundances
and covariates

We ran the mcmc algorithm for 300,000 iterations, with a burn-in period of 150,000
iterations; chains were thinned, and we kept every 10−th sampled value. Our
code takes nearly 31 min to run on an Intel Core i7-9750 2.60 ghz processor.
Hyperparameters are set following the same specifications detailed in Section 2.5.2.
Nonetheless, the large overdispersion and the weak signal in the data required a careful
setting of τj, aω, and bω. Specifically, we set τj = 1, aω = 0.25 and bω = 1.75; this
setting allows the model to select main effects of smaller absolute values. Comparisons
with other models are not performed since we could not obtain a stable and coherent
selection over several replications. It should be noted that our approach has been
specifically designed for the analysis of these data. Presumably, other methods fail
because they do not take into account the hierarchical structure of the data and
cannot deal with the interactions without any heredity assumption.

The posterior mean of main effects of covariates on microbiota relative abundances
and their mppi are reported in Table A.11; Table A.12 reports interaction effects in
Firmicutes and Bacteroidetes. It should be made clear that posterior means are to
be interpreted on the log scale. The exponentiation of a given posterior mean can be
interpreted as the (average) change of the proportion of a taxon that corresponds to
a unit increase of a continuous covariate or to a change in category with respect to
baseline for discrete covariates. The mppi of a coefficient can be interpreted as the
degree of support provided by the data to the effect of a covariate on a given taxon.

An increase in meat consumption is associated with a larger Bacteroidetes and
Firmicutes relative abundance. In fact, the posterior mean of these associations is 2.25
and 1.41, respectively, and these effects are strongly supported by the data (mppi of
0.86 and 0.66). For example, a unit increase - that means eating meat all days instead
of never- leads to a 2.25 times larger relative abundance of Bacteroidetes. Similarly,
higher vegetable intake leads to a larger relative abundance of the Bacteroidetes
phylum (posterior mean is 1.62 and mppi= 0.69). Also Gender, Adenocarcinoma,
Stool and Saliva show associations supported by the data. Several interaction effects
among these covariates were also identified. Stool specimens show a larger relative
abundance of Bacteroidetes than tumoral tissue specimens. This effect is even
stronger for those patients affected by adenocarcinoma: in fact, the interaction term
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2.6. Case Study

between Stool and Adenocarcinoma in Bacteroidetes has a posterior mean of 2.49
(with a credible interval that ranges from 1.63 to 3.04). The effect of Gender shows
that for female patients there is an increase in the relative abundance of Bacteroidetes
with respect to male patients: the posterior mean value for this association is 0.68
(mppi= 0.68). Even if both Gender and Stool are included as main effects in the a-
posteriori model, they do not show any synergistic or antagonistic effect, with respect
to the Bacteroidetes taxon. They have a strong synergetic effect on Firmicutes relative
abundance instead, with respect to whom only Stool shows a significant effect. This
means that Firmicutes ’ relative abundance is larger in stool samples than in tumoral
tissues and this effect happens with an increased magnitude for female patients.
Another example of weak heredity in the a-posteriori model is the interactions
with Adenocarcinoma reported in the Bacteroidetes taxon. In fact, patients with
adenocarcinoma have a positive effect on the relative abundance in Bacteroidetes
(posterior mean of 1.26). Even if both the effects of Saliva and Mouthwash are not
included in the model as main effects with respect to the Bacteroidetes taxon, they
exhibit significant interactions with Adenocarcinoma. Finally, the interaction term
between Mouthwash and Saliva, which exhibits a strong magnitude (2.34, ci 1.96,
2.56), proves the peculiar flexibility of our approach. In fact, it is able to catch the
varying effect of Mouthwash across groups, which results to be significant only in
salivary samples. This implies that Firmicutes have a larger relative abundance in
salivary samples rather than in tumor tissues and this effect is enhanced in patients
that use mouthwash. Interactions found to be significant are among binary factors. In
this case inference on personalized features leads to the characterization of subgroups,
determined by the combination of binary variables. Interaction patterns arising in
the case study are reported and discussed in Appendix A.6.2.

2.6.2 Biological findings

Investigating the biological aspect of the associations selected by our model, we
found some relationships to be relevant and interesting for the microbiota-crc
dynamics. Associations between meat and vegetable consumption and Bacteroidetes
and Firmicutes are supported and confirmed by several studies. Bacteroides (one of
the most representative genera of the Bacteroidetes phylum) and Firmicutes relative
abundance increase is led by protein-based dietary styles (Hentges et al., 1977; Zhu
et al., 2015, 2016).

The association with microbiota’s source has been reported in the literature, too.
Relative abundance of Bacteroidetes and Firmicutes results to be higher in stool
samples (Jenkins et al., 2018). Moreover, the significant association between Saliva
and Firmicutes confirms that the oral cave shows a higher concentration of this
phylum with respect to tissue (Xun et al., 2018). In addition, the interaction between
Saliva and Mouthwash indicates that the use of mouthwash significantly increases
the abundance of Firmicutes (Bescos et al., 2020).

We observed an interaction between adenocarcinoma and stool samples, leading
to a higher concentration of Bacteroidetes. According to Jahani-Sherafat et al.
(2018), more prevalent gut microbiota variations in the fecal and tissue samples of
crc patients were registered in Fusobacterium, Porphyromonas, Bacteroidetes and
Prevotella, showing an increased Bacteroides percentual in fecal sample. Even if
it’s confirmed that this phylum is present both in crc patients and in diverticulosis
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(a) Plot of marginal probabilities of inclusion for main effects on microbiota
taxa. Red dashed line represents the median model threshold (0.50).
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(b) 90% marginal credible intervals for interaction among discrete
covariates. Circles represent the median value. Covariates are
abbreviated: “M” is Mouthwash, “G” is Gender, “St” is Stool, “Sa”
is Saliva and “A” is Adenocarcinoma.

Figure 2.1: Marginal probabilities of inclusion for main effects and 90% marginal credible
intervals for interaction among discrete covariates.

patients, this effect is still ambiguous. Finally, the relative abundance of Bacteroidetes
results higher in female patients with respect to male, ceteris paribus. Haro et al.
(2016) observed that the abundance of Bacteroidetes was lower in men than in women,
showing interaction with bmi in male patients, meanwhile for women it remained
unchanged regardless of bmi.

2.7 Discussion

We have proposed a subject-specific Bayesian Dirichlet-multinomial regression model
that identifies complex association patterns in microbiota data analysis. Our approach
based on varying coefficients builds upon the work of Ni et al. (2019a); in this project,
we allow covariates to have a double role, as both predictors and effect modifiers.
Consequently, varying coefficients result in two-way interactions that may be specific
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for each patient, rather than quantified and estimated at a population level. This
is consistent with the pursuit of individual characterization of the disease proper
to the precision-medicine paradigm (Kosorok and Laber, 2019). Motivated by a
microbiota crc study, the proposed model is designed to analyze data that exhibit
a hierarchical structure induced by measurements from multiple districts; overall,
the proposed approach captures patients’ heterogeneity and similarities in terms
of effects affecting microbiota composition. Our analysis of the crc data reveals
interesting links between specific phyla and available covariates, which are confirmed
by the existing literature.

Extensions of our model are possible. Microbiota is known to change over
time (Faith et al., 2013); accounting for longitudinal measurements would offer
precious insights into the dynamics of the microbiota abundance with respect to
crc progression. Repeated measurements over time would induce a correlation
structure within each subject. Correlation among repeated measurements could be
easily accounted for, as we have done for multi-district microbiota counts. Moreover,
in future research, we will explore model formulations alternative to the Dirichlet-
multinomial distribution. In fact, the typical dm formulation does not naturally
capture all kinds of dependencies; covariances in the dm model are inherently negative,
and this model may lead to poor performances when multivariate count data exhibit
positive correlations. Alternative modeling approaches may be better suited for the
analysis of microbiota data that exhibit positive correlations.
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Chapter 3

Bayesian Nonparametric
Predictive Model for Personalized
Treatment Selection in Cancer
Genomics

3.1 Introduction

Cancer is a complex and dynamic process characterized by heterogeneous cellular
mutations, both in patients’ genomes and among cancer cells within the same tumor
(Bedard et al., 2013). Patients with close clinical cancer phenotypes may show
diverse responses to treatment, reflecting their inherent heterogeneity. A therapeutic
strategy for a particular diagnosis may be effective on average, but its effectiveness
may vary across subpopulations. For instance, Trastuzumab -a monoclonal antibody
used to treat breast cancer- is a very effective agent for her2-positive tumors
only (Slamon et al., 2001). Moreover, clinical benefits from Trastuzumab increase
for patients with significant her2 overexpression (ich3+) (Slamon et al., 2001;
Marty et al., 2005). Precision medicine’s mission is to tailor treatment to individual
patient characteristics leveraging various sources of heterogeneity. It ultimately
aims to exploit current understandings of the biological mechanisms of diseases
to devise therapeutic strategies best suited to the patients’ genetic and clinical
features (Simon, 2010). There is an increasing interest in discovering individualized
treatment rules (itrs) for patients who have heterogeneous responses to treatment,
e.g., when the treatment effect varies across groups of patients. An itr is a decision
rule that assigns the patient to the treatment given patient/disease characteristics
(Ma et al., 2015). The optimal itr is the one that maximizes the population
mean outcome. Statistical methodology research in precision medicine is devoted to
developing personalized treatment rules to inform decision-making. The distinctive
mark of statistical inference under the precision medicine paradigm is to disregard
heterogeneity as a nuisance to inference, but rather, to take advantage of it to
improve therapeutic strategies (Kosorok and Laber, 2019). In this paper, we restrict
our focus on treatment selection at a single decision point. Conventional methods
are based on semi- and non-parametric procedures to identify subgroups of patients
more likely to benefit from a treatment leveraging few baseline markers (Bonetti
and Gelber, 2000; Song and Pepe, 2004). When planned in prespecified analysis, the
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subgroup approach can provide valuable information. Nonetheless, defining groups
with respect to a few markers may result in an inadequate stratification. Moreover,
it is customary to conduct multiple subgroups analysis, either in post hoc studies or
obtaining subgroups as all the possible combinations of baseline characteristics and
endpoints. In multiple subgroups analysis, the probability of false-positive findings
can be substantial (Lagakos et al., 2006). A more systematic approach to derive
itr accommodating patients heterogeneity is through covariate adjustment. Kang
et al. (2014) proposed a method for treatment selection that requires modeling the
treatment effect as a function of markers. As an alternative, covariate adjustment can
be performed through parametric or non-parametric methods to construct weighted
estimators of the treatment rule (Zhang et al., 2012; Zhao et al., 2012). Another
common strategy for choosing the optimal treatment is the identification of predictive
biomarkers, which are features that determine the extent of benefit offered by a
particular therapeutic strategy (the her2 gene). Predictive associations can be
identified by conducting inference on gene-wise generalized linear models including
interaction terms between gene expressions and targeted treatment (Werft et al.,
2012). Nonetheless, the high-dimensional nature of genomic features is an obstacle
to predictive biomarkers’ identification. Penalized estimation proves to be a viable
solution (Krämer et al., 2009; Breheny and Huang, 2011; Lu et al., 2013), as it
provides a set of nonzero coefficients for treatment-biomarkers interactions, selecting
only those relevant for the optimal treatment. Covariate adjustment and penalized
approaches suffer from some limitations shared with subgroups analysis. Indeed,
it is of paramount importance to adjust for the appropriate covariates. When
multiple features are available, post hoc selection of covariates for adjustment leads
to biased estimates of the treatment effect, especially if the sample size is moderate
(Pocock et al., 2002). On the other hand, selecting predictive associations deals
with thousands of potentially predictive biomarkers simultaneously, which makes the
control of false discovery rate essential in multiple testing scenarios (Werft et al.,
2012). Moreover, for these methods, the correct definition of treatment-by-markers
interactions is crucial and relies on sensitive assumptions, which are difficult to
specify in the clinical practice and may be limited by generalized linear models (Ma
et al., 2016).

In order to overcome these limitations, Ma et al. (2016, 2018, 2019) have es-
tablished a predictive model for personalized treatment utility based on a heuristic
measure of interpatient molecular similarity, obtained using an unsupervised clus-
tering approach. Given a genomic signature and a set of prognostic markers, they
constructed a predictive framework that integrates predictive and prognostic deter-
minants. For a new, untreated patient, the model provides a probabilistic basis to
predict personalized treatment utility offered by each competing treatment. This
framework establishes two significant improvements over existing methods. Firstly,
the common assumption of statistical exchangeability among patients is relaxed.
Since each tumor is unique, patients are considered partially exchangeable only to
the extent to which their tumors are molecularly similar. Moreover, this approach
utilizes complementary sources of information for treatment selection, integrating
both predictive and prognostic characteristics of a patient’s disease.

In this chapter, we propose a Bayesian predictive model for personalized treatment
selection. This method does not address biomarker discovery, but rather, it assumes
that a genomic signature and a set of prognostic markers are available, known
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from previous studies or earlier experiments. As in Ma et al. (2019), we leverage
prognostic determinants to measure how likely is a patient to reach a given clinical
response. Predictive biomarkers drive patients’ clustering within each one of the
competing treatments. This approach characterizes the extent of benefit offered
by each therapeutic strategy on groups of patients with close profiles in predictive
determinants.

The proposed method generalizes the modeling approach by Ma et al. (2019),
constructing an integrative framework for clustering and prediction rather than
a two-step procedure. We jointly estimate model-based clustering and treatment
assignment from the data, making treatment selection fully account for patients
heterogeneity.

In particular, we adopted the product partition model with covariates (ppmx)
(Müller et al., 2011) to induce clusters of observations that are more homogeneous
in terms of predictive covariates. The class of ppmx models incorporates covariates
information into the prior for the random partition. The resulting partitions are
only partially exchangeable, and patients with similar covariates are a priori more
likely to be clustered together. In this Chapter, we use the Normalized Generalized
Gamma (ngg) process as the cohesion function of a ppmx model. This process
overcomes the rich-get-richer property of the Dirichlet process. Despite being well
studied in the Bayesian nonparametric literature as a prior inducing a Gibbs-type
random partition (Lijoi et al., 2007; De Blasi et al., 2013; Favaro et al., 2013) and
Argiento et al. (2010) proving the feasibility of Normalized Generalized Gamma
mixture model in addressing real problems, it is still not a commonly used process.
To the best of our knowledge, it is the first time the ngg process is employed as the
cohesion function in a ppmx model.

This chapter is organized as follows. Section 3.2 contains the model adopted to
integrate prognostic and predictive biomarkers. We devise the covariate-dependent
distribution for the random partition in Section 3.3. Section 3.4 introduces prior
specification; we detail the posterior computation steps in Section 3.5. In Section 3.6
we elaborate a strategy for treatment selection that is evaluated with a simulation
study in Section 3.7. In Section 3.8 we use our method for the analysis of publicly
available data on brain cancer and we present some preliminary results. A brief
discussion and some prospectives for future works conclude the Chapter in Section
3.9.

3.2 Bayesian Integrative Model

Our approach is motivated by an open problem in cancer genomics and personalized
medicine. Given a sample of n patients assigned to T different treatments for
whom predictive and prognostic biomarkers are measured and given a discrete set of
ordered response levels of the clinical outcome, we build a model able to leverage
complementary sources of information.

In this section, we describe the model devised to integrate prognostic and predic-
tive biomarkers.

Let a = 1, . . . , T indices candidate therapies to which n =
∑T

a=1 n
a patients are

assigned, where na denotes the number of patients treated with therapy a. For each
patient, the response to treatment is evaluated with an ordinal valued assessment. A
common choice to characterize varying levels of treatment response is to evaluate it
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in terms of the extent of residual disease after a given clinically relevant post-therapy
follow-up duration. Let yai be the random variable of the i−th patient’s response to
treatment a among K possible levels of increasing treatment benefit, where yai = k
for i = 1, . . . , na and k = 1, . . . , K. In addition, let πai = (πai1, . . . , π

a
iK) denote the

vector such that πaik is the probability of observing outcome k for the i−th patient
under treatment a, that is

P (yai = k | πai ) = πaik,

hence we assume that yai | πai
ind∼ Multinomial(1,πai ).

For a = 1, . . . , T , we consider a training dataset of na patients, (yai , z
a
i ,x

a
i )

where zai and xai are a P−dimensional and Q−dimensional vector of prognostic and
predictive features, respectively.

To quantify the effectiveness of each competing therapeutic strategy for patients
with close genetic profiles, we adopted a random partition model depending on
predictive markers. We denote with Πa

na = {Sa1 , . . . , SaCana} the treatment-specific

partition of the indices {1, . . . , na}, where Ca
na is the number of clusters among

patients treated with therapy a and naj = |Saj | is the cardinality of cluster j, for
j = 1, . . . , Ca

na . Since we assume the partition of the units to be a random parameter,
the partition and the number of clusters (Πa

na and Ca
na) depend on the number of

observations, na. Following a common convention in the Bayesian nonparametric
community, we identify cluster-specific quantities using the superscript “?”. For
example, when considering the j−th cluster for treatment a, the response vector is
ya?j = {yai : i ∈ Saj } while xa?j = {xai : i ∈ Saj } is the partitioned covariate matrix.
To maintain the presentation of the model self-contained, we will not give any detail
regarding Πa

na here. In Section 3.3, we will present the random partition model and
how we make it covariate-dependent.

We complete the Multinomial model for treatment response using a conjugate
prior for πai , in particular for a = 1, . . . , T we assume the following hierarchical
model:

yai |πai
ind∼ Multinomial(1,πai ) (3.1)

πa1 , . . . ,π
a
na | η

a?
1 , . . . ,η

a?
Cana

,Πa
na ,β ∼

Cana∏
j=1

∏
i∈Saj

Dirichlet(πai ;γ
a
i (ηa?j ,β)),

where β = (β1, . . . ,βK) is a P ×K matrix of regression parameters shared across
levels of response and individuals.

The K-dimensional vectors ηa?1 , . . . ,η
a?
Cana

are cluster-specific parameters, that is,
ηa?j is a parameter shared by all the individuals in cluster Saj . We want to allow the
response probabilities to change from treatment to treatment even for subjects with
similar predictive markers. We then enforce ηa?jk to be specific for each treatment a.
Potentially, we could have clustered ηa?jk across treatments, but this independence
assumption avoids the model to induce a partition that implies the same response
probability for subjects with close predictive determinants that have received different
treatments. The joint law of (Πa

na ,η
a?
j ) is assigned hierarchically. We will show how

predictive markers drive the clustering process in Section 3.3 and detail their prior
distributions in Section 3.4.
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Finally, γai (ηa?j ,β) = (γai1(η
a?
j1 ,β1), . . . , γ

a
iK(ηa?jK ,βK)), is a vector of log-linear

functions on the prognostic markers and cluster-specific parameters defined as follows:

log(γaik(η
a?
jk ,βk)) = ηa?jk + β1kz

a
i1 + · · ·+ βPkz

a
iP . (3.2)

It is apparent from the structure of the linear predictor the strategy we have
adopted to integrate multiple sources of information. Predictive determinants enter
equation (3.2) only through the cluster (and treatment) specific parameters ηa?jk .
This construction results in a random intercept that accounts for the heterogeneity
among patients arising from their genetic profiles. Prognostic markers enter (3.2)
as linear predictors. The associated coefficients (β1, . . . ,βK) are defined across
treatments since the prognostic determinants impact the likelihood of achieving a
given therapeutic response regardless of the treatment.

3.3 Bayesian Nonparametric Covariate Driven Clus-

tering

The joint evaluation of prognostic and predictive covariates guides the optimal
treatment selection. Since predictive markers identify patients likely to benefit from
a particular therapy, they drive patients’ clustering within each treatment. In this
way, we may quantify the extent of benefit offered by a specific therapeutic strategy
on groups of patients characterized by close profiles in predictive determinants.
The Bayesian framework naturally handles model-based clustering assuming as
a random parameter of the model the partition of the sample subjects. In this
section, we present a prior distribution for the random partition that is informed by
covariates (predictive markers). In Section 3.3.1 we present the product partition
model (Hartigan, 1990), which is extended to a more general class in Section 3.3.2.
Following Müller et al. (2011), in Section 3.3.3, we make the distribution depend on
covariates. The resulting product partition distribution with covariates represents a
prior distribution for the random partition with the specific feature that patients
with close covariates are encouraged to co-cluster.

3.3.1 Product partition distribution

In this section, we build our prior for the random partitions Πa
na . Since these

parameters are assumed independent across therapies, for the sake of notation,
we will suppress the a superscript. Moreover, we will first consider a prior free
from covariate information, then discuss how to modify the prior to include this
information.

We consider the partition of the sample subjects as a random parameter of the
model (Hartigan, 1990). Let us denote with Πn := {S1, . . . , SCn} the partition of the
data label set {1, . . . , n} into Cn subsets Sj, for j = 1, . . . , Cn and with nj = |Sj|
being the cardinality of cluster j. The product partition distribution is a probability
mass function for random partitions that features the following product structure:

p(Πn) ∝
Cn∏
j=1

ρ(Sj). (3.3)
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The function ρ is referred to as cohesion (Hartigan, 1990). It measures the
compactness of the elements in Sj and describes how likely the elements of Sj are
thought to be grouped together a priori. If ρ(Sj) is only a function of nj = |Sj|,
then the resulting model for Πn is invariant under permutations of the labels of the
set of integers {1, . . . , n}. Under this assumption, the resulting model for Πn falls in
the class of exchangeable random partitions induced by Species Sampling models
(see Pitman (1996)). In this framework, p(Πn) is denoted as exchangeable partition
probability function (eppf). The connection between product partition models and
exchangeable random partitions has been deeply investigated since the seminal paper
by Quintana and Iglesias (2003). In the latter paper, the authors observed as the
cohesion ρ(Sj) = κ(nj − 1)!, for κ > 0, introduced by Hartigan (1990) yields to
product partition distribution coinciding with the eppf induced by a Dirichlet Process
(dp).

Despite being computationally very convenient, this cohesion function features
the “rich-gets-richer” property of the dp. Indeed, this means that the resulting
product partition distribution assigns a high probability to a small number of large
clusters. As a consequence, when new data are considered, they are more likely to
join already large clusters. To overcome this issue, exploiting the connection between
product partition and species sampling models, we propose here a generalization
of (3.3), adopting the cohesion function induced by the wider class of Normalized
Generalized Gamma process.

3.3.2 NGG-induced cohesion

In this paper we consider a product partition model with

ρ(nj) = (1− σj)nj−1, (3.4)

where (1 − σ)nj−1 are rising factorials, defined as (a)n = a(a + 1) . . . (a + n − 1),
with (a)0 = 1. It is possible to show that the resulting probability mass function
coincides with the eppf induced by the Normalized Generalized Gamma process Brix
(1999). In Lijoi et al. (2007), the Normalized Generalized Gamma (ngg) process
has been adopted to overcome the rich-get-richer issue in the context of Bayesian
nonparametric mixture models. Moreover, several methodological properties of the
ngg are presented. In particular, the authors show that the ngg induces a random
partition among the observations whose probability mass function (e. g. the eppf)
has the following analytical expression

p(Πn) = Vn,Cn

Cn∏
j=1

ρ(nj) = Vn,Cn

Cn∏
j=1

(1− σ)nj−1, σ ∈ (0, 1], (3.5)

where the normalizing constant has the following integral representation:

Vn,Cn =
ωCn

Γ(n)

∫ ∞
0

un−1 exp
{
− (ω/σ)[(κ+ u)σ − κσ]

}
(κ+ u)−n+σCndu. (3.6)

The law of an ngg process is assigned by the parameters (κ, σ, ω, µ0), where µ0

is referred to as base distribution and is a nonatomic probability measure, while
0 ≤ σ ≤ 1, ω, n ≥ 0. We mention that this parameterization is not unique, since the
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same distribution can be obtained from (κ, σ, ω) and (sσκ, σ, ω/s) for any s > 0, due
to the scaling property (Pitman, 2003). Following Argiento et al. (2010), we take
ω = 1, hence the ngg will depend only on (κ, σ). The nggp includes as special cases
relevant nonparametric priors. For ω = 1 and σ → 0, the dp is recovered. Moreover,
if ω = 0 the normalized stable process (Kingman, 1975) is obtained. Finally, for
σ = 1

2
the nggp is denoted by normalized inverse Gaussian process (Lijoi et al., 2005;

Argiento et al., 2009).

Predictive distribution of a sample from NGG process

The knowledge of the predictive distributions is useful to characterize the ngg pre-
dictive mechanism and to understand how the available information about partition
associated with the sample η1, . . . ,ηn is leveraged. Denoting with ĩ a new observation
and defining x̃ = xĩ, η̃ = ηĩ, from (3.3), we obtain the predictive distribution:

p(η̃ ∈ ·|η1, . . . ,ηn) = w0
nµ0(·) + w1

n

Cn∑
j=1

(nj − σ)δη?j , (3.7)

where

w0
n =

Vn+1,Cn+1

Vn,Cn
, and w1

n =
Vn+1,Cn

Vn,Cn
.

The predictive distribution is a linear combination of the prior guess µ0 and a
weighted empirical distribution that depends on the parameter σ. Since a closed-
form is available for Vn,Cn , explicit expressions for w0

n and w1
n can be derived (see

Lijoi et al. (2007); Argiento et al. (2010)).
Equation (3.7) induces a two-step mechanism for mass allocation among a new

cluster and previously observed ones. Given a sample η1, . . . ,ηn, first, the mass is
allocated between a new value η?Cn+1 and the set of observed values {η?1, . . . ,η?Cn}.
The second step follows conditionally: if ηn+1 is a new value it is drawn from µ0,
otherwise, the probability to be assigned to previously observed clusters depends
on the frequencies and σ. The role played by σ in the weighting of the empirical
measure has been thoroughly studied in Lijoi et al. (2007). The growth of the
number of distinct components for NGG(κ, σ) for n samples is of the order nσ, hence
for σ → 1 a larger number of distinct clusters is generated. Moreover, Lijoi et al.
(2007) observed that in the second step of the predictive mechanism, σ drives a
reinforcement mechanism that favors clusters with higher frequencies, reducing the
number of singletons, thus counteracting the rich-get-richer behavior of the dp.

The predictive properties of the ngg process make it more suitable than the dp
since it is possible to obtain a large number of clusters still penalizing those with
lower frequencies that are not supported by empirical evidence in the data.

3.3.3 Choice of the similarity function

In this section, we allow the product partition distribution to depend on covariates.
We obtain a non-exchangeable prior for the random partition that encourages two
subjects to co-cluster when they have close covariates. We follow Müller et al.
(2011), where the prior on the random partition is defined by perturbing the cohesion
function of a product partition distribution via a similarity function g that induces
the desired dependence on covariates. The similarity function g is a non-negative
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function that depends on the covariates associated with subjects in each cluster.
Let xi denote the covariate for the i−th unit, while x?j = (xi, i ∈ Sj) represent the
covariate arranged by cluster.

The product partition distribution with covariates is

p(Πn) ∝ Vn,Cn

Cn∏
j=1

ρ(nj)g(x?j), (3.8)

where Vn,c is defined in (3.6) and ρ(nj) is of the form (3.4).
The similarity formalizes the homogeneity with respect to covariate values of

subjects clustered together. Thus, the more the covariates are judged to be close,
the larger the value of g gets. Müller et al. (2011) discuss the theoretical properties
the similarity function should satisfy and some guidelines for its choice, but any
non-negative function that guarantees an increasing value for close covariate values
is suitable (Page and Quintana, 2018).

The default choice, proposed by Müller et al. (2011), is to define g as the marginal
probability of an auxiliary Bayesian model:

g(x?j) =

∫ ∏
i∈Sj

q(xi|ξ?j )q(ξ?j )dξ?j , (3.9)

even if xi are not considered random. We define g(∅) = 1. The auxiliary similarity in
(3.9) is particularly convenient because it is symmetric in its argument (the auxiliary
model does not depend on the units’ ordering). We included the covariates in our
random partition distribution relaxing the exchangeability condition and obtaining
a non-exchangeable distribution for Πn. The function p(Πn) still has the marginal
invariance property, being an exchangeable partition probability function:

p(n1, . . . , nCn) =
Cn∑
j=1

p(. . . , nj + 1, . . . ) + p(n1, . . . , nCn , 1).

Moreover, the analytical evaluation of equation (3.9) is computationally really
convenient. Note that when a Q−dimensional vector of covariates is available
g(x?j) =

∏Q
q=1 g(x?jq).

Quintana et al. (2015) propose a variation of (3.9), defining g(x?j) as the posterior
predictive distribution of x?j in cluster Sj:

g(x?j) =

∫ ∏
i∈Sj

q(xi|ξ?j )q(ξ?j |x?j)dξ?j , (3.10)

with q(ξ?j |x?j) ∝
∏

i∈Sj q(xi|ξ
?
j )q(ξ

?
j ). Since the covariates are used twice, this function

is called “Double Dipper”. In our preliminary studies we found this similarity to
be the most effective. The model in (3.10) is completed with q(·|ξ?j ) = N(·|m?

j , v
?
j )

where N(·|m, v) is a Gaussian density with mean m and variance v. Assuming v?j to
be unknown, ξ?j = (m?

j , v
?
j ) and q(ξ?j ) = q(m?

j , v
?
j ) = NIG(m?

j , v
?
j |m0, k0, v0, n0) is the

Normal-Inverse-Gamma density function. Under such a setting, clusters do not share
the variance parameter. Following Page and Quintana (2018) the set of parameters
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for the Normal-Inverse-Gamma density is (m0 = 0, k0 = 1.0, v0 = 1.0, n0 = 2). Since
the parameter v0 has proven to be the most influential, we assessed the sensitivity of
the results to its specification in Appendix B.1.

Approaches based on covariate-dependent random partition perform well if the
clustering is not completely driven by covariates. As the number of covariates
increases, similarity functions tend to overwhelm the information provided by the
response, completely driving the clustering process. To counteract this behavior,
Page and Quintana (2018) explore some approaches to temper the impact that
covariates have on partitions. As an alternative to variable selection or to reducing
the dimensionality of the covariate space through the use of sufficient statistics, Page
and Quintana (2018) propose to calibrate the influence of covariates on clustering.
To this end, we use g̃(x?j) = g(x?j)

1/
√
Q, a small variation of the coarsened similarity

function by Page and Quintana (2018).

3.4 Priors

In this section, we discuss the prior distributions for Πa
na , η

a?
j and βk. Both Πa

na

and ηa?j are cluster-specific quantities and their law is jointly assigned. Since
the same priors are assumed independently for all treatments, we will omit the
superscript a throughout the section. We complete the random partition model in
(3.8) defining a prior on η?j that induces independence across clusters and conditional
independence within clusters. We include cluster-specific parameters ζ?j : p(η?j |Πn) =∏Cn

j=1 pj(η
?
j ), where pj(η

?
j ) =

∫ ∏
i∈Sj pj(ηi|ζ

?
j )dp0(ζ

?
j ) and p0 is a prior for cluster-

specific parameters ζ?j . Introducing cluster membership indicators ei ∈ {1, . . . , Cn}
with ei = j if i ∈ Sj, the joint model for (Πn,η

?
j ) can be hierarchically written as

ηi|ζ?, ei
ind∼ p(ζ?ei) for i = 1, . . . , n

ζ?j
iid∼ p0 for j = 1, . . . , Cn

p(Πn) = Vn,c

Cn∏
j=1

ρ(nj)g(x?j)

(3.11)

considering that ζi = ζ?ei . In particular, ζ?j = (θ?j ,Σ
?
j) and we assume that

ηi|θ?,Σ?, ei
iid∼ NK(θ?ei ,Σ

?
ei

), where NK denotes a K−dimensional multivariate nor-

mal density. We complete this prior specification assuming θ?j |µ0,Λ0
iid∼ NK(µ0,Λ0)

and Σ?
j |ν0,S0

iid∼ IW (ν0,S
−1
0 ), where IW is an Inverse-Wishart distribution. In

particular, µ0 is a K−dimensional vector of 0, ν0 = K + 2, and Λ0 and Σ0 are two
K ×K diagonal matrices with elements on the diagonal being equal to 10 and 1.0,
respectively. Elicitation for the latter two parameters is discussed and motivated in
the sensitivity study reported in Appendix B.1.

The priors for the parameters βk are also assumed to be independent and to
enhance predictive performance we use shrinkage priors. We adopt the horseshoe
prior (Carvalho et al., 2009, 2010), an absolutely continuous mixture distribution
that belongs to the class of global-local scale mixtures of normals:

βpk
iid∼ N(0, λ2

pkτ
2
k )

λpk, τk
iid∼ HC(0, 1),
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where HC denotes a half-Cauchy distribution, {λpk} are local shrinkage parameters,
and {τk} are global shrinkage parameters. All coefficients will be nonzero, nonetheless
only those supported by the data will have large values, due to the heavy tails of the
prior.

3.4.1 Induced prior distribution of the number of clusters

We argue that using the nggp-induced cohesion rather than the one induced by the
dp yields a more efficient prior mass allocation over different partitions, overcoming
the rich-get-richer feature of the dp. This is due to the reinforcement mechanism
induced by σ parameter that takes place in the predictive distribution of the nggp
(3.7). In the following example, we compare the distributions on the number of
clusters Cn induced by the ppmx under different combinations of the cohesion and
the similarity functions.

Example 2

We consider a mixture of three different 5−variate normal distributions such that

p(η) =
3∑
j=1

φjN5(θj,Σ),

where φ = (0.2, 0.5, 0.3)>, θj are 5−dimensional vectors such that θ1 = −2.1 · 1,
θ2 = 0 · 1 and θ3 = 2.3 · 1, where 1 is the all-ones vector in R5. Finally Σ is 5× 5
diagonal covariance matrix such that Σ = diag(0.5, 0.5, 0.5, 0.5, 0.5). We generate
50 values from this mixture and we use the data to compare 5 different model. We
consider DP (κ = 19.2333), NGG(κ = 0.7353, σ = 0.7353) and three different ppmx
to compare dp and ngg cohesions and evaluate calibrated similarities:

• ppmx with DP (19.2333) cohesion and coarsened similarity,

• ppmx with NGG(0.7353, 0.7353) cohesion and coarsened similarity,

• ppmx with NGG(0.7353, 0.7353) cohesion and non calibrated similarity.

Note that the dp and the nggp can be considered special cases of the ppmx distibution
using ρ(Sj) = κ(nj − 1)! and equation (3.4) respectively as cohesion function and
similarity g ≡ 1, that is no covariates in the prior.

Parameter elicitation for the dp and ngg process priors centers the distributions
on the same expected number of clusters. This elicitation of the parameters of
nonparametric priors is such that E(C50) = 25, that is we are comparing the models
under misspecification since the true number of components of the mixture is 3.
The corresponding distributions are based on 10000 iterations adopting the mcmc
procedure described in Section B.2.2 (considering only the steps for (Πn,η

?)) and
are displayed in Figure 3.1.

As expected, when moving from the dp to the nggp, the distribution of C50

becomes flatter, exhibiting a larger variability. In fact, due to the reinforcement
mechanism induced by the σ parameter, the nggp prior gives a-priori support to
a larger number of clusters, still penalizing the number of singleton partitions (see
Table 3.1). This is particularly convenient when there is uncertainty about the true
number of clusters. The ppmx models include information carried by covariates in
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Figure 3.1: Prior distributions on the number of clusters corresponding to the Dirichlet
Process (dp), ppmx with dp cohesion and coarsened similarity (dp-sim), normalized
generalized gamma process (ngg), ppmx with ngg cohesion and non calibrated similarity
(ngg-nocal), ppmx with ngg cohesion and coarsened similarity (ngg-sim).

the prior distribution hence should be able to counteract the misspecification in the
prior elicitation. Nonetheless, when the dp cohesion is adopted the ppmx still does
not differ much from the dp, exhibiting a distribution that gives support to a number
of clusters that is much larger than the true one. This is due to the rich-get-richer
phenomenon, since a large portion of clusters (53%) are singletons, as displayed in
Table 3.1.

Table 3.1: Average number of clusters and proportion of singletons corresponding to
the Dirichlet Process (dp), ppmx with dp cohesion and coarsened similarity (dp-sim),
normalized generalized gamma process (ngg), ppmx with ngg cohesion and non calibrated
similarity (ngg-nocal), ppmx with ngg cohesion and coarsened similarity (ngg-sim).

dp dp-sim ngg ngg-nocal ngg-sim

Av. # clusters 25.09 22.38 26.25 5.19 6.13
% singletons 56% 53% 17% 6% 12%

Finally, let us focus on the ppmx models with nggp as cohesion function. We
considered both the case of calibrated and uncalibrated similarity. The implied
distributions on the number of clusters give strong support to a moderate number of
clusters, either way. That is that the nggp effectively embeds information carried
by the covariates, counteracting the prior misspecification. Nonetheless, when the
similarity is not calibrated, the ppmx implies a highly peaked distribution of C50.
This is consistent with what is discussed in Page and Quintana (2018), where they
draw attention to the risk of similarities completely driving the clustering process.
Since this phenomenon is more pronounced for a larger number of covariates (as in
our case study), following their results we judge the calibrated similarity to be better
suited for our model. �
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3.5 Posterior Inference

We implement a MCMC procedure to simulate a Markov Chain whose equilibrium
distribution is the posterior distribution of the parameters of interest:

H(η?,Π,β;y,x,π) =
T∏
a=1

Ha(ηa?,Πa,β;ya,xa,πa),

Ha(ηa?,Πa,β;ya,xa,πa) =
na∏
i=1

πaiyai

Can∏
j=1

∏
i∈Saj

fπ|γ(πai |γai (ηa?j ,β)),

(3.12)

where yai is the observed response for patient i who received treatment a and fπ|γ
denotes the Dirichlet density function. To construct an efficient algorithm and improve
computational feasibility we adopt a data augmentation approach (Argiento et al.,
2016) to represent the Dirichlet distribution as independent latent Gamma random
variables. In particular, we reparameterize equation (3.1) letting πaik = daik/D

a
i , where

Da
i =

∑K
k=1 d

a
ik and assume that daik ∼ Gamma(γaik(η

a?
jk ,βk), 1). Refer to Appendix

B.2.1 for more details. This greatly facilitates the sampling procedure. The core part
of the algorithm is the update of cluster membership. The computation associated
with (3.11) is based on Neal (2000)’s Algorithm 8 with Reuse (Favaro et al., 2013).
Conditional on the updated cluster labels, all the remaining parameters are easily
updated with Gibbs sampler or Metropolis-Hastings steps. In the following we outline
the implemented Metropolis-Hastings within Gibbs algorithm:

1. Update Π by Neal (2000)’s Algorithm 8 and the Reuse step proposed in
Favaro et al. (2013).

2. Update η? by Metropolis-Hastings. Hyperparameters are updated through
Gibbs steps from their respective full conditional distributions.

3. Update β by Metropolis-Hastings. Hyperparameters are updated through
slice sampler (Neal, 2003), as suggested in Polson et al. (2014).

4. Update d by Gibbs from its full conditional distributions.

Further details can be found in Appendix B.2.2.

3.6 Treatment Selection

To perform treatment selection for a new untreated patient ĩ, we need, in the first
place, to predict the treatment outcome under each competing scenario ỹa = ya

ĩ
,

for a = 1, . . . , T . The posterior predictive distribution arises as a natural choice
to perform this task. Given the observed responses for the na patients previously
treated with therapy a, that is ya, the predictive probability of response level k
under treatment a is

p(ỹa = k | ya, za,xa, z̃, x̃), (3.13)

where z̃ = zĩ and x̃ = xĩ denote the P and Q dimensional vectors containing
prognostic and predictive markers for the new patient. It is easy to show that
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equation (3.13) depends on the posterior predictive distribution of cluster-specific
parameters. In Section 3.6.1 we show that for ppmx models posterior predictive
distributions are readily available.

Equation (3.13) can be directly employed in treatment selection for binary
outcomes. Assuming that outcome category 1 represents a larger utility than
category 0, the optimal treatment would be the one ensuring the largest p(ỹa = 1 | ·)
for a = 1, . . . , T . Following Ma et al. (2016) in Section 3.6.2, we adopt a utility
approach for the selection of competing treatments with multinomial outcomes.

3.6.1 PPMx posterior predictive distribution

To obtain the posterior predictive distribution in (3.13) we need to first assign the
untreated patient ĩ to one of the Ca

na existing cluster or to a new one and then obtain
the posterior predictive distribution for η̃a = ηa

ĩ
:

p(η̃a|x̃,ya,xa) =

∫
p(η̃a|x̃,Πa

na+1,y
a,xa)dp(Πa

na+1|x̃,ya,xa),

where Πa
na+1 = (Πa

na ∪ ẽ). Müller et al. (2011) show that covariate dependent
predictive distributions are readily available from ppmx model. In particular, the
prior for Πa

na+1 can be written as

P (Πa
na+1|Πa

na , ) = P (ẽa = j|Πa
na) ∝


ρ(Saj ∪ {̃i})g(xa?j ∪ {x̃a})

ρ(Saj )g(xa?j )
for j = 1, . . . , Ca

na

ρ({̃i})g({x̃a}) for j = Ca + 1.

(3.14)

Samples for the posterior predictive distribution from p(η̃a|x̃a,ya,xa) can be obtained
on top of posterior simulation for Πa

n ∼ p(Πa
n|x,η), that are collected within the

mcmc (Page and Quintana, 2015).

3.6.2 Predictive utility

To facilitate treatment selection for multinomial ordinal outcomes, we adopt utility
weights. In clinical oncology, response categories are ordinal and consider changes
in tumor size and/or distant migration after the treatment. We establish utility
weights that turn a multinomial setting into a one-dimensional selection criterion
considering the relative importance of each level of the ordinal response. Let ω be a
K−dimensional vector denoting the utility assigned to tumor response levels. We
can then compute the median predictive utility for patient ĩ as:

ϕa(̃i) =
K∑
k=1

ωkµ1/2(yĩ = k | ya, za,xa, z̃, x̃). (3.15)

The ĩ−th patient will be assigned to the therapy ensuring the largest predictive
utility, that can be considered to be optimal among the competing treatments.

The predicted optimal treatment for patient i is easily obtained from (3.15):

A(̃i) = arg max
a

{
ϕa(̃i)

}
. (3.16)
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3.7 Simulation Study

We carry out a comparative study on simulated data to evaluate the performances of
our method. We compare the proposed integrative method for personalized treatment
selection (treat-ppmx) with the two-stage Bayesian predictive method proposed by
Ma et al. (2019) using three different clustering procedures, namely K-means (km-bp),
Partitioning Around Medioids (pam-bp) and Hierarchical Clustering (hc-bp).

The approach proposed by Ma et al. (2019) employs the Consensus Clustering
method (Monti et al., 2003) that determines clustering for a specified number of
clusters C. Since the number of groups in a sample is not known in practice, C is to
be selected using a loocv for each simulated patient. Note that this is not true for
our approach and that our method does not need any effort for the specification of
the number of clusters.

In Section 3.7.1 we describe the data generating process. Section 3.7.2 gives
details on the construction of the measures adopted for the performance comparison
of the methods. Finally, in Section 3.7.3 we present the results of the simulation
study and provide a brief discussion.

3.7.1 Generating mechanism

The simulated scenarios considered in our studies are constructed on the strategy
devised in Ma et al. (2016, 2019). That is, we do not simulate from our model.
In order to emulate the correlation structure that characterizes sequencing data,
prognostic and predictive covariates are obtained from a real leukemia dataset. The
data available from Golub et al. (1999) provide gene expression levels from 5000 genes,
collected across 38 patients, of which 11 were diagnosed with acute myelogenous
leukemia and the remaining with acute lymphoblastic leukemia. To obtain scenarios
with a larger sample size, Ma et al. (2016, 2019) devised a procedure to expand
the dataset, yielding n = 152 patients (38× 4) with Q = 90 predictive and P = 2
prognostic biomarkers. This procedure is presented in detail in the Supplementary
material of Ma et al. (2019).

The patients are assigned to T = 2 competing treatments and 3 levels of the
ordinal-valued response variable are considered.

Generating treatment response

Since the observed treatment endpoints were unavailable, the treatment response is
generated using two continuation-ratio logistic functions. The first one characterizes
the effect of the predictive markers

ra1k(xi) =
(P a(y = k|xi)
pa(y < k|xi)

)
= αa1k + βa1kψ2(xi), for i = 1, . . . , n, (3.17)

where ψ2(·) is a one-dimensional function of the first two principal components,
used to summarize the information carried by predictive markers. Response-level
probabilities for prognostic features are defined through the second continuation-ratio
logistic function:

ra2k(zi) =
(P a(y = k|zi)
pa(y < k|zi)

)
= αa2k + β2kzi, for i = 1, . . . , n. (3.18)
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Figure 3.2: Differences in the true mean treatment utilities (the mean utility of treatment
2 minus the mean utility of treatment 1) by patients for Scenarios 1-3. Positive values
indicate that treatment 2 is more beneficial and vice versa.

The coefficients αa1k, α
a
2k,β2k,β

a
1k were set to values that could produce realistic

response rates, see Ma et al. (2019) for more details. Probability for each level of
the ordinal response variable was generated as the pointwise product of (3.17) and
(3.18) for each patient.

Finally, the optimal treatment for each simulated patient is determined as the
inner product between the ordinal response probability ad the response level utility
weight ω. In particular, we set ω = (0, 40, 100)> to make the ordinal response reflect
the clinical importance of each level Ma et al. (2016).

3.7.2 Performance evaluation

Prediction performances are compared in terms of the following metrics:

1. MOT : Misassigned to the Optimal Treatment;

2. %∆MTU`: Relative Gain in Treatment Utility;

3. NPC: Correctly Predicted Outcome.

The true optimal treatment is available since the treatment specific mean utilities
are the pointwise product between equations (3.17) and (3.18). The true optimal
treatment is:

A(i) = arg max
a

{ K∑
k=1

ωk

(
ra1k(xi)r

a
2k(zi)

)}
, i = 1, . . . , n.

It follows that

MOT = n−
n∑
i=1

1[A(i)−A(̃i)=0],
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where A(̃i) is the predicted optimal treatment for patient i, defined in (3.16). MOT
represents a first measure to compare the methods. Its interpretation is straightfor-
ward and lower values are associated with better selection rules.

Nonetheless, the extent to which a treatment is beneficial for each patient is
heterogeneous and the improvement offered by a therapy varies from patient to
patient. To account for this heterogeneity, performances should be evaluated also
considering the relative utility gain. The relative gain in Treatment Utility, %∆MTU`
(Ma et al., 2016) allows to measure the overall benefit ensured by a treatment selection
rule `, in the case of T = 2 competing treatments. Denoting with MTUa(i) the
mean treatment utility of treatment a for patient i, we can obtain the differential
treatment utility as ∆MTU(i) = MTU1(i)−MTU2(i). Considering the true optimal
treatment A(i) and denoting with t`(i) the treatment recommended by selection rule
`, we can construct the indicator function δt`(i)(A(i)) that is defined as:

δt`(i)(A(i)) =

{
1 if t`(i) = A(i)

−1 if t`(i) 6= A(i).

The sum of the true gains achieved by the selection rule ` is ∆MTU` =∑n
i=1 δt`(i)(A(i))|∆MTU(i)|. The maximum possible gain in mean treatment utility

varies in each simulation scenario. To make performance comparable also across
scenarios, we consider the proportion of the maximum possible gain in total mean
treatment utility attained by selection rule `, that is:

%∆MTU` = ∆MTU`/∆MTUopt,

where ∆MTUopt is the maximum possible total MTU , achieved when all patients
are assigned to their optimal treatment. Finally, %∆MTU` is bounded above by
1, when it always recommends the optimal treatment and %∆MTU` = −1 when it
fails to select the optimal therapy for all the patients.

The last metric employed for performance comparison is NPC, that counts the
number of patients for which the outcome was correctly predicted.

3.7.3 Simulation scenarios and results

We designed the simulated scenarios starting from a reference scenario and evaluated
the methods on two arrays of scenarios of increasing complexity. The reference
scenario (Scenario 1) is constructed plainly following the generating mechanism
described in Section 3.7.1 using only 10 predictive biomarkers. The same applies
to Scenarios 2a and 2b, which are defined by an increased number of predictive
covariates (25 and 50, respectively). In order to evaluate the methods under a noisy
framework, Scenarios 3a and 3b match the dimensions of Scenarios 2a and 2b, but
only 10 predictive covariates were effectively used to generate the response variable,
that is 15 and 40 variables, standard normal distributed, were added to the reference
scenario, respectively. The methods are evaluated on this first array of scenarios
using a loocv strategy. Note that, since the approaches proposed by Ma et al.
(2019) are based on Consensus Clustering a nested loocv is needed: the inner loop
is used to select the number of clusters, while the outer one is used to perform the
prediction.

In order to emulate the large heterogeneity that sequencing data feature, we
designed a second group of scenarios. We obtain a training and a testing set using
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the generating mechanism described in Section 3.7.1, but the predictive covariates
employed to generate the response differ in the training and in the testing set, in the
sense that they overlap only to some extent. Obviously, for these scenarios a train
and test strategy is employed, that is the model is fitted to the patients that belong
to the training set, while the test set is used to judge the predictive performance
of the models. The second array of scenarios is obtained as follows. Scenarios 4a
and 4b present no difference in the generative mechanism between train and test
set and they consider 25 and 50 predictive biomarkers, respectively. That is, they
perfectly match Scenarios 2a and 2b. Nonetheless, since in the first pair of scenarios
the methods are compared using a loocv strategy, the results are not comparable.
The pairs of scenarios (5a, 5b) and (6a, 6b), match (4a, 4b) in terms of the number
of predictive covariates, but predictive markers employed to generate the response
in training and testing set overlap at 90% and 80%, respectively. Scenarios with 25
covariates are labeled with “a”, while those with 50 covariates are labeled with “b”.
Table 3.2 summarizes the list of scenarios and their characteristics.

Table 3.2: List of simulation scenarios and their characteristics. The first array of scenarios
(on the left hand side) is analysed with a loocv strategy. It varies in terms of number of
predictive covariates and also considers covariates not employed to generate the response
variable. The second array of scenarios (on the right hand side) is analysed with a train
and test set strategy. It varies in terms of number of predictive covariates and in the extent
to which predictive covariates overlap in the data generating mechanism of the train and
the test set.

loocv Train and Test

Scenario # covariates
# noisy
variables

Scenario # covariates % overlap

1) 10 0 4a) 25 100
2a) 25 0 4b) 50 100
2b) 50 0 5a) 25 90
3a) 25 15 5b) 50 90
3b) 50 40 6a) 25 80

6b) 50 80

We set (κ, σ) = (1, 0.01). We assumed Λ0 to be a diagonal matrix with all
elements on the diagonal equal to 10 and also assumed an identity matrix for S0.
Finally we set v0 = 1. Further details and the results of the sensitivity study on these
parameters are provided in Appendix B.1. We ran the algorithm for 52, 000 iterations,
with a burn-in period of 12, 000 iterations; chains were thinned and we kept every
10−th sampled value. Comparisons are made in terms of MOT , %∆MTU` and
NPC. Reported values are averaged over 30 replicates, with standard deviations in
parentheses.

53



3.7.
S
im

u
lation

S
tu

d
y

Table 3.4: Prediction performances for Scenarios 1, 2a, 2b: mean across 30 replicated datasets (standard deviations are in parentheses). In each
scenario and for each index the best performance is in bold.

Scenario 1 Scenario 2a Scenario 2b

MOT %∆MTU` NPC MOT %∆MTU` NPC MOT %∆MTU` NPC

pam-bp
19.7333 0.7212 75.6667 15.2333 0.8038 77.2667 16.0667 0.7722 77.0000
(4.1000) (0.0730) (8.3184) (3.0000) (0.0535) (6.2031) (6.6329) (0.1152) (7.4879)

km-bp
18.0000 0.7516 77.3667 8.7667 0.8792 77.1333 9.7333 0.8604 80.2000
(4.1606) (0.0742) (8.2816) (5.6000) (0.0863) (7.6777) (8.4000) (0.1399) (8.1385)

hc-bp
33.8333 0.5531 73.9667 18.8667 0.7308 76.5667 17.3333 0.7967 76.8333
(2.8172) (0.0736) (7.2468) (5.4944) (0.0985) (6.0326) (4.8090) (0.0885) (6.3305)

treat-ppmx
13.5333 0.8341 81.8000 14.3000 0.8492 82.0333 17.9000 0.8312 84.7333
(3.3706) (0.0449) (7.3738) (8.8635) (0.0820) (6.1839) (8.9070) (0.0878) (6.4430)54
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Table 3.3: Prediction performances for Scenarios 3a, 3b: mean across 30 replicated datasets
(standard deviations are in parentheses). In each scenario and for each index the best
performance is in bold.

Scenario 3a Scenario 3b

MOT %∆MTU` NPC MOT %∆MTU` NPC

pam-bp
19.1667 0.7319 75.9000 30.4333 0.5353 72.5333
(3.4000) (0.0602) (7.8580) (7.2000) (0.1010) (7.0746)

km-bp
16.8333 0.7637 76.8667 19.3667 0.7266 78.3667
(2.8000) (0.0442) (8.2993) (2.5000) (0.0347) (6.9406)

hc-bp
22.7333 0.6881 75.5000 26.1667 0.6354 73.3333
(3.7040) (0.0569) (7.4498) (5.6000) (0.0633) (7.5992)

treat-ppmx
19.7333 0.7396 82.2333 27.0667 0.6449 79.4000
(6.5859) (0.0768) (5.7156) (12.4815) (0.1181) (7.6906)

Figure 3.3: Prediction performances for Scenarios 1, 2a, 2b: boxplots display the distribu-
tions of values obtained for the summary measures.
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Figure 3.4: Prediction performances for Scenarios 3a, 3b: boxplots display the distributions
of values obtained for the summary measures.

Based on the results provided by this first array of scenarios we can say that
treat-ppmx outperforms competing two-stage models when the number of predictive
biomarkers available is small (Scenario 1, reported in Table 3.4 and in Figure 3.3).
This can be attributed to the capability of the covariate-dependent random partition
to reach significant clustering arrangements even in the presence of a small amount
of information, that is the case in which heuristic methods fail.

For an increasing number of covariates (Scenarios 2a and 2b, Table 3.4 and
Figure 3.3), km-bp yields the best performances in terms of MOT and %∆MTU`.
Nonetheless, among the methods based on heuristic clustering, km-bp is the only
one that outperforms our method. Hc-bp and treat-ppmx present close values for
the MOT in Scenario 2b.

Finally, our method consistently outperforms all the others in terms of NPC. This
is probably due to the integrated prediction mechanism, able to fully account for the
uncertainty in the clustering; note that, for the proposed method, optimal treatment
misassignment often pertains to patients with similar utility across treatments.

Scenarios 3a and 3b (Table 3.3 and Figure 3.4) consider an additional factor of
difficulty, that is the presence of noisy covariates. This yields all methods to poorer
performances, especially in Scenario 3b which features a larger number of predictive
markers. The same consideration carried out with respect to Scenario 2a and 2b are
valid here, since the pattern of the best results is the same.

Table 3.5 and Figure 3.5 report the performances of the competing methods on
Scenarios 4a, 4b, 5a, 5b, 6a, 6b. When a moderate amount of predictive covariates is
considered, our method outperforms the competitors or attains performances that
are close to km-bp. km-bp is the best performing approach among the two-stages
methods. For an increasing number of covariates, the discrepancy between our
method and km-bp widens, with the latter attaining the best results (in terms of
MOT and %∆MTU`). The pairs of scenarios of this second array are sorted in
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Table 3.5: Prediction performances for Scenarios 4a, 4b, 5a, 5b: mean across 30 replicated
datasets (standard deviations are in parentheses). In each scenario and for each index the
best performance is in bold.

Scenario 4a Scenario 4b

MOT %∆MTU` NPC MOT %∆MTU` NPC

pam-bp
6.1667 0.5838 14.7333 5.7667 0.5561 14.2000

(3.4450) (0.2078) (2.5452) (3.1697) (0.2034) (2.1560)

km-bp
4.5333 0.6749 15.3000 4.3667 0.6919 13.4333
(2.9912) (0.1988) (2.6017) (2.0083) (0.1400) (2.2389)

hc-bp
6.8000 0.5727 13.9000 6.5667 0.5580 12.7333

(1.9191) (0.1386) (2.3686) (1.9061) (0.1786) (1.8742)

treat-ppmx
5.8000 0.6687 15.0333 7.4667 0.5938 15.3333

(3.8721) (0.2590) (2.3851) (3.7207) (0.2462) (2.3829)

Scenario 5a Scenario 5b

MOT %∆MTU` NPC MOT %∆MTU` NPC

pam-bp
6.1333 0.5773 9.1333 5.8000 0.5578 13.7333

(3.2982) (0.2060) (2.1930) (3.3052) (0.2216) (2.2581)

km-bp
4.5333 0.6840 10.7333 5.0333 0.6438 13.2000
(3.0596) (0.1946) (1.6802) (2.1413) (0.1452) (1.9896)

hc-bp
7.3667 0.5165 11.6333 6.8667 0.5270 12.7333

(2.0254) (0.1737) (2.7353) (1.9250) (0.1782) (1.7604)

treat-ppmx
4.6000 0.7411 14.8667 7.9000 0.5478 15.2000

(2.2984) (0.1384) (2.7883) (5.3906) (0.3671) (2.2804)

Scenario 6a Scenario 6b

MOT %∆MTU` NPC MOT %∆MTU` NPC

pam-bp
5.9333 0.5991 15.1333 5.4333 0.5749 12.3667

(3.5324) (0.2236) (2.3154) (2.7503) (0.2053) (2.2047)

km-bp
5.1667 0.6411 15.0667 4.8333 0.6445 11.7667

(3.1303) (0.2061) (2.1645) (2.9721) (0.2261) (2.0288)

hc-bp
6.8000 0.5706 14.9667 7.1000 0.5044 12.1000

(1.8080) (0.1400) (2.4422) (2.1870) (0.2028) (1.9360)

treat-ppmx
4.1000 0.7583 15.5333 5.9333 0.6735 14.6333
(3.8983) (0.2500) (2.2397) (3.5809) (0.2367) (2.6325)
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Figure 3.5: Line plots for summary measures in Scenarios (4a, 5a, 6a) and (4b, 5b, 6b).
The first row reports MOT , %∆MTU`, NPC of the scenarios with 25 covariates (those
with label “a”). The second row reports MOT , %∆MTU`, NPC of the scenarios with 50
covariates (those with label “b”). A single plot displays results, with respect to a single
summary measure, that each competing method attained in three scenarios with common
dimension. The scenarios are reported on the “x” axis and are ordered for increasing level
of heterogeneity (that is decreasing level of overlap).

order of increasing level of heterogeneity. In fact, Scenarios (4a, 4b) feature a perfect
overlap between the set of predictive markers used to generate the response in the
train and the test set, while in Scenarios (5a, 5b) and (6a, 6b) this overlap is reduced
to 90% and 80%, respectively. It is interesting to observe that our method is the
only approach that performed better as the level of heterogeneity increases. It is
again imputable to the fact that prediction and clustering are jointly performed in
an integrative framework.

Our simulation study suggests that when a limited amount of predictive biomark-
ers are available, treat-ppmx should be preferred over two-stage methods. However,
as the number of covariates grows, methods based on heuristic clustering algorithms
should be adopted. In particular, from our results, km-bp obtains the best perfor-
mances in terms of MOT and %∆MTU`. Nonetheless, the advantage offered by
two-stage methods diminishes for large heterogeneity. In that case, regardless of
the number of predictive covariates, the treat-ppmx should be preferred over all the
competing approaches considered.
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3.8 Case Study of Lower-grade Glioma

3.8.1 Lower-grade glioma

Glioma is the most frequent brain tumor: it makes up approximately 30% of all
brain and central nervous system tumors and 80% of all malignant brain tumors
(Goodenberger and Jenkins, 2012). Gliomas are classified as grades I to IV based on
histological criteria established by the World Health Organization (WHO). Grade I
tumors are generally circumscribed benign tumors with favorable prognosis, while
grades II-IV comprise more aggressive tumors (diffuse gliomas). Grade II and grade
III gliomas are usually referred to as low-grade glioma (lgg), which may eventually
progress to grade IV, high-grade glioma.

Most lgg patients undergo resection and then receive radiotherapy and/or
chemotherapy. Nonetheless, these standard procedures have proved to be largely
inadequate (Claus et al., 2015). lgg exhibits significant molecular heterogeneity
(Weiler and Wick, 2012; Cohen and Colman, 2015; Olar and Sulman, 2015), and
many research efforts are now devoted to developing precision medicine for patients
diagnosed with lgg (Ius et al., 2018; Taghizadeh et al., 2019; White et al., 2020).

Our goal is to leverage omics covariates to select the personalized optimal treat-
ment.

3.8.2 TCGA data

We apply our method to the dataset analyzed in Ma et al. (2019), where clinical
data and protein expression of patients affected by lower-grade glioma are collected
from the tcga data portal (now available at https://portal.gdc.cancer.gov/).
Publicly available data underwent an accurate preprocessing, thoroughly documented
in Ma et al. (2019) and briefly summarized in this section. The resulting lgg dataset
considers patients that received standard and advanced treatments. A treatment
qualifies as advanced if it includes targeted therapies or radiotherapy. Each group
consists of 79 patients balanced in the covariates to account for potential selection
bias. Tumor response is formulated in three ordinal levels: progressive disease (pd),
partial response/stable disease (ps), and complete response (cr). Utility weights
for treatment selection for ordinal outcomes are elicited, namely ω = (0, 40, 100) to
make the ordinal response reflect the clinical importance of each level (Ma et al.,
2016). Finally, (Ma et al., 2019) selected 23 predictive features and 2 prognostic
markers (acvrl1-r-c and hsp70-r-c) through univariate association analyses.

3.8.3 Empirical summary measure

TCGA data do not provide the true optimal treatment, hence only the NPC measure,
among those discussed in Section 3.7.2, can be used. However, we employed another
summary to evaluate the relative increase in the population response rate attributable
to a proposed treatment allocation method when compared with random allocation.
This empirical summary measure (esm) is proposed in Song and Pepe (2004) and its
empirical efficacy is discussed in Kang et al. (2014); Ma et al. (2016) and Ma et al.
(2019).

Let Y = {0, 1} be the binary outcome variable. We define the treatment contrast
as ∆(X,Z) = P (Y = 1|A = 2,X,Z)− P (Y = 1|A = 1,X,Z), where A = {1, 2}
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denote the non-targeted and targeted treatment, respectively. Indicating with
P (Y = 1|A) the probability of being a respondent under a randomized treatment
assignment, we obtain the relative increase in the population response rate under a
personalized treatment selection rule as:

ESM ={P (Y = 1|A = 2,∆(X,Z) > 0)× P (∆(X,Z) > 0)+

P (Y = 1|A = 1,∆(X,Z) < 0)× P (∆(X,Z) < 0)} − P (Y = 1|A).

The overall response rate under a randomized treatment assignment P (Y = 1|A)
can be estimated as the sample proportion of respondents. The clinical benefit
that is attributable to the proposed method is defined as the response rate for
patients assigned by the proposed method (P (∆(X,Z) > 0) vs P (∆(X,Z) < 0))
to the treatment actually received (A = 2 or A = 1). Defining n1 and n2 as the
number of patients that received treatment A = 1 and A = 2, respectively, the
weights P (∆(X,Z) < 0) and P (∆(X,Z) > 0) can be estimated as n1/n and n2/n,
respectively. esm measures the gain in the clinical benefit obtained under a particular
treatment selection rule. Note that we based this summary measure on only two
response categories, respondents (cr) and non-respondents (pd + ps); whereas, we
used all three levels of the ordinal outcome in the data analysis and to implement
personalized treatment selection.

3.8.4 Preliminary results

In this section, we applied the proposed method to the lgg dataset alongside the
approach proposed by Ma et al. (2019). Table 3.6 reports npc and esm summary
measures computed from assignments obtained by adopting a 10-fold cross-validation
strategy.

To robustify inferences with respect to κ, σ, we define a prior distribution on (κ, σ)
to overcome a critical trade-off that occurs when κ and σ are fixed. In particular,
smaller values of σ give strong support to a moderate number of clusters, which is
typically the case, but at the cost of losing the reinforcement mechanism. We assume
a prior distribution on (κ, σ) ∈ (0,∞)× (0, 1) to let the data choose the appropriate
reinforcement rate (Lijoi et al., 2007). Namely, we adopted a discrete prior on a grid
5× 5 in (0, 20)× (0, 1), which assigns uniform probability to all the combinations of
(κ, σ).

We ran the algorithm for 52, 000 iterations, with a burn-in period of 12, 000
iterations; chains were thinned and we kept every 10−th sampled value. The
proposed treat-ppmx outperforms competing methods, both in terms of npc and
esm. These results are consistent with those obtained in our simulations studies,
especially in scenarios featuring significant heterogeneity and a moderate number
of predictive covariates (Scenarios 2a and 3a). In particular, treat-ppmx attains
an esm of 0.0713, representing a 20% increase in the response rate, compared to
randomized assignment with a response rate of 58/158 ' 0.361. esm for km-bp is
0.0495 reflecting an increase of 14%.
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Table 3.6: LGG data 10-fold cross validation.

NPC ESM

pam-bp 67 0.0296
km-bp 57 0.0495
hc-bp 53 0.0275

treat-ppmx 71 0.0713

Figure 3.6 reports the heatmaps of the estimated posterior probabilities of
co-clustering for the two treatments. Patients show pronounced heterogeneity,
particularly those assigned to Treatment 1. The absence of a sharp separation
between clusters in Treatment 1 (left pane) demonstrates a significant uncertainty in
the clustering. Patients assigned to Treatment 2 (right pane) form most separate
clusters, but the low probability of co-clustering still indicates a large variability in
the clusters’ production.
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Figure 3.6: Heatmaps of the estimated posterior probabilities of co-clustering for
Treatment 1 (left) and Treatment 2 (right) in fold 10.

This should not be interpreted as a bad model fit. In fact, the main goal of the
proposed model is prediction. The random partition model is leveraged mainly for a
density estimation purpose, rather than clustering. The random intercepts ηa may
feature several modes since they embed uncertainty in the patients that arises from
their predictive determinants.

3.9 Discussion

We proposed a novel Bayesian model aimed at the selection of the personalized
optimal treatment in oncology when a predictive signature and a set of prognostic
biomarkers are available. A well-established strategy to integrate prognostic and
predictive covariates is to cluster patients into groups that are homogeneous with

61



3.9. Discussion

respect to their predictive markers, within each treatment. In a subsequent step,
this clustering arrangement is used to adjust the baseline probability of response to
treatment obtained by prognostic factors. The advantage that the proposed approach
has over existing models is that in our method model-based clustering and treatment
assignment are jointly estimated from the data, that is, treatment selection fully
accounts for patients heterogeneity.

We employed a Bayesian nonparametric model for random partition to build
our integrative approach. In particular, we explored the use of the ngg process
as cohesion function in a product partition model with covariates. The resulting
predictive model proved to perform adequately well in the simulation study we
conducted. Treat-ppmx outperforms competing methods in scenarios characterized
by a moderate number of covariates. When the predictive signature is large, the
two-stage approach may yield to better results, as long as heterogeneity is negligible.
Moreover, a careful choice of the heuristic clustering method is still needed.

Our approach does not provide clearly separated posterior clusters in the analysis
of the lgg dataset. This phenomenon is probably due to the significant heterogeneity
that patients exhibit. Nonetheless, we are evaluating alternative modeling choices to
improve clustering. In particular, we are exploring different similarity functions.

Extensions of the proposed model are possible. A delicate issue in models for
random partition is the centering of the process, that is the choice of the base measure
µ0. This problem is often addressed with an empirical Bayes approach (e.g. Lijoi
et al. (2007)), that is the prior distribution is estimated from the data. Since in
our case the random partition distribution acts as prior on a random effect, rather
than on data, this approach is not feasible. Nonetheless, it would be interesting to
consider adaptive algorithms to improve the exploration of the parameter space and
obtain better cluster-specific estimates. Note that the flexibility-computational cost
trade-off needs to be evaluated.

Finally, a natural step would be to rephrase our strategy under the causal inference
framework. In fact, precision medicine is committed to making the clinical decision-
making process evidence-based and the causal approach provides the methodology
for a better understanding of the actual effects of specific treatments on specific
patients, that is the causal inference of individualized treatment effects.
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Chapter 4

Final Remarks

In this thesis, we have presented two flexible regression models to analyze complex
genomic and health data exhibiting large heterogeneity. The proposed methods are
developed under the Bayesian framework to fully account for the uncertainty in the
data generating process, parameter estimation, and model selection. Quantifying
all sources of uncertainty is crucial because several models may explain the data
equally well and hence point estimators are often not adequate. For each method,
we developed state-of-the-art samplers for conducting posterior inference. To obtain
efficient implementations, mcmc algorithms are written in R and C++ through the
use of the Rcpp and RcppArmadillo libraries.

In Chapter 2, we propose a version of the Dirichlet-multinomial regression where
coefficients are allowed to vary smoothly with the covariates. The resulting varying
coefficients are carefully constructed to obtain linear and nonlinear interactions
as special cases. Motivated by a recent crc study, we investigate the effect of
clinical factors and diet-related covariates on the microbiota compositions at the
phylum level; for the patients enrolled in this study, microbiota abundance counts are
collected from three different districts, namely tumor, fecal and salivary samples. We
develop a high-dimensional Bayesian hierarchical model that exploits subject-specific
regression coefficients to simultaneously borrow strength across districts and include
complex interactions between diet and clinical factors if supported by the data. The
proposed method identifies relevant associations through model selection priors and
thresholding mechanisms.

We are currently evaluating alternative modeling strategies to extend the proposed
method beyond the Dirichlet-multinomial regression framework. In fact, Dirichlet-
multinomial regression only admits negative correlations among counts and alternative
modeling approaches may be better suited for the analysis of microbiota data that
exhibit positive correlations. Moreover, dm restricts the analysis of microbiota at a
single taxonomy level, while accounting for the whole microbiome phylogenetic tree
may provide precious insights, since it represents evolutionary relations among taxa.

In Chapter 3 we develop a predictive model to select the optimal treatment for
oncological patients leveraging prognostic and predictive biomarkers. We first explore
the use of nggp as cohesion function in a model for dependent random partition.
nggp shows better theoretical properties and empirical performances with respect to
the commonly used dp, due to its reinforcement mechanism. The resulting ppmx is
employed to obtain clusters of observations that are more homogeneous with respect
to predictive biomarkers, building partitions that are only partially exchangeable.
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Model based clustering is jointly estimated with the effects of prognostic factors. An
utility approach is finally employed to select the treatment that ensures the largest
benefit for new untreated patients. This strategy results in an integrative predictive
model, where prediction is able to fully account for patients’ variability.

We are investigating further extensions of the ppmx. In particular, alternative
modeling choices for the similarity could enable us to include a larger number of
predictive markers. Finally, we developed this approach to leverage well-established
molecular features for personalized treatment selection, rather than to pursue prog-
nostic and predictive biomarkers discovery. In the light of this, it would be interesting
to rephrase our strategy under the causal inference framework, with the goal of a
better understanding of the actual effects of specific treatments on specific patients,
that is the causal inference of individualized treatment effects.
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Appendix A

Supplementary Material for
Chapter 2

A.1 Identifiability

In this section we will first motivate the need and the rationale for linear constraints
imposed in the varying coefficients (Section A.1.1). We will then explore and discuss
whether these constraints have negative impact on inference. In particular, in Section
A.1.2 we will assess through simple examples and some simulation studies whether
inference is affected by a particular ordering of the covariates.

A.1.1 Linear constraints

Let’s denote a general Bayesian model by the likelihood L(θ;y) and prior p(θ)
and then assume θ = (θ1, θ2). According to Dawid (1979)’s definition of Bayesian
identifiability, if p(θ2 | θ1,y) = p(θ2 | θ1), then θ2 is not identifiable. Moreover,
as p(θ2 | θ1,y) ∝ L(θ1, θ2;y)p(θ2 | θ1)p(θ1), then θ2 is unidentifiable if and only if
L(θ1, θ2;y) is free of θ2. Consequently, the lack of identifiability does not depend
on prior specification (Gelfand and Sahu, 1999). Dawid’s definition of Bayesian
nonidentifiability is equivalent to a lack of identifiability in the likelihood. We want
to investigate whether a lack of identifiability in the likelihood is present. Consider
the hierarchical Dirichlet-multinomial framework proposed in Chapter 2. In the
following illustrative setting we consider only linear effects and we do not assume
any thresholding function. Specifically,

log(γij) = µj + βxj (zi)xi + βzj (xi)zi

βxj (zi) = θx + bxzzi

βzj (xi) = θz + bzxxi,

(A.1)

where xi, zi ∈ R. If xi, zi 6= 0

log(γij) = µj + θxxi + bxzzixi + θzzi + bzxxizi

= µj + θxxi + θzzi + (bxz + bzx)xizi

= µj + θxxi + θzzi + b?xizi

(A.2)

where b? = bxz + bzx, hence there are infinite possible values for bxz, bzx whose sum is
equal to b?. Formally, parameters bxz and bzx are not identifiable since the mapping

65



A.1. Identifiability

(bxz, bzx)→ L(y | bxz, bzx, ·) is not injective. Even if this may not be a real issue for
Bayesian inference, nonetheless in practice lack of identifiability may induce drift
in the mcmc to extreme values in the overparametrized space, even if they remain
stable in the lower dimensional subspace identified by the likelihood (Gelfand and
Sahu, 1999; Xie and Carlin, 2006). We chose to work with an identifiable model; we
achieve identifiability by imposing simple linear constraints, namely we set bzx = 0
(in the same spirit of Zanella and Roberts (2020), among others). In the framework
constructed in Chapter 2, bzx corresponds to the set of terms {bqlj}q>l that model
interactions among binary factors generated from the use of discrete covariates as
effect modifiers for main effects of binary factors. Moreover note that an analogous
issue arise among terms that model interactions among continuous covariates. See
Section A.1.2 for more details.

A.1.2 Effects on inference of linear constraints

The linear constraints imposed ensure model identifiability. In the following section
we are going to address whether inference is affected by:

1. a switch in the arguments of the varying coefficients for continuous and bi-
nary variables, for a simplified model (linear interactions and no thresholding
function);

2. a permutation in covariate indices, for a simplified model (linear interactions
and no thresholding function);

3. a permutation in covariate indices, for the complete model.

Switching arguments

Assuming only linear interactions (i.e. fpkj(xk) = bpkjxk) and the absence of any
thresholding function (h(·, ·)) we will show that a switch in the arguments of the
varying coefficients for continuous and binary variables results in the same model
and hence does not affect the inference.

Under these two assumptions equations (2.5a) and (2.5b) reduce to the following:

βpj(xi, zi) = θpj +

Q∑
q=1

bpqjziq +
∑
k>p

bpkjxik (A.3a)

βqj(zi) = θqj +
∑
l>q

bqljzil. (A.3b)

Considering the “predictor” role of covariates, that makes interactions apparent, we
obtain the following expressions:

P∑
p=1

βpj(xi, zi)xip =
P∑
p=1

[
θpjxip +

Q∑
q=1

bpqj(ziqxip) +
∑
k>p

bpkj(xikxip)

]
(A.4a)

Q∑
q=1

βqj(zi)ziq =

Q∑
q=1

[
θqjziq +

∑
l>q

bqlj(zilziq)

]
. (A.4b)
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Restating equations (A.3) switching the arguments of two varying coefficients we
obtain:

βpj(xi) = θpj +
∑
k>p

bpkjxik (A.5a)

βqj(xi, zi) = θqj +

Q∑
l>q

bqljzil +
P∑
p=1

bpqjxip. (A.5b)

Including covariates as predictors we can see that the interaction pattern and the
model that we obtain is the same of equations (A.4):

P∑
p=1

βpj(xi)xip =
P∑
p=1

[
θpjxip +

∑
k>p

bpkj(xikxip)

]
Q∑
q=1

βqj(xi, zi)ziq =

Q∑
q=1

[
θqjziq +

∑
l>q

bqlj(zilziq) +
P∑
p=1

bpqj(xipziq)

]
.

We conclude that a switch in the arguments of the varying coefficients for continuous
and binary variable does not affect inference, since results in the same model.

Permutation in covariate indices (linear interactions)

Let us assume that only linear interactions are included in the model, and no
thresholding function. We are going to show that a permutation of covariates indices
results in a linear predictor with the same terms (main effects or interactions) and
coefficients.

In the following, we focus on coefficients that capture the interaction effects among
binary factors {bqlj}. It should be pointed out that, assuming only linear interactions,
the same results hold also for {bpkj}, the coefficients for linear interactions among
continuous covariates in equation (2.5a). If we do not impose constraints on the
coefficients while accounting for the predictor role of the covariates, the varying
coefficient β(zi) (equation (2.5b)) becomes1

Q∑
q=1

βq(zi)ziq =

Q∑
q=1

[
θqziq +

Q∑
l=1∧l 6=q

bql(zilziq)

]
.

Note that the constraint l 6= q excludes the elements on the main diagonal of the
Q×Q symmetric matrix b. Since every interaction will now have two coefficients
to capture its effect on the response, it is clear that this model is overparametrized
and hence unidentifiable, as motivated in section A.1.1 of this Appendix. In order to
ensure identifiability we impose a constraint on the indices. Considering {bql}l>q is
equivalent to consider b a strictly upper triangular matrix. This simple constraints
ensures identifiability in the likelihood and the interaction pattern that is built is
invariant to any permutation in the indices.

Given a permutation σ of Q elements

σ : {1, . . . , Q} → {1, . . . , Q},
1we dropped the subscript j for ease of notation
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represented in a two line form by(
1 2 . . . Q

σ(1) σ(2) . . . σ(Q)

)
,

we will show that, if applied to our upper triangular matrix of interaction terms b,
does not affect inference, since a permutation is a bijective function of a set into
itself. Considering the transformation that maps the set of strictly upper triangular
Q × Q matrices into itself Tσ : T (Q × Q) → T (Q × Q) and obtaining a matrix b̄
from a permutation σ of the indices of an original matrix b, such that

b̄ = Tσ(b),

we have that

b̄ql =

{
0 if q ≤ l

bmin{σ(q),σ(l)}max{σ(q),σ(l)} if q > l.

We can argue that no matter what permutation of the indices is taken, the interaction
pattern is the same and hence it is not affect by the ordering of the covariates.
Moreover, since the permutation is bijective, applying σ−1 to the permuted indices,
the original order can always be recovered.

Example 3

A simple example of that can be taken considering a generic matrix b ∈ T (5× 5)

b =


0 b12 b13 b14 b15

0 0 b23 b24 b25

0 0 0 b34 b35

0 0 0 0 b45

0 0 0 0 0


and an arbitrary permutation σ : {1, 2, 3, 4, 5} → {5, 3, 2, 1, 4}.

Permuting both rows (indexed by q = 1, . . . , 5) and columns (indexed by l =
1, . . . , 5) according to σ, we obtain b̄ = Tσ(b):

b̄ =

l 1 2 3 4 5
σ(l) 5 3 2 1 4

q σ(q) 


1 5 0 b35 b25 b15 b45

2 3 0 0 b23 a13 b34

3 2 0 0 0 b12 b24

4 1 0 0 0 0 b14

5 4 0 0 0 0 0

All the nonzero element in b are present also in b̄.

We perform a simulation study to empirically verify that a permutation in the
order of the covariates does not affect the inference. Following the data generating
mechanism described in Section 2.5.1, but considering only binary variables as effect
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modifiers and no random effect, we generate a dataset with n = 150 observations.
The dataset has the following dimension: J = 10 categories for the response, P = 5
continuous covariates and Q = 5 discrete covariates. In order to assess whether
the permutation of the indices affected empirically our inference, we first fit our
model to the data keeping the original ordering and then to the data with a random
permutation in the indices of the covariates. We repeate this procedure for 100
different datasets and we report the results in terms of true positive rate, false
positive rate and Matthews Correlation Coefficient in Table A.1.

Table A.1: Model selection performances: mean across 100 replicated datasets (stan-
dard errors are in parentheses). Evaluation is carried out on population parameters
only.

tpr fpr mcc

no permutation 0.7900 0.0033 0.8207
(0.0403) (0.0059) (0.1306)

permutation 0.8033 0.0033 0.8219
(0.0183) (0.0049) (0.1058)

As we can see the results are extremely similar, and the negligible difference
should be attributed to the to the Monte Carlo error.

Permutation in covariate indices for the complete model

We will now address the effect on inference of the ordering of the covariates for the
complete model. We will focus on continuous covariates and nonlinear effects since
the discrete covariates are not associated with nonlinear effects.

After the decomposition is performed, we reparameterize fpkj(xk) = x?kα
?
pkj +

xkα
0
pkj, where x?k is the orthogonal basis obtained from the spectral decomposition of

the covariance of x̃kαpkj and α?pkj its the corresponding vector of coefficients, while
α0
pkj is the coefficient of the linear term xk. This reparameterization is described

in more detail in the manuscript (Section ??). In order to restrict our focus on
nonlinear terms let us consider the simpler case where binary covariates do not act as
effect modifiers and no thresholding function is adopted. This results in the following
expressions:

βpj(xi) = θpj +
P∑
k>p

(
x?ikα

?
pkj + xikα

0
pkj

)
.

Considering continuous covariates also in their “predictor” role we have:

P∑
p=1

βpj(xi)xip =
P∑
p=1

[
θpjxip +

P∑
k>p

(
α?pkj(x

?
ikxip) + α0

pkj(xikxip)
)]
. (A.7)

It is apparent from equation (A.7) that, since x?k is the orthogonal matrix cor-
risponding to the covariate xk, the considerations carried out previously on the
invariance of the matrix of coefficients for linear interactions here hold only for the
matrix α0

j . The ordering of continuous covariates hence affects inference only through
the nonlinear terms. Nonetheless, in the following simulation study we show that
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a permutation of the ordering of the covariates does not critically undermine the
inference we conducted with the proposed model.

In order to test the effect of permutation of covariates indices on inference we
carried out a simulation study. Following the data generating mechanism described
in Section 2.5.1, but considering only continuous variables as effect modifiers and
no random effect, we generated a dataset with n = 150 observations. The dataset
has the following dimension: J = 10 categories for the response, P = 15 continuous
covariates and Q = 5 discrete covariates. In order to assess whether the permutation
of the indices affected empirically our inference, we first fitted our model to the data
keeping the “original” order and then to the data with a random permutation of the
indices of the covariates. Note that this scenario is not comparable to those reported
in Chapter 2. In fact this one has been designed purposefully to assess the effect of
permutation in the labels for continuous covariates. We repeated this procedure for
100 different datasets, in the first study we don’t consider the thresholding function,
that is included in the second one. We report the results in terms of true positive
rate, false positive rate, and Matthews Correlation Coefficient in Table A.2.

Table A.2: Model selection performances: mean across 100 replicated datasets (stan-
dard errors are in parentheses). Evaluation is carried out on population parameters
only.

permutation tpr fpr mcc

no thresholding function

no 0.8201 0.0033 0.8169
(0.0398) (0.0029) (0.0374)

yes 0.8133 0.0081 0.8019
(0.0425) (0.0002) (0.0360)

thresholding function

no 0.83933 0.0014 0.8337
(0.0338) (0.0384) (0.0984)

yes 0.8476 0.01737 0.8181
(0.0375) (0.0015) (0.0274)

A.2 Choice of Hyperparameters and Spline Bases

Our subject-specific approach involves a large set of hyperparameters, whose specifi-
cation needs to be discussed.

A.2.1 Spike-and-slab priors

As discussed and suggested in Wadsworth et al. (2017) we choose the prior for
beta mixed binomial on main effects so that such specification could reflect the a
priori expected number of included effects. Setting aω, bω such that aω + bω = 2
the prior expected mean value is m = aω/(aω + bω). A value of m = aω

aω+bω
for

(aω, bω) = (0.05, 1.95) is equivalent to assuming that 2.5% of the associations are not
active. It is common to choose a large value for the slab’s variance (Chipman et al.,
2001) to induce a noninformative prior (flat prior distribution) on the location of the
coefficients.
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A.2.2 Horseshoe priors

Hyperparameters for the {bpqj} and {bqlj} are set to default values. The horseshoe
prior is a scale mixture of normals, with a half-Cauchy prior on the variance λpqj ∼
C+(0, 1) (Carvalho et al., 2009, 2010). The global hyperparameter ζqj was determined
to be important towards the minimax optimality of the horseshoe posterior mean,
and when a full Bayes version of the horseshoe prior is implemented, the truncated
half-Cauchy prior is recommended by van der Pas et al. (2017), that is a half-Cauchy
prior truncated to [1/n, 1]. The same choice is adopted for the {bqlj}.

A.2.3 Number B of spline bases

Concerning the standard penalized spline framework, the approach proposed by
Scheipl et al. (2012) results in a “post-processed set of orthonormal spline bases”
that directly represent linear and nonlinear (penalized) effects. Specifically, in case
of penalized splines with k−th order random walk prior, the space of unpenalized
functions consists of all polynomials of order less than k − 1. Separating these
polynomials from the penalized part of the function allows the model to select the
type of effect best supported by the data (i.e., the model can decide whether a
continuous interaction should be included either as a nonlinear effect, as a linear
effect, or be completely excluded from the model).

We model the smooth functions {fpkj(xk)} using cubic b-splines fpkj(xk) =
x̃kαpkj, where x̃k represents the design matrix of the spline bases for xk, and αpkj
is the correspondent spline coefficient. In order to flexibly capture the nonlinearity
of {fpkj(xk)} the number of bases B is set to a large value, namely 20. Since the
spline coefficients are regularized by a roughness penalty, only the few bases that
explain most of the variability of {fpkj(xk)} are retained. In fact, Scheipl et al.
(2012)’s implementation makes use of an algorithm to compute only the largest rk
eigenvalues of fpkj(xk) and their associated eigenvectors. For example, only the first
rk eigenvectors and eigenvalues whose sum represent at least 99% of the sum of
all eigenvalues are used to construct the reduced rank orthogonal basis x?k with rk
columns. This leads to a large reduction in the dimension of x?k and represents a
robust criterion to select a pre-specified number of components. Note that 99% is
commonly used as a default value since it results in a negligible loss of information
but still in a significant dimensionality reduction. Usually, only 3 bases are retained
in our case, hence a large B does not result in overfitting. Such a setting has been
extensively tested also in Ni et al. (2019a).

A.2.4 penmig

Hyperparameters for penmig are set as follows: (aω̃, bω̃) = (1, 1), v0 = 0.00025,
(aτ̃ , bτ̃ ) = (5, 25) both for the linear part and the nonlinear one. This prior specifica-
tion is a default setting proposed and discussed in Scheipl et al. (2012).

A.2.5 Threshold bounds

Prior elicitation for threshold parameters is thoroughly discussed in Supplemental
Materials of Ni et al. (2019a) and we choose a standard uniform distribution for
both tx and tz. The threshold parameter is interpreted as minimum effect size, so we
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center the uniform prior at the smallest effect size we consider relevant with respect
to the application. In order to avoid favoring the full model a priori, the upper
bound is set to 1.

A.2.6 Intercepts

The prior for the variance parameter of the random intercepts {ιs(i)} is σ2
ι ∼

Inverse-gamma(1, 1), that is a weakly-informative prior (Gelman et al., 2006). The
specification of the prior variance for the global intercept σ2

µ = 10 is meant to induce
a weakly-informative prior also on the location of the coefficients.

A.3 Sensitivity Analysis

Since the analysis of crc data required a careful tuning of some hyperparameters, we
performed an investigation on the sensitivity of the results to these values. Results
are reported in Table A.3. Specifically, we found that results were affected by the
value of variance hyperparameters of the global intercept and by the value of the
variance hyperparameters of the spike-and-slab prior. Hyperparameters on the Beta
priors on {θpj}’s and {θqj}’s and the upper bound for the threshold parameter do not
impact the results. In the case study, aω, bω, τ

2
j , σ

2
µ, and bt have been set to values

that ensured the best performance (in terms of mcc) in the sensitivity analysis
conducted.
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Table A.3: Model selection performances under different prior specification for parameters aω, τ
2
j , σ

2
µ, and bt. Mean across 100 replicated

datasets (standard errors are in parentheses). For each parameter the best mcc is in bold. Evaluation is carried out on population
parameters only.

m = (aω)/(aω + bω)
0.005 0.01 0.025 0.05 0.25

tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc
0.66 0.04 0.43 0.67 0.04 0.42 0.68 0.03 0.47 0.67 0.05 0.40 0.71 0.04 0.44

(0.03) (0.00) (0.03) (0.03) (0.00) (0.02) (0.03) (0.00) (0.03) (0.03) (0.01) (0.04) (0.04) (0.01) (0.04)

τ 2
j

1 5 10 50 100
tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc
0.66 0.04 0.42 0.62 0.03 0.46 0.71 0.02 0.56 0.66 0.02 0.56 0.68 0.02 0.56

(0.04) (0.00) (0.03) (0.04) (0.00) (0.04) (0.04) (0.00) (0.05) (0.01) (0.00) (0.02) (0.03) (0.00) (0.04)

σ2
µ

0.01 0.1 1 10 100
tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc
0.64 0.03 0.47 0.62 0.02 0.53 0.62 0.04 0.38 0.67 0.04 0.44 0.62 0.04 0.41

(0.03) (0.00) (0.02) (0.03) (0.00) (0.04) (0.05) (0.01) (0.04) (0.03) (0.01) (0.02) (0.03) (0.01) (0.04)

btx , btz
.5 0.75 1.0 1.25 1.5

tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc tpr fpr mcc
0.62 0.04 0.38 0.67 0.04 0.43 0.67 0.04 0.44 0.65 0.04 0.42 0.62 0.04 0.41

(0.05) (0.01) (0.04) (0.03) (0.00) (0.02) (0.03) (0.01) (0.02) (0.03) (0.00) (0.03) (0.03) (0.01) (0.04)
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A.4 Posterior Computation

We describe below the Markov Chain Monte Carlo (mcmc) we designed to obtain the
posterior distribution of the parameters of interest. To construct an efficient algorithm
and improve computational feasibility we adopted a data augmentation approach
implemented in Wadsworth et al. (2017) and detailed in Koslovsky et al. (2020). The
resulting mcmc is a Metropolis-Hastings within Gibbs. We will firstly describe the
data augmentation scheme and then we will discuss parameters’ sampling.

A.4.1 Data augmentation

Generating samples from the Dirichlet distribution using independent Gamma random
variable is computationally efficient. Exploiting this property the data augmentation
approach is based on a reparametrization of equation (2.1) and on the introduction
of an auxiliary parameter. We first assume that the J−dimensional counts for the
i−th sample yi follows a Multinomial distribution:

yi ∼ Multinomial(y+
i | φi),

with y+
i =

∑J
j=1 yij and φi defined on the J−dimensional simplex SJ−1. To account

for extra-variation in the counts we specify a conjugate prior on the taxa probability:

φi ∼ Dirichlet(γi)

with the J−dimensional vector γi = (γi1, . . . , γiJ), γij > 0 ∀ j.
We introduce latent random variables sij

iid∼ Gamma(γij, 1) constructed such that

φij = sij/Ti, where Ti =
∑J

j=1 sij, obtaining

yi | si/Ti ∼ Multinomial(y+
i , si/Ti),

where si is the J−dimensional vector si = (si1, . . . , siJ). We can now write

p(yi, si | γi) ∝
syi1i1 · · · s

yiJ
iJ

T
y+i
i

J∏
j=1

1

Γ(γij)
s
γij−1
ij exp(−sij). (A.8)

The quantity T
y+i
i is cumbersome to compute: this is why the augmentation step is im-

plemented. We introduce n auxiliarity parameters ui and let ui | Ti ∼ Gamma(y+
i , Ti)

and by definition of the gamma density we have

1

T
y+i
i

=

∫ +∞

0

1

Γ(y+
i )
u
y+i −1
i exp(−Tiui)dui

we can rearrange equation (A.8) as

p(yi, si | γi) ∝
∫ +∞

0

1

Γ(y+
i )
u
y+i −1
i exp(−Tiui)syi1i1 · · · s

yiJ
iJ

J∏
j=1

1

Γ(γij)
s
γij−1
ij exp(−sij)dui

(A.9)
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hence

p(yi, si, ui | γi) ∝
1

Γ(y+
i )
u
y+i −1
i exp(−Tiui)syi1i1 · · · s

yiJ
iJ

J∏
j=1

1

Γ(γij)
s
γij−1
ij exp(−sij).

The integral in equation (A.9) will be evaluated numerically with steps naturally
embedded in the mcmc algorithm.

A.4.2 mcmc sampling

For posterior inference we designed a Metropolis within Gibbs sampler that employs
component-wise adaptive Metropolis steps. The mcmc sampler goes as follows:

1. Jointly update {(θpj, ξpj)}. We employ the two-step scheme proposed in
Savitsky et al. (2011), that comprises a between-model and a within-model
step.

• between-model step. Assuming uniform probabilities over the indices
j = 1, . . . , J we randomly choose j. For each p = 1, . . . , P we jointly
propose a new model such that

- if ξpj = 1 we propose ξ
′
pj = 0 and θ

′
pj = 0 (delete step). The proposal

will be accepted with probability

min

{
p(s | θ′ , ξ′ , ·)p(ξ′pj)

p(s | θ, ξ, ·)p(θpj | ξpj)p(ξpj)
, 1

}

- if ξpj = 0 we propose ξ
′
pj = 1 and we sample θ

′
pj from N(θpj, 0.5) (add

step). The proposal will be accepted with probability

min

{
p(s | θ′ , ξ′ , ·)p(θ′pj | ξ

′
pj)p(ξ

′
pj)

p(s | θ, ξ, ·)p(ξpj)
, 1

}
• within-model step. Assuming uniform probabilities over the indices j =

1, . . . , J we randomly choose j. For each p = 1, . . . , P , if ξpj = 1, that
is, if the covariate is currently included in the model, θ

′
pj is proposed

through an adaptive Metropolis-Hasting scheme. The new value θ
′
pj is

proposed using the proposal formulated in Roberts and Rosenthal (2009)
but without the full covariance of the target, in a component-wise fashion:

θ
′

pj ∼ 0.95N(θpj, 2.382 × σ̂2
pj/J × P ) + 0.05N(θpj, 0.01/J × P ),

where σ̂2
pj is the estimate at the current iteration of the standard deviation

of the target distributon. These values are updated via the recursive
formula proposed in Haario et al. (2005). Each proposal is accepted with
probability

min

{
p(s | θ′ , ξ′ , ·)p(θ′pj | ξpj)
p(s | θ, ξ, ·)p(θpj | ξpj)

, 1

}
2. Jointly update {(θqj, ξqj)}. The same procedure described in Step 1 for the

joint update of (θpj, ξpj) is carried out for (θqj, ξqj).
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3. Update {bpqj}. In order to update the parameters involved in the horseshoe
prior we perform the following steps:

• update {bpqj}. Assuming uniform probabilities over the indices j =
1, . . . , J we randomly choose j. Given j for each p = 1, . . . , P and
q = 1, . . . , Q we propose b

′
pqj with the adaptive scheme in (1), and accept

it with probability

min

{
p(s | b′pqj, ·)p(b

′
pqj)

p(s | bpqj, ·)p(bpqj)
, 1

}

• update λpqj, ζqj. The global-local scale parameters are updated through
an adaptation of the slice sampling scheme given in the online supplement
of Polson et al. (2014). We define $pqj = 1/λ2

pqj and ςpqj = bpqj/ζqj. This
reparameterization allows us to employ slice sampler (Neal, 2003), as the
conditional posterior distribution of $pqj is

p($pqj | ζqj, ςpqj) ∝ exp

{
−
ς2
pqj

2
$pqj

}
1

1 +$pqj

.

To sample λpqj:

– draw a sample from Uniform distribution:

upqj | $pqj ∼ U(0, 1/(1 +$pqj));

– draw a sample from truncated Exponential density, so that it has
zero probability outside the interval (0, (1− upqj)/upqj):

$pqj | ςpqj, upqj ∼ Exp(2/ς2
pqj).

Transforming back to the λ−scale it will ensure a sample from the con-
ditional distribution of interest. The same applies for ζqj, replacing

$ = 1/ζ2
qj and ς2

qj =
∑P

p=1 b
2
pqj/2.

4. Update {bqlj}. The same procedure described in Step 3 is carried out for
{bqlj}, with the constraint that the matrices bj are strictly triangular.

5. Update {α0
pkj} and {α?pkj}. In this article, we decompose the nonlinear

function fpkj(xk) = fpenpkj (xk) + f 0
pkj(xk) into a polynomial part (f 0

pkj) and a
nonlinear part (fpenpkj ) that are orthogonal to each other and we apply variable
selection technique separately to each part. We will detail the step only for
{α?pkj}, as for {α0

pkj} is defined analogously.

Assuming uniform probabilities over the indices j = 1, . . . , J we randomly
choose j. Note that rk is the number of columns of the orthogonal matrix of
the splines for xk, that is x?k. The relative index is κ = 1, . . . , rk.

• For each p = 1, . . . , P, k = 1, . . . , K we propose η
′

pkj obtained from a
random walk proposal and accept it with probability

min

{
p(s | η′pkj, ·)p(η

′

pkj)

p(s | ηpkj, ·)p(ηpkj)
, 1

}
;
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• update {mpkj} by Gibbs:

p(mpkj = 1 | ψ̃pkj) =
1

1 + exp
{
−2ψ̃pkj

} ;

• update {ψ̃pkj} in blocks. For p = 1, . . . , P we propose ψ̃
′

pkj, obtained
from a random walk proposal and we accept it with probability

min

{
p(s | ψ̃′pkj, ·)p(ψ̃

′

pkj)

p(s | ψ̃pkj, ·)p(ψ̃pkj)
, 1

}
;

- after updating the {ηpkj}s and
{
ψ̃pkj

}
s parameters, each vector ψ̃pkj is

rescaled so that | ψ̃pkj | has mean 1 and the associated ηpkj is rescaled
accordingly, so that α?pkj = ηpkjψ̃pkj is unchanged:

ψ̃pkj →
rk∑rk

κ=1 | ψ̃pkκj |
ψ̃pkj

and

ηpkj →
∑rk

κ=1 | ψ̃pkκj |
rk

ηpkj.

The rescaling is needed as {ψ̃pkj} and {ηpkj} are not identifiable. They
could reach extreme regions of the space of the parameters without
affecting the fit (e.g. the could compensate their values in the product
α?pkj = ηpkjψ̃pkj). Rescaling avoids ηpkj becoming extremely large and
allowing us to interpret it as a scaling factor representing the importance
of the model it is associated with.

• update {τ̃pkj} by Gibbs:

p(τ̃pkj | ηpkj, ψ̃pkj) = Inverse-gamma(aτ̃ +
1

2
, bτ̃ +

η2
pkj

2ξ̃pkj
);

• update {ξ̃pkj} by Gibbs:

p(ξ̃pkj = 1 | ηpkj, τ̃pkj, ω̃pj)
p(ξ̃pkj = 0 | ηpkj, τ̃pkj, ω̃pj)

=

√
v0ω̃pj

1− ω̃pj
exp

{
(1− v0)η2

pkj

2v0τ̃pkj

}
;

• update {ω̃pj} by Gibbs:

ω̃pj | ξ̃pkj ∼ Beta(aω̃ +
P∑

k=p+1

δ1(ξ̃pkj), bω̃ +
P∑

k=p+1

δv0(ξ̃pkj))

6. Update tx, tz. The threshold parameter is updated with a Metropolis-Hasting
step. In order to have a proposal distribution which is both symmetric and has
support only on a certain region we used a reflecting random walk. We assume
tx ∼ Unif(0, 1), and we propose t

′
x ∼ Unif(tx − δ, tx + δ), where δ is some small

positive value. If t
′
x < 0 then we reassign it to be | t′x |, if t

′
x > 1 we reassign
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it to be 2 − t
′
x. This procedure draws samples from a symmetric proposal

distribution and has support on [0, 1] (Hoff, 2009). Then t
′
x is accepted with

probability

min

{
p(s | t′x, ·)p(t

′
x)

p(s | tx, ·)p(tx)
, 1

}
.

The same applies for tz.

7. Update {µj}. The global intercept is updated with a Metropolis-Hastings
step. For j = 1, . . . , J we propose µj, obtained from a random walk proposal
and we accept it with probability

min

{
p(s | µ′j, ·)p(µ

′
j)

p(s | µj, ·)p(µj)
, 1

}
.

8. Update {ιs(i)}. The random intercept is updated with a Metropolis-Hastings
step. We propose ι

′

s(i), obtained from a random walk proposal and we accept it
with probability

min

{
p(s | ι′s(i), ·)p(ι

′

s(i))

p(s | ιs(i), ·)p(ιs(i))
, 1

}
.

The variance of the intercept σι is updated by Gibbs:

ιs(i) | · ∼ Inverse-gamma(aι +
1

2
, bι +

ι2s(i)
2

).

9. Update {sij}. The latent variable sij for i = 1, . . . , n, j = 1, . . . , J is updated
by Gibbs:

sij | · ∼ Gamma(y+
i + γij, (ui + 1)−1).

10. Update {ui}. The auxiliary variable ui for i = 1, . . . , n is updated by Gibbs:

ui | · ∼ Gamma(y+
i , T

−1
i ).
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A.4.3 dag of the model

In figure A.1 is represented the dag of the model. Note that the two different penmig
hierarchical prior for the penalized and the unpenalized part are represented jointly,
in order to reduce the complexity of the representation.

yj φj γj

βpj(x, z)

βqj(z)ι

σ2
ι

tx

tz

θpj

θqj

bpqj

bqlj

ξpj

ξqj

x

z

ωpj

ωqj

µj

αpkj

ηpkj

ξ̃pkj

τ̃pkj

ω̃pj

ψ̃pkj

mpkj

ζqj λpqj

ζlj λqlj

Figure A.1: Directed acyclic graph of the model. White circles are stochastic nodes. Grey
circles are observed variables or deterministic nodes.
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A.5 Additional Simulation Study Results

In the present Section we report additional results that are mentioned in Chapter 2.
In section A.5.1 we report evaluation of our method under scenarios that account for
the random intercept in the generating mechanism. In Section A.5.2 we assess the
sensitivity of our method to misspecification, following the approach by Chen and Li
(2013b), while in Section A.5.3 we test our method under scenarios characterized by
larger values of the taxa considered. Finally, in Section A.5.4 we evaluate the ability
of the method to capture flexible relationships between outcomes and covariates with
respect to a kernel-based method proposed in Tsagris et al. (2021). In this latter
study, the methods are compared regarding their predictive performance.

A.5.1 Random Intercept

In order to assess the associations’ recovery in the hierarchical framework that is a
peculiar feature of crc data, ssdm’s performance is evaluated on datasets whose
generating mechanism includes random intercepts. These scenarios, reported in
Tables A.4 and A.5, are constructed on the reference scenario discussed in Chapter
2, for varying sample sizes. The aim is to assess the performances of the proposed
method in the presence of repeated measurements. As expected, for increasing
sample size, mcc improves.

Table A.4: Selection of population parameters for model with random intercept. Mean
across 100 replicated datasets (standard errors are in parentheses). We evaluate the
performances of the proposed approach ssdm in terms of trp, fpr and mcc.

i) n = 33 j) n = 100 k) n = 150

tpr fpr mcc

i) 0.4258 (0.0405) 0.0107 (0.0022) 0.4025 (0.0510)
j) 0.5409 (0.0377) 0.0055 (0.0023) 0.6236 (0.0353)
k) 0.7504 (0.0483) 0.0174 (0.0040) 0.6229 (0.0569)

Table A.5: Selection of subject-specific parameters for model with random intercept.
Mean across 100 replicated datasets (standard errors are in parentheses). We evaluate the
performances of the proposed approach ssdm in terms of trp, fpr and mcc.

i) n = 33 j) n = 100 k) n = 150

tpr fpr mcc

i) 0.3342 (0.0335) 0.0363 (0.0084) 0.3517 (0.0397)
j) 0.3770 (0.0475) 0.0340 (0.0096) 0.4150 (0.0585)
k) 0.3871 (0.0293) 0.0284 (0.0047) 0.4249 (0.0332)

A.5.2 Model misspecification

To assess the sensitivity of our approach to model misspecification, we simulate
samples using the linear growth model instead of the exponential growth model, as
proposed to test misspecification in Chen and Li (2013b). In the linear growth model
the proportion of taxon j for sample i is given by
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φij =
γj∑J
j=1 γij

.

To assess the robustness of our proposed model we generate samples not according
to our model assumptions. Scenario l), reported in Tables A.6 and A.7 demonstrated
that our model is quite robust to model misspecification and that the loss in mcc is
moderate.

Table A.6: Selection of population parameters for misspecified model. Mean across 100
replicated datasets (standard errors are in parentheses). We evaluate the performances of
the proposed approach ssdm in terms of trp, fpr and mcc.

l) linear growth

tpr fpr mcc

ssdm 0.3333 (0.0248) 0.0020 (0.0005) 0.5068 (0.0209)
dmbvs 0.2166 (0.0283) 0.0174 (0.0117) 0.2767 (0.0408)

regz 0.1083 (0.0122) 0.0016 (0.0004) 0.1167 (0.0235)
pencl 0.3166 (0.0461) 0.0141 (0.0025) 0.3105 (0.0264)

Table A.7: Selection of subject-specific parameters for misspecified model. Mean across
100 replicated datasets (standard errors are in parentheses). We evaluate the performances
of the proposed approach ssdm in terms of trp, fpr and mcc.

tpr fpr mcc

l) 0.4049 (0.0335) 0.0687 (0.0096) 0.3179 (0.0311)

A.5.3 Scalability with respect to number of taxa

In order to assess the scalability of our method with respect to the number of
taxa considered we carried out a simulation study. Following the data generating
mechanism described in Section 2.5.1, but considering no random effect, we generated
a dataset with n = 100 observations. The dataset has the following dimension: P = 5
continuous covariates and Q = 5 discrete covariates. In order to assess whether our
method could adapt to more challenging scenarios, that are met when considering
lower levels of the phylogenetic tree, we conducted our analysis for increasing J ,
in particular setting the number of categories for the response to {10, 50, 100, 150}.
We replicate the estimation on each scenario 100 times. We report in Table A.8
results in terms of Matthews Correlation Coefficient, true positive rate, and false
positive rate. We compared the proposed subject-specific dm approach (ssdm) with
Dirichlet-multinomial Bayesian Variable Selection (dmbvs) (Wadsworth et al., 2017).
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Table A.8: Model selection performances: mean across 100 replicated datasets (standard
errors are in parentheses). Evaluation is carried out on population parameters only.

J Method tpr fpr mcc

10
SSDM 0.7446 (0.0113) 0.0882 (0.0104) 0.4886 (0.2958)

DMBVS 0.7363 (0.1169) 0.0835 (0.0891) 0.4476 (0.1580)

50
SSDM 0.7010 (0.0371) 0.0104 (0.0201) 0.5272 (0.0436)

DMBVS 0.7536 (0.1342) 0.0327 (0.0410) 0.4972 (0.1330)

100
SSDM 0.6847 (0.0403) 0.0170 (0.0203) 0.5191 (0.0514)

DMBVS 0.6595 (0.0938) 0.0144 (0.0311) 0.4930 (0.0555)

150
SSDM 0.5815 (0.0208) 0.0103 (0.0046) 0.3976 (0.0803)

DMBVS 0.5613 (0.1160) 0.0267 (0.0210) 0.3844 (0.0531)

In order to assess the scalability of the method with respect to the computational
time, we report detailed running times for our method letting J vary on the set
{10, 50, 100, 150}. Using the R package rbenchmark (Kusnierczyk, 2012) we replicate
10 estimates for each value of J , considering a scenario with n = 100, P = 5, Q = 5.
For each estimate we ran the MCMC for 10000 iterations, discarding the first half
for burnin and then we thinned, keeping every 10−th sampled value. The times
are recorded on a pc running Ubuntu 20.04 os with Intel Core i7-9750 2.60 ghz
processor. Results are reported in Table A.9.

Table A.9: Running times performances: mean across 10 replicated runs. The column
elapsed is the wall clock time taken to execute the function, relative gives the time ratio
with the fastest test, user (CPU time) gives the CPU time spent by the current process
(i.e., the current R session) and system (CPU time) gives the CPU time spent by the kernel
(the operating system) on behalf of the current process.

J elapsed (s) relative user.self (s) sys.self (s)

10 44.81 1.00 44.80 0.01
50 126.02 2.81 126.01 0.02
100 221.37 4.94 221.12 0.19
150 328.53 7.33 327.85 0.50

A.5.4 Prediction performance

In order to evaluate the flexibility of our approach in terms of goodness-of-fit, we
compared our model with a non-parametric model for compositional data. There are
several example of microbiome data analysis through nonparametric and kernel meth-
ods, but they are mainly focused on a host trait prediction exploiting compositional
covariates (Chen and Li, 2013a; Randolph et al., 2018). The approach proposed
in Tsagris et al. (2021), through the use of the α−transformation (Aitchison, 2003;
Tsagris et al., 2011) extends the classical k − NN regression to what is termed
α−k−NN regression, yielding a highly flexible non-parametric regression model for
compositional response. The α−k−NN regression is developed for the case in which
the response data is compositional and, in contrast to other non-parametric regres-
sions, the method allows for zero values in the data. A disadvantage of α− k −NN
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regression, and of k − NN regression in general, is that it lacks the framework
for classical statistical inference. This is counterbalanced by its higher predictive
performance compared to parametric models.

In order to perform prediction with our proposed method, ssdm, as it is common
in the Bayesian framework, we rely on posterior predictive distributions.

Following the data generating mechanism described in Section 2.5.1 we compared
α− k −NN , dmbvs and ssdm in terms of prediction performances. We designed
4 scenarios similar to those used in the simulation study to test performances on
increasingly complex settings. The reference scenario in Chapter 2 is evaluated
first, that is n = 100 samples, J = 10 categories for the response variable, and 10
covariates, half continuous and half binary. Strong heredity is assumed and counts
are generated with a moderate level of overdispersion (θ0 = 0.01). The second
scenario is obtained by increasing the number of categories (J = 50), while the third
one is obtained considering 20 covariates. The last scenario is obtained from the
reference scenario, relaxing the heredity assumption (hence assuming weak heredity)
and considering large overdispersion (θ0 = 0.1) in the generating mechanism. Since
α−k−NN is specifically designed for compositional data, the counts of each sample
obtained from our generative process have been divided by the total counts in that
sample, that is uij = yij/Ti, for j = 1, . . . , J and i = 1, . . . , n, where Ti =

∑J
j=1 yij.

Moreover, as α− k −NN can’t explicitly model interaction terms, we expanded the
covariate matrix adding a column for each interaction effect.

Monte Carlo simulation studies were implemented to assess the predictive per-
formance of the three methods. For each repetition we used a 75%-25% training-
validation set split.The α−k−NN regression requires to specify the tuning parameters
(α, k); we followed the 10-fold cross-validation procedure proposed by Tsagris et al.
(2021). In order to evaluate the goodness of the prediction the root mean square error
(rmse) and the average Aitchison distance (aad) were computed. rmse measures
prediction accuracy, while aad is an overall indicator of compositional analysis, which
describes the distance between actual and predicted compositions. The equations for
rmse and aad are defined as:

RMSE =

√√√√ 1

nt

nt∑
i=1

J∑
j=1

(yij − ŷij)2,

AAD =
1

nt

nt∑
i=1

√√√√ J∑
j=1

(
log
( yij
mg(yi)

)
− log

( ŷij
mg(ŷi)

))2

,

where nt denotes the number of samples in the training set, ŷij denotes the predicted
value for yij and mg denotes the geometric mean. For all examined case scenarios the
results were averaged over 100 repetitions. The results are reported in Table A.10.
Procedures regarding α−k−NN were carried out using the R package Compositional
developed by Tsagris and Athineou (2021).

As expected the nonparametric method outperforms our proposed approach in
all scenarios both in terms of rmse (prediction accuracy) and aad (compositional
proximity). On the other hand, nonparametric models are hard to interpret and are
not meant for selection, while our model was specifically design to detect association
and account for complex pattern of interactions.
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Table A.10: Prediction performances: mean across 100 replicated datasets (standard
errors are in parentheses).

Scenario 1
RMSE AAD

α− k −NN 2.4558 (0.5153) 10.5998 (1.8958)
DMBVS 2.7387 (0.3693) 11.2813 (2.4317)

SSDM 3.2264 (0.5032) 11.6631 (2.0193)

Scenario 2
RMSE AAD

α− k −NN 0.6807 (0.1455) 36.7944 (1.5423)
DMBVS 0.8191 (0.1384) 39.7630 (1.7313)

SSDM 0.9388 (0.2249) 41.3711 (2.0698)

Scenario 3
RMSE AAD

α− k −NN 0.8931 (1.3531) 3.8920 (5.7756)
DMBVS 1.8932 (0.5163) 5.0323 (5.5583)

SSDM 1.1163 (1.6640) 4.2512 (6.2532)

Scenario 4
RMSE AAD

α− k −NN 3.2888 (0.3994) 18.9748 (1.2004)
DMBVS 4.7268 (0.4394) 23.6383 (3.7831)

SSDM 3.8275 (0.5140) 19.8972 (1.1278)

A.6 Additional results for application

In this Section we provide some more details on overdispersion and zero-inflation in
the crc dataset (Section A.6.1). Full results from the case study are reported in
Section A.6.2, followed by an example of inference on personalized features. Finally
we report mcmc convergence diagnostics and model checking for crc data analysis
in Section A.6.3 and A.6.4, respectively.

A.6.1 Overdispersion and zero-inflation

The dataset of our case study is characterized by large overdispersion and zero-
inflation. Specifically, 47.5% of the counts were 0; Figure A.2a reports a heatmap
of microbiome counts, while A.2b reports an illustrative example of zero-inflated
counts from CRC data.
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Figure A.2: Graphical Representation of Zero-Inflation in crc data. Counts are in
thousands.

In order to quantify the magnitude of overdispersion we fitted a dm model to the
microbiome counts, adopting an alternative parameterization of the dm distribution
(Chen and Li, 2013b). Denoting y = (y1, . . . , yJ) as the counts

fY |φ,θ0(y1, . . . , yJ | φ, θ0) =

(
y+

y

)∏J
j=1

∏yj
k=1{φj(1− θ0) + (k − 1)θ0}∏y+

k=1{1− θ0 + (k − 1)θ0}
, (A.10)

where y+ =
∑J

j=1 yj , φj is the mean and θ0 is the dispersion parameter. It is easy to
see that for θ0 = 0, equation (A.10) is the multinomial distribution. Using the dirmult
function in the dirmult R package (Tvedebrink, 2010), we estimated the parameter θ0

to be equal to 0.1087 in the microbial counts in the case of study data. According to
Chen and Li (2013b) and Wadsworth et al. (2017) θ0 = 0.1087 denotes a large level
of overdispersion. To test our method under scenarios resembling our case of study
we generate counts under settings that exhibit moderate overdispersion (θ0 = 0.01)
and large overdispersion (θ0 = 0.1); we followed the same approach proposed by
Chen and Li (2013b). Accordingly, these scenarios are characterized by zero inflation,
which ranges from 17.2% to 45.95% in settings with low overdispersion, and ranges
from 44.25% to 53.55% in settings with large overdispersion.

A.6.2 Subject-specific inference in the case study

In this Section we report all the results that are discussed in Section 2.6.1. Table A.11
lists posterior mean of main effects of covariates on microbiota relative abundances
and their mppi. Coefficients displayed in bold are included in the median probability
model (Barbieri et al., 2004). Associations supported by the data and displayed in
Table A.11 need to be analyzed jointly with the interaction effects in Firmicutes and
Bacteroidetes phyla reported in Table A.12.

In our case study, interactions found to be significant were among binary factors.
In this case inference on personalized features leads to the characterization of
subgroups, determined by the combination of binary variables. If the data supported
interactions among continuous covariates, it would have been possible to represent
the varying coefficient as a smooth non-linear function of the covariates. Taking
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as illustrative example an interaction pattern arising in the case study, we would
like to make some considerations regarding subject-specific inference induced by the
thresholding function.

Considering equation (2.5b), we will focus on the second term of the varying
coefficient for binary covariates (βqj(zi)), that is:

h
(∑

l>q

bqljzil, tZ

)
.

We can see that when the effects of interactions among binary factors {bqlj}l>q are
large, the varying coefficient tends to match the sum of the interactions. The only
difference comes with the thresholding function, that pushes negligible values to an
atom at zero. On the contrary the thresholding function has a more pronounced
impact when interaction among binary factors {bqlj}l>q are negligible. Since binary
factors define subgroups in the populations, it is interesting to compare them.

We take as an example the interactions of variable Gender with Stool and
Adenocarcinoma for the Firmicutes taxon, reported in Table A.12.
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Table A.11: Results of crc data analysis. Top part: posterior mean of main effects. Bottom part: mppi of main effects. Associations included in the
median model are reported in bold.

BMI Vegetables Meat Physical Age Mouthwash Gender Stool Saliva Adenoc.

Actinobacteria 0.10 0.06 -0.04 -0.01 0.01 -0.04 0.02 0.00 0.06 -0.09
Bacteria D -0.00 0.02 -0.00 -0.04 0.00 0.01 -0.05 -0.19 -0.25 -0.16
Bacteroidetes -0.00 1.62 2.25 0.61 -0.00 0.38 0.68 0.77 0.32 1.26
Candidatus Saccharibacteria 0.02 -0.01 -0.05 -0.03 0.06 -0.10 -0.06 -0.07 0.10 -0.36
Firmicutes 0.0 0.51 1.41 0.48 0.02 0.30 0.26 0.80 0.94 0.53
Fusobacteria -0.01 -0.12 -0.12 -0.01 -0.01 -0.10 -0.05 -0.34 0.04 0.03
Proteobacteria 0.01 0.07 0.12 0.04 0.00 -0.01 0.07 -0.04 0.00 0.01
Spirochaetes -0.01 -0.06 -0.06 -0.03 -0.13 -0.03 -0.01 -0.08 -0.06 -0.21
SR1 0.01 -0.10 -0.09 -0.04 0.08 -0.07 -0.03 -0.08 0.03 -0.12
Verrucomicrobia 0.01 -0.03 -0.08 -0.05 0.03 -0.06 -0.07 0.04 -0.16 -0.20
Residual 0.03 -0.02 -0.05 -0.03 0.02 -0.10 -0.06 0.04 -0.10 -0.19

Marginal Posterior Probability of Inclusion

BMI Vegetables Meat Physical Age Mouthwash Gender Stool Saliva Adenoc.

Actinobacteria 0.24 0.30 0.31 0.24 0.10 0.20 0.23 0.21 0.24 0.25
Bacteria D 0.12 0.24 0.23 0.29 0.11 0.15 0.23 0.29 0.30 0.36
Bacteroidetes 0.06 0.69 0.86 0.41 0.18 0.27 0.68 0.62 0.33 0.63
Candidatus Saccharibacteria 0.18 0.27 0.25 0.25 0.18 0.27 0.24 0.27 0.29 0.43
Firmicutes 0.05 0.30 0.66 0.34 0.14 0.31 0.30 0.53 0.64 0.30
Fusobacteria 0.12 0.26 0.33 0.24 0.10 0.27 0.24 0.34 0.23 0.15
Proteobacteria 0.12 0.29 0.24 0.25 0.08 0.17 0.32 0.24 0.11 0.20
Spirochaetes 0.15 0.27 0.27 0.25 0.27 0.23 0.27 0.29 0.25 0.30
SR1 0.15 0.29 0.28 0.25 0.23 0.25 0.23 0.25 0.27 0.27
Verrucomicrobia 0.20 0.28 0.28 0.27 0.16 0.25 0.26 0.24 0.28 0.29
Residual 0.19 0.24 0.28 0.25 0.17 0.25 0.24 0.25 0.25 0.31
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Table A.12: Posterior mean of interaction effects among discrete covariates in Bacteroidetes
and Firmicutes (Marginal 90% credible set in parenthesis). The interaction terms included
in the model are in bold.

Bacteroidetes Firmicutes
Mouth. Gender Stool Saliva Adenoc. Mouth. Gender Stool Saliva Adenoc.

Mouth. - 0.27 -0.30 -0.06 1.40 - 0.45 -0.06 2.34 -0.23
- (-0.39, 0.96)(-0.95, 0.58)(-0.46, 0.37)(1.04, 1.72) - (-0.73, 0.77) (-1.20, 0.65) (1.96, 2.56)(-0.79, 0.48)

Gender - - 0.35 -0.01 -0.43 - - 2.85 0.76 0.03
- - (-0.35, 0.86)(-0.84, 0.61) (-0.99, 0.27) - - (1.64, 3.88) (-0.33, 1.11) (-0.51, 0.68)

Stool - - - - 2.49 - - - - 0.06
- - - - (1.63, 3.04) - - - - (-0.86, 0.95)

Saliva - - - - 0.87 - - - - 0.04
- - - - (0.17, 1.46) - - - - (-0.59, 0.70)

Adenoc. - - - - - - - - - -
- - - - - - - - - -

In order to assess the effect of the thresholding function, we can compare the posterior
distribution of the quantities

(b23Z3 + b24Z4 + b25Z5)Z2 (A.11)

and

h(b23Z3 + b24Z4 + b25Z5, tz)Z2, (A.12)

where the vector Z = (Z1, Z2, Z3, Z4, Z5)T is the vector of binary variables that gives
rise to interactions and act as effect modifiers for the varying coefficient. This allows
us to “isolate” the effect of the thresholding function on patients that share similar
profiles. This comparison can be potentially performed for each subgroup defined by
the values of the binary covariates.

In the following, the subscript j is dropped because we are referring to the
Firmicutes taxon. Since we are focusing on the interactions with the variable Gender,
that is Z2, we will only consider {Zl}l>2 and {b2l}l>2. The covariates Stool, Saliva
and Adenocarcinoma are respectively labeled as Z3, Z4, Z5.

In order to produce the distributions reported in Figure A.3, we draw 5000 samples
from the posterior distributions of {bql} and tz, and obtained the distributions of
the quantities in (A.11), (A.12) for different groups identified by the n−dimensional
vectors {zl}l>2.

The magnitude of the interaction between Stool and Gender is large, hence it is
not really affected by the thresholding mechanism. The proportion of zeros in pane
B of Figures A.3a and A.3b is 1.75% and 1.92%, respectively. On the other hand the
magnitude of the interaction between Adenocarcinoma and Gender is negligible and
it does not affects the distribution of (A.11) and (A.12).

The magnitude of the interaction between Saliva and Gender is moderate, hence
the thresholding mechanism strongly induces sparsity (the proportion of zero is 45.58%
and 40.54% in pane B of Figures A.3c and A.3d, respectively). The magnitude of the
interaction between Adenocarcinoma and Gender is negligible and it does not affect
the mean distribution of (A.11) and (A.12), but it seems to add some variability.

Similar consideration can be conducted on the interactions with Mouthwash in
both Bacteroidetes and Firmicutes taxa (see Table A.12).
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(a) Distribution of interaction between gender and stool
sample in patients not affected by adenocarcinoma,
zT = (−,−, 1, 0, 0). In pane A we do not consider the
thresholding function, that is considered in pane B.
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(b) Distribution of interaction between gender and
stool sample in patients affected by adenocarcinoma,
zT = (−,−, 1, 0, 1). In pane A we do not consider the
thresholding function, that is considered in pane B.

Figure A.3: Distributions of the quantities in (A.11) (panes A) and (A.12) (panes B) for
different groups identified by z.

A.6.3 mcmc diagnostic

The acceptance rates for Metropolis steps are 0.2612 ({θpj}), 0.2142 ({θqj}), 0.4198
({bqlj}), 0.583 (tz) and 0.634 (tz).

Convergence has been assessed through Gelman-Rubin potential scale reduction
factor (psrf) (Gelman et al., 1992) for continuous parameters and Pearson correlation
coefficient of posterior probabilities for binary parameters. The 95% ranges of psrf
for {θpj}, {θqj} and {bqlj} are (1.0000, 1.1128), (1.0000, 1.0443) and (1.0000, 1.0373)
respectively. The correlation for {ξpj} and {ξqj} are 0.8916 and 0.9859 respectively.

A.6.4 Model criticism

In order to assess the goodness of fit we draw samples of the posterior predictive otus
table using the procedure described in Section A.4. The range between quantiles of
level 0.025, 0.975 for each cell of the posterior predictive otus tables contains the
observed value for yij 84.17% of the times.
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(c) Distribution of interaction between gender and
saliva sample in patients not affected by adenocar-
cinoma, zT = (−,−, 0, 1, 0). In pane A we do not
consider the thresholding function, that is considered
in pane B.
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(d) Distribution of interaction between gender and
saliva sample in patients affected by adenocarcinoma,
zT = (−,−, 0, 1, 1). In pane A we do not consider the
thresholding function, that is considered in pane B.

Figure A.3: Distributions of the quantities in (A.11) (panes A) and (A.12) (panes B) for
different groups identified by z (cont.)
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Appendix B

Supplementary Material for
Chapter 3

B.1 Hyperparameter Settings and Sensitivity Anal-

ysis

Our method involves several hyperparameters whose specification needs to be dis-
cussed. Moreover, to ensure a careful tuning we performed an investigation on the
sensitivity of the results to these values. In particular, we constructed the sensitivity
study on the reference scenario (Scenario 1) presented in Section 3.7.3, where 152
were assigned to 2 competing treatments and K = 3 levels of the ordinal response
are assumed. Analysis is performed with a LOOCV strategy.

The parameters are set at the following default values: κ = 1, σ = 0.25, Λ0 =
diag(10, 10, 10), S0 = diag(1.0, 1.0, 1.0), v0 = 1. Keeping all other parameters fixed,
the pairs (κ, σ) and (Λ0,S0) and the scalar v0 are evaluated over the following values:

• κ = {0.5, 1.0, 2.0};

• σ = {0.01, 0.05, 0.25};

• Σkk = {1, 10, 50}, for k = 1, . . . , K;

• S0kk = {0.1, 1.0, 10.0}, for k = 1, . . . , K;

• v0 = {1, 2}.

The values for the parameters κ and σ are fixed such that, for n = 75 observations
(that is approximately the number of patients assigned to each treatment), the prior
expected number of clusters induced by the NGGP (κ, σ) is reported in Table B.1.

We evaluated the model in terms of prediction, goodness-of-fit and clustering
production. To assess treatment selection we used the summary measures discussed
in Section 3.7.2. To evaluate the fit of the model we also report WAIC and lpml.
WAIC is the Watanabe–Akaike information criterion, a generalized version of the
Akaike information criterion. In particular, WAIC has the desirable property of
averaging over the posterior distribution rather than conditioning on a point estimate
(Gelman et al., 2014). lpml represents the log pseudo marginal likelihood, which
is a goodness-of-fit metric (Christensen et al., 2011) that takes into account model
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B.1. Hyperparameter Settings and Sensitivity Analysis

Table B.1: Prior expected number of components for NGGP (κ, σ) for different specifica-
tions of σ (rows) and κ (columns).

κ

0.5 1 2

σ
0.01 3.2321 5.0176 7.9814
0.05 5.0176 5.5271 8.6342
0.25 6.6982 9.2131 13.0813

complexity. Finally, to account for the cluster arrangement produced by the model
we reported the a posteriori average number of clusters (# clu) and the variation of
information (V I) (Wade and Ghahramani, 2018), presented in Section ??. We ran
the algorithm for 52, 000 iterations, with a burn-in period of 12, 000 iterations; chains
were thinned and we kept every 10−th sampled value. Analysis of each configuration
was replicated and results averaged over 30 runs. Results are reported in Tables B.2,
B.3, B.4, B.5, B.6 and B.7.

We found little or no sensitivity for parameters (κ, σ) and v0. In particular, to
induce a moderate number of clusters we set (κ, σ) = (1, 0.01), while we set v0 = 1 as
default value. Results were affected to some extent by the values of (Λ0,S0) in the
multivariate normal model for the random intercept, hence we set (Λ0,S0) = (10, 1.0),
since this specification ensured (overall) the best performance.

Table B.2: Treatment selection and goodness-of-fit under different specifications of the
parameters (κ, σ). Mean across 30 replicated datasets, standard deviation in parenthesis.

σ 0.01 0.05 0.25

κ = 0.5

MOT 13.6667 (3.5266) 13.4333 (3.0590) 13.1000 (3.1552)
%∆MTU` 0.8325 (0.0509) 0.8357 (0.0471) 0.8396 (0.0466)

NPC 81.9333 (7.3622) 82.3667 (7.1847) 82.1667 (6.9782)
WAIC 181.6152 (7.0690) 182.1244 (7.1719) 184.0507 (7.3738)
lpml -126.9757 (4.0635) -127.0844 (4.0885) -127.7218 (4.1292)

κ = 1.0

MOT 14.1000 (3.4276) 13.3667 (3.3372) 13.1000 (3.6232)
%∆MTU` 0.8268 (0.0508) 0.8348 (0.0507) 0.8412 (0.0533)

NPC 82.2667 (7.7010) 81.8000 (7.2130) 82.5000 (7.3614)
WAIC 181.6095 (7.1117) 182.0948 (7.1387) 184.1644 (7.3763)
lpml -126.8929 (4.0680) -127.0336 (4.1309) -127.7568 (4.1364)

κ = 2.0

MOT 13.5000 (3.2137) 13.3000 (3.3026) 13.3000 (3.2393)
%∆MTU` 0.8342 (0.0487) 0.8363 (0.0496) 0.8373 (0.0482)

NPC 82.1333 (7.3001) 81.6000 (7.4861) 81.8333 (7.4467)
WAIC 181.6902 (7.1881) 182.1560 (7.1690) 184.2528 (7.3638)
lpml -126.9060 (4.1041) -127.0732 (4.0365) -127.7572 (4.1559)
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B.1. Hyperparameter Settings and Sensitivity Analysis

Table B.3: Cluster production under different specifications of the parameters (κ, σ). Since
clustering is performed independently across treatments, results are reported separately for
each treatment. Here trt 1 and trt 2 refer to Treatment 1 and Treatment 2, respectively.
Mean across 30 replicated datasets, standard deviation in parenthesis.

σ 0.01 0.05 0.25

trt 1 trt 2 trt 1 trt 2 trt 1 trt 2

κ = 0.5

# clu 10.7184 10.0341 10.6510 9.9638 10.3284 9.6351
(0.1848) (0.2945) (0.1848) (0.2942) (0.1832) (0.2893)

V I 3.6476 4.4147 3.6296 4.4325 3.6140 4.3936
(0.5586) (1.2150) (0.5836) (1.2109) (0.5999) (1.2416)

κ = 1

# clu 10.7198 10.0352 10.6498 9.9625 10.3222 9.6283
(0.1870) (0.2944) (0.1844) (0.2952) (0.1813) (0.2894)

V I 3.6529 4.4627 3.6660 4.4482 3.6050 4.3645
(0.5886) (1.1913) (0.5903) (1.1905) (0.6076) (1.2391)

κ = 2

# clu 10.7141 10.0260 10.6421 9.9548 10.3108 9.6173
(0.1863) (0.2954) (0.1850) (0.2936) (0.1826) (0.2889)

V I 3.6482 4.4656 3.6502 4.4300 3.6103 4.3794
(0.5673) (1.1897) (0.5868) (1.1689) (0.6171) (1.2243)

Table B.4: Treatment selection and goodness-of-fit under different specifications of the
parameters (Λ0,S0). {Λ0kk} and {S0kk} denote the set of K elements on the diagonal
of Λ0 and S0, respectively. Mean across 30 replicated datasets, standard deviation in
parenthesis.

{S0kk} 0.01 1.0 10.0

{Λ0kk} = 1

MOT 15.0000 (3.4441) 15.0667 (3.2156) 15.2000 (3.1775)
%∆MTU` 0.8033 (0.0577) 0.8036 (0.0530) 0.7992 (0.0533)

NPC 80.3000 (6.8940) 80.2667 (6.8578) 80.2000 (6.7180)
WAIC 224.3706 (6.6165) 224.2296 (6.6136) 224.0380 (6.6005)
lpml -142.3963 (3.7877) -142.3744 (3.7829) -142.3019 (3.7523)

{Λ0kk} = 10

MOT 13.3000 (3.2393) 13.4333 (3.1588) 14.3000 (3.1089)
%∆MTU` 0.8373 (0.0482) 0.8360 (0.0474) 0.8203 (0.0462)

NPC 81.8333 (7.4467) 82.1667 (7.3301) 81.9000 (7.3313)
WAIC 184.2528 (7.3638) 183.6102 (7.3822) 181.6917 (7.2289)
lpml -127.7572 (4.1559) -127.4659 (4.1125) -126.7951 (4.0430)

{Λ0kk} = 50

MOT 32.2333 (21.0430) 32.4000 (20.6190) 27.7667 (14.6727)
%∆MTU` 0.6336 (0.2455) 0.6336 (0.2395) 0.6918 (0.1651)

NPC 73.5333 (6.4420) 74.5000 (5.6797) 74.5667 (6.5899)
WAIC 256.8828 (10.9495) 252.8698 (11.1382) 241.6399 (10.0656)
lpml -152.9823 (4.2645) -151.6020 (4.2887) -147.3477 (4.1023)
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Table B.5: Cluster production under different specifications of the parameters (Λ0,S0).
{Λ0kk} and {S0kk} denote the set of K elements on the diagonal of Λ0 and S0, respectively.
Since clustering is performed independently across treatments, results are reported sep-
arately for each treatment. Here trt 1 and trt 2 refer to Treatment 1 and Treatment 2,
respectively. Mean across 30 replicated datasets, standard deviation in parenthesis.

{S0kk} 0.01 1.0 10.0

trt 1 trt 2 trt 1 trt 2 trt 1 trt 2

{Λ0kk} = 1

# clu 17.4550 16.9271 17.4564 16.9277 17.4571 16.9271
(0.2412) (0.4232) (0.2412) (0.4231) (0.2408) (0.4237)

V I 5.9976 9.0013 5.9818 8.9978 5.9482 8.9682
(1.1646) (0.8694) (1.1616) (0.9064) (1.1617) (0.9231)

{Λ0kk} = 10

# clu 10.3108 9.6173 10.3300 9.6348 10.3891 9.6963
(0.1826) (0.2889) (0.1829) (0.2897) (0.1844) (0.3010)

V I 3.6103 4.3794 3.6114 4.3557 3.5818 4.3491
(0.6171) (1.2243) (0.5986) (1.1948) (0.5661) (1.1487)

{Λ0kk} = 50

# clu 5.3712 4.9241 5.4412 4.9834 5.6271 5.1582
(0.0996) (0.0922) (0.1052) (0.1022) (0.1030) (0.1168)

V I 3.0050 3.0068 3.0252 3.0311 3.0693 3.0958
(0.0088) (0.0748) (0.0234) (0.1101) (0.0541) (0.1512)

Table B.6: Treatment selection and goodness-of-fit under different specifications of the
parameter v0. Mean across 30 replicated datasets, standard deviation in parenthesis.

v0 1.0 2.0

MOT 13.30 (3.24) 12.20 (3.46)
%∆MTU` 0.84 (0.05) 0.86 (0.05)

NPC 81.83 (7.45) 81.23 (7.57)
WAIC 184.25 (7.36) 217.00 (9.43)
lpml -127.76 (4.16) -138.74 (4.36)

Table B.7: Cluster production under different specifications of the parameter v0. Since
clustering is performed independently across treatments, results are reported separately for
each treatment. Here trt 1 and trt 2 refer to Treatment 1 and Treatment 2, respectively.
Mean across 30 replicated datasets, standard deviation in parenthesis.

trt1 trt2

v0 = 1.0
# clu 10.3108 (0.1826) 9.6173 (0.2889)
V I 3.6103 (0.6171) 4.3794 (1.2243)

v0 = 2.0
# clu 6.9438 (0.1387) 6.5599 (0.1875)
V I 3.0829 (0.1593) 2.7048 (0.5023)

B.2 Computational Details

To construct an efficient algorithm and improve computational feasibility we adopt a
data augmentation approach to represent the Dirichlet distribution as independent
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latent Gamma random variables (see Appendix B.2.1). This greatly facilitates the
sampling procedure.

The core part of the algorithm is the update of cluster membership. The
computation associated with (3.11) is based on Neal (2000)’s Algorithm 8 with Reuse
(Favaro et al., 2013). The pivotal step in Algorithm 8 is to augment the state space of
permanent parameters with M additional auxiliary parameters. Auxiliary parameters
need to be defined such that the marginal distribution of the permanent variables
after integrating out the auxiliary ones is the appropriate posterior distribution.
These auxiliary parameters will be temporary and represent possible values for
parameters of components that are not associated with any observation. After the
update of the cluster labels, the augmentation variables can be discarded along with
empty clusters, avoiding the need to perform analytical integrations that may not be
available.

This algorithm is simple to implement and has showed excellent mixing speed,
but each time we update the cluster label for an observation we need to sample
and subsequentially discard the auxiliary variables. Noting that after updating the
cluster assignment of each observation the parameters of any unused empty cluster
are already independently and identically distributed, Favaro et al. (2013) propose
to reuse them for the update of the next observation. We implement Algorithm 8
with Reuse, since it represents a computationally efficient strategy.

Conditional on the updated cluster labels, all the remaining parameters are easily
updated with Gibbs sampler or Metropolis-Hastings steps (Section B.2.2).

B.2.1 Augmented data scheme

Generating samples from the Dirichlet distribution using independent Gamma random
variable is computationally efficient. Exploiting this property our data augmentation
approach is based on a reparameterization of equation (3.1) and on the introduction
of an auxiliary parameter. Let πaik = daik/D

a
i , where Da

i =
∑K

k=1 d
a
ik and assume that

daik ∼ Gamma(γaik(η
a?
jk ,βk), 1).

Quantity Ha(ηa?,Πa,β;ya,xa,πa) in (3.12) can be restated as

Ha(ηa?,Πa,β;ya,xa,da) =
na∏
i=1

daiyai
Da
i

Ca∏
j=1

∏
i∈Saj

Gamma(γai (ηa?j ,βk), 1), (B.1)

where da is a n × K matrix that contains daik elements, for i = 1, . . . , na and
k = 1, . . . , K. Moreover we introduce n auxiliary parameters and let, for a = 1, . . . , T

uai | Da
i ∼ Gamma(1, Da

i ).

From the Gamma density function we obtain that

1

Da
i

=

∫ ∞
0

exp(−Da
i u

a
i )du

a
i ,
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so from equation (B.1):

Ha(ηa?,Πa,β;ya,xa,πa) =
na∏
i=1

daiyai e
−Dai uai ×

Cana∏
j=1

∏
i∈Saj

K∏
k=1

daik
γaik(ηa?jk ,βk)−1e−d

a
ik

Γ(γaik(η
a?
jk ,βk))

=
na∏
i=1

daiyai e
−uai

∑
k d

a
ik ×

Cana∏
j=1

∏
i∈Saj

K∏
k=1

daik
γaik(ηa?jk ,βk)−1e−d

a
ik

Γ(γaik(η
a?
jk ,βk))

=
na∏
i=1

daiyai ×
Cana∏
j=1

∏
i∈Saj

K∏
k=1

daik
γaik(ηa?jk ,βk)−1e−d

a
ik(uai +1)

Γ(γaik(η
a?
jk ,βk))

B.2.2 MCMC sampling

For posterior inference we designed a Metropolis within Gibbs sampler. We use a
generalization of Algorithm 8 by Neal (2000) proposed by Favaro et al. (2013) to
update the i−th subject’s cluster label. Weights for each component are obtained
comparing the unnormalized posterior for cluster j when the subject is excluded and
when it is included. Conditional on the updated cluster labels, all the remaining
parameters are updated with Gibbs sampler or Metropolis-Hastings steps. The
MCMC sampler goes as follows.

Π: Algorithm 8 with Reuse. For a = 1, . . . , T , i = 1, . . . , na let ea = (ea1, . . . , e
a
na)

be the cluster allocation vector of indexes, with eai = j iff i ∈ Saj . Let Sa,−ij and

Ca,−i
na denote the j-th cluster and the total number of clusters when subject i

assigned to treatment a is not considered. In the same way, we use xa?,−ij to
denote the matrix of predictive determinants of the patients in cluster j, when
the i−th patient is not included. Cluster membership for patient i, that is eai
is drawn using the following unnormalized probabilities:

P (eai = j|·) ∝

K∏
k=1

daik
γaik(ηa?jk ,βk)−1e−d

a
ik(uai +1)

Γ(γaik(η
a?
jk ,βk))

ρ(Sa,−ij ∪ {i})g̃(xa?,−ij ∪ {xai })
ρ(Sa,−ij )g̃(xa?,−ij )

for j = 1, . . . , Ca,−i
na

K∏
k=1

daik
γaik(ηa?jk ,βk)−1e−d

a
ik(uai +1)

Γ(γaik(η
a?
jk ,βk))

ρ({i})g̃({xai })
M

for j = Ca,−i + 1, . . . , Ca,−i
na +M

(B.2)

where {ηa?jk} for j = Ca,−i
na + 1, . . . , Ca,−i

na +M are M auxiliary variables (Neal,
2000), associated with M empty clusters, independently and identically dis-
tributed according to some prior distribution pe. The first terms are the
likelihoods associated with observation i given the cluster parameters, while the
second terms can be interpreted as being proportional to the covariate-informed
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prior probability of being assigned to the corresponding cluster (with the M
empty clusters sharing the probability of creating a new cluster).

The Algorithm 8 with Reuse proposes an efficient handling of the M auxiliary
parameters. For a = 1, . . . , T and for i = 1, . . . , na it updates the cluster
assignment of observation i according to the following scheme:

Algorithm 1: Algorithm 8 with Reuse

1 Remove i from the cluster it belongs, so that Saj ∈ Πa
n, |Saj | = naj

becomes Sa,−1
j , |Saj | = naj − 1

2 if |Saj | = 0 (Saj is empty) then
3 sample m ∈ {1, . . . ,M} uniformly at random
4 replace ηa?

Ca,−ina +m
with ηa?j

5 remove Saj from Πa
na

6 Assign i to the clusters with probabilities P (eai |·) as defined in equation
(B.2)

7 if eai ∈ {C
a,−i
na + 1, . . . , Ca,−i

na +M} (the observation i is assigned to an
empty cluster) then

8 assign it to a new cluster in Πa
n with parameter ηa?eai

9 replace ηa?eai with a new independent draw from pe.

After the loop on all the observations is over and we have the updated cluster
assignments, the auxiliary parameters associated with empty clusters are
sampled again as independent and identically distributed according from pe.
In Algorithm 8 as proposed by Neal (2000) after line 6 of Algorithm 1 all the
auxiliary parameters associated with empty clusters would have been discarded
and then generated again to update the cluster label of the next observation.
Note that the only difference adopting the Reuse Algorithm implies is the way
the parameters of the empty clusters are managed and retained across cluster
assignment updates of multiple observations (Favaro et al., 2013).

Finally particular attention should be paid when condition at line 2 of Algorithm
1 is true. In fact, to avoid gaps in the cluster labels one should proceed with a
relabeling of all the clusters {Saj′}j′>j (Page and Quintana, 2015).

η?: Metropolis step. For a = 1, . . . , T , i = 1, . . . , na we sample ηa?1 , . . . ,η
a?
Ca from

the following distribution:

P (ηa?j |·) ∝
∏
i∈Saj

K∏
k=1

daik
γaik(ηa?jk ,βk)

Γ(γaik(η
a?
jk ,βk))

p(ηa?j ).

Hyperparameters update:

θ? Gibbs step. For j = 1, . . . , Ca
na we sample θa?j from its full conditional:

θa?j |ηa?j ,σa?j ∼ Nk(µ
a?
nj
,σa?nj ),

where
Λa?
naj

= (Λ−1
0 + najΣ

−1
j )−1
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and
µa?naj = Λa?

naj
(Λ−1

0 µ0 + najΣ
−1
j η̄j).

Σ? Gibbs step. For j = 1, . . . , Ca
na we sample Σa?

j from its full conditional:

Σa?
j |ηa?j ,θa?j ∼ IW (ν0 + naj , [S0 + Saθa?j ]−1),

where

Saθa?j =

naj∑
i=1

(ηa?j − θa?j )(ηa?j − θa?j )T .

(κ,σ): Gibbs step. Since the normalizing constant of equation (3.5) ca not be computed,
we produce samples from a discretized approximation of posterior distribution,
evaluating p((κa, σa)|Πa

n, ·) at a finite, discrete grid of possible (κ, σ) values.
Moreover, we assume κ and σ to be uniformly distributed over the set of values.
For a = . . . , T , we evaluate (3.5) at each grid point. We then obtain a discrete
approximation of the log posterior distribution at each grid point and then
normalize the values, obtaining weights that sum to 1 across the grid’s points.
Finally we sample a new value for (κa, σa) from the grid with respect to their
corresponding normalized posterior probability.

β: Metropolis step. We exploit the factorization of H with respect to k. For
k = 1, . . . , K, we sample βk from the following distribution:

P (βk|·) ∝
n∏
i=1

daik
γaik(ηa?jk ,βk)

Γ(γaik(η
a?
jk ,βk))

p(βk).

Hyperparameters update:

λ The global scale parameters are updated through an adaptation of the
slice sampling scheme given in the online supplement of Polson et al.
(2014). We define $pk = 1/λ2

pk and ςpk = βpk/τk. This reparameterization
allows us to employ slice sampler (Neal, 2003), as the conditional posterior
distribution of $pk is

p($pk | τk, ςpk) ∝ exp

{
−
ς2
pk

2
$pk

}
1

1 +$pk

.

To sample λpk:

1. draw a sample from uniform distribution:

hpk | $pk ∼ U(0, 1/(1 +$pk));

2. draw a sample from truncated Exponential density, so that it has
zero probability outside the interval (0, (1− upk)/upk):

$pk | ςpk, hpk ∼ Exp(2/ς2
pk).

Transforming back to the λ−scale it will ensure a sample from the condi-
tional distribution of interest.
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τ The same applies for τk, replacing $ = 1/τ 2
k and ς2

k =
∑P

p=1 β
2
pk/2.

d: Gibbs step. For a = 1, . . . , T , i = 1, . . . , na we sample dai from:

dai | · ∼ Gamma(γai (ηa?j ,β) + δ1(yai ), (ui + 1)−1)

where δ1 is a K × 1 vector of Dirac delta in 1.

u: Gibbs step. For a = 1, . . . , T , i = 1, . . . , na we sample uai from:

uai | · ∼ Gamma(1, D−1
i ).
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