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Research Paper

Transient receptor potential ankyrin 1 mediates
headache-related cephalic allodynia in a mouse
model of relapsing–remitting multiple sclerosis
Diéssica P. Dalenogarea, Maria C. Theisena, Diulle S. Peresa, Maria F.P. Fialhob, Nathaly Andrighettoa,
Laura Barrosa, Lorenzo Landinic, Mustafa Titizc, Francesco De Loguc, Sara M. Oliveirab, Pierangelo Geppettic,
Romina Nassinic, Gabriela Trevisana,*

Abstract
Primary headache conditions are frequently associated with multiple sclerosis (MS), but the mechanism that triggers or worsens
headaches in patients with MS is poorly understood. We previously showed that the proalgesic transient receptor potential ankyrin 1
(TRPA1) mediates hind paw mechanical and cold allodynia in a relapsing–remitting experimental autoimmune encephalomyelitis (RR-
EAE) model in mice. Here, we investigated the development of periorbital mechanical allodynia (PMA) in RR-EAE, a hallmark of
headache, and if TRPA1contributed to this response. RR-EAE induction by injection of themyelin oligodendrocyte peptide fragment35-
55 (MOG35-55) and Quillaja A adjuvant (Quil A) in C57BL/6J femalemice elicited a delayed and sustained PMA. The PMA at day 35 after
induction was reduced by the calcitonin gene–related peptide receptor antagonist (olcegepant) and the serotonin 5-HT1B/D receptor
agonist (sumatriptan), 2 known antimigraine agents. Genetic deletion or pharmacological blockade of TRPA1 attenuated PMA
associated with RR-EAE. The levels of oxidative stress biomarkers (4-hydroxynonenal and hydrogen peroxide, known TRPA1
endogenous agonists) and superoxide dismutase and NADPH oxidase activities were increased in the trigeminal ganglion of RR-EAE
mice. Besides, the treatment with antioxidants (apocynin or a-lipoic acid) attenuated PMA. Thus, the results of this study indicate that
TRPA1, presumably activated by endogenous agonists, evokes PMA in a mouse model of relapsing–remitting MS.

Keywords: Headache, Sumatriptan, 4-Hydroxynonenal, Hydrogen peroxide, Calcitonin gene–related peptide, NADPH oxidase

1. Introduction

Multiple sclerosis (MS) is characterized by a chronic demyelinat-
ing and inflammatory process38 that results in several debilitating
symptoms, including different types of pain.47,71 Several studies
have reported that primary headaches, such asmigraine tension-
type headaches, aremore frequent in patients withMS than in the
general population.33,46,56 Besides, various studies demon-
strated a range from 4 to 61.8% of headaches in patients with
MS, although the MS mechanisms that result in headaches are
poorly known.46

The transient receptor potential ankyrin 1 (TRPA1) is a cationic
channel expressed in peripheral pain-detecting sensory neu-
rons.7,49,54,68 Transient receptor potential ankyrin 1 has emerged
as a specific target for several exogenous headache triggers, and
some pieces of evidence demonstrated that various antimigraine
medicines have an inhibitory action on TRPA1 channel activ-
ity.7,37,50,53,54 Besides, TRPA1 is also a recognized sensor of the
redox state in the cellular environment57 because it is activated by
oxidative stress by-products, such as hydrogen peroxide
(H2O2),

64 4-hydroxynonenal (4-HNE),69 and nitric oxide.51

TRPA1 activation in primary sensory neurons also evokes the
peripheral release of the calcitonin gene–related peptide (CGRP),
and this neuropeptide is the primary mediator of migraine
headache.44 Calcitonin gene–related peptide subcutaneous
injection in the mouse periorbital area or rat trigeminal ganglion
(intraganglionar) elicited prolonged periorbital mechanical allody-
nia (PMA).4,44 It was also reported that CGRP released from
periorbital trigeminal terminals caused PMAbecause of the gating
of TRPA1 by the promigraine agent, glyceryl trinitrate, in cell
bodies of trigeminal neurons.49

Facial mechanical allodynia (whisker pad and periorbital region)
was detected in a mouse model of progressive MS induced by
immunization with the MOG35-55 antigen and complete Freund
adjuvant (CFA).16,18,19 Besides, we recently showed that TRPA1
mediates plantar mechanical and cold allodynia in a mouse
model of RR-EAE induced by the immunization with MOG35–55

and Quil A.15 However, until now, no study has evaluated the
development of PMA in a RR-EAE model or evaluated the
mechanisms involved in this nociceptive behavior.
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The aim of this study was 2-fold. First, we exploredwhether the
mouse model of RR-EAE induced by the immunization with
MOG35–55 and Quil A caused PMA and whether classical
antimigraine agents could inhibit this nociceptive response.
Second, we investigated whether oxidative stress and TRPA1
were implicated in RR-EAE–induced PMA. Hence, our results
indicate that mice developed PMA after RR-EAE induction and
antimigraine drugs reduced the periorbital nociception. Further-
more, pharmacological and genetic approaches to reduce
TRPA1 activation are able to reduce PMA in this model. Thus,
TRPA1 channel seems to be activated by endogenous agonists
to cause periorbital nociception after RR-EAE induction.

2. Materials and methods

2.1. Animals

The following mouse strains were used: C57BL/6J, littermate
wild-type (Trpa11/1), and TRPA1-deficient (Trpa12/2) (KWAN
et al., 2006) (female, 20-30 g, 4-6 weeks). Women present a high
prevalence of developing RRMS72; thus, the RR-EAE model was
optimized in female C57BL/6J.31 All the animals (5 per cage) were
maintained in controlled temperatures (22 6 2˚C) and bred in-
house with a 12-h light–dark cycle (lights on from 7:00 AM to 7:00
PM) and were accommodated with wood shaving bedding and
nesting material. Tap water and laboratory standard animal food
(Puro Lab 22 PB pellet form, Puro Trato, Rio Grande do Sul,
Brazil, and Charles River, Milan, Italy) were provided ad libitum.
The animals were moved and acclimatized to the experiment
room for at least 1 hour before each procedure. Experiments
were performed according to the ethical guidelines to investigate
pain in conscious animals (ZIMMERMANN, 1983), and the
Institutional Committee for Animal Care and Use of the Federal
University of Santa Maria (protocols #8640200617/2017 and
#6412121218/2018) and the Italian Ministry of Health (protocol
#1194/2015-PR) approved the experimental procedures. Be-
havioral studies followed the Animal Research Reporting In Vivo
Experiments (ARRIVE) guidelines (MCGRATH; LILLEY, 2015). All
experiments were performed by an operator blinded to drug
administration and genotype. Besides, more information about
the experimental protocols is provided in Figure 1 Supplemen-
tary. The protocols described in Supplementary Fig 1 (A and B,
available at http://links.lww.com/PAIN/B525) were performed
only for this study. Besides the protocols described in Supple-
mentary Fig 1(C) (available at http://links.lww.com/PAIN/B525),
the results for mechanical and cold allodynia in the paw were
previously published.16 The total sample size for each experiment
set was calculated by GPower 3.1 software. The GPower 3.1
software defined a sample size of n 5 8 animals per group. This
calculation agrees with other articles published in the pain
research and studies using the EAE model.1,15,30,60,61,63

2.2. Reagents

If not otherwise indicated, all reagents were from Merck Life
Science SRL (St. Louis, MO). Mouse myelin oligodendrocyte
glycoprotein (MOG35–55) was synthesized by EZBiolab (Car-
mel, CA).

2.3. Relapsing–remitting experimental autoimmune
encephalomyelitis mouse model

A mouse model of RR-EAE was performed by the subcutaneous
injection of a mixed solution of MOG35–55 antigen (200 mg) and

Figure 1. Mice developed periorbital mechanical allodynia (PMA) after
relapsing–remitting experimental autoimmune encephalomyelitis (RR-EAE)
induction, and sumatriptan or olcegepant administration showed an anti-
allodynic effect. (A) PMA was detected on days 21 to 35 after RR-EAE
induction. The vehicle group received isotonic saline 0.9% i.g. (sumatriptan) or
dimethyl sulfoxide (DMSO) 1% in isotonic saline 0.9% i.p. (olcegepant). The
treatment with (B) sumatriptan (0.6mg/kg, intragastric, i.g.) and (C) olcegepant
(1 mg/kg, intraperitoneal, i.p.) or vehicle (4% DMSO plus 4% Tween 80 in
isotonic saline 0.9%.) was given on day 35 postinduction (p.i., time 0) of the
RR-EAE model. Baseline measurements (described as BL in the graph) were
observed before induction. Data are expressed as mean 1 SEM. (n 5 8) for
graphs B or C. *P , 0.05 when compared with the control group or baseline
(BL) values; and #P , 0.05 when compared with RR-EAE vehicle-treated
group [two-way ANOVA, followed by the Bonferroni post hoc test]. ANOVA,
analysis of variance.
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Quil A (45 mg) in phosphate-buffered saline solution (100
mL).15,29,31 The mixture, containing MOG35-55 and Quil A, was
injected in 2 equal amounts (50 mL) into both flanks on day 0. On
day 0 and 48 hours (day 2) postinduction (p.i), mice received
pertussis toxin (250 ng) diluted in phosphate-buffered saline (1
ng/mL) by intraperitoneal (i.p.) injection. Control mice only
received equal doses of Quil A and pertussis toxin.15,29,31

2.4. Assessment of relapsing–remitting experimental
autoimmune encephalomyelitis clinical signs

The assessment of the RR-EAE clinical signs in immunized mice and
the control group was performed once a week over an experimental
period of 35 days in a randomized, blinded manner using the clinical
disease scoring paradigm. The score was assessed according to the
following scale: 0, normal behavior; 0.5, limpness of the distal tail
region andhunched appearance; 1, completely limp tail or developing
weakness in the hind limbs; 1.5, limp tail and distinct hind limbs
weakness recognized by unsteady gait and poor grip of hind limbs
while hanging on cage underside; 2, limp tail with unilateral partial hind
limb paralysis; 2.5, limp tail and partial paralysis of bilateral hind limbs;
3, complete paralysis of bilateral hind limbs; 3.5, complete bilateral
hind limbs paralysis and unilateral forelimb paralysis; and 4,
quadriplegia. Clinical scores # 0.5 were indicative of no disease or
disease remission,31 and if clinical scores were . 1.5, animals were
excluded from the study. Besides, if an animal showed a weight loss
of 20 to 30% of the initial weight, the animal was excluded from the
experiments. Mice were monitored weekly after RR-EAE post-
induction for the assessment of the RR-EAE clinical signs andweight.

2.5. Behavioral studies

2.5.1. Rotarod test

Mice were trained on the rotarod apparatus 1 day before
induction. Mice were individually placed on the rotarod apparatus
(fixed speed 16 rmp and 180 seconds), and the latency to the first
fall was recorded.58–60 This session was repeated 2 times. The
rotarod test was performed on days 7, 14, 21, 28, and 35 p.i. of
RR-EAE. Animals that failed to stay 180 seconds in the rotarod
were removed from the study.31,59 All mice developed the RR-
EAE clinical scores without significant weight loss or reduction of
locomotor function or coordination, and no animals were
excluded from the study, as reported in previous studies.15,31

2.5.2. Periorbital mechanical allodynia

The periorbital mechanical threshold was evaluated using an up-
and-down paradigm.12,68 Mice were individually placed in a
restrained apparatus designed for the evaluation of the periorbital
mechanical threshold. One day before the first behavioral
observation, mice were habituated to the apparatus. On the day
of the experiment, after 60 minutes of adaptation inside the
chamber, a series of von Frey filaments in logarithmic increments of
force (0.008, 0.02, 0.04, 0.07, 0.16, 0.4, and 0.6 g) were applied to
the periorbital area perpendicular to the skin, with sufficient force to
cause slight buckling, andheld for approximately 5 seconds to elicit
a positive response. The response was considered positive by the
following criteria: mouse vigorously stroking its face with the
forepaw, head withdrawal from the stimulus, or head shaking. The
testwas initiatedwith the 0.07 g filament. The absence of response
after 5 seconds led to the use of a filament with increased force,
whereas a positive response led to the use of aweaker filament. Six
measurements were collected for each mouse or until 4

consecutive positive or negative responses occurred. The
periorbital mechanical withdrawal threshold (expressed in g) was
then calculated from the resulting scores.17

2.6. Treatment protocols

At day 35, induced and control mice received TRPA1 antagonists,
HC-030031, A-967079,3,15,63,68 metamizole ,or propyphena-
zone52,68; the antioxidants, a-lipoic acid or apocynin15,63,68 (all, 100
mg/kg); sumatriptan11,26 (0.6 mg/kg); or their vehicles (dimethyl
sulfoxide, DMSO 1%; in isotonic saline 0.9%) by oral gavage
(intragastric, i.g., 10mL/kg).Olcegepant (1mg/kg)49 or its vehicle (4%
DMSO plus 4% Tween 80 in isotonic saline 0.9%) was administered
by i.p. injection (10mL/kg).PMAwasevaluated from1 to3hoursafter
vehicle or compound administration because no compound showed
an antinociceptive effect 3 hours after injection.

2.7. Determination of oxidative biomarkers

On day 35, after RR-EAE induction or control, mice were killed,
and the trigeminal ganglion and brainstem were dissected. The
samples were homogenized in Tris-HCl buffer (50 mM, pH 7.4)
and centrifuged at 3000 rpm for 10 minutes at 4˚C to determine
oxidative stress biomarkers.

2.7.1. Four-hydroxynonenal and H2O2 levels determination

According to the manufacturer’s protocol, the content of 4-HNE
was analyzed using an OxiSelect HNE Adduct Competitive Elisa
Kit (Cell Biolabs, Inc, San Diego, CA).15 The levels of 4-HNE were
expressed in the percentage of 4-HNE when compared with the
control group.

The levels of H2O2 were determined using the phenol red-
horseradish peroxidase (HRPO) method.9 In brief, 25 mM of
sodium azidewas added to supernatants to inhibit the cytochrome
c oxidase enzyme present in samples.39 The homogenate-
containing sodium azide was centrifuged at 12.000 xg for 20
minutes at 4˚C. A mixture containing supernatant, 25 mL of phenol
red (100 mg/mL), and 5 mL of HRPO (50mg/mL) was incubated in
the dark for 10 minutes at 25˚C. The reaction was stopped by
adding NaOH (1 M, 20 uL). The absorbance of the enzymatic
reaction was read at 610 nm using a SpectraMax i3 Platform
(Molecular Devices, LLC, San Diego, CA) microplate reader. H2O2

levels were expressed as nanomoles (nmol H2O2) per mg protein
compared with a standard H2O2 sample.

2.7.2. Superoxide dismutase and nicotinamide adenine
dinucleotide phosphate oxidase activity evaluation

To analyze the SOD activity, samples were incubated for 2
minutes with adrenaline and glycine buffer at 30˚C, and the
absorbance was measured at 480 nm.5 The reaction was read in
a microkinetic reader (Fisher Biotech, Waltham, MA; BT, 2000).
The values of SOD activity were reported as U/mL of the
sample.2,68 The activity of NADPH oxidase was observed in
samples using an appropriate assay kit (CY0100, cytochrome c
reductase, NADPH Sigma-Aldrich, Milan, Italy). The NADPH
oxidase activity was expressed as U/mL/mg of tissue.

2.8. Quantitative real-time polymerase chain reaction

RNA was purified from trigeminal ganglion and brainstem.
According to the manufacturer’s protocol, the standard TRIzol
extraction method was used together with an RNeasy Mini Kit
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(QIAGEN, 74106). RNA concentration and purity were assessed
spectrophotometrically by measuring the absorbance at 280 nm.
The RNA was then reverse transcribed using a SuperScript IV
One-Step RT-PCR System (Thermo Fisher Scientific, Waltham,
MA; 12595025) according to the manufacturer’s protocol. For
relative quantification of mRNA compared with the housekeeping
gene, real-time PCR was conducted using Rotor-Gene Q
(Qiagen, Germantown, MD). The sets of mouse primers were
as presented in Table 1.

2.9. Statistical analysis

Data were expressed as mean 1 SEM and analyzed statistically
by the parametric and nonparametric Student t test, 1-way or 2-
way analysis of variance according to the experimental protocol,
followed by the posttest Bonferroni when needed. The maximal
inhibition (Imax) was calculated using the following formula: 1003
(h posttreatment 2 basal postinduction mean)/(basal preinduc-
tion mean 2 basal postinduction mean). The individual values
were inserted as column statistics in Prism GraphPad and
calculated the mean of these values. To meet parametric
assumptions, data of mechanical threshold scores were log-
transformed before analyses. Differences between groups were
considered significant when P values were less than 0.05 (P ,
0.05), using the GraphPad Prism 5.0 program.

3. Results

3.1. Periorbital mechanical allodynia evoked by
relapsing–remitting experimental autoimmune
encephalomyelitis was reduced by sumatriptan and
olcegepant administration

Administration of MOG35–55 and Quil A elicited an increase in clinical
scores that started at day 14 and peaked at day 35 (supplementary
Fig. 2A, available at http://links.lww.com/PAIN/B525), indicating the
onset of RR-EAE. However, no changes in locomotor activity
(supplementary Fig. 2B, available at http://links.lww.com/PAIN/
B525) or body weight (supplementary Fig. 2C, available at http://
links.lww.com/PAIN/B525) between RR-EAE and the control group
were detected during the 35 days of observation.

Relapsing–remitting experimental autoimmune encephalomy-
elitis mice developed a time-dependent increase in PMA fromday
21 to 35 p.i. (Fig. 1A). At day 35 after immunization, treatment
with the CGRP receptor antagonist, olcegepant (1 mg/kg, i.p.),49

or the serotonin 5-HT1B/D receptor agonist, sumatriptan (0.6 mg/
kg, i.g.),11 which have shown efficacy in the acute treatment of
headache migraine attacks,6,48,55 produced a reduction (maxi-
mum inhibition was 91% and 73% for olcegepant and suma-
triptan, respectively) of PMA, without affecting the mechanical
threshold of control mice (Fig. 1B and C).

3.2. Transient receptor potential ankyrin 1 genetic deletion
and pharmacological inhibition decreased periorbital

mechanical allodynia in relapsing–remitting experimental
autoimmune encephalomyelitis mice

At day 35 after immunization, 2 chemically unrelated selective TRPA1
antagonists,HC-030031 (100mg/kg, i.g.) andA-967079 (100mg/kg,
i.g.), diminished PMA (Fig. 2A and B). HC-030031 and A-967079
reduced PMA from 1 to 2 hours after i.g. administration, and the
maximum inhibition of PMA produced by HC-030031 and A-967079
was 73% and 80%, respectively (Fig. 2A and 2B). Similar inhibition
was produced by 2 analgesic drugs that have been recently identified
as TRPA1 antagonists,52 metamizole (100 mg/kg, i.g.) and propy-
phenazone (100 mg/kg, i.g.) (Fig. 2B and C), which induced a
maximum inhibition of 89%and100%of PMA induction, respectively.

3.3. Transient receptor potential ankyrin 1 genetic deletion
impairs periorbital mechanical allodynia development in
relapsing–remitting experimental autoimmune
encephalomyelitis mice

Further and conclusive proof of the role of TRPA1 in the mouse
model of RR-EAE was obtained withmice with genetic deletion of
the channel. Immunization with MOG35–55 and Quil A adjuvant of
female Trpa11/1mice produced a PMA similar to that obtained in
C57BL/6, which started at day 21 and was maintained until day
35 (Fig. 3A). By contrast, Trpa12/2 mice did not develop PMA
(Fig. 3A). The TRPA1-dependent PMA did not parallel an
increase in TRPA1 mRNA expression in the peripheral (trigeminal
ganglion) or central nervous system tissue (brainstem) (Fig. 3B).

3.4. Oxidative stress mediates periorbital mechanical
allodynia in relapsing–remitting experimental autoimmune
encephalomyelitis–induced mice

The TRPA1 channel is an oxidative stress sensor activated by an
extensive series of reactive oxygen, nitrogen, and carbonyl
species, including H2O2 and 4-HNE.53 The RR-EAE model
induction enhanced the 4-HNE and H2O2 levels (Figs. 4A and B)
and the activities of 2 ROS-catalyzing enzymes, NADPH oxidase
and SOD (Fig. 4C and 4D), in the trigeminal ganglion. Changes of
4-HNE and H2O2 levels or NADPH oxidase and SOD activities
were confined to the peripheral neurons as the 4 parameters were
not different in the brainstem of immunized mice compared with
control mice (Fig. 4E–G).

3.5. Treatment with a-lipoic acid and apocynin reduced
periorbital mechanical allodynia in the relapsing–remitting
experimental autoimmune encephalomyelitis–induced mice

Systemic (i.g) administration of 2 different antioxidants, a-lipoic
acid and apocynin (all, 100 mg/kg), induced a (from 1 to 2 hours
after administration) reduction of PMA in mice with RR-EAE (Fig.
5A and B). The 2 antioxidants did not produce any change in the
mechanical threshold compared with control mice (Fig. 5B).
Maximum inhibition of PMA was 82% and 67% for a-lipoic and
apocynin, respectively (Fig. 5B). Thus, we hypothesized that

Table 1

List of forward and reverse primers used in reverse transcription-qualitative polymerase chain reaction assays and their

respective sequences (59–39).

Gene Sequence forward (59-39) Sequence reverse (59-39) Accession number

Trpa1 GCAGGTGGAACTTCATACCAACT CACTTTGCGTAAGTACCAGAGTGG NM_177,781

Actb CATTGCTGAC AGGATGCAGAAGG TGCTGGAAGGTGGACAGT GAGG NM_007,393

TRPA1, transient receptor potential ankyrin 1.
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oxidative stress targeting of TRPA1 in trigeminal ganglion neurons
is implicated in PMA evoked by RR-EAE in mice.

4. Discussion

Headache, a common symptom in the initial phases of MS,25 has
been associated with demyelinating lesions in the central nervous
system.47 Despite the high prevalence and deterioration of
primary headaches in patients with MS,46,47,71 the mechanisms
underlyingMS-associated headaches are poorly understood.We
previously reported that in a model of RR-EAE, mice developed
hind paw mechanical and cold allodynia.15 Here, in the same
model, we showed for the first time the development of a delayed
and sustained PMA. Allodynia in the periorbital and other
cutaneous areas is considered a hallmark of headache in
migraine attacks.20,27 Recently, using a different model of EAE
(progressive EAE), which reproduces a progressive multiple
sclerosis model, we detected the role of TRPA1 in periorbital

nociception.16 Thus, the present finding might be considered the
first optimizing model of headache-related cephalic allodynia
associated with a RR-EAE model.

Sumatriptan, a mainstay in the acute treatment of migraine
attacks,6,48 has been found to reduce periorbital nociceptive
behaviors in different mouse headache-like models in mice.22,26

Currently, to treat headache in humans, only sumatriptan,67

metamizole,62 and propyphenazone23 are used by oral
route.10,48,62 Usually, the antimigraine pharmacotherapy pre-
sents a short effect, approximately 4 hours after administration.65

In humans, sumatriptan half-time is around 2 hours and has a
concentration peak of 45 minutes after oral intake.43,65 In
addition, in the umbellulone migraine-like model in mice, the
sumatriptan showed an antinociceptive effect that lasted 4 hours
after i.g. treatment for PMA reduction.35 Olcegepant was
discontinued in clinical trials because of problems in oral
formulation development55 and is used as a CGRP antagonist
in headache and migraine-like rodent models by i.p. injection for

Figure 2. Selective and nonselective TRPA1 antagonists reduced periorbital mechanical allodynia (PMA) caused by a model of relapsing–remitting
experimental autoimmune encephalomyelitis (RR-EAE) induction in mice. Selective TRPA1 antagonists (A) HC-030031 or (B) A-967079 and nonselective
TRPA1 antagonists, (C) metamizole or (D) propyphenazone (all 100 mg/kg, intragastric, i.g.), were administered on day 35 postinduction (p.i., time 0) of the
RR-EAE model. Baseline measurements (described as BL in the graph) were observed before induction. The vehicle group received dimethyl sulfoxide
(DMSO) 1% in isotonic saline 0.9% by i.g injection. Data are expressed as mean1 SEM. (n5 8). * P, 0.05 when compared with the group or baseline values;
#P, 0.05 when compared with the RR-EAE vehicle-treated group [two-way ANOVA, followed by the Bonferroni post hoc test]. ANOVA, analysis of variance;
TRPA1, transient receptor potential ankyrin 1.
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physiopathology investigations. In humans, the half-time of
olcegepant is 2.5 hours after intravenous administration.28 In
other studies, using experimental models in rodents, the
antinociceptive effect of olcegepant was around 3 to 4 h after
i.p. injection.35,44

The validity of the present RR-EAE as a headache-related
cephalic allodynia model was further strengthened by the efficacy
in reducing PMA of the serotonin 5-HT1B/D receptor agonist,
sumatriptan. Here, it was observed that an antinociceptive effect
of sumatriptan lasted 2 hours after i.g. administration. Further-
more, olcegepant, a CGRP receptor antagonist reduced PMA in

the present model of RR-EAE during 2 hours after i.p.
administration. This CGRP antagonist has shown beneficial
effects in relieving the pain of the migraine attack12,49 and
attenuating allodynia in different migraine models in ro-
dent.34,44,49 A large body of evidence reports the implication of
TRPA1 in rodent models of trigeminal pain and migraine. The
facial allodynia that follows constriction of the infraorbital nerve
was attenuated by TRPA1 antagonism or genetic deletion.68

PMA evoked by dural application or inhalation of the prohead-
ache volatile compound, umbellulone,7,21,54 and systemic
exposure to the promigraine drug, glyceryl trinitrate,49 were also
reduced by genetic and pharmacological inhibition of the TRPA1
channel. However, glyceryl trinitrate may also cause facial
nociception by perivascular target activation (endothelium, mast
cells, and leukocytes),24 Nrf-2 modulation,13 and protease-
activated receptor 2 activation36 mechanisms. In addition,
umbellulone-induced PMA was prevented by other compounds,
including propranolol (a beta-blocker) and nor-binaltorphimine (a
kappa opioid receptor antagonist).35

Metamizole and propyphenazone are atypical nonsteroidal
anti-inflammatory drugs because their analgesic effect dissoci-
ates from their anti-inflammatory action.14,45 The notion that
metamizole is one of the commonest analgesics used for acute
migraine treatment and the recent identification of metamizole
and propyphenazone as TRPA1 antagonists52 support the
channel role in allodynia associated with RR-EAE. Our present
data showing attenuated PMA in mice treated with a variety of
TRPA1 antagonists (for 2 hours after i.g. injection) or in mice with
genetic TRPA1 channel deletion indicate the crucial role of this
receptor in PMA evoked by the RR-EAE model.

In clinical research, 4-methylamino-antipyrine, the main meta-
mizole metabolite, showed a half-time of 2.6 to 3.5 hours,42 and for
propyphenazone, a half-time of approximately 2.8 hours was
described,72 both after oral administration. Metamizole and
propyphenazone were recently discovered as nonselective TRPA1
antagonists that showed an antinociceptive effect until 1 hour after
i.g. administration in mice in this study.52 The selective TRPA1
antagonists are usedonly in experimental investigation, andahalf-life
around 30 minutes for HC-030031 and a distribution half-life of 1.8
hours for A-967079 were observed in rats.69 The antinociceptive
effect of HC-030031 and A-967079 (same dose used in our study)
was 1 to 2hourswhenadministered inmice in other painmodels.1,68

Furthermore, in mechanical and cold allodynia tests performed after
a neuropathic pain model induced by RR-EAE or PMS-EAE, the
TRPA1 antagonists showed an antinociceptive effect during 1 and 2
hours after their administration.15,63

Transient receptor potential ankyrin 1 is gated by an un-
precedented series of endogenous agents generated under
inflammatory circumstances and oxidative stress.53 NADPH
oxidase activity is found in neurons, astrocytes, and microglia,8

and SOD, whose activity is associated with TRPA1 stimulation,1,3

are critical enzymes in the oxidative stress pathway and ROS
generation. The a-lipoic acid pharmacokinetic profile showed a
half-life of 2 hours,70 and for apocynin, the half-time was
approximately 6 hours,73 both by intragastric route in rats.
However, the antinociceptive effect of the a-lipoic acid and
apocynin was previously detected for 1 and 2 hours in these RR-
EAE and PMS-EAE models.15,63 Moreover, the antinociceptive
action in mice for these antioxidant compounds was detected for
1 and 2 hours after i.g. administration in mice.1,3,68 The
observation that activities of 2 key enzymes for oxidative stress
modulation, SOD and NADPH oxidase, were increased in the
trigeminal ganglion and 2 antioxidants, apocynin and a-lipoic

Figure 3. TRPA1 genetic deletion reduced periorbital mechanical allodynia
(PMA) in relapsing–remitting experimental autoimmune encephalomyelitis
(RR-EAE) in mice. (A) PMA in TRPA1 knockout mice (Trpa12/2) was abolished
in RR-EAE–induced mice on day 35 postinduction (p.i), and Trpa11/1 showed
nociception after 21 to 35 days of induction. Baseline measurements
(described as BL in the graph) were observed before induction. (B) No
alteration in Trpa1 mRNA levels in control and RR-EAE mice was detected in
trigeminal ganglion and brainstem samples. Data are expressed as mean 1
SEM. (von Frey test n5 6; qRT-PCRn54-7). For von Frey test, *P, 0.05when
compared with the group or baseline values; #P, 0.05 when compared with
the RR-EAE wild-type group [two-way ANOVA, followed by the Bonferroni
post hoc test (A)]. For qRT-PCR, P . 0.05 when compared with the control
group [nonparametric Student t test (B and C)]. ANOVA, analysis of variance;
TRPA1, transient receptor potential ankyrin 1.
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acid, attenuated PMA associated with RR-EAE suggests that
activation of TRPA1 channel by oxidative stress sustains PMA.

TRPA1 is implicated in nociception induction in differentmodels of
periorbital pain in mice.7,49,54,68 Here, we found an increase of SOD
and NADPH activity and 4-HNE and H2O2 levels in the trigeminal
ganglion of RR-EAE–induced mice compared with the control
group, and no alteration in brainstem samples was found for these
oxidative markers. Thus, our results showed the hypothesis that
TRPA1 activation in trigeminal ganglion by oxidative agonists
maintains PMA in this model of RR-EAE, differently from the result
obtained previously for the spinal cord and induction of mechanical
and cold allodynia in the hind paw.15 Similarly, in a previous study,
glyceryl trinitrate i.p. injection failed to increase 4-HNE in the
brainstem but increased the levels of this TRPA1 endogenous
compounds in the trigeminal ganglion.49 Moreover, in a model of
EAE in mice, no alteration in microglial activation in the spinal
trigeminal nucleus has been found, but an increase in this
neuroinflammatory parameter in the dorsal horn spinal cord has
been shown, although it has been described as facial and hind paw
mechanical allodynia. However, the study described immune cell
infiltration in trigeminal ganglion after EAE induction in mice.19 Thus,
the neuroinflammation caused by EAE could be different in the
brainstem and spinal cord areas. The TRPA1 is expressed in the
brainstem, specifically in the astrocytes and neurons of the
superficial laminae of the trigeminal caudal nucleus (Vc) in rats32,40

and also in the trigeminal ganglion in mice and rats.32,49 Besides,
trigeminal ganglion neuron cell bodies that mediate PMA in this RR-
EAEmodel couldbe included inmeningeal nociceptors. This class of
sensory neurons contributes to the periorbital sensitization to
different inflammatory mediators and TRPA1 agonists.21,41,49,66,74

However, more investigation is necessary to elucidate other specific
brainstem areas which could be involved in the TRPA1 mediates
headache-related cephalic allodynia in this RR-EAE model.

It was also reported that CGRP released from periorbital
trigeminal terminals caused PMA because of the gating of
TRPA1 by the promigraine agent, glyceryl trinitrate, in tri-
geminal neuron cell bodies.49 Nevertheless, the TRPA1

channel contribution in endogenous pathways implicated in
rodent models of headache-related cephalic allodynia is
unknown. Here, for the first time, we show that TRPA1,
presumably activated by oxidative stress associated with RR-
EAE, is crucial for sustaining PMA. These results are in
accordance with our previous study showing that TRPA1 is
also involved in periorbital allodynia caused by a PMS-EAE
model in mice.16 Whether this mechanism is implicated in the
de novo onset or worsening of a preexisting primary headache
in patients with MS will be the object of future studies.
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