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Abstract: During the last years, reliability analysis has attracted significant attention due to its vital role in risk and 
integrity management of hazardous installations. Indeed, estimating accurate probabilities of failure represents a 
crucial task for developing a cost-effective maintenance plan able to guarantee the safety of the operations. As a 
result, a sound tool capable of providing precise failure parameters is required. Traditional estimation approaches 
exploited for practical applications are the Maximum Likelihood Estimation (MLE) and the Least Square Estimation 
(LSE), while, quite recently, the advances in dedicated opensource software have led to a widespread use of 
Hierarchical Bayesian Modelling (HBM) for statistical purposes. The aim of this paper is to present and compare the 
application of the three aforementioned estimation methodologies in order to point out the most accurate one. A 
case study of five samples is considered to demonstrate and discuss the applicability of the frameworks, while a 
Weibull distribution is adopted to model the failure behavior of the studied devices. From this research, it emerged 
that the Bayesian inference is slightly more accurate than the other approaches. The outcomes of this study can help 
maintenance engineers and asset managers to adopt the most appropriate statistical tool for their analysis. 
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1.Introduction 

Reliability analysis has been receiving a great deal of 
attention thanks to its fundamental role in mitigating the 
risk arising from hazardous installations, such as process 
systems. Indeed, process plants usually deal with 
hazardous substances, whose loss of containment could 
produce severe consequences (Khakzad et al., 2013). Since 
failures are often regarded as the main source of 
dangerous scenarios (Jaderi et al., 2019), solid strategies to 
avoid the occurrence of failures need to be adopted. To 
this end, implementing maintenance policies is among the 
most renowned countermeasures to prevent failures.  

Within the process of maintenance planning, developing a 
proper failure model for a given component is regarded as 
a crucial task. Indeed, estimating precise parameters 
characterizing the failure behaviour of equipment allows 
to avoid premature maintenance, without undermining 
safety issues. Nevertheless, providing accurate 
probabilities of failure is regarded as a difficult task due to 
limited data and vague features of failures (Yuhua & 
Datao, 2005). Consequently, many researchers have been 
working to reduce the uncertainties arising from the 
calculation (Abaei et al., 2018a; Khalaj et al., 2020; Purba, 
2014; Purba et al., 2014; Witek, 2016). Quite recently 
Zhou et al. (2016) presented a methodology to estimate 
the failure likelihood of gas pipelines due to corrosion 
effects. The authors adopted a fuzzy approach to model 
two corrosion failure modes: corrosion thinning and 
corrosion cracking.  

Reliability analysis, reliability assessment and probabilities 
of failure estimation have been executed utilizing different 
tools among which the most popular are Fault-Tree 

Analysis (FTA) (Javadi et al., 2011; Taheriyoun & 
Moradinejad, 2015), MLE (Huang & Dietrich, 2005; Odell 
et al., 1992) and Fuzzy logic method (Cheliyan & 
Bhattacharyya, 2018; MIRI et al., 2011). Despite their vast 
exploitation, the aforementioned techniques are non-
updatable, moreover FT and Fuzzy logic are unable to 
consider multi-state variable and conditional 
dependencies. To solve these issues Bayesian Network 
(BN) has been adopted by many researchers for risk, 
safety and reliability analysis (Boudali & Dugan, 2005; Jia 
et al., 2021; Leoni et al., 2019; Li et al., 2019). Very 
recently, Sun et al. (2021) proposed a BN-based reliability 
framework for complex electronic system. In this work, a 
copula BN is used to model multivariate joint probability 
distributions, while physic failure simulations are exploited 
to develop for each node the fault distribution. A previous 
study developed by Taleb-Berrouane et al. (2020) 
proposed a dynamic approach for safety and reliability 
assessment, based on the integration between BN and 
Stochastic Petri Net. The developed methodology is 
capable to grasp the variation of safety and risk 
parameters, providing more flexibility. 

Meanwhile, the advances in opensource software (e.g., 
OpenBugs), have led to a wider use of HBM 
(Spiegelhalter et al., 2007) for dealing with complex 
engineering problems such as maintenance planning (F. 
BahooToroody et al., 2021; Leoni et al., 2021; Leoni et al., 
2020) and marine structures reliability analysis (Abaei et 
al., 2019; Abaei et al., 2018b). A relevant example of HBM 
application for reliability assessment is the methodology 
developed by Abaei et al. (2021). The authors adopt a 
multinomial process tree to model failure behaviour, while 
a HBM is employed to predict the failure rate of 
machinery inside an autonomous ship. 



XXVI Summer School “Francesco Turco” – Industrial Systems Engineering  

Within the process of estimating equipment reliability, the 
adoption of distinct estimation approaches could produce 
different results, affecting the subsequent maintenance 
plan. Despite all the ongoing efforts to improve the 
calculation of failure probabilities, there is still space to 
compare the application of different methodologies, 
especially in case a Weibull distribution is chosen to model 
the failure behavior. Thus, this paper aims at comparing 
three statistical tools to point out the most accurate in 
predicting the failure parameters of a given device. The 
methods are tested on five samples with different size, 
assuming a Weibull failure model.  

The remainder of the paper is organized as follows; 
section 2 describes the steps of the proposed study along 
with the adopted methods. Section 3 illustrates the results 
arising from the implementation of the approaches to the 
case study, while section 4 provides the discussion of the 
results. At last, conclusions are presented in section 5. 

1.1 Hierarchical Bayesian Modelling 

The majority of statistical inference starts with ‘Data’, 
which are defined as the observations arising from a 
stochastic process. The process of manipulating, 
evaluating and organizing ‘Data’ leads to ‘Information’, 
while gathering ‘Information’ results in obtaining 
‘Knowledge’. At last, statistical inference is defined as the 
process of drawing conclusions based on what is known 
(D. L. Kelly & Smith, 2009). HBM is an advanced 
statistical tool that performs inference through the Bayes 
Theorem (El-Gheriani et al., 2017), showed by Equation 
1. 

                                            (1) 

where θ identifies the unknown parameters that must be 
estimated by the Bayesian inference. π1(θ|x) represents the 
posterior distribution which is obtained through the 
multiplication of the likelihood function and the prior 
distribution, which are denoted by f(x|θ) and π0(θ) 
respectively. The likelihood function describes the model 
from which the data have been generated and it can be 
interpreted as the conditional probability of obtaining the 
data for all admissible value of θ. On the other hand, the 
prior distribution represents the available information 
before observing the data. At last, the posterior 
distribution is the updated knowledge after data have been 
observed.  

The HBM is so-named due to the exploitation of a multi-
stage or hierarchical prior (D. Kelly & Smith, 2011), as 
illustrated by Eq. 2. 

                                      (2) 

where φ is a vector whose components are called hyper-
parameters. Prior users’ beliefs or information are inserted 
into the analysis through the adoption of specific hyper-
parameters. Finally, π1(θ|φ) denotes the first-stage prior, 
which accounts the variability of φ for a certain value of θ, 
while π2(φ) is referred as the hyper-prior distribution, 
which considers the uncertainty on the vector of hyper-
parameters (i.e., φ). 

1.2 Maximum Likelihood Estimation 

Let Y=(Y1,Y2,..Yn) be a random sample of observations, 
the MLE aims at estimating the parameters characterizing 
the distribution from which the aforementioned 
observations are most likely to have been produced. 
Given θ=(θ 1,θ 2,..θ n) a vector of parameters, the MLE 
computes the unknown parameters of interest by 
maximising the maximum likelihood function, showed by 
Equation 3 (A. BahooToroody et al., 2020). 

      (3) 

1.3 Least Square Estimation 

Given Y=(Y1,Y2,..Yn) a random sample of observations 
and θ=(θ1,θ2,..θn) a vector of parameters, the LSE aims at 
identifying the parameters that best fit the observed 
sample. Such parameters are estimated by minimizing the 
Sum of Squares Error, which is illustrated by Equation 4.  

                                  (4) 

where Yi denotes the ith observation, while prdi(θ) 
represents the prediction of the model associated to the ith 
observation. 

2.Developed methodology: materials and methods 

The steps of the proposed framework are illustrated by 
Figure 1. 

 

Figure 1: Flowchart of the proposed methodology. 

At first, Times To Failure (TTF) are collected (step 1), 
then a Weibull distribution is chosen to model the failure 
behaviour (step 2). The Weibull failure modelling is 
adopted to consider the time-dependent failure rate, 
which is a common feature of several equipment. 
Subsequently, the desired estimation approach is selected 
(step 3), and the statistical inference is conducted to 
compute the unknown parameters characterizing the 
TTF’s distribution (step 4). Finally, the results arising 
from the distinct methods are compared to point out the 
most accurate statistical tool (step 5).  

2.1 Gamma-Weibull Hierarchical Bayesian Modelling 
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Under the assumption of a Weibull distribution for the 
TTFs, the Probability Density Function (PDF) is given by 
Equation 5. 

                                       (5) 

where α and β represents the shape and the scale 
parameter respectively. Therefore, the likelihood function 
of the developed HBM is expressed by Equation 6. 

                            (6) 

where Ti denotes the ith observed TTF. The model was 
implemented through OpenBugs, which adopts a different 
parametrization for the Weibull distribution. Indeed, in 
this parametrization the scale parameter (λ) is obtained 
through Equation 7.  

                                                                        (7) 

In this study, a diffuse gamma prior is adopted for both 
the shape and the scale parameter (see Equation 8 and 9), 

as suggested by D. Kelly and Smith (2011). 

                                       (8) 

                                       (9) 

The proposed Bayesian Network (BN) to model the TTFs 
is showed by Figure 2, where k1 and θ1 identifies the 
hyper-parameters of the prior distribution for the shape 
parameter, while k2 and θ2 are the hyper-parameters of the 
gamma prior characterizing the scale parameter. 

 

Figure 2: Adopted BN to determine the TTF’s distribution. 

After specifying the hyper-parameters and inserting the 
available data into the software, a series of Markov Chains 
are developed to estimate the posterior distributions of 
the Weibull’s parameters (i.e., α, β and λ). Subsequently, 
the posterior mean values are extracted.  

2.2 Weibull Maximum Likelihood Estimation 

Given a sample T=(T1,T2,..Tn) of TTFs, assuming a 
Weibull distribution, the likelihood function is expressed 
by Equation 10. 

                      (10) 

The likelihood function is maximized numerically after 
setting equal to zero the logarithm of the partial 
derivatives with respect to α and β. 

2.3 Weibull Least Square Estimation 

The Weibull Cumulative Density Function (CDF) is 
showed by Equation 11.  

                                               (11) 

To implement the LSE, Equation 11 must be rewritten as 
a line of the form: y = ax + b. By applying simple analytic 
steps, Equation 12 is obtained from Equation 11.  

                        (12) 

which is a line with y = ln(t), a = -1/α, x =ln {ln[1-
F(t)]}(Leoni et al., 2021) and b = ln(β). After introducing the 
median rank, given by Equation 13, the shape and the 
scale parameter of the Weibull distribution are estimated 
by minimising the SSE, showed in Equation 14.  

   (13) 

   (14) 

where Ti is the ith observed TTF. 

3.Results: application of the methodologies 

3.1 Case study 

To demonstrate the application of the three statistical 
approaches, a case study of 5 samples is considered. The 5 
samples are characterized by a distinct number of 
observations, but they arise from the same stochastic 
process. The samples along with their respective 
dimensions are listed by Table 1.  

Table 1: considered samples and their sizes. 

Sample # observations 

1 15 

2 20 

3 30 

4 40 

5 50 

The samples are generated through a Monte Carlo 
Simulation (MCS) of a Weibull distribution with a shape 
parameter (α) and a scale parameter (β) equal to 2 and 300 
(days) respectively, corresponding to a Mean Time To 
Failure (MTTF) of 266 days. The MTTF represents the 
average time between two consecutive failures. 

3.2 Application of HBM 

The posterior distribution is estimated for each sample 
through a MCMC simulation carried out via OpenBugs. 
Three Markov Chains with over-dispersed initial values 
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are adopted to conduct the inference. For each chain, 
300,000 iterations are performed after 10,000 burn-in 
iterations. 

3.3 Application of MLE and LSE 

Both MLE and LSE are carried out through Minitab, and 
the estimated parameters of the Weibull distribution are 
extracted for every sample. The adopted statistical 
software provides also the MTTF. 

3.4 First sample: 15 observations 

The first sample is characterized by the least number of 
observations (15). The obtained results are showed by 
Table 2 and Figure 3.  

Table 2: estimated shape parameter, scale parameter and 
MTTF for the first sample. 

Parameter HBM MLE LSE 

α 1.6 1.6 1.4 

β 280 272 273 

MTTF 251 243 248 

 

Figure 3: developed CDFs for the first sample. 

The calculation revealed a greater accuracy for the 
Bayesian inference compared to the other approaches. 
Indeed, the HBM yields a posterior MTTF equal to 251 
days, while the MLE and LSE compute an average time 
between two subsequent failures of 243 and 248 days 
respectively. 

3.5 Second sample: 20 observations 

The three approaches are implemented for the second 
sample as well. The estimated parameters are listed by 
Table 3, while the developed CDFs are illustrated by 
Figure 4. 

Table 3: estimated shape parameters, scale parameter and 
MTTF for the second sample. 

Parameter HBM MLE LSE 

α 1.6 1.6 1.4 

β 266 260 258 

MTTF 238 233 234 

 

 

Figure 4: developed CDFs for the second sample. 

The HBM showed once again a better accuracy, with a 
posterior MTTF of 238 days, which is 28 days shorter 
than the real value. On the other side, the application of 
the MLE and the LSE results in an estimation error equal 
to 33 and 32 days respectively. 

3.6 Third sample: 30 observations 

The third sample has 30 observations. The application of 
HBM, MLE and LSE depicted the results illustrated by 
Table 4 and Figure 5. 

Table 4: estimated shape parameters, scale parameter and 
MTTF for the third sample. 

Parameter HBM MLE LSE 

α 1.7 1.7 1.5 

β 317 312 312 

MTTF 283 278 281 

 

 

Figure 5: developed CDFs for the third sample. 

The results belonging to the third sample highlighted a 
greater accuracy of the MLE and the LSE compared to 
the Bayesian inference. Indeed, the HBM provides a 
posterior MTTF of 283 days, while the ML and LS of 
MTTF are estimated at 278 and 281 days respectively. 

3.7 Fourth sample: 40 observations 

All the three methods are replicated also for the fourth 
sample, which is composed by 40 observations. Table 5 
and Figure 6 reports the obtained results related to the 
fourth sample.  
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Table 5: estimated shape parameters, scale parameter and 
MTTF for the fourth sample. 

Parameter HBM MLE LSE 

α 1.8 1.8 1.7 

β 296 293 291 

MTTF 263 260 261 

 

 

Figure 6: developed CDFs for the fourth sample. 

As highlighted by Figure 6, the three approaches produce 
similar results. Moreover, the accuracy of the prediction 
increases compared to the previous applications. The 
greater accuracy is related to the higher number of 
observations. The MTTF is estimated at 262 days by the 
HBM, while MLE and LSE predicts an average time 
between two subsequent failures of 260 and 261 days 
respectively. 

3.8 Fifth sample: 50 observations 

Finally, the results of the fifth sample are reported by 
Table 6 and Figure 7. 

Table 6: estimated shape parameters, scale parameter and 
MTTF for the fifth sample. 

Parameter HBM MLE LSE 

α 1.9 1.9 1.8 

β 307 305 305 

MTTF 272 272 270 

 

 

Figure 7: developed CDFs for the fifth sample. 

As illustrated by Figure 7 almost no difference is seen 
among the three methodologies. The predictions of HBM, 

MLE and LSE are very similar. Indeed, the HBM yields a 
posterior mean of 272 days, while both the MLE and the 
LSE provides a MTTF equal to 271 days. 

4.Discussion: comparison of the methodologies 

To make a meaningful difference and compare the three 
approaches, the estimated MTTFs are converted into 
dimensionless value through the real MTTF (i.e., the one 
adopted for the MC simulation). The results arising from 
the calculation are showed by Table 7 and Figure 8. 

Table 7: dimensionless MTTF for each sample and each 
approach. 

Sample HBM MLE LSE 

1 0.944 0.914 0.932 

2 0.895 0.876 0.880 

3 1.064 1.045 1.056 

4 0.989 0.977 0.981 

5 1.023 1.015 1.023 

 

 

Figure 8: dot-plot of the dimensionless MTTF for each 
sample and each approach. The dotted horizontal line 

represents the real MTTF. 

For three samples out of five the HBM denotes a higher 
accuracy. By contrast, the application of MLE and LSE 
produces smaller estimation errors for the third and the 
fifth sample. Furthermore, the HBM emerged as the most 
accurate approach for the sample characterized by few 
observations, while increasing the number of observations 
leads to obtaining similar predictions from all the 
estimation tools. It is worthwhile mentioning that for 
smaller samples the estimations manifest poor accuracy, 
while increasing the sample size results in obtaining more 
accurate results. 

To determine the method characterized by the higher 
accuracy, the Root Mean Square Error (RMSE), defined 
by Equation 15, is calculated. 

                           (15) 

where MTTFi,j identifies the average time between two 
consecutive failures estimated by the jth approach for the 
ith sample, while MTTFREAL and n denote the real average 
time between the consecutive failures and the considered 
number of samples respectively. The RMSE computed for 
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the HBM, the MLE and the LSE are respectively equal to 
269, 363 and 327 days respectively. Consequently, the 
adoption of HBM will generally result in more accurate 
probabilities of failure, leading to a much safer and cost-
effective maintenance plan. 

5.Conclusions 

This paper presents the comparison of three estimation 
approaches within the process of reliability analysis. The 
application of the methodologies was implemented on 
five samples with distinct dimensions, all of which arise 
from the same Weibull distribution. The HBM emerged as 
the most accurate statistical tool since it has showed the 
lowest RMSE within distinct samples. Moreover, while for 
greater sample sizes the application of the three 
approaches determined similar results, for smaller samples 
the HBM is characterized by the lowest error. Considering 
the aforementioned statements, it is strongly 
recommended to adopt Bayesian inference, which will 
provide a more efficient maintenance plan, without 
overlooking safety aspects. However, to prove the 
advantages of HBM over MLE and LSE, some tests with 
more samples and distinct distributions are required. 
Moreover, the convergence analysis of the iterations based 
on the starting points must be addressed. For this study, 
no prior information was incorporated into the Bayesian 
analysis. Inserting some weakly prior beliefs into the 
estimation process could increase the accuracy for the 
sample with few observations. Therefore, further 
developments could include into the HBM some valid 
prior knowledge to predict the failure parameters.  
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Appendix A. OpenBugs’ code 

The script implemented in OpenBugs to perform the 

Bayesian inference is showed by Figure 9. The code can 

be found in (D. Kelly & Smith, 2011) and (D. L. Kelly 

& Smith, 2009). 

 

Figure 9: OpenBugs’ script for the Gamma-Weibull failure 
modelling. 

 


