
 
 
 

 

 
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM 

 
 

DOTTORATO DI RICERCA 
IN MATEMATICA, INFORMATICA, STATISTICA 

CURRICULUM  IN  INFORMATICA 

CICLO XXXIV 
 

Sede  amministrativa  Università degli  Studi  di  Firenze 
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ABSTRACT 

Blockchain technologies (hereafter called Blockchain) allow storing 
information guaranteeing properties such as immutability, integrity 
and non-repudiation of data. Although Blockchain is not a panacea, 
this technology has rapidly evolved in recent years. The development 
of smart contracts (which automatically execute computerized 
transactions) has increased the application areas of the Blockchain. One 
of the most important issues is security; the problem is even more 
critical, considering that smart contracts cannot be patched once they 
are deployed into the Blockchain. 

Ethereum is one of the main platforms for smart contract 
development, and it offers Solidity as its primary (and Turing-
complete) language. Solidity is a new language which evolves rapidly. 
As a result, vulnerability records are still sparse, and consequently, the 
existing smart contract checking tools are still immature. On the other 
hand, Solidity is just another new programming language reusing its 
central notions from traditional languages extended by Ethereum-
specific elements. Then, the most promising way to create a quality 
assurance process is adapting more general existing technologies to the 
peculiarities of Ethereum and, in particular, Solidity. 

Unfortunately, despite various studies and trials on the subject, no 
literature approach clearly solves the problems related to the 
vulnerability of smart contracts. To contribute to this hot field, we 
propose our methodology to assess and improve the smart contract 
security. At first, we address the problem of overcoming the Solidity 
rapid evolution through the definition of a set of 32 vulnerabilities and 
their language-independent classification in 10 categories. Then, we 
assess smart contract security by applying one of the most popular 
approaches to discover vulnerabilities: static analysis (SA). After 
selecting static analysis tools, we identify categories of vulnerabilities 
that SA tools cannot cover.  

Next step is to conduct an experimental campaign based on the 
analysis of contracts across the selected toolset. We realized that 
processing smart contracts, randomly extracted from Etherscan (a 
Blockchain explorer) with SA tools results in several positives. We 
determined thus, overall and for each category of vulnerabilities, the 
best-built tools (wrt. their effectiveness against the subset of 
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vulnerabilities they target) and the most effective ones (wrt. the entire 
vulnerability set). 

We found a lack of coverage of vulnerabilities in using each and 
every tool individually. This lack took us to the investigation of 
possible approaches to improve the security of smart contracts. A first 
approach has been to use several tools in a combined way to increase 
the coverage. Through this analysis we determined also the 
combinations with the highest coverage. Then we analyzed those 
vulnerabilities that escape the detection so to provide an ordering for 
deciding which vulnerabilities should be addressed first in the process 
of modifying static analysis tools to improve their coverage. As a last 
contribution, we investigated how to improve the tool effectiveness by 
determining where vulnerabilities are most likely located.  
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1 
INTRODUCTION 

1 INTRODUCTION  

 PRELIMINARY AND MOTIVATIONS  1.1

Blockchain technologies [1] (hereafter referred simply as 
Blockchain) are characterized by a shared database (or ledger) 
distributed across a peer-to-peer network. The term recalls the 
structure, a chained sequence of blocks, where each block contains a set 
of transactions and, except for the first one called genesis block, it is 
linked to its predecessor by means of a cryptographic hash. Blockchain, 
while not a panacea [2], promises an out-of-the-box solution to 
improve the security of distributed systems. Smart contracts are one of 
the most important innovations of the second generation of the 
Blockchain. The basic idea is to execute computerized transactions 
automatically. Their diffusion has allowed the development of 
applications in different areas (e.g., financial, medical, insurance, 
gaming, betting). Blockchain protects smart contracts, data, and 
transaction logs by a strong hash encoding, thus ensuring their 
immutability and non-repudiability.  

However, design and coding faults and weaknesses in the smart 
contracts implementing the particular application can still result in 
exploitable vulnerabilities to malicious attacks despite the well-designed 
run-time environment. This problem is even more critical, considering 
that developers cannot patch smart contracts once deployed on the 
Blockchain. Thus, it is crucial to identify security flaws in the code at 
the early stage of the development life cycle. Vulnerabilities in smart 
contracts can lead to severe consequences: an example is the financial 
losses caused by the DAO attack [3] that allowed the attacker to steal 
around US$60M worth of cryptocurrency. 
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Ethereum [4] is one of the most widely used platforms for smart 
contracts and Solidity [5] is the primary programming language that 
targets the development of Ethereum smart contracts. One of the major 
open problems related to the Ethereum blockchain is the insufficient 
quality assurance. Vulnerable records are still sparse due to the novelty 
and rapid evolution of Solidity technology. Consequently, the existing 
smart contract checking tools are still immature. On the other hand, 
Solidity is just another new programming language reusing central 
notions from traditional ones extended by Ethereum-specific elements. 
Therefore, the most promising way to create a quality assurance 
process for Solidity is adapting existing technologies to the peculiarities 
of Ethereum and, in particular, Solidity. 

 OUR CONTRIBUTION 1.2

In the literature there are no clear answers on how to provide 
guarantees for quality assurance for smart contracts. To contribute to 
filling this gap, in this thesis we propose and discuss our approach 
towards the assessment and the improvement of the security of smart 
contracts. We deal only with Solidity Versions 0.5 and upper (the latest 
release is 0.8) due to the incompatibility with previous versions. 

New vulnerabilities emerge as the language evolves; analyses too 
tied to a specific language release quickly become obsolete. The main 
reason is the novelty and the rapid evolution of Solidity. Considering 
previous studies, we noticed a lack of agreement in the identification of 
the number of vulnerabilities and their systematization. The missing 
agreement leads to user confusion and vulnerabilities proliferation, as 
well as a difficulty for researchers to compare weaknesses on different 
platforms. Moreover, existing classifications either do not abstract from 
a specific Solidity release or do not capture the behaviour of 
vulnerabilities; thus, they are too dependent on the language release.  

The first research question we address is: How to overcome the 
language evolution? (RQ1). 

Software security engineering has solid empirical foundations from 
a well-organized and maintained process of vulnerability data 
acquisition, abstraction, and generalization. The Common 
Vulnerabilities and Exposures (CVE) database collects, defines, and 
catalogues publicly disclosed cybersecurity vulnerabilities, i.e., 
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weaknesses in software (and hardware) components that, when 
exploited, spoil the security of the system. The Common Weakness 
Enumeration (CWE) classifies weaknesses as root causes of 
vulnerabilities into a hierarchical taxonomy; furthermore, each CWE 
list item highlights the mode of introduction, expected consequences, 
and potential mitigations. The highly abstract top two categories of 
weaknesses in the hierarchy are already independent of any specific 
language or technology.  

We aim to provide a Solidity-specific vulnerability analysis, 
categorizing each vulnerability with classes based on a general-
purpose (not version or language-specific) classification. Moving 
beyond language evolution is the foundation for the next steps in our 
research. As the CWE has a primary security focus, we systematize 
vulnerabilities and provide a Solidity fault model based on CWE 
(comparing it with the ISO 5055:2021 standard [6]).  

Static analysis (SA) is one of the most significant and widely used 
types of code analysis. It inspects the code without executing it. At first, 
it extracts an abstract model of the code under evaluation. It searches 
for potential vulnerabilities in the code over the model by looking for 
weaknesses (antipatterns). Its low effort demand compensates for its 
incomplete (but for most applications still sufficient) detection 
coverage [7].  

The second main research question we address is: How can we 
evaluate the security of smart contracts by using static analysis to detect 
the most relevant vulnerability-related weaknesses? (RQ2). 

The research into applying static analysis to detect vulnerabilities 
and weaknesses in Ethereum smart contracts increased significantly 
after the first infamous exploits in 2016 [3]. Several static analyzers 
have been developed in the last years, focusing explicitly on 
vulnerability detection of Solidity smart contracts. Several works 
compared static analyzers applied to smart contracts.  

To tackle this problem, we use the Solidity vulnerability model as a 
basis. Performing an analysis of the capabilities of some selected SA 
tools to detect weakness originating vulnerabilities on a representative 
set of smart contracts permits to: 
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• evaluate the individual tool behaviour on its anticipated set of 
vulnerabilities-related weaknesses. This way, we can identify 
vulnerability classes escaping detection by the particular SA tool; 

• assess the smart contract security by computing basic statistical 
metrics for comparing the detection capabilities of different SA 
tools;  

• These assessments permit to: i) quantify tools anticipated 
vulnerability model and related testing quality; ii) build a 
benchmark of the tools when exposed to a generic set of smart 
contracts.  

Using static analysis permits to assess the security of smart 
contracts. However, single tools have highly different classwise 
detection capabilities, and several vulnerabilities escape the detection.  

The third research question is: How to improve the smart contract 
security using SA tools? (RQ3). 

A first promising way to improve smart contract security is to 
combine several tools for coverage improvement at the price to 
increase the number of false positives.  

Even using combinations of tools, we have undetected 
vulnerabilities (false negatives). False negatives are dangerous 
because they instil unfounded confidence in the code correctness. A 
question arises. Are all FNs equally relevant? Identifying the most 
critical types of undetected vulnerabilities allows defining the top 
priority in planning an effort for mitigation. We want to investigate 
whether they are all equally critical or if some can be more 
dangerous, thus allowing to improve security by giving priority to 
the most critical vulnerabilities.  

Vulnerabilities and analysis tools are a widely debated topic. 
However, the characterization of the position of vulnerabilities in 
Solidity smart contracts is surprisingly less investigated compared to 
other programming languages. A third way for improvement of 
analysis and understanding is finding where a specific class of 
vulnerabilities is located into smart contracts. On one side, tool 
developers can be guided to improve the vulnerability detection 
capabilities of the tool. On the other side, software developers can 
produce more secure contracts focusing on the specific areas where 
such vulnerabilities are more likely located. 
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 THESIS STRUCTURE 1.3

The remainder of the Thesis proceeds as follows.  
Chapter 2 introduces basic concepts related to dependability, 

Blockchain, smart contracts and static analysis. Other chapters are 
built on these bases. 

Chapter 3 investigates the first problem we set out to address. 
After determining the available collections of Solidity 
vulnerabilities, it provides a model for Solidity and then determines 
vulnerability propagations (RQ1). We use this model as a basis for 
the following chapters. 

Chapter 4 focuses on assessing smart contract security using 
static analysis tools. After identifying a set of static analysis tools, by 
analysing the tools we determine for each of them the targeted set of 
weaknesses to detect. Next, an intensive experimental campaign 
permits determining how tools behave on their targeted detectable 
vulnerabilities as well as in dealing with the entire set of 
vulnerabilities identified. (RQ2). 

Chapter 5 addresses in different ways how to improve the 
security of smart contracts. First, an analysis of the detection 
capabilities of tool combination is performed; then a study targets 
the criticality of the uncovered vulnerabilities to define priorities of 
further actions to treat them. Finally, it investigates where 
vulnerabilities are more likely located (RQ3). 

Chapter 6 concludes the Thesis. An archive of support files is 
available at [124].  
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2 
BASIC CONCEPTS AND RELATED WORKS 

2 BASICS AND RELATED WORKS  
This chapter describes the context in which this thesis was developed. 
To do so, Section 2.1 reports on the dependability, security and related 
concepts, Sections 2.2 and 2.3 respectively discuss the basics of 
Blockchain and smart contracts, and Section 2.4 introduces static 
analysis. The state-of-the-art and related work are introduced within 
the description below and detailed in Section 2.5. 

 DEPENDABILITY AND SECURITY 2.1

 Basic Definitions 2.1.1

According to [8], a system is an entity that interacts with other entities 
(i.e., other systems - the environment of the given system - including 
hardware, software, humans and the physical world). A function of a 
system is what the system is intended to do, when its behaviour is what the 
system does to implement its function, and it is described as a sequence of 
states. The global state of a system is the set of states related to 
computation, communication, stored information, interconnection and 
physical conditions.  

A service delivered by a system (the provider) is the behaviour as it is 
perceived by its user (another system that receives the service). The 
service is the sequence of the (external) states of the provider. A service 
interface is the part of the system boundary of the provider where service 
delivery takes place. An external state is the part of the total state of the 
provider perceivable at the interface; the internal state is the remaining 
part of the total state. 

The life cycle of a system encompasses, among others, two phases: 
the development and use phase. The development phase includes all 
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activities until the system is ready to deliver service. The use phase 
starts when the system begins to deliver its service to the user. 

According to [9], an Autonomous System is a system that can 
provide its services without guidance by another system. By considering a 
Subsystem as a system that is a part of an encompassing bigger 
system, a Constituent System (CS) is an autonomous subsystem of an SoS, 
consisting of computer systems and possibly of controlled objects and/or 
human role players that interact to provide a given service.  

A System-of-Systems (SoS) is an integration of a finite number of 
CSs which are independent and operable, and which are networked 
together for a period of time to achieve a certain higher goal. A Cyber-
Physical System (CPS) is a system consisting of a computer system 
(the cybersystem), a controlled object (a physical system) and possibly 
of interacting humans. 

The original definition [8] of dependability stresses the need for 
justification of trust: Dependability is the ability to deliver service that can 
justifiably be trusted. 

An alternative definition focuses on services and considers the 
dependability as the ability to avoid service failures that are more frequent 
and more severe than is acceptable. 

 Dependability Attributes and Security 2.1.2

Dependability is an integrating concept that includes the following 
attributes [8]:  

• Availability: readiness for correct service. 

• Reliability: continuity of correct service. 

• Safety: absence of catastrophic consequences on the user and the 
environment. 

• Integrity: absence of improper system alterations. 

• Maintainability: ability to undergo modifications and repairs.   

Defining another attribute (confidentiality) permits the introduction 
of the concept of security. 

Confidentiality: absence of unauthorized disclosure of information. 
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Security. The composition of confidentiality, integrity, and availability; 
security requires the concurrent existence of availability for authorized actions 
only, confidentiality, and integrity with “improper” meaning “unauthorized”. 

The relation between security and dependability attributes are 
highlighted in Figure 1 (from [8]). The dependability and security 
specification of a system must include the requirements for the 
attributes in terms of the acceptable frequency and severity of service 
failures for specified classes of faults and a given user environment. 
One or more attributes may not be required at all for a given system. 

 Threats: Failures, Errors, Faults 2.1.3

Following [8], when the service implements the function of the system, 
a correct service is delivered. A service failure (failure) occurs when 
the delivered service deviates from the correct service. An error is a 
deviation between the system state and the correct service state. The 
adjudged or hypothesized cause of an error is called a fault.  

A fault can be internal or external from the system. Faults can be 
classified into eight basic viewpoints: phase of creation or occurrence, 
system boundaries, phenomenological cause, dimension, objective, intent, 
capability, persistence. Combining the classes of faults allows identifying 
the most likely 31. Figure 2 (from [8]) shows how the combined fault 
classes (on the left) belong to  three major overlapping groupings (at 
the bottom): 

• Development faults include all fault classes during the 
development; 

• Physical faults include all faults that affect hardware; 

 

 
Figure 1: Relationship between dependability and security. 
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Figure 2: Classes of combined faults.  



 

28 

• Interaction faults include all external faults. 

Threats can be summarized as failures, errors or faults. Figure 3 
identifies the chain of threats; arrows identify a causality relationship. 
A fault is active when it produces an error; otherwise, it is dormant. A 
failure occurs when an error propagates to the service interface. A 
failure of a system causes a permanent or transient external fault for 
the other system(s) that receive service from the given system.  

From a security point of view, a vulnerability is an internal fault that 
enables an external and malicious fault (attack) to harm the system. 

In other terms, according to [10], a vulnerability is a flaw or 
weakness in a system’s design, implementation, or operation and 
management that could be exploited to violate the system’s security 
policy. An attack is defined as an assault on system security that derives 
from an intelligent threat; that is, an intelligent act that is a deliberate 
attempt to evade security services and violate the security policy of a 
system. 

We conclude this section with the definition of exploit. An exploit 
is, in essence, a software script that will exercise a system vulnerability; 
invoking the exploit is an operational, external, human-made, software, 
malicious interaction fault. The vulnerability that an exploit takes 
advantage of is typically a software flaw that could be characterized as 
a developmental, internal, human-made, software, non-malicious, 
nondeliberate, permanent fault. 

 Attaining Dependability 2.1.4

Means to attain security and dependability can be grouped in four 
categories [8]: 

• Fault prevention: techniques to prevent the occurrence or 
introduction of faults. Some examples are design review, testing 
and software engineering. 

 

 
Figure 3: The chain of dependability and security threats. 
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• Fault tolerance: techniques to avoid service failures in the 
presence of faults. Fault tolerance is achieved through error 
detection and recovery process.  

• Fault removal: techniques to reduce the number and severity of 
faults. It consists in three steps: verification (checking whether the 
system adheres to given properties), diagnosis and correction. 

• Fault forecasting: techniques to estimate the present number, the 
future incidence, and the likely consequences of faults. 

The different emphasis on the various attributes influences the use 
of the means to make a system secure and dependable.  

 BLOCKCHAIN TECHNOLOGIES (BLOCKCHAIN) 2.2

In recent years, the interest in blockchain technologies (hereafter 
referred to as Blockchain) has grown exponentially. The reason for this 
excitement is ascribable to the ability to enable new forms of 
transactions and interactions between mistrusting and decentralized 
entities. Indeed, it has attracted interests and huge investments from 
enterprises; however, it is not a panacea and may even become useless 
or not convenient.  

This section deals with introducing the basic Blockchain 
technological aspects ([1], [2], [11], [12]) constituting the background 
required in the following of the Thesis. 

 Basics 2.2.1

The Blockchain is a technology characterized by a shared database 
(or ledger) distributed across a peer-to-peer network. The term recalls 
its structure, a chained sequence of blocks, where each block contains a 
set of transactions and, except for the first one called genesis block, it is 
linked to its predecessor by means of a cryptographic hash. Blocks are 
linearly and chronologically added to the chain and can be seen as 
links of a constantly growing chain, hence the name Blockchain.  

Each node of the network possesses a local replica of the 
Blockchain, which is updated every time after appending a block to the 
chain. The process of committing a block takes the name of mining, and 
the nodes which are taking care of validating transactions, collecting 
them into blocks and appending the blocks on the ledger are called 
miners. Nodes are typically independent peers capable of reaching an 
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agreement on the status of the Blockchain, that is, the latest block to be 
appended, without the involvement of any central authority. This 
agreement is called consensus, and there are many different algorithms 
designed for reaching it (described in more detail in the dedicated 
Section 2.2.3).  

The first application of Blockchain has been financial transactions of 
cryptocurrencies (known as Blockchain 1.0 [12]), and Bitcoin [1] is the 
most widespread and famous implementation. More recent 
alternatives enable systems and applications to record other kinds of 
information on the ledger. One example is distributed applications or 
smart contracts, executed and shared among participating entities, in 
which case the transaction includes the result of a function call. The 
smart contracts can be self-executing, and for a general-purpose, 
thanks to the Turing-completeness property provided in some cases, as 
for Ethereum [4]. These fundamental extensions of capabilities brought 
to the so-called second generation of blockchains, or Blockchain 2.0. 

2.2.1.1 Fundamental Properties 

Hereafter, we describe the fundamental properties typically provided 
in every distributed ledger; however, their provision may be only 
partial for some categories of Blockchain. 

• Immutability. Due to the presence of cryptographic hashes in the 
blocks, transactions stored in the distributed ledger cannot 
subsequently be tampered with, reversed, or deleted without 
altering the hash values, thus without being detected. 

• Integrity. Cryptography, together with algorithmic constraints, 
provides integrity on messages from users or between nodes and 
ensures that only authorized entities perform operations. In fact, 
Public Key Infrastructure (PKI) and digital signatures provide 
accounts identification and transactions authorization. 

• Non-repudiation. It is the ability to protect against denial of an 
action (for example, having originated a transaction). In the 
context of the Blockchain, the sender digitally signs a transaction: 
in this way, the origin of each transaction is traced so that there is 
no dispute about it nor about their sequence in a distributed 
ledger. This guarantees, for example, the responsibility for 
monetary expenditure and the execution of smart contracts. 



 

 

31 

• Transparency. Each participating entity has access to the 
distributed ledger and can verify transactions without a central 
intermediary. 

• Decentralization. There is no central authority deciding on 
recording a particular datum in the ledger. Also, decentralization 
avoids single points of failure. 

• Pseudo-anonymity. In general, each user can interact with the 
Blockchain with a generated address. The address is a pseudonym 
that does not reveal the real identity of the user. 

2.2.1.2 Blockchain categories 

In some cases, the participants in the network may have different 
authorizations and play different roles [11], [13]. Thus, the 
decentralization obtained can be only partial. Let us consider the two 
main operations applicable to every database: reading and writing. In a 
Blockchain, reading consists in consulting the current state of the ledger 
and creating transactions. Instead, writing means validating 
transactions, aggregating transactions in blocks, appending blocks to 
the chain, and participating in the consensus protocol. 

A permissionless blockchain is a decentralized and open system in 
which every node has reading and writing abilities. Examples of 
permissionless blockchains include Bitcoin [1] and Ethereum [4]. 
Permissioned blockchains, instead, have been proposed as an alternative 
in which only a set of known and identifiable participants, previously 
enrolled and admitted to the Blockchain, are allowed to read, write or 
perform both operations. Some state-of-the-art permissioned 
blockchains available today are Hyperledger Fabric, Ripple, 
Multichain, Kadena, Tendermint, and Chain. 

The distinction between these classes is often combined with the 
notion of public and private/consortium blockchain, used to refer to 

Table 1: Blockchain categories. 

 Permissionless Permissioned 

Public Reading is open 
Writing is open 

Reading is open 
Writing is restricted 

Private/Consortium Not used in practice Reading is restricted 
Writing is restricted 
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reading permissions. The four resulting categories of Blockchain are 
shown in Table 1. Between them, public permissionless blockchains are 
diffused in businesses and applications involving the general 
population, as well as public permissioned ones but with the 
attribution of writing rights only to some privileged nodes. Private 
permissioned blockchains are typically owned by one institution (or a 
combination of institutions, which can be referred to as consortium 
blockchain). Private permissionless blockchains are not used in 
practice. They would restrict reading while permitting writing to any 
node; however, some applications may exist, e.g., a shared black box 
for air traffic, where writing is open to every aircraft and reading is 
read restricted to officers. Finally, choosing between permissionless 
and permissioned blockchains is not trivial, as there are often trade-offs 
including scalability, interoperability, cost, performance, availability, 
anonymity, privacy, confidentiality, transparency, and censorship 
resistance [2]. 

 Consensus Algorithms 2.2.2

The way nodes reach an agreement on the status of the ledger is one of 
the most important components of a Blockchain: it affects performance 
(as transactions throughput and latency), as well as security and 
scalability. Many alternatives already exist, each with its own 
advantages and disadvantages. Table 2 gives a comparison between 
the mechanisms presented in the remainder of the section, which are 
the most widely used state-of-the-art consensus mechanisms ([14], [15], 
[16], [17], [18], [19]) highlighting their analogies and differences. The 
comparison is performed in terms of permission (permissioned – p.ned, 
permissionless – p.less), transaction finality (a transaction included in a 
block can be immediate – det.- or probabilistically -prob.- considered 
final), energy consumption, transaction rate, cost of participation, trust 
model and adversary tolerance (the percentage of the participants that 
can be malicious without affecting the algorithm). 

Proof of Work (PoW). Every block contains a field named header, 
composed of metadata including, but not limited to, a timestamp and 
the hash of the previous block. Each miner node has to compute the 
header hash of the block to be appended. Solving this problem is not 
trivial: the block header is constantly changing, and the value must be 
equal or smaller than a given value. However, when a miner produces 
the PoW, all other nodes can easily verify the correctness of the value.  
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Table 2: A comparison of popular Blockchain consensus mechanisms. 

 PoW PoS PoET BFT  
and variants Ripple SCP 

Permission P.less P.less P.ned 
P.less 

P.ned 
P.less 

P.ned 
P.less P.less 

Transaction  
finality Prob. Prob. Prob. Det. Det. Det. 

Energy  
Saving No Partial Unknown Yes Yes Yes 

Transaction  
rate Low High Medium High High High 

Token  
needed? Yes Yes No No No No 

Cost of 
participation Yes Yes No No No No 

Trust  
model Untrusted Untrusted Untrusted Semi-trusted Semi-trusted Semi-trusted 

Adversary 
Tolerance 

< 25% of  
computing  

power 

< 51% of  
stake Unknown < 33.3% 

<20% faulty  
nodes  

in  
Ripple’s  

UNL 

< 33% 

Examples Bitcoin,  
Ethereum 

Cardano, 
Peercoin Hyperledger 

Hyperledger  
Fabric, 
 NEO 

Ripple Stellar 

 



 

34 

After that, transactions in the proposed block are validated by peers 
to avoid fraud. If confirmed, the new block is added to the Blockchain. 
This is a real competition since the calculation is time- and energy-
consuming. Thus, a reward is given to the winning miner. This 
algorithm is used in Bitcoin and Ethereum blockchains; block interval 
depends on different parameter settings (e.g., in Bitcoin, a block is 
generated about every 10 minutes [14], while in Ethereum 1.0 between 
12 and 14 seconds [20]). 

Proof of Stake (PoS). This algorithm requires the mining node to 
prove the ownership of some amount of cryptocurrency. The selection 
is based on stake size combined with many solutions (e.g., a formula 
favouring the lowest hash values or a random factor). PoS saves more 
energy and is more effective, while latency is shorter than PoW. 
However, the mining cost is close to zero, and it may attract attackers 
(nothing-at-stake) [18]. Ethereum is at phase 0 of the technical 
roadmap1 for switching from PoW to PoS algorithm: the new solution 
promises to improve the transaction speed [21], and it offers protection 
against the Sybil attack. An efficient and power-saving variant of PoS is 
the Delegated Proof of Stake (DPoS), where an account may delegate its 
stake to others rather than validating transactions directly [11].  

Proof of Elapsed Time (PoET). This algorithm was developed by Intel 
and used in the Hyperledger platform. It is based on leader election in 
a Trusted Execution Environment (TEE). The idea is to randomly 
assign an elapsed time to every node in the TEE, and elect the one that 
wins this lottery. This node has to prove that the time obtained is the 
lower, wait, and validate the block. Every other node in the TEE can 
easily perform the verification. 

Byzantine Fault Tolerance (BFT) and variants. The so-called Practical 
Byzantine Fault Tolerance (PBFT) algorithm is the first solution to 
achieve the consensus in the presence of Byzantine failures, thus 
despite arbitrary behaviour from some nodes. It uses the concept of 
replicated state machines and voting by replicas for state changes. This 
algorithm requires “3f+1” replicas to tolerate “f” failing nodes. This 
approach imposes a low overhead on the performance of the replicated 
service. BFT-based Blockchain offers a much stronger consistency 
guarantee, lower latency, higher throughput, and it requires that all 
participants agree. Several variants and optimizations exist [22], [23] 
                                                 
1 Phase 0 refers to December 2, 2021.  
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(e.g., XFT, parallel BFT, Hybrid BFT, Hierarchical BFT, Scalable BFT). 
BFT algorithms are recently used also in permissionless blockchains 
[23].  

Ripple is based on the notion of the Unique Node List (UNL). Every 
server s considers only votes of its own UNL to determine consensus. 
Moreover, UNL represents a subset of network nodes in which s can 
trust collectively, but it cannot trust individually [24]. The algorithm is 
divided into rounds, and each round consists of four steps: 1) each 
server collects and inserts all the transactions in a set of candidates; 2) 
each server joins the sets of its own UNL and votes about transactions 
genuinely; 3) transactions with minimum score go to next round, 
others are rejected; 4) the final round requires a minimum of 80% 
agreement on the UNL of server s. Transactions that satisfy the 
requirement are added to the registry, which at the end is closed to 
compose a block of the chain. The main condition for which consensus 
is reached in all UNL is that each UNL is at least 40% overlapped with 
the others; if not, each UNL can reach its own consensus independently 
and without agreement.  

 Stellar Consensus Protocol (SCP). It is a quorum based Byzantine 
agreement protocol with open membership [25]. SCP is based on the 
concept of quorum, a set of nodes sufficient to reach the agreement, 
and quorum slices, subsets that can convince one particular node about 
the agreement. A single node can appear on multiple quorum slices. 
Slices and quorums are based on real-life business relationships 
between various entities, thereby leveraging existing trust. SCP is 
divided into phases: initial voting, accepting the vote, ratifying and 
confirmation. It reaches the global consensus in the entire system if 
quorums intersect. If a vote remains blocked, it uses a ballot-based 
approach to let the algorithm proceed. 

Other used algorithms are Proof of Activity, Proof of Authority, Proof 
of Luck, Proof of Burn, Proof of Capacity, Proof of Importance [18], 
Raft, Tangle, and Algorand [26].  

 Security and Countermeasures 2.2.3

Security is a crucial aspect we can use to characterize blockchains. A 
(non-comprehensive) list of the most popular attacks [27] is shown in 
Table 3. Targeted blockchains and some possible countermeasures are 
highlighted.  
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Table 3: Some attacks against Blockchain. 

Attack Description Target  
Blockchain Countermeasures Notes 

DDoS 

Exhausting network  
resources by sending a  

large number of 
requests. 

All 

Proof-of-Activity  
(PoA) protocol. 

Improve IoT devices 
 security. 

- 

Majority  
(51%) 

Hold the majority of  
hashing power to  

manipulate consensus. 
PoW-based 

Presence of  
observers nodes  
in the network  

Also in PoS-based 
may occur if a node 

owns more than 50% 
 of the total coins. 

Double  
spending 

Use the same  
cryptocurrency 

multiple  
times (e.g. by sending  

conflicting transactions 
in  

rapid succession). 

PoW-based - 

Private key 
(Wallet) theft 

Steal private key to steal 
 cryptocurrency and  

identity. 
Public 

Two-factor security, 
 Password-Protected 

 Secret Sharing 
(PPSS)  

In a private 
 blockchain may be 

possible to track 
attackers behaviour. 

Sybil 
Create multiple nodes  

controlled by same 
entity. 

Public Limit number of 
 output connections 

In private 
blockchains, it can be  

avoided using 
heuristic rules. 

Vulnerabilities 
 in smart  
contracts 

Various. I.e., send  
malicious transactions 

to 
 steal currency. 

Blockchain 2.0, 
 (especially  

Turing-complete  
languages)  

Not a clear answer - 

Attacks on 
 cryptography 

Breaking RSA 
encryption. All Switch to Quantum 

 Resistant Ledgers 

Currently not a  
problem, but can be  

in the future 
 (quantum 

computing). 
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Some observations follow: 

• The use of different types of consensus algorithms affects 
blockchain security (e.g., the 51% and double-spending attacks 
target PoW-based blockchains); 

• Some attacks target specifically public blockchains. In some cases, 
private blockchains permit avoiding or mitigating the risk (e.g. for 
Sybil attack); 

• The extension of capabilities in Blockchain 2.0 (e.g., the usage of 
smart contracts) leads to the introduction of software 
vulnerabilities.  

As shown in the table, smart contract security (in particular for 
Turing-complete language) is a critical problem that does not have 
clear countermeasures. This Thesis focuses on this problem. Thus, the 
next section introduces basic concepts of smart contracts, focusing on 
Ethereum and its primary (and Turing-complete) language Solidity.  

 SMART CONTRACTS 2.3

Smart contracts are one of the most important innovations of the 
second generation of the Blockchain. The basic idea is to execute 
computerized transactions automatically, depending on both external 
and internal conditions. Their diffusion has allowed the development 
of applications in different areas (e.g., financial, medical, insurance, 
gaming, betting). This section first presents some basic concepts 
dealing with smart contracts. Then, after reviewing the main platforms 
and use cases, it focuses on Ethereum and its primary language, 
Solidity. Finally, it deals with quality assurance. 

 Definitions, Benefits and Limitations 2.3.1

The first definition of smart contracts in 1997 [28] stresses the concept 
of contract term execution. 

A smart contract is a computerized transaction protocol that executes the 
terms of a contract. 

The concept has not received particular attention until the 
emergence of Blockchain and its support of high-level languages. In the 
original meaning, smart contracts met three main properties [12]: 
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• Autonomy: once a smart contract is executed, the parties involved 
are not required to remain in contact. 

• Self-sufficiency: smart contracts are self-sufficient in managing 
resources (e.g., fundraising, providing services, purchasing 
resources for data storage or processing). 

• Decentralization: smart contracts are stored into the Blockchain and 
executed synchronously by each node of the network (without the 
need for a central server). 

More recently smart contract definition has been extended to a 
persistent script stored into the Blockchain [29]. This extension focuses on 
the automated execution on a Blockchain when some conditions are met 
[30]; moreover, it extends the concept of involved parties to involved 
entities (e.g., users, programs, systems). 

There are many benefits of using smart contracts. Thanks to the 
automated execution and self-sufficiency, there is a substantial reduction 
of manual operations (and therefore the consequent risk of errors), 
elimination of duplicate work, time savings, speeding up the execution 
of operations, refund if conditions are (not) met. Thanks to autonomy, 
there is no need for intermediaries. In addition, decentralization allows 
for increased reliability. 

2.3.1.1 Oracles 

Specific conditions trigger the execution of smart contracts. If the 
condition is internal to the Blockchain, the smart contract can access it 
directly. If the condition is external, the smart contract must 
communicate with entities outside the Blockchain to continue 
execution. Since it cannot communicate directly, it relies on external 
services called oracles. There are several types of oracles [2], including: 

• Software Oracle. It retrieves and extracts information online, 
providing it to the smart contract. 

• Hardware Oracle. It allows to retrieve information from a CPS and 
make it available to the smart contract through sensors (e.g., 
RFID). Data are typically encrypted, and an anti-tamper 
mechanism is provided to increase security. 

• Inbound Oracle. It acquires information from external sources. For 
example, a smart contract can automatically initiate an order 
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when the euro reaches a specific quote. The oracle provides the 
latter information. 

• Outbound Oracle. It allows sending information from a smart 
contract to the outside world. An example is a smart contract that 
arranges for a garage door to open after the payment for parking. 

• Consensus-Based Oracle. It consists of a combination of different 
oracles (even of different types). It is used to make decisions 
(typically based on data predictions). 

2.3.1.2 Issues 

There are some issues in using smart contracts: 

• Scalability: the number of contracts and users cannot increase 
indefinitely. Increasing the number of contracts increases the 
number of transactions that each node executes (each node 
performs all transactions on the Blockchain to which it belongs). 
This requires an increase in hardware resources. 

• Legal: smart contracts can define and perform legally binding 
contracts. Novel legal issues (e.g., contract formation, 
interpretation) can arise in this context. In addition, there is a lack 
of uniformity in international jurisdiction in resolving disputes 
that may arise from the performance of smart contracts [31]. 

• Security: smart contracts automated execution potentially 
endangers applications as they are immutable after storing them 
on a Blockchain. Design and coding faults and weaknesses in the 
smart contracts implementing the particular application can still 
result in exploitable vulnerabilities to malicious attacks despite 
the well-designed run-time environment. 

This Thesis focuses on smart contract security. 

 Platforms and Use Cases  2.3.2

Ethereum, Hyperledger Fabric, Corda, Stellar, Nem, Neo, Eos are some 
of the most representative platforms that enable smart contracts. Table 
4 compares them (extending [32]) in terms of language and its Turing 
completeness, consensus algorithm (Section 2.2.3), permissions (Section 
2.2.1.2), execution environment and kind of application. 
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There are languages developed for specific platforms (e.g., Solidity, 
Vyper) or general-purpose languages (such as Java, Javascript, Python, 
C++). Turing completeness allows the development of smart contracts 
with greater expressiveness at the expense of greater susceptibility to 
attacks. PoW is computationally intensive when BFT-like consensus 
algorithms are network intensive. Other algorithms have intermediate 
characteristics, as highlighted in Section 2.2.2. Smart contracts are used 
in both types of public and private blockchain. The execution 
environment covers virtual machines and docker (reducing the 
overhead at the expense of application isolation). The types of 
applications that can be developed are general or specific, related to 
financial or smart economy sectors. 

Smart contracts have a broad spectrum of applications that grows 
over time. A non-exhaustive list includes [31], [32], [33]:  

• Finance and banking: capital markets and investment banking, 
commercial and retail banking, securities, insurance, trade 
finance, prediction markets.  

Table 4: Blockchain platforms that enable smart contracts. 

 Ethereum Hyperledger 
Fabric Corda Stellar Nem Neo Eos 

Language Solidity 
Vyper 

Java 
Golan 

Node.js 

Java 
Kotlin 

Python 
Javascript 

Golan 
Java 

Java 
Javascript 

Golan 
Python 

C++ 

Turing 
completeness Yes Yes No No Yes Yes Yes 

Consensus 
algorithm 

PoW 
PoS 

PBFT Raft Stellar PoI BFT BFT- 
DPoS 

Permission Public Private Private Consortium Public 
Private Private Public 

Execution 
environment EVM Docker JVM Docker Docker NeoVM WebAssembly 

Application General General General Finance General Smart 
Economy General 
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• Management: digital properties and rights management, 
organizational management. 

• Public sector: E-voting, personal reputation systems, smart 
property exchange. 

• Internet of Things and CPS: energy, healthcare, supply chain, 
intelligent transportation systems. 

 Ethereum and Principles of Solidity 2.3.3

Ethereum is the second platform for market cap [34] after Bitcoin2. This 
section introduces some concepts related to Ethereum and its primary 
language, Solidity.  

The Ethereum Virtual Machine (EVM) is the execution environment 
of Ethereum: each execution changes the EVM state [35]. Ethereum has 
two kinds of accounts: externally owned accounts and contract accounts; 
both have a balance field in Ether (the native currency of Ethereum). The 
first kind of account represents a user account, controlled by its private 
key; the second is a smart contract account, and its code controls it. A 
user can send a transaction (signed data package) to other accounts: if 
the receiver is a contract, it activates its code executing it into the EVM. 
Other contracts can trigger the code execution of a contract by messages 
(function calls). Blocks of the Blockchain contain all transactions and 
the related EVM state. 

The gas represents fees to be paid for computations in Ethereum. 
Executing a transaction requires computational steps and then fees. 
Every transaction contains a recipient, a sender (identified by a 
signature), a startgas (maximum number of computational steps), and a 
gasprice (the fee the sender pays for each unit of gas). The product of 
startgas by gasprice is the maximum fee (in the units of Ether) paid to 
the miner processing the transaction. If the transaction terminates 
successfully, the miner returns unused gas to the sender. 

The primary high-level language used to develop Ethereum smart 
contracts is Solidity [36]. C++, Python, and Javascript influenced 
Solidity. It has a similar programming structure to traditional 
languages, such as several types of variables, branching instructions, 
and assertions. 

                                                 
2 Data refer to December 2, 2021. 
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The core of a smart contract consists of one or more logic contracts 
and optionally libraries and interfaces containing state variables and 
functions. Functions can execute instructions, interact with other 
contracts and modify state variables. Variables can have different main 
types (e.g., boolean, (unsigned) integer, address) and some derived ones 
(e.g., structures, enum). Each change of a state variable is saved 
permanently into the Blockchain. Moreover, a modifier changes the 
visibility of a function and its capability to receive Ether. Besides, 
functions receive the detail of the transaction. Once deployed into the 
Blockchain, the contract gets its address, a constructor (a special 
function) initializes its variables, and its code becomes immutable. 

For a better understanding, Figure 4 presents a simple smart 
contract. The smart contract starts with a Solidity directive (at line 1) 
that identifies the release of the compiler to be used. A logic contract 
defines the program's core (at line 3). The Bank contract's state consists 
of the variable balances, that maps a variable of type address to an 
uint256 (unsigned integer with 256 bits). The contract has two 
functions: deposit (at line 8) and withdraw (at line 12). 

The function deposit is payable: it can receive Ether. In particular, it 
receives an amount from the caller through msg.value, added to the 
balance of the caller at line 9 (available in msg.sender address). 

The function withdraw permits to withdraw part of the address 
balance. At first, the requirement statement (at line 13) checks that the 
sender has enough funds in the Bank. In case of a positive check, 

 
Figure 4: Sample of Solidity smart contract.  
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withdraw sends Ether through the primitive call using the caller 
address. Called address can represent a contract: it can perform 
arbitrary actions (within the gas limits). The result of the call is stored 
on check_success. If check_success has true value, it passes the 
requirement at line 15, and the caller's balance is subtracted. This 
example contains a reentrancy vulnerability [3]. At line 14, the function 
withdraw transfers the control to the caller before subtracting the 
amount. This action permits the caller a continuous call of the withdraw 
function till the exhaustion of funds of contracts. 

 Quality Assurance 2.3.4

Quality assurance (QA) is one of the most tradition-richest fields in 
software engineering. The ISO/IEC 25000 family of standards defines 
system and software quality requirements and evaluation at the 
behavioural level, including extra-functional properties. The new 
ISO/IEC 5055:2021 standard [6] measures source code quality in an 
automated way based on an estimation of the complexity of the code 
under test and an empirical set of antipatterns, i.e., typical weaknesses 
causing failures.  

This way, our basic assumption is that most weaknesses and 
resulting vulnerabilities in Solidity are similar to those in conventional 
programming languages, potentially appearing in a specific form.  

Software security engineering has solid empirical foundations from 
a well-organized and maintained process of vulnerability data 
acquisition, abstraction, and generalization. The Common Vulnerabilities 
and Exposures (CVE) database [37] collects, defines, and catalogues 
publicly disclosed cybersecurity vulnerabilities, i.e., weaknesses in 
software (and hardware) components that, when exploited, spoil the 
security of the system. The Common Weakness Enumeration (CWE) [38] 
classifies weaknesses as root causes of vulnerabilities into a hierarchical 
taxonomy; furthermore, each CWE list item highlights the mode of 
introduction, expected consequences, and potential mitigations. 

The hierarchy starting at the Variant level and continuing with the 
Base (typically related to a particular product, language, or technology) 
gradually eliminates the implementation details. The highly abstract 
top two categories of weaknesses in the hierarchy (Class and Pillar) are 
already independent of any specific language or technology. At the 
topmost level of abstraction, Pillar is a concept used to group 
weaknesses that share common characteristics. The notion of Class is 
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abstract enough to be implementation independent but close enough to 
define functional and/or structural antipatterns leading to weaknesses.  

CVE has more than 160000 entries currently, but only a few 
hundred are related to Blockchain technologies. However, the close 
relation of Solidity to traditional programming languages justifies the 
reuse of CWE classes for faithful fault modelling. 
The CWE guides classification of vulnerabilities into the US 
government repository entitled National Vulnerability Database (NVD) 
[39] used for vulnerability management, security measurement, and 
compliance in a general technology context.  

While CWE has a primary security focus, it is appropriate to 
describe weaknesses considering other extra-functional properties. For 
instance, as mentioned before, ISO/IEC 5055:2021 measures the 
reliability, performance, and maintenance of a code using CWE 
patterns.  

This Thesis focuses on the aspect of security; accordingly, with 
definitions of Section 2.1, we refer to vulnerabilities as exploitable 
weaknesses. 

 STATIC ANALYSIS 2.4

The main types of code analysis are static analysis, dynamic analysis, 
and formal verification. Static analysis inspects the code without 
executing it, searching for vulnerable patterns in the code structure. 
The dynamic analysis examines programs as they run in a run-time 
environment, acting like an attacker looking for vulnerabilities by 
providing malicious code or input to functions. Finally, the formal 
analysis uses theorem provers or formal methods to verify a program's 
specific properties, such as functional correctness.  

This section focuses on static analysis, providing some introductory 
concepts and some characteristics of static analysis tools. 

 Introduction 2.4.1

Static analysis (SA) is one of the most significant and widely used types 
of code analysis. It inspects the code without executing it.  

At first, it extracts an abstract model of the code under evaluation 
(typically an AST = abstract syntax tree or CFG = control flow graph). 
Then it can retrieve several types of information, including: 
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• potential vulnerabilities in the code over the model by pattern 
matching for weaknesses (antipatterns); 

• dead code: code paths that cannot be reached; 

• code anomalies; 

• information for code optimization. 

Software developers who use static analysis tools (referred simply 
as static analysis) can benefit from the facts produced by the analysis to 
further understand, evaluate, and modify the associated code.  

SA has some advantages on dynamic analysis [40]. An advantage of 
static analysis is to operate on all possible execution branches in a 
program. On the contrary, the dynamic analysis only accesses the path 
of the code currently running. However, dynamic analysis manages to 
get information such as the location of the data in the memory of the 
program that is executed, while static analysis could only guess it.  

SA is ubiquitous in modern software engineering. Popular 
examples include security flaws and defects scanners such as 
Klockwork and Coverity; programmer error detection tools such as 
scan-build, an analysis tool aimed at C, Objective-C, C++, and Swift; 
code formatters such as Python's black; user-oriented editor tools such 
as Rust's rust-analyzer. 

There are also some limits to static analysis. No algorithm can 
determine whether the program terminates or loops indefinitely given 
a source code and all its possible inputs (the halting problem [41]). 
Most properties checked by static analysis are equivalent to the halting 
problem [40], [42]; thus, static analysis problems are undecidable in the 
worst case [43]. Static analysis approximates the program behaviour; 
however, this approximation is useful in practice.  

 Characteristics of Static Analysis Tools 2.4.2

This section describes the characteristics of SA tools used throughout 
the Thesis. The main characteristics are their input format, the internal 
representation extracted from the code, and the analysis methodologies 
applied. Some concepts will be further addressed in specific chapters. 
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2.4.2.1 The input 

SA has the code of the smart contract to be checked. We distinguish 
here two possibilities: 

• Bytecode is a list of compiled instructions executed in an Ethereum 
Virtual Machine (EVM);  

• Source code refers to the smart contracts high-level programming 
language (e.g., Solidity). 

2.4.2.2 The internal representation 

The internal representation is about the abstract model extracted from 
the code for the analysis. Alternatives here are the abstract syntax tree 
(AST) or the control flow graph (CFG): 

• AST extracts an abstract representation of the source code by 
lexical and syntax analysis. 

• CFG is a directed graph representing the program flow derived 
from the AST or the bytecode. The basic blocks of a program serve 
as nodes. An arc connects node A to node B if block B may get 
executed immediately after block A. The arc labels represent the 
condition of the path execution. 

2.4.2.3 Methodologies 

Methodologies represent the algorithmic approach that tools use to 
analyze smart contracts for identifying vulnerabilities: 

• Decompilation (DEC) transforms the bytecode into a language at a 
higher abstraction level (like an intermediate or Solidity-like 
language) to enhance the code's readability. 

• Disassembly (DIS) transforms the EVM bytecode into an assembler 
language divided into blocks and assigns labels (e.g., to jump 
destinations and addresses). 

• Symbolic execution (SE) uses symbols instead of real values of 
variables, based on determining the path code's reachability 
through constraints controlled by Satisfiability Modulo Theories 
(SMT) solvers. 



 

 

47 

• Taint analysis (TA) follows information flows generated from an 
information source. Initially, only deriving data from the source 
are considered contaminated. The method keeps track of how this 
taint propagates (it can happen, e.g., through assignment 
operation). 

 Static Analysis for Vulnerability 2.4.3

Static analysis is widely used to discover vulnerabilities in the early 
stages of the software life cycle. Despite its incomplete fault coverage, it 
can cover 100% of the code at a low cost [44].  

Checking a program under test may result in a successful test run or 
a processing failure - an improper or incomplete test run with partial 
(or no) diagnostic outcome -. A successful test run may result in two 
different outcomes depending on whether the tool identified a 
vulnerability or not. A positive result (P - positive – the tool identified a 
vulnerability) can be a false positive (FP – wrong detection of a non-
existing vulnerability) or a true positive (TP – correct detection of an 
existing vulnerability). Clearly, this is only a partial view as a negative 
result (N – negative - the tool did not identify a vulnerability) can be a 
true negative (TN – correct assessment of no vulnerability) or a false 
negative (FN – missed detection of an existing vulnerability). 

We explicitly consider false positives and false negatives. In the 
previous section, we treated the issue of undecidability. Because of this 
problem, static analysis cannot be free of false positives. Moreover, 
false positives cause a big problem for all code analysts: a high rate of 
false positives forces a very high expenditure of time and resources for 
their detection (to distinguish them from true positives). Reducing the 
number of false positives takes resources and time [42]. The resulting 
tradeoff is very subtle: if the analysis is fast, it is likely to report many 
false positives. Conversely, an analysis is unlikely to finish in a 
reasonable time for large programs. 

On the other hand, a high number of false negatives is dangerous 
because it leaves doors open for subsequent successful attacks. False 
negatives can occur for at least two reasons: the analysis is marred by 
unwarranted assumptions (e.g., not taking into account that malloc can 
return null), or the analysis does not consider all possible execution 
paths in the program and it is incomplete. The risk of having false 
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negatives can be reduced by using multiple tools simultaneously (thus 
increasing the number of false positives). 

 THE STATE OF THE ART 2.5

Several studies investigate smart contract vulnerabilities and their 
systematization and static analysis applied to smart contracts. The 
following state of the art review includes the most relevant papers as 
well as online resources available so far, mainly concentrated on 
Ethereum and its primary language, Solidity. 

Table 5 highlights the relations between our systematization and 
some relevant previous studies by specifying the number of treated 
vulnerabilities, paired with the number of coinciding ones with our 
work, the nature of the classification and the analysis of the 
vulnerability propagations. 

Atzei et al. [45] have, for the first time, deeply analyzed 
vulnerabilities, providing a taxonomy. They analyzed 12 kinds of 
vulnerabilities and linked 9 of them with different attacks. They 
identify two main reasons that make the smart contracts error-prone in 
Ethereum: the first reason is the Javascript-like nature of the Solidity 
language; the second one is the dissemination of the documentation in 

Table 5: Comparison between main vulnerability-related works. 

Study Vulnerabilities Grouped by Propagations 

Chen et al. 26  (21) Status  No 

Atzei et al. 12  (11) Solidity, EVM, 
Blockchain No 

Dika et al. 22  (15) Solidity, EVM, 
Blockchain No 

Mense et al. 22  (16) Solidity, EVM, 
Blockchain No 

Hasanova et al. 21  (18) No group No 

Praitheesan et al. 15  (10) Exploitability to 
attacks  No 

Bartoletti et al. Ponzi schemes Type of Ponzi 
schemes No 

This Thesis 32  CWE classes (10) Yes 
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different sources. Their main focus was to organize a vulnerability 
taxonomy and check the effectiveness of attacks. Our work, differently, 
systematizes the vulnerabilities (using 11 of the 12 Atzei’s 
vulnerabilities) in a non-language-related way and highlights 
propagation among them. 

Dika et al. [46] proposed an up-to-date taxonomy of 21 
vulnerabilities, grouping them based on their occurrence location: 
Solidity language, Ethereum Virtual Machine (EVM), or Blockchain 
level. This work also conducted experiments with some tools providing 
21 vulnerable smart contracts and analyzing results.  

The study of Mense et al. [47] used taxonomy to compare tools in 
discovering issues (based on their research paper). More than this, they 
analyzed an attack for providing a secure smart contract development. 

Hasanova et al. [48] first investigated Blockchain vulnerabilities at 
the consensus level and types of potential attacks. Then it focused on 
20 vulnerabilities smart contract related, highlighting adverse effects 
and providing possible countermeasures. 

Praitheesan et al. [49] first analyzed vulnerabilities and their 
detection methods, then focused on the attacks that caused severe 
losses; finally, they classified the analysis methods into three categories 
(static, dynamic, and formal analysis). 

 Bartoletti et al. [50] presented a comprehensive survey of Ponzi 
schemes on Ethereum, analysing their behaviour and their impact from 
various viewpoints. 

More recently, Chen et al. [51] presented a survey of 44 
vulnerabilities, investigating the application layer, data layer, 
consensus layer, network layer, and Ethereum environments. Based on 
these aspects, causes, attacks, and exploit consequences are 
highlighted. Focusing on the application layer (which we are interested 
in), they propose a taxonomy of 26 main vulnerabilities (application 
related), grouping them by status (e.g., Smart contract programming, 
Solidity language and toolchain, Ethereum design and 
implementation) and highlighting causes, attacks, and consequences.  

Emanuelsson and Nillson [42] performed one of the first 
comparisons among static analyzers to handle industrial applications.  

McLean [52] focused on open source tools analyzing several 
programming languages (e.g., C, C++, Java). It performed an analysis 
of a pre-identified set of vulnerabilities, providing findings and 
uncovered vulnerabilities.  
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Table 6: Main static analyzers for Solidity. 

Tool Input Availability 

E-EVM Bytecode https://github.com/pisocrob/E-EVM 

Erais Bytecode https://github.com/teamnsrg/erays 

ETHBMC Bytecode https://github.com/RUB-SysSec/EthBMC 

EtherTrust Bytecode https://www.netidee.at/ethertrust 

EthIR Bytecode https://github.com/costa-group/EthIR 

eThor Bytecode https://secpriv.wien/ethor/ 

GasChecker Bytecode No 

Gasper Bytecode No 

HoneyBadger Bytecode https://github.com/christoftorres/HoneyBadger 

KEVM Bytecode https://github.com/kframework/evm-
semantics 

MadMax Bytecode https://github.com/nevillegrech/MadMax 

Maian Bytecode https://github.com/ivicanikolicsg/MAIAN 

Manticore Bytecode https://github.com/trailofbits/manticore 

Mythril Bytecode https://github.com/ConsenSys/mythril 

Octopus Source code https://github.com/pventuzelo/octopus 

Osiris Bytecode https://github.com/christoftorres/Osiris 

Oyente Bytecode https://github.com/enzymefinance/oyente 

Porosity Bytecode https://github.com/comaeio/porosity 

Rattle Bytecode https://github.com/crytic/rattle 

Remix Source code https://github.com/ethereum/remix-project 

SASC Source code No 

Scompile Source code No 

Securify Bytecode https://github.com/eth-sri/securify 

Securify2 Bytecode https://github.com/eth-sri/securify2 

SIF Source code https://github.com/chao-peng/SIF 

Slither Source code https://github.com/crytic/slither 
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More recently, Nunes et al. [136] proposed a benchmark for web 
application static analyzers based on different criticalities levels, 
providing a general approach in benchmarking when different 
scenarios have to be analyzed. 

Furthermore, the research into applying static analysis to detect 
Ethereum smart contracts' vulnerabilities increased significantly after 
the first infamous exploits in 2016 (e.g., DAO [3], starting from Oyente 
[54]. Main static analyzers developed explicitly for Solidity are 
summarized in Table 6. 

Di Angelo et al. [55] independently analyzed 27 tools (static and 
dynamic) in terms of the method used, maturity, availability, and 
detection aspects. More recently, Vacca et al. [56] proposed a survey on 
Blockchain technologies in which they list several tools for analyzing 
smart contracts. Through the analysis of related papers, the techniques, 
datasets used and main results are highlighted. 

Table 6 (continued): Main static analyzers for Solidity. 

Tool Input Public availability 

SmartCheck Source code https://github.com/smartdec/smartcheck 

SmartEmbed Source code https://github.com/beyondacm/SmartEmbed 

SmartInspect Bytecode No 

SmartBug Source code https://smartbugs.github.io 

SolAnalyzer Source code Yes 

SolGraph Source code https://github.com/raineorshine/solgraph 

SolHint Source code https://github.com/protofire/solhint 

SolMet Source code https://github.com/chicxurug/SolMet-
Solidity-parser 

solc-verify Bytecode https://github.com/SRI-CSL/solidity 

Vandal Bytecode https://github.com/usyd-blockchain/vandal 

teEther Bytecode No 

Verisol Source code https://github.com/Microsoft/verisol 

Zeus Source code No 
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Tikhomirov et al. [74] divided 20 kinds of smart contract bugs (we 
identify 15 vulnerabilities) into four groups (security, functional, 
operational, and developmental), analyzing several bugs. Then, they 
proposed a SA tool that uses an intermediate representation to detect 
them. Finally, a comparison with other tools is performed. 

Durieux et al. [57] analyzed two datasets: the first one composed of 
more than 47.000 contracts, retrieve tools statistics, and the second one 
consisting of 69 contracts to deep analyze vulnerabilities. The set of 
vulnerabilities in their focus is related to the DASP repository. First, 
they evaluated the tool precision; in the large dataset, they identified 
the distribution of positives and analyzed the contract analysis time.  

Parizi et al. [58] conducted an experimental assessment of static 
smart contracts security testing tools. They tested Mythril, Oyente, 
Securify, and Smartcheck on ten real-world smart contracts. 
Concerning the accuracy of the tools, Mythril was the most accurate. 

Pinna et al. [59] performed a comprehensive empirical study of 
smart contracts deployed on the Ethereum blockchain to overview 
smart contract features, such as type of transactions, the development 
community's role, and the source code characteristics. 

Ghaleb et al. [60] implemented SolidFI, a systematic method for 
automatically evaluating smart contract analysis tools using fault 
injection. They inserted a selected set of bugs in all valid identified 
locations. Akca et al. [104], by injecting a single bug into the contract 
code, compared the effectiveness of their static analyzer with some 
other tools. 

Zhang et al. [61] focused on analyzing several bugs (among them, 
we can identify 20 vulnerabilities), grouped in 9 categories and based 
on the IEEE framework. It identified bugs that some tools do not cover. 
It provided a benchmark and based its analysis on precision and 
coverage. 

More recently, Dias et al. [53] studied the effectiveness of the three 
SATs on a set of defects, classified according to the Orthogonal Defect 
Classification, as defined in [62]. 

Concerning software security, it is not always possible to analyze all 
vulnerabilities that have escaped detection; it is crucial to prioritize 
their analysis.  

Eschelbeck [63] analyzed the problem of prioritizing software 
vulnerabilities within the vulnerability management process. The work 
provided general observations on the importance of patching the 
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vulnerabilities with the highest severity. In a first step, Liu et al. [64] 
compared different prioritization methods using vulnerabilities 
extracted from the CVE database. In a second phase, vulnerabilities 
were grouped by type (CWE-based); the experiments improved scoring 
quality using vulnerability type. 

Referring to previous works, some focuses on bugs (e.g., [60], [61], 
[53]); others compare static and dynamic analysis (e.g., [61]). In 
addition, some works analyze a small set of vulnerabilities (e.g., [57], 
[58]); others use a small set of tools (e.g., [57], [58], [53]), or provide no 
ground truth (e.g., [53], [57]).  

Below are some of the main problems and limitations identified in 
state of the art, divided into three main key points: 

a) Vulnerability systematization:  

• Analyses are too tied to the language construct; 

• Previous classifications either do not abstract from a specific 
Solidity release or do not capture the behaviour of vulnerabilities;  

b) Assessment of the smart contract security: 

• Previous  analyses do not focus specifically on security;  

• There is a lack in identifying how tools are built (how tools 
perform on the vulnerabilities they decided to target);  

• Tool performances are investigated in a small set of 
vulnerabilities;  

• There is a general lack of in-depth analysis of the tool detection 
capabilities in the different vulnerability classes;  

c) Improvement of the smart contract security 

• There is a lack of analyzing how to improve tool capabilities; 

• State of the art does not analyze how tools can be combined to 
increase smart contract security; 

• Previous works do not identify the most critical types of 
undetected vulnerabilities;  
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• The location (physical position) of vulnerabilities in Solidity smart 
contracts is not investigated.  

Currently, there are no clear state-of-the-art answers on determining 
the assessment and improving smart contract security. Problems are 
mainly related to the rapid evolution of Solidity language, the 
consequent sparseness of vulnerability and the immaturity of checking 
tools. 

 APPROACH 2.6

Traditional languages (e.g., C, Java) have a long tradition of using SA. 
The broad spectrum of available tools raised the need to evaluate and 
compare them in a benchmark-styled way.  

The main objective of end-users in using testing technologies is to 
ensure a good quality of the code and the productivity of the 
development process. At the same time, estimation of the 
insufficiencies is a primary input to the tool developers in their product 
development strategy.  

Guaranteed quality necessitates a high probability of detecting 
faults, while productivity needs effective diagnosis and localisation to 
support debugging. 

Measures of the detection effectiveness of an SA tool primarily 
address fault coverage, i.e., the ratio of fault kinds covered vs all faults 
anticipated. The minimisation of security risks additionally considers 
the frequency of occurrence and the severity of impacts of individual 
vulnerabilities in a more fine granular calculation of the fault coverage.  

Creating the benchmark input set for software testing tools 
underlies several requirements. The programs consisting of the input 
benchmarking set have to represent the anticipated faults rooting in 
and covering observed vulnerabilities. This way, the set of tool testing 
input programs results from extensive vulnerabilities collection, root-
cause analysis, categorisation, and potentially generalisation (e.g., 
mapping to CE) process. Evaluating the vulnerability and diagnosis 
capabilities of the tools requires the avoidance of benchmark test 
programs incorporating multiple vulnerabilities to avoid potential 
interferences between them. 

Note that the statistically valid estimation of the frequency of 
occurrence needs a sufficiently large scale database. The assessment of 
the severity characteristics requires expert analysis of the potential 
impacts of a vulnerability.   
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One of the first examples to standardise the evaluation of SA tools 
was the NIST Software Assurance Reference Dataset Project covering, 
resulting in Juliet Test Suites for the most widely used programming 
languages, like Java, C/C++, and C# [138]. 

The main resulting vital points are: 

• It is possible to identify the trigger of the corresponding 
vulnerabilities and weaknesses, which permits the study of the 
coverage. 

• Each language-specific Juliet Test Suite can rely on an extensive, 
well-organised historical vulnerabilities database. Juliet 
anticipates a set of Base or beyond the Base level weaknesses from 
the CWE hierarchy as the source of vulnerabilities and covers 
them by test programs. Using such low-level weaknesses as a 
basis assures a close correlation between the tests and 
vulnerabilities. At the same time, the CWE-benchmark mapping 
delivers the ground truth by construction. 

• The availability of a considerable number of (patterns) candidates 
permits a selective choice for inclusion into the benchmark to 
reduce false diagnoses due to multi-vulnerability interferences 
without compromising the fault coverage.  

While the sound engineering principles of Juliet lead to a wide 
practical use for traditional programming languages, their adaptation 
to evolving languages faces severe difficulties due to the lack of 
sufficiently extensive experience. 

Solidity, as already stated, is a new and evolving technology with 
changes in the language specification, as typical for technologies in 
their early lifecycle. According to the novelty of Solidity, only a limited 
set of well-documented and analyzed faulty patterns is available. 
Moreover, the relatively rapid evolution of the language definitions 
eliminates the most prevalent ones by improving the safety of the 
language constructs offered to the programmer. No similar deep 
analysis of the remaining patterns has happened yet, as for the 
repositories of vulnerable code fragments in traditional languages. 
Accordingly, there is no clear ground truth related to faults and 
selectivity.  

In Solidity, it is possible having very similar patterns with different 
impacts. The lack of an extensive base confines the options of 
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composing the benchmark set, especially to comply with the 
requirement of selectivity. Accordingly, we used the natural language 
description of vulnerabilities in the selection process.  

At the same time, in the case of Solidity, our experience indicates 
that the current solutions are not extraordinarily sophisticated and 
well-elaborated. Thus, we use a top-down approach for the reasons 
listed above and contrary to Juliet. We generalise typical patterns into 
high-level categories by referring to Classes or Pillars instead of going 
to the lowest level of the CWE hierarchy (using Bases or Variants). 
Using large aggregate types of weaknesses avoids statistically 
unjustified partitioning of a relatively sparse dataset. In addition, we 
also have to create the ground truth due to the inadequate evaluation 
and documentation of vulnerability patterns.  

Our patterns for evaluation can not cover all the potential patterns; 
however, we provide a representative model of Solidity in terms of 
observed vulnerabilities and weaknesses extracted from them. That 
means we can not guarantee that each pattern base is covered, but we 
offer a rough granular characterisation of the individual SA tools.   
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3 
VULNERABILITY TAXONOMY AND PROPAGATIONS 

3 VULNERABILITY TAXONOMY AND PROPAGATIONS 
This chapter investigates the first research question we address:  How to 
overcome the language evolution? (RQ1).  

To do so, Section 3.1 provides an overview of the motivations, 
Section 3.2 determines the set of vulnerabilities to focus on, and Section 
3.3 systematizes vulnerabilities and provides a Solidity fault model 
based on CWE. Finally, Section 3.4 highlights some vulnerability 
propagations. 

 MOTIVATION AND OPEN CHALLENGES 3.1

To have a global view on the topic, we have examined several papers 
(e.g., [45], [46], [47], [51], [65]) that analyze and classify platform-
related vulnerabilities, and well-known exploits (e.g., [3], [66], [67]). 
Solidity is a new language, and it evolves rapidly. Considering 
previous studies, we noticed a difference in the number and 
categorization of such vulnerabilities, depending on the language or 
the specific platform. The missing agreement led to user confusion and 
vulnerabilities proliferation, as well as a difficulty for researchers to 
compare them. Moreover, previous classifications either do not abstract 
from a specific Solidity release or do not capture the behaviour of 
vulnerabilities. 

The main motivation of this chapter is to overcome the strict 
dependence of the previous categorizations on the language release. 
Moving beyond language evolution is the foundation for the next steps 
in our research. To do so, we first provide Solidity-specific 
vulnerabilities analysis, then we identify CWE as a basis to classify 
vulnerability in a language-independent way. Our opinion is that this 
classification may help software developers limit weaknesses explosion 
and their effects, and researchers compare vulnerabilities of other 
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platforms. In addition, this systematization allows us to focus on the 
vulnerabilities propagations between different CWE-based categories. 

The contribution of this chapter is twofold: 

• We provide a Solidity fault model, systematising smart contract 
vulnerabilities in a language-independent way. This model is the 
basis for the following chapters. 

• We emphasize some propagations among classes of 
vulnerabilities based on well-known exploited contracts. 

 SMART CONTRACT VULNERABILITIES 3.2

This section identifies the vulnerabilities addressed in this work. The 
focus is on vulnerabilities originating in the development process of 
smart contracts. Accordingly, the underlying run-time platform is 
considered only as a potential error propagation path. Existing surveys 
(e.g., [51]) and sites provide lists of vulnerabilities, which, 
unfortunately, are updated very frequently due to the relative novelty 
of the technology. 

To provide a list of vulnerabilities, we ran a Google Scholar search 
using the keywords "Ethereum survey," "smart contracts analysis," and 
"smart contracts vulnerabilities." Additionally, we consulted the Smart 
Contract Weakness Classification and Test Case (SWC) registry [68], the 
Solidity documentation [36], and other referenced GitHub repositories 
to create a unified list of candidate vulnerabilities.  

We then discarded from this list all the vulnerabilities already 
resolved at the language level from the Solidity release 0.5 onwards 
that we found on Ethereum Improvement Proposals (EIPs). EIPs are the 
standard Ethereum improvement; some EIPs mitigate or solve 
vulnerabilities (e.g., Call-stack DepthValue, fixed by EIP-150 [69] and 
Under-priced Opcodes, fixed by EIP-1884 [70]). 

Finally, grouping vulnerabilities with similar or overlapped 
definitions resulted in a list composed of 32 items listed below in 
alphabetical order. 

 Arbitrary Jump 3.2.1

Solidity supports function types [71]; a variable of function type can be 
assigned with reference to a function with a matching signature. The 
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function saved to such a variable can be called just like a regular 
function [68].  

Solidity does not support a generic pointer type; this does not (in 
general) allow changing this variable arbitrarily. However, if a smart 
contract uses specific assembly instructions (particularly mstore or 
assign operator), an attacker can execute random code instructions by 
changing the function type variable. This way, the attacker can alter, 
for example, state changes (directly impacting the data written in the 
Blockchain). 

 Arithmetic Precision 3.2.2

Solidity supports integers and (partially) fixed-point numbers. So, to 
represent floating points, integers must be used.   

The 256-bit Ethereum virtual machine assembles types shorter than 
32 bytes together in the 32-byte slot. This process affects the accuracy of 
any operation: for example, rounding is not correct if a division is 
performed before multiplication. If the result is used for critical 
operations, an attacker can force the use of data that alter the originally 
intended process. 

 Authorization through tx.origin (Atx)  3.2.3

Solidity’s field tx.origin contains the address of the account that sent a 
transaction. Using it for authorization/authentication can make a 
contract vulnerable, potentially causing a fund loss. If an authorized 
account calls into a malicious contract, the latter can use its address to 
call the vulnerable contract and pass the authorization check 
(performed through tx.origin). This situation happens because tx.origin 
does not return the latest function call’s sender, but the origin of the 
whole transaction, i.e., the authorized account [51]. The vulnerability 
can be prevented using msg.sender for authorization instead of tx.origin 
[47]. Two code snippets (vulnerable and safe) are shown in Figure 5. 

 
Figure 5: Authorization through tx.origin: vulnerable and safe code snippets. 
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 Blockhash Usage (BU) and Timestamp Dependency (TD) 3.2.4

Blockhash usage [48] and Timestamp Dependency [45] vulnerabilities 
result from the usage, in critical operations, of blockhash and global 
timestamp variables, respectively. A malicious miner can manipulate 
such values. The code snippet in Figure 6 highlights that the use of 
blockhash value generates a BU vulnerability.  

 Call to the Unknown (CU)  3.2.5

Some Solidity’s primitives for function invocation and Ether transfer 
(e.g., call, send) have the side effect of invoking the fallback function of 
the callee/recipient. This may lead to unexpected behaviours since an 
external portion of code is executed [45]. Mitigation is to avoid external 
calls whenever possible [47].  

 Delegated Call to Untrusted Callee (DUC)  3.2.6

The vulnerability was first observed in the Parity wallet attack [72]. 
The primitive delegatecall generates a message call that executes the 
code at the target address in the context of the calling contracts [51]. 
This way, an attacker can modify the state of the caller contract using 
the callee. 

 DoS by External Contracts (EC):  3.2.7

This vulnerability results from the dependence of conditional 
statements on external calls since the condition to continue the 
execution may never be satisfied [48]. 

 DoS Costly Patterns and Loops (CPL) 3.2.8

Useless code and loops related patterns [51] could lead to a DoS 
situation when the gas needed to complete an execution exceeds the 
block gas limit. This issue is mainly caused by the use of unbounded 

 
Figure 6: Code snippet of blockhash usage. 
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operations (e.g., loops that depend on the function parameters that an 
attacker can manipulate). A possible mitigation for this vulnerability is 
to reduce the use of loops with a high or unknown number of 
iterations. 

 Ether Lost in Transfer (ELT) 3.2.9

Specifying a 160-bit address is required to transfer Ether. If the address 
is orphan (i.e., it is not associated with any accounts), the amount of 
money to be transferred will be lost, and it cannot be recovered. 
Developers that would avoid this problem have to ensure the 
correctness of the recipient’s address with a check [45]. 

 Exceptions Disorder (ED) 3.2.10

Exceptions can be raised in different situations, such as an out-of-gas 
exception, an error string exception, or a panic exception [45]. The 
inconsistency in the Solidity exception propagation policy can lead to 
implementation confusion, making contracts vulnerable. This issue can 
cause different effects and even allow attacks. Therefore, mitigation 
consists of checking any possible error condition. 

 Freezing Ether (FE) 3.2.11

This vulnerability results from the impossibility of a contract to send 
Ether while it can still receive it. It can result when a contract relies on 
no more available external code (for instance, after a selfdestruct 
operation) to perform the money transfer [51]. 

 Gasless send (Gs) 3.2.12

The vulnerability results when the gas consumption for executing an 
operation exceeds the expected amount, raising an out-of-gas exception 
[45]. In particular, the function send does not specify the maximum 
amount of expendable gas for executing the recipient fallback function. 
Such an amount is fixed and likely to be reached when the fallback 
function contains many or expensive instructions. Considering that 
send does not propagate exceptions, the contract keeps the amount that 
should have been transferred. 
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 Generating Randomness (GR) 3.2.13

The execution of EVM bytecode is deterministic. To simulate non-
deterministic choices, many contracts generate pseudo-random 
numbers, using the timestamp or other information (retrieved from 
global variables) about a block that will be added at a given time on the 
Blockchain. As an example, Figure 7 shows two different ways of 
generating randomness in such a way. 
Since miners control the blocks of the Blockchain, a malicious one 
could craft a block to bias specific values [45], thus discovering the 
randomness and managing to manipulate events. A possible 
countermeasure consists of using an external source via oracles. 

 Insufficient Gas Griefing 3.2.14

A contract can accept data and use them for a sub-call to another 
contract. An attacker can provide enough gas for executing a 
transaction but not enough for the sub-call to succeed [68]. This way, 
the attacker can censor all transactions; the attacker has no direct 
benefit but causes damage to the victim of the attack [73]. 

 Integer Overflow/Underflow (IOU) 3.2.15

A smart contract overflow occurs when a variable of type integer 
exceeds the maximum value that the type supports. Conversely, when 
the type is unsigned, decrementing a variable below the value zero will 
cause an underflow. Both an unmanaged arithmetic overflow and 
underflow can cause a software vulnerability [48], [51] (e.g., when the 
result value is used to manage resources or control the execution flow). 
However, the vulnerability can be mitigated by checking the 
operation’s result. 

 
Figure 7: Generating randomness code snippet. 
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 Malicious Libraries (ML)  3.2.16

Solidity permits building libraries that contracts can invoke. However, 
using libraries from untrusted sources may result in vulnerability by 
allowing the potential execution of malicious code [74]. 

 Missing Protection against Signature Replay Attack (MPRA) 3.2.17

A smart contract can perform operations that need signature 
verification. In this case, protection against the Signature Replay Attack 
is needed (e.g., keeping track of all message hashes and only allowing 
new message hashes to be processed) [68]. A lack of this protection 
makes a contract vulnerable. 

 Reentrancy (Re) 3.2.18

This vulnerability occurs when a callee calls the calling function back 
before its completion. This call can lead to the repeated execution of 
functions designed to be executed only once [45]. The situation can 
easily occur when a contract sends Ether to another. In fact, in Solidity, 
a fallback function is called whenever a contract receives Ether or when 
a given not existing function is called. If the fallback function performs 

 
Figure 8: Reentrancy code snippet. 
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a callback, it will lead to a loop of calls that may drain the funds of the 
paying contract (as in the DAO attack [3]).  

An example of a simplified version of the DAO attack is shown in 
Figure 8. If the malicious contract Eve calls the function withdraw of 
Alice (row 20) to get its deposited credit, its execution (row 10) invokes 
the Eve fallback function (row 19), generating a loop that will drain 
Alice's balance. This loop happens because the Eve credit update is 
performed after the payment (row 12) instead of before. A possible 
countermeasure to this vulnerability is to ensure that any external 
contract is called only once, updating appropriate variables before 
performing the call. 

 Right to Left Override (RLO) 3.2.19

Right-To-Left-Override is a special Unicode character (U+202E) that 
allows the use of right-to-left (RTL) characters within the text normally 
rendered left-to-right (LTR). For example, consider a smart contract: it 
is possible to insert an RTL character at appropriate points in the code 
to modify the behaviour in a hidden way. This way, the logic of the 
contract can be completely altered without a user being aware of it 
[68]. 

 Requirement Violation (RV) 3.2.20

This vulnerability results from a violation of the requirements specified 
in a function for external input validation. Requirements violation 
indicates the presence of a vulnerability in the caller contract or an 
erroneous validation condition [68]. 

 Secrecy Failure (SF) 3.2.21

Declaring a variable as private does not guarantee its secrecy because 
of the public nature of the Blockchain. Other contracts can not access 
the variable, but anyone can inspect published values and infer 
possible subsequent ones [51]. Using cryptographic techniques could 
mitigate the problem. 

 Short Addresses (SA) 3.2.22

When a contract’s invocation is performed, the corresponding 
transaction’s input field contains the callee function and all the call’s 
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arguments. Each argument is encoded in 32 bytes automatically filled 
by the EVM with extra leading zeros if the length is shorter than 
allowed. The missing check of the validity of addresses by the EVM 
causes the vulnerability (EVM assumes that users always input 20-byte 
long addresses). For instance, transfer(address to, uint fund) allows the 
attacker to increase the amount of funds to gain [51] whether to is 
shorter than 32 bytes. The countermeasure to this vulnerability is 
checking the length of the transaction’s input. 

 Signature Malleability (SM) 3.2.23

The Blockchain uses the public-private key mechanism (Chapter 2). 
Thus, users assume the uniqueness of the implementation of the 
signing mechanism in Ethereum smart contracts. However, the EVM 
specification allows the use of precompiled contracts (e.g., ecrecover) to 
retrieve the public key through a triple (v, r, s). According to [68], if the 
signature is part of the hash of a previously signed message, an 
attacker can modify the three parameters to create still-valid signatures 
(without possessing the private key). 

 Transaction Ordering Dependence (TOD) 3.2.24

This vulnerability arises when a contract relies on the order in which 
transactions are executed since miners decide this. There is no 
guarantee that the execution order matches the order in which 
transactions were requested, and this can affect the state of the 
dependent contract [51]. Using a pre-commit scheme [75] could 
mitigate the vulnerability. 

 Typecasts (Ty) 3.2.25

Receiving a contract as a function argument without checking its actual 
type represents a vulnerability. The Solidity type checker does not 
verify that the type is correct. Thus, calling a function of the received 
contract allows an attacker to execute arbitrary code. In fact, if a 
malicious contract contains a function having the same name as the 
invoked one, no error is raised, and the execution continues normally 
[45].  
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 Unchecked Call Return Values (UV) 3.2.26

Some Solidity functions for Ether transfer return the boolean value false 
in case of failure without raising an exception. Thus, a missing check of 
the return value results in a vulnerable condition [51], [68], leading to 
unexpected behaviours. The vulnerability can be mitigated by handling 
the return value.  

 Unchecked send (Us) 3.2.27

Unchecked send is a vulnerability produced by using the primitive 
function send. The primitive returns a boolean value; considerations are 
similar to Section 3.2.26. Therefore, the use of the send primitive is 
discouraged [36]. 

 Unprotected Ether Balance (UEB) 3.2.28

Transactions that depend on the balance of a smart contract should be 
adequately protected. For example, suppose a contract performs a 
critical transaction when its balance reaches a certain amount (or it is 
greater than zero). Then, it is always possible to forcibly send Ether to a 
contract (e.g., using selfdestruct) by changing its balance even when 
there are mechanisms to disable receiving Ether. This way, a failure to 
protect access to the operation makes the contract vulnerable [68]; in 
the worst-case scenario, the vulnerability could lead to a DoS situation. 

 Unprotected Ether Withdrawal (UEW) 3.2.29

This vulnerability arises when malicious actors drain funds from a 
contract due to missing, insufficient, or wrong access controls [68]. The 
contract shown in Figure 9 allows other contracts to deposit and 

 
Figure 9: Unprotected Ether withdrawal code snippet. 



 

 

67 

withdraw Ether, keeping track of each contract's deposited balance. 
The code is vulnerable since the function withdraw allows a contract to 
get a specified amount of Ether even if it does not have enough in its 
balance. Because of the missing condition, a malicious contract could 
drain all the victim funds. 

 Unprotected selfdestruct (Usd)  3.2.30

The use of the function selfdestruct without an appropriate check on the 
caller [51] may result in unintended destruction of the contract. For 
example, consider the code of Figure 10. If a non-authorized contract 
invokes the function kill passing its address as an argument, it will 
manage to destroy the contract Alice and gain Alice’s entire current 
balance. 

 Visibility of Exposed Functions (VEF)  3.2.31

An attacker could execute a function for arbitrary purposes when its 
visibility is wrongly defined. Consider the function definitions as 
shown in Figure 11. In both cases, the function visibility has been set 
incorrectly since external contracts can invoke the function that should 
only be called internally. The use of wrong function modifiers may 
allow unauthorized execution [51]. The effects can be various 
depending on the nature of the exploited function. 

 VULNERABILITY SYSTEMATIZATION 3.3

This section deals with vulnerability systematization. It first reports on 
a more detailed description of CWE (introduced in Section 2.3.4) and 

 
Figure 10: Unprotected selfdestruct code snippet. 

 
Figure 11: Vulnerability of exposed function code snippet. 
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then provides the Solidity fault model.  

 CWE and Hierarchical Representation 3.3.1

To better understand the systematization process (addressed in the 
next section), this section provides more details related to CWE.  

The Common Weakness Enumeration (CWE) is a community-
developed list (updated periodically) of common weakness types that 
involve security [38]. CWE community includes 58 members among 
some of the major technology companies (e.g. Apple, IBM, Microsoft), 
U.S. Government Institute/Agency (e.g. the National Security Agency, 
National Institute of Standard and Technology), security and cyber-
security companies, and non-profit organizations.  

According to [38], CWE proposes to: 

• have a common language for the weakness description, 
identification, mitigation; 

• asses the coverage of tools (that target those weaknesses);  

• prevent software vulnerabilities prior to deployment. 

The Common Weakness Enumeration (CWE) classifies weaknesses as 
root causes of vulnerabilities in a hierarchical taxonomy. CWE 
provides three main hierarchical representations (research concepts, 
hardware design, software development) based on a specific point of view, 
others based on entries subset or specific domain or use case. For our 
purpose, we focus on the research concepts view that highlights: 

• the abstraction of weakness behaviour, permitting to overcome 
the dependency on specific language and platforms; 

• where and in which phase weakness appears in the code; 

Each entry contains three elements that help in understanding how the 
vulnerability is relevant in a particular environment: 

• The introduction phase identifies when the weakness is introduced 
in the software (e.g., architecture, design, implementation). 

• Common consequences determine eight pre-defined technical 
impacts (read-data, modify-data, DoS-unreliable execution, DoS-
resource consumption, execution of unauthorized command, gain 
privilege/assume identity, bypass protection mechanism, hide activities).  
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• Potential mitigations provide suggestions and recommendations on 
the countermeasures to be applied during the software 
development phases. 

Figure 12 shows an example of hierarchy (extracted and adapted 
from [76]). The Pillar (Improper Access Control) has both Classes and 
Bases as sons (depending on the defined abstraction level); each Class 
could have a sub-hierarchy starting with other Classes, Bases or 
Variants. We highlight that each Pillar has its sub-hierarchy 
(independent from others) and that leaves are represented by Variants 
or Bases, depending on the represented level of detail. 

 Solidity Fault Model  3.3.2

This section systemizes the vulnerabilities addressed in this Thesis and 
identified in Section 3.2. 

3.3.2.1 Mapping vulnerabilities to CWE  

We have grouped the list of 32 vulnerabilities in a language-
independent classification, in general abstract classes using a subset of 
the CWE-1000 Research Concepts [76] (based on abstractions of 
software behaviour). 

As CWE is only a semi-formal taxonomy without formal semantics, 
mapping Solidity vulnerabilities into CWE is manual. Our 
methodology (introduced in Section 2.6) has its foundation in two main 
key points:  

• identifying the CWE-ID level that best fits each vulnerability, 
placing it in a Pillar sub-hierarchy.  

 
Figure 12: Hierarchy sample of CWE. 
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• finding Classes or Pillars (in the Pillar sub-hierarchy) that group 
multiple vulnerabilities of similar behavior. 

Our first target is to identify the CWE-ID Base or Class-level weakness 
that is the best abstraction for each vulnerability. This process follows 
the criteria for the best match [137]. 

We consider vuln as a type of vulnerability that belongs to our 
taxonomy. To map the vulnerabilities onto CWE, we used the 
following method: 

∀ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

1. We identified the main characteristics of vuln (e.g., the 
software's resources' exhaustion), extracting some keywords; 

2. We identified the candidate shortlist CWE-IDs by performing an 
abstract keyword and synonym search in the CWE list. 

3. An in-depth review of every element in this list led selecting the 
specific CWE-ID Base or Class-level (under the Pillar sub-
hierarchy) to represent vuln.  

Our final target is group vulnerabilities. Starting from the CWE-IDs 
identified in the previous step, we proceed bottom-up in the hierarchy 
until we find Classes or Pillars (in the Pillar sub-hierarchy) that group 
vulnerabilities with similar behaviour. Thus, we select them as our 
classification categories. 

Consider two vulnerabilities as examples of the classification: 

• Gasless send (Gs): it happens when a call invocation provides a 
limited quantity of gas to the callee, and the gas consumption for 
executing an operation exceeds the provided amount [45]. 

• DoS costly Patterns and Loops (CPL): a DoS situation can happen if 
the gas needed to complete an execution exceeds the gas block 
limit [51]. A potential cause is using an unbounded operation 
(e.g., loops that depend on a function parameter). 

In the case of the example, the first step identifies CWE-400 (Class-
level) to represent both vulnerabilities. By performing the second step, 
we have to select a class or a Pillar that groups the vulnerabilities. 
CWE-400 is still a Class and contains vulnerabilities with similar 
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behaviour; thus, we select it as our classification category for Gs and 
CPL. 

The classification of 32 vulnerabilities (Table 7) contains the 
acronym (Acr.), the full name, the reason for classification, the CWE 
category (specifying Class or Pillar), and finally, a short description.  

3.3.2.2 Comparison between the fault model and the ISO/IEC 5055:2021 
standard 

As the next step, we check that the similarity between Solidity and 
conventional programming languages manifests in their respective 
fault model. We compare our proposed model for Solidity (10 CWE-
IDs) and the ISO/IEC 5055:2021 standard (71 CWE-IDs) for 
conventional languages.  

Note that the comparison of the fault models should cover both 
identities and similarities of the weaknesses in the two fault models. 
For instance, two weaknesses sharing a joint abstract ancestor in the 
CWE hierarchy indicate a common root cause manifested in different 
forms due to the peculiarities of the different programming languages. 

12 CWE-IDs in the ISO list are irrelevant as Solidity has no similar 
language constructs. 7 ISO CWE-IDs related to software obsolescence 
are irrelevant for our purposes. 20 ISO CWE-IDs are descendants of 
our Solidity model. One CWE-ID is identical in the ISO and Solidity 
lists. Two Solidity and ISO CWE-IDs have a joint ancestor in the CWE 
hierarchy. 29 ISO CWE-IDs are derivatives of the family containing our 
Solidity CWE-IDs. A detailed comparison is available in [124]. The 
model for Solidity contains 3 Solidity-specific CWE-IDs that extend the list 
of the ISO standard: 

• CWE-330 (Use of Insufficiently Random Values) is related to 
generating random numbers whose seed comes from a value 
stored in the Blockchain. 

• CWE-345 (Insufficient Verification of Data Authenticity), concerning 
the use of signature and invalid data. 

• CWE-284 (Improper Access Control), related to improper 
authorizations or controls that permit unauthorized operations 
and Ether manipulations. 
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For instance, two weaknesses sharing a joint abstract ancestor in the  

Table 7: Mapping between vulnerabilities and CWE based classification. 
Vulnerabilities Classification 

Acr. Name Reason for classification CWE-
ID CWE description 

ELT Ether Lost in Transfer  Missing address validity checks. 
CWE-
20 
(Class) 

Improper Input Validation: 
the software does not 
validate or improperly 
validates input data. 

RV Requirement Violation  Improper input validation 
conditions. 

SA Short Addresses  Improper validation of the address 
length. 

Atx Authorization through tx. 
origin  

Improper authorization restriction 
using tx origin. 

CWE-
284 
(Pillar) 

Improper Access Control: the 
software does not restrict 
or incorrectly restricts 
access to a resource. It 
involves authentication, 
authorization, 
accountability. 

UEW Unprotected Ether 
Withdrawal  

Improper access control in Ether 
withdrawal. 

Usd Unprotected selfdestruct  Self-destruction with improper 
authorization checks. 

VEF Visibility of Exposed 
Functions  

Improper access control or 
authorization allows improper 
function usage. 

GR Generating Randomness  Use of predictable random numbers. 
CWE-
330 
(Class) 

Use of Insufficiently Random 
Values: the software 
generates predictable 
values in a context that 
requires unpredictability. 

MPRA Missing Protection against 
Signature Replay Attack  

Missing check or protection in data 
authenticity. CWE-

345 
(Class) 

Insufficient Verification of 
Data Authenticity: the 
software accepts invalid 
data, improperly verifying 
their validity or 
authenticity. 

SM Signature Malleability  Improper verification of data 
signature. 

Ty Type Casts  Improper verification of data 
validity. 

CPL DoS costly Patterns and 
Loops  

Improper management of resources 
(gas) in pattern and loop execution. CWE-

400 
(Class) 

Uncontrolled Resource 
Consumption: the software 
does not correctly control 
the allocation of limited 
resources, permitting an 
attacker to exhaust them. 

Gs Gasless send  Improper check in the usage of gas 
using send. 

BU Blockhash Usage  
Blockhash usage in critical 
operations exposes to manipulation 
from miners. 

CWE-
668 
(Class) 

Exposure of Resource to 
Wrong Sphere: the software 
provides unintended 
actors with inappropriate 
access to the resource. 

ML Malicious Libraries  Inappropriate access to resources. 

SF Secrecy Failure  Anyone can accede to a private 
variable. 

TD Timestamp Dependency  
Timestamp usage in critical 
operations exposes to manipulation 
from miners. 
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Table 7 (continued): Mapping between vulnerabilities and CWE based classification. 
Vulnerabilities Classification 
Acr. Name Reason for classification CWE-ID CWE description 

CU Call to the Unknown  
Low-level function calls can be 
unintended controlled from the 
resources of another sphere. 

CWE-669 
(Class) 

Incorrect Resource Transfer 
Between Spheres: the 
software provides an 
unintended control over 
the resource importing 
(transferring) it from (to) 
another sphere. 

DUC Delegatecall to the 
Untrusted Callee  

Low-level function calls can provide 
unintended control to a resource of 
another sphere. 

EC DoS by External Contracts  
External contracts can cause 
unintended control from a resource 
of another sphere. 

AP Arithmetic Precision Order  Divide before multiply can lead to 
incorrect results. CWE-682 

(Pillar) 

Incorrect Calculation: 
software performs a 
calculation that leads to 
incorrect or unintended 
results. 

IOU Integer Overflow or 
Underflow  

Overflow or underflow can lead to 
incorrect results. 

AJ Arbitrary Jump  Execution of unexpected 
instructions. 

CWE-691 
(Pillar) 

Insufficient Control Flow 
Management: the software 
does not properly 
manage the program 
control flow, permitting 
to modify it 
unexpectedly. 

FE Freezing Ether  Modification of the program flow 
makes it impossible to send Ether. 

IGG Insufficient gas griefing  Prevention of sub-call execution 
alters the program flow. 

Re Reentrancy  A callee calls the function back 
before its completion. 

RLO Right Left Override  The standard flow of the program is 
modified. 

TOD Transaction Ordering 
Dependence  

An attacker can artificially favor the 
execution of one transaction over 
another. 

UEB Unexpected Ether Balance  Strict Ether balance assumptions 
cause an unexpected program flow. 

ED Exception Disorder  Incorrect handling of Solidity 
exception propagation. 

CWE-703 
(Pillar) 

Improper Check or 
Handling of Exceptional 
Conditions: the software 
manages improperly 
exceptional conditions. 

Us Unchecked send  Improper checks of exceptional 
conditions using send. 

UV Unchecked Call Return 
Values  Missing checks of return values. 
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The fault models for the general-purpose elements in conventional 
languages (ISO standard) and Solidity are similar, while in addition, 
Solidity has some Ethereum-specific faults. If the Solidity-relevant fault 
classes are identical to or descendants of the ISO standards, then the 
algorithms elaborated for traditional languages are reusable. 
Otherwise, new or extended algorithms are needed. 

 PROPAGATION AND RELATIONS AMONG VULNERABILITIES 3.4

This section aims to emphasize some relations and propagations 
among the above-described vulnerabilities. Main information is 
extracted from most famous attacks (e.g., Dao [3], King of the Ether 
Throne [66], the Parity Multisig [72], Government [67]), and exploited 
smart contracts monitored by NVD. Furthermore, we include some 
code snippets and references to real contracts to support the 
explanation. Let us only note that the shown code (compliant to 
Solidity 0.5.x) may differ from the original one (Solidity 0.4.x): refer to 
Solidity breaking changes [77] for details.  

Relations among vulnerabilities are shown in Figure 13 through 
circle intersections, where circles stand for vulnerabilities, each 
identified by its acronym. In particular, when a circle is contained in 
another, its corresponding vulnerability is a subset of the external one. 
Moreover, an arrow from circle A to circle B means that A may imply 
the presence of B under specific conditions. Rectangles identify CWE-
IDs. After this premise, we describe some interdependencies and 
propagations. 

First, let us consider the upper-left part of Figure 13. Timestamp 
Dependency (TD) and Blockhash Usage (BU) intersect since both are 
related to the usage of blockchain global variables controlled by 
miners. For example, the code snippet in Figure 6, highlights the use of 
blockhash value that generates a BU vulnerability: in fact, each global 
variable could be manipulated by miners. In addition, using a blochask 
or timestamp-dependent variable can lead to a GR vulnerability (that 
can be exploited as in [78]).  
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Let us now consider the secrecy failure (SF). Making a variable 
private prevents other smart contracts from reading its value; however, 
the value of the variable is visible on the Blockchain. Whether a private 
variable is used as a seed of randomness, the secrecy failure could lead 
to GR (as in [79]).  

As a global view, vulnerabilities that belong to CWE-668 (Exposure 
of Resource to Wrong Sphere) can propagate to CWE-330 (Use of 
Insufficiently Random Values). Exploiting the possibility to read secret 
data may allow an attacker to bypass protection mechanisms and guess 
the pseudo-random value. 

The upper right part of Figure 13 shows the relationship between 
vulnerabilities of CWE-284 (Improper Access Control) and those of other 
classes.  

Consider the chain Integer Overflow or Underflow (IOU) -> (that leads 
to) Requirement Violation (RV) -> (that leads to) Unprotected Ether 
Withdrawal (UEW). An example is shown in Figure 14. The RV is 
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Figure 13: Vulnerability propagations. 
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caused (row 13) by the fact that an external contract may craft the 
function parameter value, leading to an integer overflow in the require 
clause (a real contract is shown in [80]). After the RV succeeds because 
of an overflow, the attacker may exploit the UEW vulnerability, 
gaining a potentially enormous amount of Ether (as shown in row 15 of 
Figure 14). On some occasions, as in Figure 15 (extracted from a [81]), 
an attacker (the contract’s owner) could exploit an IOU to lead directly 
to a UEW. 

A simple wrong function visibility setting that generates a Visibility 

 
Figure 14: Code snippet of IOU leading to RV. 

 
Figure 15: Code snippet of IOU leading to UEW. 
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of Exposed Function (VEF) is listed in Figure 16. If a user misuses the 
function, it may be possible for an attacker to withdraw Ether (UEW) 
illicitly. In the code snippet, the function setOwner has improperly 
public visibility allowing any user to modify the contract’s owner, thus 
possibly causing the UEW (as in [82]). Also, the Authorization from 
tx.origin (Atx) vulnerability could propagate to a UEW with the same 
mechanism just explained. 

The Unprotected selfdestruct (Usd) intersects with UEW because an 
improper access control causes both vulnerabilities; moreover, Usd 
could lead to a Freezing Ether (FE) if a contract is improperly destroyed 
(a famous related exploit is the Parity Multi-Sig [72]).  

From a classification point of view, it appears that vulnerabilities 
that belong to CWE-682 (Incorrect Calculation) could lead to CWE-284 
(Improper Access Control). In addition, improper controls could cause a 
loss of normal program flow. 

Let us consider the bottom left part of Figure 13. The picture 
represents Unchecked send (Us) as a subset of Unchecked Value (UV) that 
includes primitive functions such as call, delegatecall, send (as shown in 
Figure 17). Moreover, the Us and Gasless send (Gs) originate from the 
send function (justifying the intersection in our picture). All these 
vulnerabilities (UV, Us, Gs) can lead to an Exception Disorder (ED): 
missing a check on a returned value of the involved functions implies 
the impossibility to manage an exceptional situation (an attacker may 
also provoke that): an example is the King of the Ether Throne [66]. 

 
Figure 16: Code snippet of VEF leading to UEW. 
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Let us then consider the bottom right part of Figure 13. The figure 
indicates Delegatecall to Untrusted Callee (DUC) as a subset of Call to the 
Unknown (CU). Using a function call to send Ether could cause the 
execution of the fallback function of a malicious attacker (Reentrancy – 
Section 3.2.18). Reentrancy, if exploited, could lead to the UEW (all 
contract funds are drained): an excellent example of this vulnerability 
propagation can be found in [72].  

Considering this propagation from the classification point of view, 
we could infer that an unintended control over a resource could cause an 
insufficient control of the control flow, leading to an access control 
problem.  

  

 
Figure 17: Code snippet of Us, UV. 
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4 
ASSESSMENT OF THE SMART CONTRACT SECURITY 

4 ASSESSMENT OF THE SMART CONTRACT 
SECURITY 

This section deals with the assessment of smart contract security, 
addressing RQ2: How can we evaluate the security of smart contracts by 
using static analysis to detect the most relevant vulnerability-related 
weaknesses?  

After selecting SA tools in Section 4.1, we provide the experimental 
settings and the methodology in Section 4.2. Section 4.3 investigates 
the testing performances of SA tools, and Section 4.4 deals with the 
validity and limitations. 

 STATIC ANALYZERS 4.1

This section describes the tools selection process, and a qualitative 
analysis identifying vulnerabilities not targeted for detection by the 
individual tools. 

 Tools Selection  4.1.1

At first, an extensive search of different sources such as research 
papers (e.g., [55], [56]) and other online resources (sites for developers 
of the Ethereum environment and GitHub's most referenced tools 
repositories) produced a shortlist of 38 candidate tools. 

The final set of 9 tools (Table 8) selected for detailed analysis 
included only those fulfilling the following criteria:  

• handling of contracts written in Solidity version 0.5 or higher; 

• stand-alone tools targeting vulnerabilities detection; 
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• analysis of smart contracts without user-defined properties or 
assertions; 

• free public availability (for a white box analysis discussed later). 

Input, internal representation and methodology refer to concepts 
described in Section 2.4.2. A * in the table indicates that specific options 
extend the support of the original Solidity tool to the 0.5 release (e.g., 
[83]).   

For the sake of completeness, the list of tools excluded due to the 
violation of one or multiple selection criteria consists of E-EVM [84], 
Erays [85], ETHBMC [86], EtherTrust [87], EthIR [88], eThor [89], 
GasChecker [90], Gasper [91], KEVM [92], MadMax [93], MAIAN [94], 
Manticore [95], Octopus [96], Porosity [97], Rattle [98], SASC [99], 
sCompile [100], SIF [101], SmartEmbed [102], SmartInspect [103], 
SmartBug [57], SolAnalyzer [104], SolGraph [105], SolHint [106], 
SolMet [107], solc-verify [108], Vandal [109], Verisol [23], Zeus [110]. 

A short description of the selected tools follows: 

• Securify (Sfy) uses antipatterns to decide if the software has unsafe 
behaviour, with the support of a domain-specific language [111]. 

Table 8: Selected tools. 

 Tools Analysis Methods 

Name Release Input Internal 
representation Methodology 

Securify2  Mai 2020 BC CFG DEC, DIS 

Securify  Mai 2020 BC CFG DEC, DIS 

Slither  0.7.1 SC AST, CFG TA 

SmartCheck 2.1 SC AST DEC 

Remix IDE  March 2021 SC AST Various 

Mythril  0.22.17 BC CFG SE 

Oyente  November 2020 BC CFG SE 

Osiris  0.0.1* BC CFG SE 

HoneyBadger  0.0.1* BC CFG SE 
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Fallback functions, libraries, and abstract contracts are not 
supported. We used the main branch release [112]. 

• Securify2 (Sfy2) represents a development of Securify taking a 
Solidity file as input and supporting only flat contracts. The tool 
decompiles the stack-oriented bytecode into an assignment-based 
form and transforms the code to DataLog. We used the release of 
the main branch [113]. 

• Slither (Sli) converts Solidity smart contracts into an intermediate 
representation called SlithIR [114]. We downloaded the 0.7.1 
release from [115]. 

• SmartCheck (SmC) ) identifies smart contracts vulnerabilities by 
searching specific source code antipatterns [74]. The tool converts 
the code into an XML syntax tree, and Xquery path expressions 
retrieve the vulnerable patterns. We used the master branch [116]. 

• Remix-IDE (Rmx) is continuously under development [117]. Based 
on different modules, it also performs a static analysis on that we 
focus. Transforming the code into an AST representation checks 
the software security by checking unsafe patterns. We installed 
the release of March 2021. 

• Mythril (Myt) uses symbolic execution based on EVM bytecode 
for Ethereum and other EVM-compatible blockchains [118].  

• Oyente (Oye) is a precursor in the field [54], and several other 
projects have used it as a starting and reference point. It uses 
symbolic execution. We used the master branch [120]. 

• Osiris (Osi) extends Oyente’s fault model by integer overflows 
and underflows [119]. It combines symbolic execution and taints 
analysis. The version downloaded [121] extends Oyente 0.2.7. 

• HoneyBadger (HoB) is another Oyente-based tool that employs 
symbolic execution and a set of heuristics to pinpoint specific 
vulnerabilities in smart contracts [122]; we used the release based 
on Oyente 0.2.7 [123]. 
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 Preliminary Evaluation 4.1.2

Which vulnerabilities and weaknesses are checked in each tool?  
The detection capabilities and diagnostic resolution of the 

individual tools differ significantly. In addition, their diagnostic 
messages lack a uniform and comparable form. This way, their 
comparison necessitates mapping the individual targeted sets of 
weaknesses and diagnostic messages into a consistent basis. This 
needed a white-box reverse engineering approach. Therefore, we 
performed a qualitative analysis that: 

1. identifies the checking rules applied;  

2. maps them into weaknesses or vulnerabilities;  

3. estimates the classes of vulnerabilities remaining uncovered.  

Checking rules have a slightly different meaning, specified as 
follows. Rules of Securify represent the checks of the violation of 
patterns. Securify2 provides a list of checked antipatterns. Slither's 
rules designate the different detectors that identify anomalies in the 
smart contracts. SmartCheck's checking rules are determined by 
evaluating all Xpaths that the tool can check; the Xptah represents a 
rule and a specific pattern and can be retrieved as output when it 
identifies anomalies. Mythril and Remix rules consider the output of 
each module of the SA. The number of rules of Oyente, Osiris, and 
HoneyBadger represents the number of different outcomes that they 
provide. 

We use examples, descriptions, definitions, recommendations, 
exploits, and other sources linked to checking rules (into the 
documentation and sometimes into the tool's code) to identify the ones 
related to the vulnerabilities (the tools also identify other defects). 
Finally, we map the checking rules to vulnerabilities (and consequently 
to classes) [124]. 

The white-box analysis used all the program and documentation-
related information sources to reverse engineer the checking rules and 
their relevance for vulnerability detection. 

Table 9 highlights, for each tool, the resulting rules and the 
vulnerability-related ones, showing how many vulnerabilities the tool 
can identify (and the number of classes involved). A detailed mapping 
is available at [124]. 
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Table 9: Analysis of the internal codes of the tools. 

Tools Resulting rules Vulnerabilities 
related rules 

Vulnerabilities 
involved 

CWE-IDs 
involved 

Securify 10 10 7 5 

Securify2 43 25 18 7 

Slither 71 25 17 8 

SmartCheck 85 42 17 8 

Remix-IDE 22 13 10 6 

Mythril 17 15 13 7 

Oyente 7 7 6 5 

Osiris 10 7 6 4 

HoneyBadger 9 5 5 3 
 

Table 10: Anticipated and uncovered vulnerabilities. 

Tools CWE-
20 

CWE-
284 

CWE-
330 

CWE-
345 

CWE-
400 

CWE-
668 

CWE-
669 

CWE-
682 

CWE-
691 

CWE-
703 

Securify   x x x x  x   
Securify2   x x x      
Slither    x x      
SmartCheck x  x        
Remix-IDE x  x x    x   
Mythril x   x x      

Oyente x  x x x     x 

Osiris x x x x x     x 

HoneyBadger x x x x x x    x 
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Table 10 shows instead the vulnerability classes escaping detection 
completely. An x in cell (z,y) means that the tool in row z can NOT find 
any vulnerability belonging to the class in column y. Analyzing the 
table, we can observe some facts:  

• Securify, Securify2, and Slither are the only ones capable of 
detecting vulnerabilities in CWE-20 (Improper Input Validation). 

• CWE-330 (Use of Insufficiently Random Values) can be detected only 
by Mythril and Slither.  

• Only SmartCheck investigates CWE-345 (Insufficient Verification of 
Data Authenticity) and two tools (SmartCheck and Remix) CWE-400 
(Uncontrolled Resource Consumption). 

Table 10 highlights that no tool in the selection covers by design the 
entire fault model; thus, diagnostic coverage metrics need a finer 
resolution of the individual classes intended to be covered by it. We 
refer to this subset of the fault model described in Section 3.3.2 as the 
working domain of the particular tool. 

Besides the view based on classes, we investigated the individual 
vulnerabilities and found a few that the entire set of SATs cannot 
detect. 

Vulnerabilities out of the detection capabilities of our set of static 
analysis tools: 

• Missing Protection against Replay Attack (CWE-345): it occasionally 
depends on a specific function of the ERC-20 token [125].  

Vulnerabilities-related weaknesses related to specific constructs of 
Solidity that would permit to catch: Malicious Libraries (CWE-668), 
Requirement Violation (CWE-20), Type Casts (CWE-345), Insufficient Gas 
Griefing (CWE-691). 

 EXPERIMENTAL SETTINGS AND METHODOLOGY 4.2

This section focuses on the settings (e.g., data sets and subsequent 
creation of a reference ground truth) and the methodology of the 
experimental campaign.  
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 The Reference Dataset  4.2.1

We built a reference dataset of smart contracts, extracting randomly 
smart contracts (around 400) from the Etherscan (the Ethereum 
blockchain explorer) [126]. 

A smart contract can contain different logic contracts (contract 
keyword) that include functions (function keyword). A measure of the 
logical contracts or functions of smart contracts helps to highlight their 
essential characteristics. 

The Thesis uses the following definitions for the number of lines of 
software. Physical lines of code (LOC) are the total number of lines of a 
smart contract's code. Logical lines of code (LLOC) identify the number 
of lines of code that are neither comments nor empty. These measures 
indicate the length of a program; the programming style strongly 
influences them. 

 The Pilot Set 4.2.2

The lack of standard benchmarks to compare Solidity checking tools 
necessitates the creation of a pilot set, a set of representative smart 
contracts with known vulnerabilities as a ground truth comparison 
basis. For instance, without additional knowledge, we cannot 
distinguish between true positives (TP – correct detection of an existing 
vulnerability) and false positives (FP – false detection of a non-existing 
vulnerability) and quantify the vulnerability detection precision of the 
individual tools. 

Thus, we extracted a subset of contracts from the reference dataset 
for manual inspection, which constitutes our pilot set to assemble a 
ground truth [124]. Smart contracts selected from the reference dataset 
into the pilot set had to fulfil the following constraints inspired by 
benchmarks principles.  

• Representativeness of typical domains. At least one contract of the set 
must belong to each of the top 5 categories: gambling, exchange, 
games, finance, and properties [127]. 

• Compliance. All tools can process all contracts without errors. 

• Representativeness to Solidity. Contracts must contain the main 
features of the language (e.g., functions that exchange Ether, 
assembly usage, low-level calls, libraries, structures, arrays). 
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• Representativeness of the kind of vulnerabilities. The whole set of 
contracts must contain all kinds of vulnerabilities predicted by SA 
tools on the reference dataset. 

Although the number of contracts in the pilot set is limited to 15, 
the number of logical contracts is 88 (with a total LLOC of 4684), and it 
is comparable to the dataset used in other works [57]. The total number 
of existing vulnerabilities is 486; moreover, a single line may contain 
multiple vulnerabilities. Accordingly, we consider vulnerable rows 
instead of total vulnerabilities. After finding a vulnerability in a row, a 
manual inspection is required to apply a countermeasure; thus, the 
probability of finding other existing ones is very high. The number of 
vulnerable rows in the pilot set is 411. 

Table 11 summarizes the main characteristics of the contracts in the 
pilot set. 

Table 12 provides the total number of vulnerabilities (in the first 
row) and vulnerable rows (in the second one) per class. In the rest of 
the Thesis, the term vulnerability refers to the vulnerable row unless 
otherwise specified. 

 Performance Indicator Definitions  4.2.3

Vulnerability detection is a classification task; accordingly, we use 
the standard statistical metrics for binary classification to quantify the 
behaviour of the individual tools. The confusion matrix is a 2x2 matrix 
used to describe the classifier behaviour. Columns and rows represent 
the true values and classifier results. The matrix's main diagonal 
represents the correct classification in terms of true positives (TP) - 
correct detection of an existing vulnerability - and true negatives (TN) - 
correct assessment of no vulnerability -. The anti-diagonal matrix 
contains the false classification: false negatives (FN – missed detection of 
an existing vulnerability) and false positives (FP – false detection of a 
non-existing vulnerability). 

Based on the confusion matrix several performance indicators can 
be defined [128]. 
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Table 11: Pilot set characteristics. 

Smart 
Contracts 
IDs 

Characteristics 

LOC LLOC Logic 
Contracts Functions Vulnerable 

rows 
0x01a5c0 190 133 1 22 13 

0x16eb29 891 298 9 54 22 

0x1cdcc3 776 408 8 113 27 

0x239669 244 121 4 24 24 

0x4b89f8 929 650 8 41 27 

0x5571d1 297 145 4 24 10 

0x605cc9 640 185 4 37 14 

0x607620 180 149 4 14 25 

0x999999 488 252 1 18 42 

0xaa4de9 709 269 3 37 22 

0xbc205b 1267 616 7 85 27 

0xbd3149 227 108 5 22 23 

0xd82556 1031 561 8 53 45 

0xe042c2 1299 521 12 80 42 

0xfd77ef 564 268 5 43 48 

Total 9732 4684 83 667 411 
 

Table 12: Pilot set vulnerabilities grouped by CWE-IDs. 

Analysis 
CWE-IDs 

CWE 
-20 

CWE 
-284 

CWE 
-330 

CWE 
-400 

CWE 
-668 

CWE 
-669 

CWE 
-682 

CWE 
-691 

CWE 
-703 

Tot. Vuln. (486) 119 256 4 12 24 6 12 34 19 

Vul. Rows (411) 74 235 4 12 24 4 11 29 18 
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Recall (R) is the percentage of detected anomalies (true positives) 
over all the anomalies (true positives + false negatives): 

 𝑅𝑅 = 𝑇𝑇𝑇𝑇 ∕ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)    (1) 

The term coverage is often used with the same meaning of recall. In the 
rest of the paper, we use the term coverage.  

Precision (P) is the ratio of true and total fault indications penalizing 
false alerts:  

 𝑇𝑇 = 𝑇𝑇𝑇𝑇 ∕ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)    (2) 

F1 score is the harmonic mean between precision and recall, defined 
as follows: 

 𝐹𝐹1 = 2 × 𝑇𝑇 × 𝑅𝑅 ∕ (𝑇𝑇 + 𝑅𝑅)     (3) 

Accuracy (A) describes the ratio of correct diagnostic results among 
all: 

 𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹) ∕ (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹)   (4) 

However, accuracy can be misleading when used for unbalanced 
data, like those we expect for the SA tool with dominating true 
negatives.  

Balanced accuracy (BA) [129] normalizes true negatives and true 
positives prediction, as the average of the true positive and negative 
rates: 

 𝐵𝐵𝐴𝐴 = (𝑇𝑇𝑇𝑇 ∕ (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) + 𝑇𝑇𝐹𝐹 ∕ (𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐹𝐹)) ∕ 2  (5) 

All the metrics above become in case of a perfect fault coverage with no 
false alerts to 1.0. 

 Methodology  4.2.4

We use the static analyzers of Section 4.1.1, and datasets of Sections 
4.2.1 and 4.2.2. 

Each tool processed the whole reference dataset. Checking a 
contract under test may result in a successful test run or a processing 
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failure - an improper or incomplete test run with partial (or no) 
diagnostic outcome -. A successful test run may deliver a no-
vulnerability found message (negative result) or a vulnerability 
indication complemented with diagnostic information on the location 
and type. At first, we focus only on the vulnerability detection 
capabilities and refer to all cases with a vulnerability indication as a 
positive. 

We observed many successful runs and sporadic errors in 
processing smart contracts using our selected SA tools for the reference 
dataset. Processing errors happen mainly for two reasons:  

• the tool uses an external module that exhausts memory resources 
(e.g., Securify2);  

• the tool covers the Solidity language only incompletely. 

The set of smart contracts that are processed by each tool without any 
errors forms the reduced dataset.  

We consider the number of lines of code (LOC) of each contract and 
define the location of detection (LoD) as the line of a smart contract 
where a tool detects a positive. Each positive is detected by a 
vulnerability-related rule. Each vulnerability-related rule is mapped to 
a vulnerability and consequently to a CWE-ID of our taxonomy. The 
tuple (tool, address, LoD, CWE-ID) identifies a positive that a specific tool 
detects in a smart contract under test.  

Determining whether each positive is a true or false positive 
requires a massive amount of (manual) work. Thus, we used the 
annotated pilot set (Section 4.2.2) extracted from the reference dataset. 
The ground truth of the pilot set permits calculating the upper-limit of 
class coverage for each tool and CWE-ID. Moreover, the ground truth 
permits determining whether each positive outcome is a TRUE positive 
or a FALSE one, and whether each negative is a TRUE negative or a 
FALSE one. We used a new tuple (tool, address, LoD, CWE-ID, diagnosis), 
adding the field diagnosis, which can assume values TP, FP, TN, and 
FN. 
As shown previously in Section 4.1.2, no tool in the selection covers by 
design the entire set of vulnerabilities; thus, diagnostic coverage 
metrics need a finer resolution of the individual classes intended to be 
covered by it. We refer to this subset of the anticipated anomaly classes 
(described in Chapter 3) as the working domain of the particular tool. A 
detection is missing (for a specific tool) if a vulnerability from its 
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working domain escapes detection (false negative). We use for this the 
pilot set, and the purpose of this experimental campaign is to assess 
how tools perform in their respective working domain, determining 
how good are built. 

Finally, we provide a benchmark evaluating each SA tool as a black 
box.  

 TESTING PERFORMANCE 4.3

This section focuses on testing performance, starting from determining 
the upper-limit of class coverage (e.g., data sets and subsequent 
creation of a reference ground truth) and the methodology of the 
experimental campaign. 

 The Upper-limit of Class Coverage 4.3.1

Which is the upper-limit of class coverage for each tool?  
Manual inspection allowed to identify vulnerabilities for each class. 

The classwise ratio between the number of vulnerabilities detectable by 
a particular tool and the ones present in the pilot set indicates the 
upper-limit of the coverage, assuming vulnerabilities are uniformly 
distributed (Table 13). A concrete example can help clarify values in 
the table. Consider Slither and the class CWE-284. In the pilot set, the 

Table 13: The upper-limit of class coverage. 

Tools CWE- 
20 

CWE- 
284 

CWE- 
300 

CWE- 
400 

CWE- 
668 

CWE- 
669 

CWE- 
682 

CWE- 
691 

CWE- 
703 

Securify 1.0 0.2 N/A N/A N/A 1.0 N/A 0.9 1.0 

Securify2 1.0 1.0 N/A N/A 0.6 1.0 0.1 1.0 1.0 

Slither 0.6 0.8 1.0 N/A 0.6 1.0 0.1 0.9 1.0 

SmartCheck N/A 0.8 N/A 1.0 1.0 1.0 0.1 0.3 1.0 

Remix-IDE N/A 0.1 N/A 0.9 0.9 1.0 N/A 0.7 0.1 

Mythril N/A 0.1 1.0 N/A 0.6 1.0 1.0 0.7 1.0 

Oyente N/A 0.1 N/A N/A 0.6 1.0 1.0 0.8 N/A 

Osiris N/A N/A N/A N/A 0.6 1.0 1.0 0.8 N/A 

HoneyBadger N/A N/A N/A N/A N/A 1.0 1.0 0.2 N/A 
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number of existing vulnerabilities that belong to the class CWE-284 is 
235. Among them, the occurrences of the vulnerability types that 
Slither can detect are 185. Thus, the upper bound of the CWE-284 
coverage is 185/235, i.e.,  0.8.  

Class CWE-345 is omitted from the table because no vulnerability 
belongs to this class in the reference and pilot set. The following section 
investigates the quantification of the testing performance of the 
individual static analyzers.  

Some observations follow: 

• For each CWE-ID in the taxonomy, there is at least one tool for 
which the upper-limit of class coverage is 1.0; 

• All tools have the upper-limit of CWE-669 coverage of 1.0; 

• One tool that has the upper-limit of the coverage of 1.0 for  CWE-
284 (Securify2), CWE-400 (SmartCheck), CWE-668 (SmartCheck) and 
CWE-691 (Securify2). 

• Mythril has the maximum upper-limit coverage of 1.0 for the three 
classes with fewer occurrences (CWE-330, CWE-669, CWE-682).  

 How Tools Perform in the Working Domain  4.3.2

How do tools perform in their working domain?  
We focus on the pilot set. By combining the evaluation of tools in 

Section 4.1.2 and the findings described in Section 4.2.3, we can build 
confusion matrices for each class of the taxonomy. 

Table 14 and Table 15 provide coverage and precision for each tool 
and class, respectively. Light-red cells (x, y) indicate that the tool in 
row x chose NOT to detect vulnerabilities of the class y. In both tables, 
light-green cells highlight the best tool x for each class y. HoneyBadger 
is omitted from the tables because it finds no TP in its working domain 
in the pilot set.  

The following example shows how the values of Table 14 are 
calculated. The vulnerabilities in the pilot set belonging to the working 
domain of Slither in the CWE-284 class are 185 (the total number of 
vulnerabilities in the CWE-284 class is 235). Slither detects 170 of them; 
therefore, the coverage is the ratio of 170 to 185, i.e. 0.9.  
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Table 15: Precision of tools. 

Tools CWE- 
20 

CWE- 
284 

CWE- 
330 

CWE- 
400 

CWE- 
668 

CWE- 
669 

CWE- 
682 

CWE- 
691 

CWE- 
703 

Securify2 0.5 0.8 N/A N/A 0.0 1.0 0.3 0.3 0.2 

Securify 0.6 0.3 N/A N/A 0.0 0.0 N/A 0.5 0.8 

Slither 1.0 1.0 0.0 N/A 0.9 1.0 0.0 0.7 1.0 

SmartCheck N/A 0.9 N/A 1.0 0.0 1.0 0.0 0.3 0.0 

Remix-IDE N/A 0.5 N/A 1.0 0.8 1.0 N/A 0.9 0.0 

Mythril N/A 0.8 1.0 N/A 0.8 0.4 0.0 0.5 0.9 

Oyente N/A 0.0 N/A N/A 0.0 1.0 0.6 0.3 N/A 

Osiris N/A N/A N/A N/A 0.0 1.0 0.7 1.0 N/A 

 

Table 14: Classwise vulnerability coverage – tool working domain. 

Tools CWE- 
20 

CWE- 
284 

CWE- 
330 

CWE- 
400 

CWE- 
668 

CWE- 
669 

CWE- 
682 

CWE- 
691 

CWE- 
703 

Securify2 0.5 0.9 N/A N/A 0.0 0.8 0.1 0.2 1.0 

Securify 0.2 0.6 N/A N/A N/A 0.0 N/A 0.2 0.4 

Slither 0.2 0.9 0.0 N/A 0.5 0.8 0.0 1.0 0.7 

SmartCheck N/A 0.9 N/A 0.4 0.0 0.3 0.0 0.3 0.0 

Remix-IDE N/A 1.0 N/A 0.7 0.7 0.8 N/A 0.8 0.0 

Mythril N/A 0.8 1.0 N/A 0.3 1.0 0.0 0.1 0.4 

Oyente N/A 0.0 N/A N/A 0.0 0.5 0.3 0.1 N/A 

Osiris N/A N/A N/A N/A 0.0 0.3 0.4 0.1 N/A 
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We would emphasize that the different tool’s precision values cannot 
be directly compared in this section because they refer to different sets 
of vulnerabilities (TP+TN).  

Through the tables, developers can determine how well their tools 
perform on the vulnerabilities they decided to target. Some 
observations follow:  

• Slither has a high precision (>= 0.9) in five classes and has a high 
coverage (>= 0.9) in two.  

• Securify2 and Slither perform well both in precision and coverage 
in two classes (CWE-284 and CWE-669). Securify2 covers the class 
CWE-703 completely (but with low precision) and has the highest 
coverage in CWE-20. 

• Mythril has complete coverage and perfect precision in CWE-330. 

• Remix has good coverage and high precision in CWE-669 and 
CWE-691. 

Next, we want to assess the aggregate coverage and precision of the 
tools without distinguishing among classes. We generate the new 
confusion matrices (Figure 18) and summarize the main derived 
metrics in Table 16. Green and light green indicate the top two 
performances in the tools working domain. Some observations follow:  

• The working domains of Securify2 and Slither contain the largest 
and second-largest number of vulnerabilities, respectively.  

• Slither and Remix have the best and the second-best performance 
both in coverage and precision. However, Remix targets fewer 
vulnerabilities than Slither;   

• Securify2 covers more than 70% of vulnerabilities, with low 
precision (0.6); 

• Mythril has low coverage (0.3) and a precision lower than 0.7.  

In this section, we analyzed the behaviour of the tools in their 
working domain. Once we identified the tool's working domains, we 
quantified their classwise and aggregate detection capabilities (Tables 
14-16). 
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Figure 18: Confusion matrices in the tool working domain. 

Table 16: Tools performances – working domain. 

Pilot Set Sfy2 Sfy Sli SmC Rmx Myt Oye Osi 

Precision 0.63 0.42 0.93 0.79 0.86 0.68 0.60 0.50 

Coverage 0.72 0.42 0.77 0.72 0.74 0.33 0.11 0.15 
Balanced  
accuracy 0.84 0.70 0.88 0.86 0.87 0.66 0.56 0.57 

F1 Score 0.67 0.42 0.84 0.76 0.80 0.44 0.19 0.23 
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 Tools Benchmarking  4.3.3

What is the tool benchmark in the general case?  
This section extends our benchmark on the capabilities of the 

individual tools in the general case evaluating the outcomes obtained 
by processing the entire pilot set. We use the same four performance 
metrics as above. The number of TPs and FPs per tool and class, 
considering the tool working domain and tools as black boxes, 
coincides. Instead, FNs and TNs differ. Accordingly, because of the 
definitions (1), (2), (3), (5), the precision of Section 4.3.2 (Table 15) and 
this section coincide; conversely, the other metrics differ.  

Table 17 provides the coverage for each tool and class. These results 
can help choose the best tool once specific vulnerabilities are targeted. 
Some observations follow: 

• Securify2 has the highest coverage in classes CWE-20, CWE-284, 
and CWE-703 (with low precision). 

• Slither and Remix have the highest coverage, respectively, in 
classes CWE-669 and CWE-691 (Slither), and CWE-400 and CWE-
668 (Remix) - with high precision-. 

Table 17: Classwise vulnerability coverage – tool benchmarking. 

Tools CWE- 
20 

CWE- 
284 

CWE- 
330 

CWE- 
400 

CWE- 
668 

CWE- 
669 

CWE- 
682 

CWE- 
691 

CWE- 
703 

Securify2 0.4 0.9 N/A N/A 0.0 0.7 0.1 0.2 1.0 

Securify 0.2 0.2 N/A N/A N/A 0.0 N/A 0.2 0.4 

Slither 0.1 0.7 0.0 N/A 0.3 0.7 0.0 0.9 0.7 

SmartCheck N/A 0.7 N/A 0.4 0.0 0.2 0.0 0.1 0.0 

Remix-IDE N/A 0.1 N/A 0.7 0.6 0.7 N/A 0.1 0.1 

Mythril N/A 0.1 1.0 N/A 0.2 0.5 0.0 0.1 0.3 

Oyente N/A 0.0 N/A N/A 0.0 0.5 0.3 0.1 N/A 

Osiris N/A N/A N/A N/A 0.0 0.2 0.4 0.1 N/A 

 



 

96 

  

 
Figure 19: Confusion matrices for benchmarking. 

 

Table 18: Tools performances – benchmark. 

Pilot Set Sfy2 Sfy Sli SmC Rmx Myt Oye Osi 

Precision  0.63 0.42 0.93 0.79 0.86 0.68 0.60 0.50 

Coverage 0.66 0.18 0.55 0.44 0.10 0.06 0.01 0.02 
Balanced  
accuracy 0.81 0.58 0.78 0.71 0.55 0.53 0.51 0.51 

F1 Score 0.64 0.25 0.70 0.56 0.19 0.11 0.03 0.04 
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• Mythril and Osiris have the highest coverage in the class CWE-330 
and CWE-682. 

Figure 19 shows the new confusion matrices by aggregating data 
without distinguishing among classes. Table 18 provides the overall 
benchmark results. Again, green and light-green cells highlight the best 
and second-best results. Some observations follow:  

• No tool can cover more than 66% of the vulnerabilities in the pilot 
set (coverage), and no tool exceeds the value of 70% (Slither) in the 
F1 score. 

• Securify2 has the best coverage (even if it misses 1/3 of vulnerable 
rows) and the second F1 score performance. It has the highest 
balanced accuracy; however, it has low precision. 

• Slither has a coverage of 0.10 lower than Securify2, but it has a very 
high precision (0.93). Moreover, it has the second performance 
(0.78) of balanced accuracy. 

• SmartCheck has lower performances than Slither by about 0.10 in 
every metric. 

Dedicated tools with a specific purpose and limited working domain 
have worst performances than others when analyzing a broad set of 
vulnerabilities. 

This evidence permits us to argue that considering the coverage 
alone (disregarding the false positives cost), Securify2 is a good choice. 
If we target a balance between precision and coverage, Slither is to be 
preferred. However, the low diagnostic accuracy (coverage) demands 
an investigation on the potential improvement using a combination of 
tools. 

 VALIDITY AND LIMITATIONS 4.4

The quality of smart contracts has a significant influence on our 
analysis results. For instance, widely used quality estimators, like 
COnstructive QUALity MOdel (COQUALMO [130]), use many 
influencing factors. The sample set of smart contracts considered in our 
study originated from a public repository with no information on such 
essential factors as the developers' skills. Qualified people in software 
security-oriented companies possessing a sophisticated background 
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could produce better contracts regarding software weaknesses and 
vulnerabilities than the cuff developers. Variance in skills influences 
both the total number and distribution of the vulnerabilities in smart 
contracts. 

The uncovered classes and vulnerabilities of Table 10 are 
independent of the smart contract selection. 

We suppose that eliminating over-represented contracts makes the 
distribution of CWE classes in a general dataset and pilot set 
comparable. Tools have different precision and coverage in each class 
(as highlighted in Tables 15 and 17). Thus, precision and coverage in a 
set of smart contracts depend on the distribution of CWE classes. We 
want to compare the CWE distribution of the pilot set and a general 
set. The pilot set is processed by each tool (each tool contributes to the 
CWE distribution) without any processing error. In our set, smart 
contracts from the reference dataset, which are processed without any 
errors by each tool, form the reduced dataset (around 300 smart 
contracts). The distribution of the positive rows found by the tools and 
grouped into CWE classes of a reduced dataset is comparable to 
distributions in the pilot set (Figure 20). Then, with these premises, 
findings on precision and coverage are generalizable. 

  

 
Figure 20: Distribution of positives in the pilot and reduced dataset. 
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5 
IMPROVEMENT OF THE SMART CONTRACT 
SECURITY 

5  IMPROVEMENT OF THE SMART CONTRACT 
SECURITY 

Reducing the number of residual vulnerabilities is crucial and can be 
achieved through static analysis. In Chapter 4, we analyzed how the 
security of smart contracts can be evaluated by using static analyzers at 
the early stage of the software life cycle. This section tackles the third 
research question we address: How to improve the smart contract security 
using SA tools? (RQ3) 

We address the problem by considering the outcomes of SA tools. 
Increasing the TPs means increasing the detected vulnerabilities and 
the number of FPs (costly in terms of time and resources spent for their 
reduction - Section 2.4.3). The first goal is to increase the number of TPs 
without increasing FPs excessively. Moreover, increasing TPs means 
decreasing FNs. However, FNs cannot be eliminated and are 
dangerous because they enable subsequent successful attacks. To 
increase the smart contract security, we have to look for which FNs are 
most critical to prioritise mitigation actions. Moreover, each TP is 
mapped to a CWE-ID in our taxonomy and is also identified by its 
physical location in a contract. Identifying clusters of TPs 
(characterised by belonging to a specific CWE-ID) in specific areas of 
contracts allows for identifying similar clusters of vulnerabilities in the 
same locations. This information suggests specific areas in Solidity 
smart contracts where the search for vulnerabilities should focus.  

Thus, Section 5.1 treats the improvement of the coverage by 
combining tools. Sections 5.2 and 5.3 respectively address the 
prioritization of vulnerabilities escaping detection and where 
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vulnerabilities are more likely located. Finally, Section 5.4 highlights 
some remarks. 

 COVERAGE IMPROVEMENT 5.1

Is it possible to improve the coverage by using a combination of tools? 
As the previous experiments indicated highly different classwise 
detection capabilities of the individual tools, we may consider 
combining them. 

There are several ways to combine tools [131]. We use multiple SA 
tools to test a smart contract from the pilot set in our experiment and 
consider the combined test result positive if any of the tools have a 
positive outcome (OR type combination). This way, fault coverage 
improves, at a price to increase the number of false positives.  

True positives are rows in which at least one of the tool predictions is 
positive, and the row really contains at least one vulnerability. False 
positives are rows in which at least one of the tool predictions is positive 
but they contain no vulnerabilities. False negatives and true negatives 
follow accordingly.  

We run our experiments for all the possible combinations of 2, 3 or 
4 tools and report in Table 19 the combinations with the highest fault 
coverage.  

More false positives to be analyzed (i.e., the precision of the 
combination is less than that of the best tool) is the cost paid for using 
the combination. As an asymptotic result, we report that using all the 
considered tools together 382 of the 411 vulnerable lines are detected, 
with the coverage of 0.93. The best coverage combining two tools 

Table 19: Tool combinations. 

Pilot Set Sfy2 
Sli 

Sfy2 
SmC 

Sfy2 
Rmx 

Sfy2 
Myt 

Sfy2 
Sli 
SmC 

Sfy2 
Sli 
Rmx 

Sfy2 
Sli 
SmC 
Rmx 

Sfy2 
Sli 
SmC 
Myt 

Precision 0.67 0.62 0.65 0.64 0.64 0.68 0.64 0.64 

Coverage 0.81 0.76 0.71 0.68 0.88 0.85 0.90 0.90 

Balanced  
accuracy 

0.89 0.86 0.84 0.82 0.92 0.91 0.93 0.93 

F1 Score 0.73 0.68 0.68 0.66 0.74 0.75 0.75 0.75 
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remains at 0.81. By combining three tools, the coverage reaches at best 
the value of 0.88 (Securify2 – Slither – SmartCheck). The second-best 
solution (Securify2 – Slither – Mythril) has a value of 0.85 with no 
meaningful difference in balanced accuracy and F1 score. Moreover, we 
investigated four-tool combinations. We obtained the best result by 
adding Remix or Mythril to the best combination of three tools: the 
coverage and precision have a value of 0.90 and 0.64. 

Another evaluation targeted the coverage for each of the classes 
rather than considering the aggregate. Proper combinations should 
include: a tool between Securify2, Securify, and Slither for CWE-20; 
Mythril to cover CWE-330; SmartCheck or Remix for CWE-400. The best 
combination contains four tools (Securify2 – Slither – SmartCheck - 
Mythril). This combination is also one of the best four-tool 
combinations found earlier, which appears thus to be the best from the 
point of view of both aggregate and classwise vulnerability coverage. 

Finally, we report the cost in terms of execution run time. The 
architecture used is a Virtual Machine (Ubuntu64 based, 8GB of 
memory) that ran in a Linux Server with 24 GB. Slither, Remix, and 
SmartCheck require less than a minute to analyze the entire pilot set. 
Securify2, Securify, and Mythril need 30 minutes, 2 hours, and 4 hours 
respectively.  

We run some experiments over big contracts (between 1500 and 
6300 LOC). The maximum required time for the analysis of a big smart 
contract remains within a minute for Slither, Remix, and SmartCheck. 
Securify2, Securify, and Mythril require a maximum time of one hour, 
three hours, and seventeen hours. 

 VULNERABILITIES PRIORITIZATION 5.2

Even using combinations of tools we have undetected vulnerabilities. 
We want to investigate whether they are all equally critical or if some 
can be more dangerous.  

To do this, we need to determine their severity, thus identifying the 
most critical types of undetected vulnerabilities, which would become 
a top priority in an effort for mitigation. We investigated several 
prioritization methods (e.g., [132], [133], [134]) and choose two ([133], 
[134]) that are dealing explicitly with vulnerability prioritization: the 
typical severity of the Common Attack Pattern Enumeration and 
Classification (CAPEC); ii) the severity determined by the Common 
Weakness Scoring System (CWSS) developed by the CWE. 
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 CAPEC  5.2.1

5.2.1.1 Overview 

CAPEC [133] provides a public catalog of common attack patterns that 
an attacker uses to exploit known weaknesses. Each pattern captures 
the design and execution of an attack, thus providing information 
about the severity and mitigation of the attack. CAPEC uses four levels 
of abstraction for attack patterns (ordered by increasing level of detail): 
category, meta, standard, detailed. 
Currently3, the CAPEC archive contains 546 attack patterns, divided 
into two main hierarchical views:  

• Mechanisms of attack, consisting of 9 categories, representing the 
fundamental mechanisms used to exploit a vulnerability;  

• Domains of attack, represented by six different categories: software, 
hardware, communications, supply chain, social engineering, physical 
security. 

CAPEC attack patterns capture the exploitation of weaknesses. Each 
attack pattern contains some information, including a description of 
the attack, relationships to other attack patterns, and a typical severity 
(which we will use for prioritization). 

5.2.1.2 Mapping CAPEC patterns to vulnerabilities 

We consider vuln as a type of vulnerability that belongs to our 
taxonomy. To determine the mapping between vulnerabilities and 
CAPEC attack patterns, we used the following method: 

∀ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

4. Considering the known exploit scenarios: 

a. we determined the mechanism of the attack; 

b. we extracted some keywords; 

5. We identified a set of CAPEC patterns (C_set) by performing a 
keyword search on the CAPEC list, filtered through the 
mechanism of the attack. 

                                                 
3 In December 2021, the latest version of the CAPEC list is 3.6. 
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6. Then, we selected the maximum severity of attack patterns 
belonging to C_set. 

 CWSS  5.2.2

5.2.2.1 Overview 

CWSS [134] provides a way to prioritize weaknesses by proposing a 
methodology combining three groups of metrics: base finding metric 
(information extracted from the weakness class), attack surface metric 
(barriers an attacker must overcome), and environmental metric 
(characteristics of the environment of the weakness). Each type of 
metric group is composed of several factors that, combined with 
appropriate weights, determine the metric's subscore. The combination 
of subscores determines the final CWSS score [134]. CWSS explicitly 
supports cases of incomplete information (factors taking unknown 
value) and allows ignoring irrelevant factors in the analyzed context 
(not applicable value). 

5.2.2.2 CWSS calculation 

For the scoring calculation, we followed [134]. Our basic assumption is 
that in case of a vulnerability, an attacker is always able to discover and 
exploit it. The main factors to consider are:  

• Common consequences of the CWE-ID (associated with the 
vulnerability-related weakness) leading to potential technical 
impacts on the Blockchain; 

• Worst-case scenarios in terms of business impact; 

• Vulnerability mitigation capability provided by an internal (e.g., 
mandatory software construct) or external control (e.g., EVM).  

The resulting score is a value from 0 to 100, then reported on a scale 
from 0 to 10. 

 CAPEC and CWSS Severity 5.2.3

CAPEC uses natively four severity classes (critical, high, medium, low), 
CWSS returns a score from 0 to 10. To compare the two scoring 
systems, we determine the CWSS severity class using the following 
score-to-severity conversion (used by NIST [135]): 0 - 3.9 low; 4.0 - 6.9 
medium; 7.0 - 8.9 high; 9.0 - 10 critical.  
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Table 20 (using the acronyms in Table 7) shows the severity of 
classes and vulnerabilities of our taxonomy. The following colours 
indicate the severity: blue - critical, red - high, green – medium; grey 
represents vulnerabilities whose severity is not identified. The maximum 
severity of the vulnerabilities that belong to a specific class determines 
the severity of the class. 

 Prioritization of False Negatives 5.2.4

Once we have determined the severity, we prioritize vulnerability 
escaping detection (FNs). We process the manually annotated pilot set 
(Section 4.2.2) with the n-tool combinations of Section 5.1; the number 
of false negative types of each combination, grouped by severity, is 
shown in Figure 21 (CAPEC) and Figure 22 (CWSS ). As an example, 
we examine the case of using a 3 (or more) SA tool combination. This 
setup results in fewer types of false negatives than a 2-tool 
combination. 

By considering the union of the FN types in each scoring method, 
we can argue that: 

• CWSS and CAPEC identify 6 FNs with critical or high priority (BU, 
TD, FE, IOU, Re, SA); 

• CWSS and CAPEC identify 5 FNs with medium priority (CPL, 
ELT, GR, SF, VEF); 

• CWSS and CAPEC identify 0 FNs with low priority; 

• The two methods differ in identifying FNs with critical and high 
priority. 

In general, technical and business impacts dominate the CWSS score. 
The values of these factors reflect the particular nature of the 
Blockchain and the resulting criticality that each breach entails. CAPEC 
cannot account for this specificity: the severity is a consequence once 
the pattern is determined. To summarize, CWSS focuses on 
consequences and CAPEC on the attack method. 
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Table 20: Severity of vulnerabilities and classes based on CAPEC and CWSS. 

CWE-IDs CWE-
20 

CWE-
284 

CWE-
330 

CWE-
345 

CWE-
400 

CWE-
668 

CWE-
669 

CWE-
682 

CWE-
691 

CWE-
703 

CAPEC: 
severity of 

vulnerabilities 
 

SA 
RV 
ELT 

Atx 
UEW 
Usd 
VEF 

GR 
MPRA 

SM 
Ty 

CPL 
Gs 

BU 
TD 
ML 
SF 

CU 
DUC 

EC 

IOU 
AP 

RLO 
FE 
Re 

TOD 
UEB 
IGG 
AJ 

ED 
Us 
UV 

CAPEC: 
CWE-ID criticality H C M H M C C H C M 

CWSS: 
severity of 

vulnerabilities 
 

SA 
RV 
ELT 

Atx 
UEW 
Usd 
VEF 

GR 
MPRA 

SM 
Ty 

CPL 
Gs 

BU 
TD 
ML 
SF 

CU 
DUC 

EC 

IOU 
AP 

RLO 
FE 
Re 

TOD 
UEB 
IGG 
AJ 

ED 
Us 
UV 

CWSS: 
CWE-ID criticality H C M C M C C C C H 
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Figure 21: Types of false negatives (CAPEC), n-tool combinations. 

 
Figure 22: Types of false negatives (CWSS), n-tool combinations. 
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By analyzing the two figures, we can refine considerations in 
Section 5.1: 

• the Sfy2-Sli-SmC-Myt four-tool combination, although it has fewer 
occurrences of FNs than Sfy2-Sli-Rmx, contains more critical 
(CAPEC) or high (CWSS) severity types.  

• Sfy2-Sli-SmC-Myt and Sfy2-Sli-SmC-Rmx are equivalent in terms of 
coverage and precision; however, the combination that includes 
Remix contains fewer types of FNs with high or critical severity. 

 LOCATION OF VULNERABILITIES 5.3

 Motivations  5.3.1

Although vulnerabilities and analysis tools are a widely debated topic, 
the characterization of the position of vulnerabilities in Solidity smart 
contracts is surprisingly less investigated compared to other 
programming languages. Locating a specific class of vulnerabilities 
into smart contracts can help in different ways. On one side, tool 
developers can be guided for improving the vulnerability detection 
capabilities of the tool, while on the other side, software developers can 
produce more secure contracts focusing on the specific areas where 
such vulnerabilities are more likely located. 
To locate vulnerabilities, we use the fault model proposed in Chapter 
3. The starting point was the datasets of Section 4.2. We focus on 
vulnerabilities instead of vulnerable rows. We analyze the distributions 
of the locations where tools find positive outcomes. We create the 
ground truth of vulnerabilities for a subset S of smart contracts through 
manual inspection, and we first perform a comparison of the 
distributions within this set. Then we generalize our findings by 
comparing the distributions between the manually inspected subset 
and the full set. Such comparison allows us to identify where certain 
classes of vulnerabilities are located, suggesting specific areas in 
Solidity smart contracts where the search for vulnerabilities should 
focus. 

 Experimental Settings and Methodology  5.3.2

From the list of static analyzers defined in Section 4.1.1, we exclude 
HoneyBadger because of its low effectiveness. 
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We built an experimental dataset (more than 300 smart contracts 
[124]) starting from the reference dataset of Section 4.2.1, excluding 
contracts that generated some processing failures when processed by 
tools. 

Each tool processed the whole experimental dataset. Testing each 
row of a contract can result in two different outcomes: negative or 
positive detection. By focusing on positives, each tool delivers results 
with its own codes and specific format. For each tool, we identified the 
codes related to the vulnerabilities belonging to our taxonomy, 
excluding the other codes from the analysis. Finally, we harmonized 
the results as described below. 

Let consider the number of lines of code (LOC) of each contract and 
define the location of detection (LoD) as the line of a smart contract 
where a tool detects a positive. We define the relative location of detection 
(RLoD) as the ratio between the LoD and the LOC of the smart contract 
under analysis. The RLoD identifies where positives are located in the 
contracts. Thus, a tuple (tool, address, RLoD, category) represents a 
positive. Tool is the tool that identifies the positive, address is the smart 
contract address, RLoD is the relative location of detection, and category 
is the class of the CWE taxonomy the vulnerability belongs to.  

Determining whether each positive is a true or false positive 
requires a massive amount of (manual) work. Thus, we extracted a 
subset composed of 15 contracts (referring to it as a pilot set) from the 
experimental dataset. Guided by the construction criteria of Section 4.2.2, 
we could use the same pilot set of that section. 

We first analyzed the pilot set. The manual inspection permitted to 
determine the ground truth, i.e., to determine for each positive finding 
whether it is a TRUE positive or a FALSE one. In addition, it permitted 
to determine for each negative whether it is a TRUE negative or a 
FALSE one. For our purpose, however, we sought for the location of 
positives. We used the RLoD (defined above) to determine the location. 
We used a new tuple (tool, address, RLoD, category, diagnosis), adding the 
field diagnosis, which can assume values TP or FP. For each class of the 
taxonomy, we determined the location of the vulnerabilities by 
analyzing the TPs. Next, we analyzed our results by comparing the TPs 
to all the positives (including FPs). Then, by comparing the 
distributions of positives between the pilot and reference set and 
having a clue on the true positives, we tried to understand and discuss 
the generality of our findings. 
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 Pilot Set Analysis and Datasets Comparison  5.3.3

As a preliminary step, the focus is on the sum of the occurrences of 
positives that the whole set of SA tools finds in the contracts. We found 
that 65% of the contracts in the reference set (55% in the pilot set) 
contain from 0 to 50 positives; 20% of the contracts in the reference set 
(33% in the pilot set) contain from 51 to 100 positives; the remaining 
15% of the contracts in the reference set have more than 100 positives 
(12% in the pilot set). 

Then we focus on the pilot set. First, we determine the ground truth 
(GT) for each class of our taxonomy. Then, we calculate the coverage as 
the percentage of detected vulnerabilities (TP) over all the 
vulnerabilities (GT). 

The whole number of vulnerabilities (GT = 486), TPs, FPs, and the 
coverage are shown in Table 21. The analysis of the pilot set, detailed 
for each class, is shown in Table 22. The whole set of SA tools identifies 
446 TPs over 486 vulnerabilities (92%). Results slightly differ from 
Chapter 4, as the focus is on vulnerabilities instead of vulnerable rows.  

As observed, the tool coverage change based on the class; thus, the 
coverage of a dataset depends on the class distribution. Figure 23.a 
highlights the distributions of CWE categories in the pilot (red) and 
reference set (blue). As it can be observed, the classes have comparable 
frequency distributions in the two sets. 

 Moreover, Figure 23.b shows that CWE-345 (in grey) has no 
positives in either set; thus, we decided to exclude this class from 
further analysis.  

 

Table 21: Pilot set analysis –vulnerabilities. 

GT=486 Securify2 Securify Slither SmartCheck Remix Mythril Oyente Osiris 

TP 320 40 229 182 43 27 6 8 

FP 241 88 16 50 7 18 4 8 

Coverage 0.67 0.08 0.48 0.38 0.09 0.06 0.01 0.02 
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Figure 23: Data overview – vulnerability location. On the left, the distribution of CWE 

classes. On the right, which classes tools can detect. 

Table 22: Coverage detailed for each class. 
 CWE-20 CWE-284 CWE-330 CWE-400 CWE-668 CWE-669 CWE-682 CWE-691 CWE-703 

Securify2 0.7 0.8 - - - 0.5 0.1 0.2 1.0 

Securify 0.1 0.1 - - - - - 0.2 0.4 

Slither 0.1 0.7 - - 0.3 0.5 - 0.7 0.6 

SmartCheck - 0.7 - 0.4 - 0.2 - 0.1 - 

Remix - - - 0.7 0.6 0.5 - 0.5 - 

Mythril - 0.1 1.0 - 0.2 1.0 - 0.1 0.4 

Oyente - - - - - 0.3 0.3 0.1 - 

Osiris - - - - - 0.3 0.3 0.1 - 

SA toolset 0.8 1.0 1.0 0.8 0.8 1.0 0.8 1.0 1.0 
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 Analysis of Vulnerability Location  5.3.4

This section analyzes the location of specific classes of 
vulnerabilities. To perform a comparison of distributions, we use 
boxplots with the median and the interquartile range (IQR), the interval 
between the upper hinge (UH – 75th percentile of the distribution) and 
the lower hinge (LH – 25th percentile). 

First, we focus on the pilot set, in which we analyze locations of the 
true positives (TPs) and compare them with all positives. Then, 
whether the distributions are different, we look at the false positives 
(FPs). Finally, by comparing the distributions of positives between the 
pilot and reference set and having a clue on the true positives, we try to 
understand and discuss the generality of our findings. 

5.3.4.1 Comparison in the pilot set 

The distributions of the positives in the pilot set are shown in Figure 
24. Boxplots compare distributions of true positives (on the left), 
positives (in the middle), and false positives (on the right). Each 
boxplot shows the interquartile range for a specific CWE-ID of the 
taxonomy. A horizontal line within the box represents the median. The 
red boxplot highlights the distribution of positives without 
SmartCheck and Osiris for the CWE-668. As only four positives for 
CWE-330 have been detected, we decided to exclude this class from 
further analysis.  

When we consider true positives, we can observe that: 

 
Figure 24: Comparison of RLoD distributions in the pilot set. 
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• CWE-20, CWE-400, CWE-691, CWE-668, and CWE-703 have an 
LH greater than 50%; thus, more than 75% of TPs locates in the 
second half of contracts. In particular, more than 75% of TPs 
locates in the last quarter of contracts for CWE-703; 

• The CWE-682 IQR (50% of TPs) is between 40 and 65; 

• The IQR of CWE-284 and CWE-669 spread between 35 and 77. 

When comparing the TPs to the positives, we determine that 
distributions of CWE-20, CWE-284, CWE-400, CWE-691, CWE-682, and 
CWE-703 differ in the upper, lower hinge, and median less than 5%. As 
a result, the distributions of positives are representative of distributions 
of TPs.  

CWE-668 distributions differ significantly in the LH. FPs (at the 
right of Figure 24) affect the distribution of positives. The manual 
inspection of the pilot set shows that Osiris and SmartCheck detected 
36 FPs and no TPs. Thus, we analyzed the distribution of positives 
without the outcomes of SmartCheck and Osiris (PSCO) (as shown in the 
red boxplot of Figure 24). TPs and PSCO distributions do not differ 
significantly; therefore, locations of PSCO are representative of locations 
of true positives. 

Finally, the focus is on CWE-669. Again, the distributions differ in 
the LH. However, for values greater than the median, which has a 
value of 65, the distributions are comparable. Locations of positives 
represent locations of true positives over the median. 

5.3.4.2 Generalization 

Comparing the distributions of positives between the pilot and 
reference set and having a clue on the true positives permits us to 
discuss the generality of our findings.  

Figure 25 highlights the comparison. Boxplots compare 
distributions between the positives of the pilot set (on the left) and the 
reference set (on the right). The red boxplot highlights the distribution 
of positives without the outcomes of SmartCheck and Osiris (CWE-
668).  
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The distributions of CWE-20, CWE-284, and CWE-682 differ in the 
upper, lower hinge, and median less than 5%. Consequently, locations 
of positives in the reference set are representative of locations of 
positives in the pilot set. By considering the pilot set, locations of 
positives are representative of the locations of TPs. We can then 
generalize our findings:  

• concerning CWE-20, 75% of vulnerabilities locates in the second 
half of the contracts;  

• CWE-682 vulnerabilities locate mainly on the second third of 
contracts;  

• CWE-284 spreads throughout all the length of contracts.  

We analyze the distributions of positives of CWE-669 without the 
outcomes of SmartCheck and Osiris (Figure 26 – red boxplots). 
Distributions differ less than 10% in the UH median and LH, whereas 
the IQRs differ less than 5%. By generalizing findings from the 
previous section, 75% of vulnerabilities are located over the 60 (LH) 
value.   

The distribution of CWE-400 in the reference set has lower values 
than the pilot set for the LH, median, and UH; however, the difference 
between the values is less than 10%. Therefore, the IQR between the 
distributions does not differ significantly: we can argue that 
distributions are comparable. We generalize findings with the same 

 
Figure 25: Comparison of location distribution between the pilot and reference set. 
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arguments used for CWE-669: 75% of vulnerabilities are located over 
the value of 50 (i.e., in the second-half of contracts). 

CWE-691 and CWE-703 differ less than 5% in the UH and median 
but differ significantly in the LH. So, only the upper part of the 
distributions of positives (over the 50th percentile) is representative of 
TPs. This evidence allows us to locate the 50% of vulnerabilities in the 
last quarter of contracts for both distributions (median has a value 
greater than 75). No assumptions can be made for the lower part. 

CWE-669 distributions have the same median. Analyzing the pilot 
set, we found that the distribution of positives represents TPs above 
the median. Thus, 50% of the vulnerabilities locates over the value of 65 
(median of the distribution in the reference set).  

 REMARKS 5.4

We can repeat the same considerations about the quality of the 
contracts used for our analysis as in Section 4.4. Different tools find 
positives in different classes. The difference has two root causes:  

• tools aim to detect different vulnerabilities;  

• tools can detect vulnerabilities with different capabilities.  

There are several ways to combine tools whereby different choices 
lead to different results. As shown, using OR in the decision function 
increases TPs and FPs while using AND decreases TPs and FPs. 
Clearly, more complex decision functions could be used to pursue 
different objectives. The choice made here fits to improve the coverage. 
Tools detecting a vulnerability in a class can miss detecting other kinds 
of vulnerabilities belonging to the same class. 

The severity of vulnerabilities and classes, determined through 
CAPEC and CWSS, is independent of the chosen set of smart contracts. 
The prioritization of FNs is qualitative rather than quantitative; this 
makes our results generically applicable to types that belong to our 
taxonomy. 

True positives are a subset of vulnerabilities. As a general 
statement, static analysis tools can miss detecting vulnerabilities: this 
leads to wrong locate the range of TPs in case of multiple missed 
detections. Using eight tools reduces this risk (processing the pilot set 
with all tools permits finding 92% of the vulnerabilities). 
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Our preliminary findings are based on a pilot set. However, we 
generalize results using the distributions of positives in the reference 
set only in the case of comparable distributions.  

Consider two distributions. This work uses the lower hinge (LH), 
median, upper hinge (UH), and interquartile range (IQR) for 
comparison. We consider that two distributions are comparable in the 
following two cases: i) the differences between LH, median, and UH 
values are less than 5%; ii) the difference is less than 10%, and the IQR 
ranges differ less than 5%.  

To determine where vulnerabilities are most likely to be located, we 
use the relative location of detection (RLoD). This way, we can refer to 
the various areas of the smart contract without being bound by its 
length.  For example, a range between 0 to 25 identifies the first quarter 
of a contract, a range from 26 to 50 identifies the second quarter. Other 
values follow accordingly. 
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6 
CONCLUSIONS  

6 CONCLUSIONS  
Blockchain technologies promise an out-of-the-box solution to 

improve the security of distributed systems. The diffusion of smart 
contracts (automated execution of computerized transactions) allowed 
the development of applications in different areas (e.g., financial, 
medical, insurance, gaming, betting). Blockchain ensures data 
immutability, integrity and non-repudiability, protecting smart 
contracts, data, and transaction logs by a strong hash encoding. Design 
and coding faults in the smart contracts that implement a particular 
application can result in exploitable weaknesses. This problem is even 
more critical, considering that developers cannot patch smart contracts 
once deployed on the Blockchain. 

Ethereum is one of the most widely used platforms for smart 
contract development and offers Solidity as its primary and Turing-
complete programming language. There exist checking tools for smart 
contracts written in Solidity; however, they are immature due to the 
novelty and rapid evolution of the Solidity technology and a lack of a 
large set of vulnerability records. On the other hand, Solidity is just 
another new programming language. This way, our basic assumption 
is that most weaknesses and resulting vulnerabilities are similar to 
those in other languages, potentially appearing in an Ethereum-specific 
form. Thus, the most promising way to create a quality assurance 
process for Solidity is adapting existing technologies to the peculiarities 
of Ethereum and, in particular, Solidity. 

This Thesis proposed and discussed our approach towards 
assessing and improving smart contract security by dealing only with 
Solidity Versions 0.5 and upper. Our approach has its foundation in 
three main key points: overcoming the language evolution, assessing smart 
contract security, and improving smart contract security. 
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At first, this Thesis focused on the identification of vulnerability-
related weaknesses to Solidity smart contracts. Then, we presented a 
general-purpose classification of 32 Solidity-specific vulnerabilities, 
based on CWE general software weaknesses categories (10), to 
overcome the language evolution dependence. This way, we provided 
a Solidity fault model that was the basis for the next steps in our 
research. Moreover, the use of CWE in abstracting a Solidity-specific 
vulnerability classification enriched our systematization with a widely 
used ‘de facto’ standard. In addition, this helps both software 
developers in limiting weaknesses explosion and their effects, and 
researchers in comparing Ethereum smart contracts vulnerabilities 
with others existing in other environments (i.e., platforms, 
frameworks). As the next step, we checked the similarity between 
Solidity (our 10 CWE-IDs) and conventional programming languages 
(ISO/IEC 5055:2021 – 71 CWE-IDs) in their respective fault model. 
Finally, to better understand the behaviour of vulnerabilities, we 
highlighted some relations and propagations between them. 

Then, the Thesis investigated how to assess the smart contract 
security by applying static analysis. As a preliminary analysis, we 
showed that no tools of the selection cover by design the entire set of 
vulnerabilities, identifying vulnerability classes that escape detection 
by each particular SA tool. Furthermore, smart contracts showed 
several positives when processed by SA tools; thus, extracting a 
meaningful set of contracts permitted determining its ground truth.  

We assessed smart contract security by computing basic statistical 
metrics for comparing the detection capabilities of different SA tools. 
Considering the anticipated vulnerability model, only in specific 
classes do the tools perform well (and thus are well built for those 
classes). This analysis serves as a guide for developers to increase the 
impact of tools in smart contract security. Considering tools when 
exposed to a generic set of smart contracts (tools as black boxes), we 
built a tool benchmark. Moreover, focusing on coverage, we 
quantitatively determined that using a single tool (even the best 
performing one) is not a good idea if security is the goal.   

Previous findings brought directly to the analysis of the 
improvement of smart contract security. We investigated the coverage 
by using a combination of tools. This way, at the cost of increasing the 
false positives, we found the best n-tool combination (a combination of 
four tools achieves coverage of 0.9).  
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As the next step, we investigated several prioritization methods. 
Prioritization allowed us to identify which vulnerabilities that escape 
the tool combinations should be analyzed first due to higher severity. 
These analyses serve as a guide for users to make smart contracts more 
secure before deployment.  

As a third step, we investigated where classes are most likely 
located into contracts. We first compared true positives and positives 
distribution in the pilot set and then generalized findings in the 
reference set. We identified where a relevant percentage of 
vulnerabilities is located for specific classes. Tool developers can use 
results to be guided to improve the tool's vulnerability detection 
capabilities; software developers, on the other side, can produce more 
secure contracts focusing on the specific areas where such 
vulnerabilities are most likely to be located.  

Further concrete development could use the Solidity fault model as 
a basis for comparing Solidity-specific vulnerability categories with 
others affecting different smart contract languages and platforms (e.g., 
Hyperledger). A possible goal could be to systematize such 
vulnerabilities using the same categories to have a homogeneous 
reference that can easily be used to understand if different 
environments suffer from the same vulnerabilities by identifying 
similar behaviours occurring in such environments.  

Moreover, based on static analysis results, future research can 
define and apply specific countermeasures against the vulnerabilities 
which are escaped detections. In addition, future research directions 
can involve the role of the contract complexity and the vulnerability 
and tool outcomes. Investigating which contract characteristics (e.g., 
software complexity) affect the tool outcomes can help software 
developers build more effective tools.  
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ABSTRACT

Blockchain technologies (hereafter called Blockchain) allow storing information guaranteeing properties such as immutability, integrity and non-repudiation of data. Although Blockchain is not a panacea, this technology has rapidly evolved in recent years. The development of smart contracts (which automatically execute computerized transactions) has increased the application areas of the Blockchain. One of the most important issues is security; the problem is even more critical, considering that smart contracts cannot be patched once they are deployed into the Blockchain.

Ethereum is one of the main platforms for smart contract development, and it offers Solidity as its primary (and Turing-complete) language. Solidity is a new language which evolves rapidly. As a result, vulnerability records are still sparse, and consequently, the existing smart contract checking tools are still immature. On the other hand, Solidity is just another new programming language reusing its central notions from traditional languages extended by Ethereum-specific elements. Then, the most promising way to create a quality assurance process is adapting more general existing technologies to the peculiarities of Ethereum and, in particular, Solidity.

Unfortunately, despite various studies and trials on the subject, no literature approach clearly solves the problems related to the vulnerability of smart contracts. To contribute to this hot field, we propose our methodology to assess and improve the smart contract security. At first, we address the problem of overcoming the Solidity rapid evolution through the definition of a set of 32 vulnerabilities and their language-independent classification in 10 categories. Then, we assess smart contract security by applying one of the most popular approaches to discover vulnerabilities: static analysis (SA). After selecting static analysis tools, we identify categories of vulnerabilities that SA tools cannot cover. 

Next step is to conduct an experimental campaign based on the analysis of contracts across the selected toolset. We realized that processing smart contracts, randomly extracted from Etherscan (a Blockchain explorer) with SA tools results in several positives. We determined thus, overall and for each category of vulnerabilities, the best-built tools (wrt. their effectiveness against the subset of vulnerabilities they target) and the most effective ones (wrt. the entire vulnerability set).

We found a lack of coverage of vulnerabilities in using each and every tool individually. This lack took us to the investigation of possible approaches to improve the security of smart contracts. A first approach has been to use several tools in a combined way to increase the coverage. Through this analysis we determined also the combinations with the highest coverage. Then we analyzed those vulnerabilities that escape the detection so to provide an ordering for deciding which vulnerabilities should be addressed first in the process of modifying static analysis tools to improve their coverage. As a last contribution, we investigated how to improve the tool effectiveness by determining where vulnerabilities are most likely located. 
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INTRODUCTION

[bookmark: _Toc89783273][bookmark: _Toc100492262][bookmark: _Toc510722290][bookmark: _Toc84618459]INTRODUCTION 

[bookmark: _Toc89783274][bookmark: _Toc100492263]Preliminary and Motivations 

[bookmark: Ref1_1][bookmark: Ref2_1]Blockchain technologies [1] (hereafter referred simply as Blockchain) are characterized by a shared database (or ledger) distributed across a peer-to-peer network. The term recalls the structure, a chained sequence of blocks, where each block contains a set of transactions and, except for the first one called genesis block, it is linked to its predecessor by means of a cryptographic hash. Blockchain, while not a panacea [2], promises an out-of-the-box solution to improve the security of distributed systems. Smart contracts are one of the most important innovations of the second generation of the Blockchain. The basic idea is to execute computerized transactions automatically. Their diffusion has allowed the development of applications in different areas (e.g., financial, medical, insurance, gaming, betting). Blockchain protects smart contracts, data, and transaction logs by a strong hash encoding, thus ensuring their immutability and non-repudiability. 

[bookmark: Ref3_1]However, design and coding faults and weaknesses in the smart contracts implementing the particular application can still result in exploitable vulnerabilities to malicious attacks despite the well-designed run-time environment. This problem is even more critical, considering that developers cannot patch smart contracts once deployed on the Blockchain. Thus, it is crucial to identify security flaws in the code at the early stage of the development life cycle. Vulnerabilities in smart contracts can lead to severe consequences: an example is the financial losses caused by the DAO attack [3] that allowed the attacker to steal around US$60M worth of cryptocurrency.

[bookmark: Ref4_1][bookmark: Ref5_1]Ethereum [4] is one of the most widely used platforms for smart contracts and Solidity [5] is the primary programming language that targets the development of Ethereum smart contracts. One of the major open problems related to the Ethereum blockchain is the insufficient quality assurance. Vulnerable records are still sparse due to the novelty and rapid evolution of Solidity technology. Consequently, the existing smart contract checking tools are still immature. On the other hand, Solidity is just another new programming language reusing central notions from traditional ones extended by Ethereum-specific elements. Therefore, the most promising way to create a quality assurance process for Solidity is adapting existing technologies to the peculiarities of Ethereum and, in particular, Solidity.

[bookmark: _Toc89783275][bookmark: _Toc100492264]Our Contribution

In the literature there are no clear answers on how to provide guarantees for quality assurance for smart contracts. To contribute to filling this gap, in this thesis we propose and discuss our approach towards the assessment and the improvement of the security of smart contracts. We deal only with Solidity Versions 0.5 and upper (the latest release is 0.8) due to the incompatibility with previous versions.

New vulnerabilities emerge as the language evolves; analyses too tied to a specific language release quickly become obsolete. The main reason is the novelty and the rapid evolution of Solidity. Considering previous studies, we noticed a lack of agreement in the identification of the number of vulnerabilities and their systematization. The missing agreement leads to user confusion and vulnerabilities proliferation, as well as a difficulty for researchers to compare weaknesses on different platforms. Moreover, existing classifications either do not abstract from a specific Solidity release or do not capture the behaviour of vulnerabilities; thus, they are too dependent on the language release. 

[bookmark: _Toc92214906][bookmark: _Toc92265099][bookmark: _Toc92280606][bookmark: _Ref93067211][bookmark: _Toc93224739][bookmark: _Toc93225239][bookmark: _Toc93581149][bookmark: _Toc100492265]The first research question we address is: How to overcome the language evolution? (RQ1).

Software security engineering has solid empirical foundations from a well-organized and maintained process of vulnerability data acquisition, abstraction, and generalization. The Common Vulnerabilities and Exposures (CVE) database collects, defines, and catalogues publicly disclosed cybersecurity vulnerabilities, i.e., weaknesses in software (and hardware) components that, when exploited, spoil the security of the system. The Common Weakness Enumeration (CWE) classifies weaknesses as root causes of vulnerabilities into a hierarchical taxonomy; furthermore, each CWE list item highlights the mode of introduction, expected consequences, and potential mitigations. The highly abstract top two categories of weaknesses in the hierarchy are already independent of any specific language or technology. 

[bookmark: Ref6_1]We aim to provide a Solidity-specific vulnerability analysis, categorizing each vulnerability with classes based on a general-purpose (not version or language-specific) classification. Moving beyond language evolution is the foundation for the next steps in our research. As the CWE has a primary security focus, we systematize vulnerabilities and provide a Solidity fault model based on CWE (comparing it with the ISO 5055:2021 standard [6]). 

[bookmark: Ref7_1]Static analysis (SA) is one of the most significant and widely used types of code analysis. It inspects the code without executing it. At first, it extracts an abstract model of the code under evaluation. It searches for potential vulnerabilities in the code over the model by looking for weaknesses (antipatterns). Its low effort demand compensates for its incomplete (but for most applications still sufficient) detection coverage [7]. 

[bookmark: _Toc92214907][bookmark: _Toc92265100][bookmark: _Toc92280607][bookmark: _Toc93224740][bookmark: _Toc93225240][bookmark: _Toc93581150][bookmark: _Ref94252837][bookmark: _Toc100492266]The second main research question we address is: How can we evaluate the security of smart contracts by using static analysis to detect the most relevant vulnerability-related weaknesses? (RQ2).

[bookmark: Ref3_2]The research into applying static analysis to detect vulnerabilities and weaknesses in Ethereum smart contracts increased significantly after the first infamous exploits in 2016 [3]. Several static analyzers have been developed in the last years, focusing explicitly on vulnerability detection of Solidity smart contracts. Several works compared static analyzers applied to smart contracts. 

To tackle this problem, we use the Solidity vulnerability model as a basis. Performing an analysis of the capabilities of some selected SA tools to detect weakness originating vulnerabilities on a representative set of smart contracts permits to:

evaluate the individual tool behaviour on its anticipated set of vulnerabilities-related weaknesses. This way, we can identify vulnerability classes escaping detection by the particular SA tool;

assess the smart contract security by computing basic statistical metrics for comparing the detection capabilities of different SA tools; 

These assessments permit to: i) quantify tools anticipated vulnerability model and related testing quality; ii) build a benchmark of the tools when exposed to a generic set of smart contracts. 

Using static analysis permits to assess the security of smart contracts. However, single tools have highly different classwise detection capabilities, and several vulnerabilities escape the detection. 

[bookmark: _Toc92214908][bookmark: _Toc92265101][bookmark: _Toc92280608][bookmark: _Toc93224741][bookmark: _Toc93225241][bookmark: _Toc93581151][bookmark: _Ref94255248][bookmark: _Toc100492267]The third research question is: How to improve the smart contract security using SA tools? (RQ3).

A first promising way to improve smart contract security is to combine several tools for coverage improvement at the price to increase the number of false positives. 

Even using combinations of tools, we have undetected vulnerabilities (false negatives). False negatives are dangerous because they instil unfounded confidence in the code correctness. A question arises. Are all FNs equally relevant? Identifying the most critical types of undetected vulnerabilities allows defining the top priority in planning an effort for mitigation. We want to investigate whether they are all equally critical or if some can be more dangerous, thus allowing to improve security by giving priority to the most critical vulnerabilities. 

Vulnerabilities and analysis tools are a widely debated topic. However, the characterization of the position of vulnerabilities in Solidity smart contracts is surprisingly less investigated compared to other programming languages. A third way for improvement of analysis and understanding is finding where a specific class of vulnerabilities is located into smart contracts. On one side, tool developers can be guided to improve the vulnerability detection capabilities of the tool. On the other side, software developers can produce more secure contracts focusing on the specific areas where such vulnerabilities are more likely located.



[bookmark: _Toc100492268]THESIS STRUCTURE

The remainder of the Thesis proceeds as follows. 

Chapter 2 introduces basic concepts related to dependability, Blockchain, smart contracts and static analysis. Other chapters are built on these bases.

Chapter 3 investigates the first problem we set out to address. After determining the available collections of Solidity vulnerabilities, it provides a model for Solidity and then determines vulnerability propagations (RQ1). We use this model as a basis for the following chapters.

Chapter 4 focuses on assessing smart contract security using static analysis tools. After identifying a set of static analysis tools, by analysing the tools we determine for each of them the targeted set of weaknesses to detect. Next, an intensive experimental campaign permits determining how tools behave on their targeted detectable vulnerabilities as well as in dealing with the entire set of vulnerabilities identified. (RQ2).

Chapter 5 addresses in different ways how to improve the security of smart contracts. First, an analysis of the detection capabilities of tool combination is performed; then a study targets the criticality of the uncovered vulnerabilities to define priorities of further actions to treat them. Finally, it investigates where vulnerabilities are more likely located (RQ3).

[bookmark: Zoltan_8][bookmark: Ref__124_4]Chapter 6 concludes the Thesis. An archive of support files is available at [124]. 






[bookmark: _1.2_Crittografia_a][bookmark: _Toc510722292]2

BASIC CONCEPTS AND RELATED WORKS

[bookmark: _Ref85447116][bookmark: _Toc89783280][bookmark: _Toc100492269]BASICS AND RELATED WORKS	

This chapter describes the context in which this thesis was developed. To do so, Section 2.1 reports on the dependability, security and related concepts, Sections 2.2 and 2.3 respectively discuss the basics of Blockchain and smart contracts, and Section 2.4 introduces static analysis. The state-of-the-art and related work are introduced within the description below and detailed in Section 2.5.

[bookmark: _Ref88120248][bookmark: _Toc89783281][bookmark: _Toc100492270]Dependability and Security

[bookmark: _Toc89783282][bookmark: _Toc100492271]Basic Definitions

[bookmark: Ref8_1]According to [8], a system is an entity that interacts with other entities (i.e., other systems - the environment of the given system - including hardware, software, humans and the physical world). A function of a system is what the system is intended to do, when its behaviour is what the system does to implement its function, and it is described as a sequence of states. The global state of a system is the set of states related to computation, communication, stored information, interconnection and physical conditions. 

A service delivered by a system (the provider) is the behaviour as it is perceived by its user (another system that receives the service). The service is the sequence of the (external) states of the provider. A service interface is the part of the system boundary of the provider where service delivery takes place. An external state is the part of the total state of the provider perceivable at the interface; the internal state is the remaining part of the total state.

The life cycle of a system encompasses, among others, two phases: the development and use phase. The development phase includes all activities until the system is ready to deliver service. The use phase starts when the system begins to deliver its service to the user.

[bookmark: Ref9_1]According to [9], an Autonomous System is a system that can provide its services without guidance by another system. By considering a Subsystem as a system that is a part of an encompassing bigger system, a Constituent System (CS) is an autonomous subsystem of an SoS, consisting of computer systems and possibly of controlled objects and/or human role players that interact to provide a given service. 

A System-of-Systems (SoS) is an integration of a finite number of CSs which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal. A Cyber-Physical System (CPS) is a system consisting of a computer system (the cybersystem), a controlled object (a physical system) and possibly of interacting humans.

[bookmark: Ref8_2]The original definition [8] of dependability stresses the need for justification of trust: Dependability is the ability to deliver service that can justifiably be trusted.

An alternative definition focuses on services and considers the dependability as the ability to avoid service failures that are more frequent and more severe than is acceptable.

[bookmark: _Toc89783283][bookmark: _Toc100492272]Dependability Attributes and Security

[bookmark: Ref8_3]Dependability is an integrating concept that includes the following attributes [8]: 

Availability: readiness for correct service.

Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user and the environment.

Integrity: absence of improper system alterations.

Maintainability: ability to undergo modifications and repairs.  

Defining another attribute (confidentiality) permits the introduction of the concept of security.

Confidentiality: absence of unauthorized disclosure of information.

Security. The composition of confidentiality, integrity, and availability; security requires the concurrent existence of availability for authorized actions only, confidentiality, and integrity with “improper” meaning “unauthorized”.

[bookmark: Ref8_4]The relation between security and dependability attributes are highlighted in Figure 1 (from [8]). The dependability and security specification of a system must include the requirements for the attributes in terms of the acceptable frequency and severity of service failures for specified classes of faults and a given user environment. One or more attributes may not be required at all for a given system.

[image: ]

[bookmark: _Ref85535334][bookmark: _Toc93678993][bookmark: _Ref94209817][bookmark: _Ref94209819]Figure 1: Relationship between dependability and security.



[bookmark: _Toc89783284][bookmark: _Toc100492273]Threats: Failures, Errors, Faults

[bookmark: Ref8_5]Following [8], when the service implements the function of the system, a correct service is delivered. A service failure (failure) occurs when the delivered service deviates from the correct service. An error is a deviation between the system state and the correct service state. The adjudged or hypothesized cause of an error is called a fault. 

[bookmark: Ref8_6]A fault can be internal or external from the system. Faults can be classified into eight basic viewpoints: phase of creation or occurrence, system boundaries, phenomenological cause, dimension, objective, intent, capability, persistence. Combining the classes of faults allows identifying the most likely 31. Figure 2 (from [8]) shows how the combined fault classes (on the left) belong to  three major overlapping groupings (at the bottom):

Development faults include all fault classes during the development;

Physical faults include all faults that affect hardware;



[bookmark: _Ref85462874][bookmark: _Ref85805175][bookmark: _Toc85216066][bookmark: _Toc85216348][image: ]

[bookmark: _Ref88779964][bookmark: _Toc93678994][bookmark: _Ref94209838][bookmark: _Ref94209841][bookmark: _Ref94209842][bookmark: _Ref94209845]Figure 2: Classes of combined faults. 






Interaction faults include all external faults.

Threats can be summarized as failures, errors or faults. Figure 3 identifies the chain of threats; arrows identify a causality relationship. A fault is active when it produces an error; otherwise, it is dormant. A failure occurs when an error propagates to the service interface. A failure of a system causes a permanent or transient external fault for the other system(s) that receive service from the given system. 

[image: ]

[bookmark: _Ref85805265][bookmark: _Toc93678995][bookmark: _Ref94209854][bookmark: _Ref94209856]Figure 3: The chain of dependability and security threats.



From a security point of view, a vulnerability is an internal fault that enables an external and malicious fault (attack) to harm the system.

[bookmark: Ref_10_1]In other terms, according to [10], a vulnerability is a flaw or weakness in a system’s design, implementation, or operation and management that could be exploited to violate the system’s security policy. An attack is defined as an assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt to evade security services and violate the security policy of a system.

We conclude this section with the definition of exploit. An exploit is, in essence, a software script that will exercise a system vulnerability; invoking the exploit is an operational, external, human-made, software, malicious interaction fault. The vulnerability that an exploit takes advantage of is typically a software flaw that could be characterized as a developmental, internal, human-made, software, non-malicious, nondeliberate, permanent fault.

[bookmark: _Toc89783285][bookmark: _Toc100492274]Attaining Dependability

[bookmark: Ref8_7]Means to attain security and dependability can be grouped in four categories [8]:

Fault prevention: techniques to prevent the occurrence or introduction of faults. Some examples are design review, testing and software engineering.

Fault tolerance: techniques to avoid service failures in the presence of faults. Fault tolerance is achieved through error detection and recovery process. 

Fault removal: techniques to reduce the number and severity of faults. It consists in three steps: verification (checking whether the system adheres to given properties), diagnosis and correction.

Fault forecasting: techniques to estimate the present number, the future incidence, and the likely consequences of faults.

The different emphasis on the various attributes influences the use of the means to make a system secure and dependable. 

[bookmark: _2.2_Blockchain][bookmark: _Toc89783286][bookmark: _Ref92283282][bookmark: _Toc100492275]Blockchain Technologies (Blockchain)

In recent years, the interest in blockchain technologies (hereafter referred to as Blockchain) has grown exponentially. The reason for this excitement is ascribable to the ability to enable new forms of transactions and interactions between mistrusting and decentralized entities. Indeed, it has attracted interests and huge investments from enterprises; however, it is not a panacea and may even become useless or not convenient. 

[bookmark: Ref1_2][bookmark: Ref2_2][bookmark: Ref_11_1][bookmark: Ref_12_1]This section deals with introducing the basic Blockchain technological aspects ([1], [2], [11], [12]) constituting the background required in the following of the Thesis.

[bookmark: _Toc89783287][bookmark: _Toc100492276]Basics

The Blockchain is a technology characterized by a shared database (or ledger) distributed across a peer-to-peer network. The term recalls its structure, a chained sequence of blocks, where each block contains a set of transactions and, except for the first one called genesis block, it is linked to its predecessor by means of a cryptographic hash. Blocks are linearly and chronologically added to the chain and can be seen as links of a constantly growing chain, hence the name Blockchain. 

Each node of the network possesses a local replica of the Blockchain, which is updated every time after appending a block to the chain. The process of committing a block takes the name of mining, and the nodes which are taking care of validating transactions, collecting them into blocks and appending the blocks on the ledger are called miners. Nodes are typically independent peers capable of reaching an agreement on the status of the Blockchain, that is, the latest block to be appended, without the involvement of any central authority. This agreement is called consensus, and there are many different algorithms designed for reaching it (described in more detail in the dedicated Section 2.2.3). 

[bookmark: Ref_12_2][bookmark: Ref1_3][bookmark: Ref4_2]The first application of Blockchain has been financial transactions of cryptocurrencies (known as Blockchain 1.0 [12]), and Bitcoin [1] is the most widespread and famous implementation. More recent alternatives enable systems and applications to record other kinds of information on the ledger. One example is distributed applications or smart contracts, executed and shared among participating entities, in which case the transaction includes the result of a function call. The smart contracts can be self-executing, and for a general-purpose, thanks to the Turing-completeness property provided in some cases, as for Ethereum [4]. These fundamental extensions of capabilities brought to the so-called second generation of blockchains, or Blockchain 2.0.

[bookmark: _Toc89783288][bookmark: _Toc89783505][bookmark: _Toc92265111][bookmark: _Toc92280618][bookmark: _Toc93224751][bookmark: _Toc93581161][bookmark: _Toc100492277][bookmark: _Toc88157872]Fundamental Properties

Hereafter, we describe the fundamental properties typically provided in every distributed ledger; however, their provision may be only partial for some categories of Blockchain.

Immutability. Due to the presence of cryptographic hashes in the blocks, transactions stored in the distributed ledger cannot subsequently be tampered with, reversed, or deleted without altering the hash values, thus without being detected.

Integrity. Cryptography, together with algorithmic constraints, provides integrity on messages from users or between nodes and ensures that only authorized entities perform operations. In fact, Public Key Infrastructure (PKI) and digital signatures provide accounts identification and transactions authorization.

Non-repudiation. It is the ability to protect against denial of an action (for example, having originated a transaction). In the context of the Blockchain, the sender digitally signs a transaction: in this way, the origin of each transaction is traced so that there is no dispute about it nor about their sequence in a distributed ledger. This guarantees, for example, the responsibility for monetary expenditure and the execution of smart contracts.

Transparency. Each participating entity has access to the distributed ledger and can verify transactions without a central intermediary.[bookmark: _Ref89075935][bookmark: _Toc93581661][bookmark: _Ref94172417][bookmark: _Ref94172425][bookmark: Table1][bookmark: Tab1]Table 1: Blockchain categories.



Permissionless

Permissioned

Public

Reading is open

Writing is open

Reading is open

Writing is restricted

Private/Consortium

Not used in practice

Reading is restricted

Writing is restricted





Decentralization. There is no central authority deciding on recording a particular datum in the ledger. Also, decentralization avoids single points of failure.

Pseudo-anonymity. In general, each user can interact with the Blockchain with a generated address. The address is a pseudonym that does not reveal the real identity of the user.

[bookmark: _Ref89434006][bookmark: _Toc89783289][bookmark: _Toc89783506][bookmark: _Toc92265112][bookmark: _Toc92280619][bookmark: _Toc93224752][bookmark: _Toc93581162][bookmark: _Toc100492278]Blockchain categories

[bookmark: Ref_11_2][bookmark: Ref_13_1]In some cases, the participants in the network may have different authorizations and play different roles [11], [13]. Thus, the decentralization obtained can be only partial. Let us consider the two main operations applicable to every database: reading and writing. In a Blockchain, reading consists in consulting the current state of the ledger and creating transactions. Instead, writing means validating transactions, aggregating transactions in blocks, appending blocks to the chain, and participating in the consensus protocol.

[bookmark: Ref1_4][bookmark: Ref4_3]A permissionless blockchain is a decentralized and open system in which every node has reading and writing abilities. Examples of permissionless blockchains include Bitcoin [1] and Ethereum [4]. Permissioned blockchains, instead, have been proposed as an alternative in which only a set of known and identifiable participants, previously enrolled and admitted to the Blockchain, are allowed to read, write or perform both operations. Some state-of-the-art permissioned blockchains available today are Hyperledger Fabric, Ripple, Multichain, Kadena, Tendermint, and Chain.

[bookmark: Ref2_3]The distinction between these classes is often combined with the notion of public and private/consortium blockchain, used to refer to reading permissions. The four resulting categories of Blockchain are shown in Table 1. Between them, public permissionless blockchains are diffused in businesses and applications involving the general population, as well as public permissioned ones but with the attribution of writing rights only to some privileged nodes. Private permissioned blockchains are typically owned by one institution (or a combination of institutions, which can be referred to as consortium blockchain). Private permissionless blockchains are not used in practice. They would restrict reading while permitting writing to any node; however, some applications may exist, e.g., a shared black box for air traffic, where writing is open to every aircraft and reading is read restricted to officers. Finally, choosing between permissionless and permissioned blockchains is not trivial, as there are often trade-offs including scalability, interoperability, cost, performance, availability, anonymity, privacy, confidentiality, transparency, and censorship resistance [2].

[bookmark: _Ref89094195][bookmark: _Ref89433946][bookmark: _Toc89783291][bookmark: _Toc100492279]Consensus Algorithms

[bookmark: Ref_14_1][bookmark: Ref_15_1][bookmark: Ref_16_1][bookmark: Ref_17_1][bookmark: Ref_18_1][bookmark: Ref_19_1]The way nodes reach an agreement on the status of the ledger is one of the most important components of a Blockchain: it affects performance (as transactions throughput and latency), as well as security and scalability. Many alternatives already exist, each with its own advantages and disadvantages. Table 2 gives a comparison between the mechanisms presented in the remainder of the section, which are the most widely used state-of-the-art consensus mechanisms ([14], [15], [16], [17], [18], [19]) highlighting their analogies and differences. The comparison is performed in terms of permission (permissioned – p.ned, permissionless – p.less), transaction finality (a transaction included in a block can be immediate – det.- or probabilistically -prob.- considered final), energy consumption, transaction rate, cost of participation, trust model and adversary tolerance (the percentage of the participants that can be malicious without affecting the algorithm).

Proof of Work (PoW). Every block contains a field named header, composed of metadata including, but not limited to, a timestamp and the hash of the previous block. Each miner node has to compute the header hash of the block to be appended. Solving this problem is not trivial: the block header is constantly changing, and the value must be equal or smaller than a given value. However, when a miner produces the PoW, all other nodes can easily verify the correctness of the value. 




[bookmark: _Ref89094816][bookmark: _Toc93581662][bookmark: _Ref94172851][bookmark: _Ref94172858]Table 2: A comparison of popular Blockchain consensus mechanisms.
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[bookmark: Ref_14_2][bookmark: Ref_20_1]After that, transactions in the proposed block are validated by peers to avoid fraud. If confirmed, the new block is added to the Blockchain. This is a real competition since the calculation is time- and energy-consuming. Thus, a reward is given to the winning miner. This algorithm is used in Bitcoin and Ethereum blockchains; block interval depends on different parameter settings (e.g., in Bitcoin, a block is generated about every 10 minutes [14], while in Ethereum 1.0 between 12 and 14 seconds [20]).

[bookmark: Ref_18_2][bookmark: Ref_21_1][bookmark: Ref_11_3]Proof of Stake (PoS). This algorithm requires the mining node to prove the ownership of some amount of cryptocurrency. The selection is based on stake size combined with many solutions (e.g., a formula favouring the lowest hash values or a random factor). PoS saves more energy and is more effective, while latency is shorter than PoW. However, the mining cost is close to zero, and it may attract attackers (nothing-at-stake) [18]. Ethereum is at phase 0 of the technical roadmap[footnoteRef:1] for switching from PoW to PoS algorithm: the new solution promises to improve the transaction speed [21], and it offers protection against the Sybil attack. An efficient and power-saving variant of PoS is the Delegated Proof of Stake (DPoS), where an account may delegate its stake to others rather than validating transactions directly [11].  [1:  Phase 0 refers to December 2, 2021. ] 


Proof of Elapsed Time (PoET). This algorithm was developed by Intel and used in the Hyperledger platform. It is based on leader election in a Trusted Execution Environment (TEE). The idea is to randomly assign an elapsed time to every node in the TEE, and elect the one that wins this lottery. This node has to prove that the time obtained is the lower, wait, and validate the block. Every other node in the TEE can easily perform the verification.

[bookmark: Ref_22_1][bookmark: Ref_23_1][bookmark: Ref_23_2]Byzantine Fault Tolerance (BFT) and variants. The so-called Practical Byzantine Fault Tolerance (PBFT) algorithm is the first solution to achieve the consensus in the presence of Byzantine failures, thus despite arbitrary behaviour from some nodes. It uses the concept of replicated state machines and voting by replicas for state changes. This algorithm requires “3f+1” replicas to tolerate “f” failing nodes. This approach imposes a low overhead on the performance of the replicated service. BFT-based Blockchain offers a much stronger consistency guarantee, lower latency, higher throughput, and it requires that all participants agree. Several variants and optimizations exist [22], [23] (e.g., XFT, parallel BFT, Hybrid BFT, Hierarchical BFT, Scalable BFT). BFT algorithms are recently used also in permissionless blockchains [23]. 

[bookmark: Ref_24_1]Ripple is based on the notion of the Unique Node List (UNL). Every server s considers only votes of its own UNL to determine consensus. Moreover, UNL represents a subset of network nodes in which s can trust collectively, but it cannot trust individually [24]. The algorithm is divided into rounds, and each round consists of four steps: 1) each server collects and inserts all the transactions in a set of candidates; 2) each server joins the sets of its own UNL and votes about transactions genuinely; 3) transactions with minimum score go to next round, others are rejected; 4) the final round requires a minimum of 80% agreement on the UNL of server s. Transactions that satisfy the requirement are added to the registry, which at the end is closed to compose a block of the chain. The main condition for which consensus is reached in all UNL is that each UNL is at least 40% overlapped with the others; if not, each UNL can reach its own consensus independently and without agreement. 

[bookmark: Ref_25_1] Stellar Consensus Protocol (SCP). It is a quorum based Byzantine agreement protocol with open membership [25]. SCP is based on the concept of quorum, a set of nodes sufficient to reach the agreement, and quorum slices, subsets that can convince one particular node about the agreement. A single node can appear on multiple quorum slices. Slices and quorums are based on real-life business relationships between various entities, thereby leveraging existing trust. SCP is divided into phases: initial voting, accepting the vote, ratifying and confirmation. It reaches the global consensus in the entire system if quorums intersect. If a vote remains blocked, it uses a ballot-based approach to let the algorithm proceed.

[bookmark: Ref_18_3][bookmark: Ref_26_1]Other used algorithms are Proof of Activity, Proof of Authority, Proof of Luck, Proof of Burn, Proof of Capacity, Proof of Importance [18], Raft, Tangle, and Algorand [26]. 

[bookmark: _Toc92280622][bookmark: _Toc100492280]Security and Countermeasures

[bookmark: Ref_27_1]Security is a crucial aspect we can use to characterize blockchains. A (non-comprehensive) list of the most popular attacks [27] is shown in Table 3. Targeted blockchains and some possible countermeasures are highlighted. 

[bookmark: _Ref93675173][bookmark: _Toc93581663][bookmark: _Ref94172870][bookmark: _Ref94172875]Table 3: Some attacks against Blockchain.
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[bookmark: Bonimi_2_1]Some observations follow:

The use of different types of consensus algorithms affects blockchain security (e.g., the 51% and double-spending attacks target PoW-based blockchains);

Some attacks target specifically public blockchains. In some cases, private blockchains permit avoiding or mitigating the risk (e.g. for Sybil attack);

The extension of capabilities in Blockchain 2.0 (e.g., the usage of smart contracts) leads to the introduction of software vulnerabilities. 

As shown in the table, smart contract security (in particular for Turing-complete language) is a critical problem that does not have clear countermeasures. This Thesis focuses on this problem. Thus, the next section introduces basic concepts of smart contracts, focusing on Ethereum and its primary (and Turing-complete) language Solidity. 

[bookmark: _2.3_Introduction_to][bookmark: _Ref89094210][bookmark: _Toc89783293][bookmark: _Toc100492281]Smart Contracts

Smart contracts are one of the most important innovations of the second generation of the Blockchain. The basic idea is to execute computerized transactions automatically, depending on both external and internal conditions. Their diffusion has allowed the development of applications in different areas (e.g., financial, medical, insurance, gaming, betting). This section first presents some basic concepts dealing with smart contracts. Then, after reviewing the main platforms and use cases, it focuses on Ethereum and its primary language, Solidity. Finally, it deals with quality assurance.

[bookmark: _Toc89783294][bookmark: _Toc100492282]Definitions, Benefits and Limitations

[bookmark: Ref_28_1]The first definition of smart contracts in 1997 [28] stresses the concept of contract term execution.

A smart contract is a computerized transaction protocol that executes the terms of a contract.

[bookmark: Ref_12_3]The concept has not received particular attention until the emergence of Blockchain and its support of high-level languages. In the original meaning, smart contracts met three main properties [12]:

Autonomy: once a smart contract is executed, the parties involved are not required to remain in contact.

Self-sufficiency: smart contracts are self-sufficient in managing resources (e.g., fundraising, providing services, purchasing resources for data storage or processing).

Decentralization: smart contracts are stored into the Blockchain and executed synchronously by each node of the network (without the need for a central server).

[bookmark: Ref_29_1][bookmark: Ref_30_1]More recently smart contract definition has been extended to a persistent script stored into the Blockchain [29]. This extension focuses on the automated execution on a Blockchain when some conditions are met [30]; moreover, it extends the concept of involved parties to involved entities (e.g., users, programs, systems).

There are many benefits of using smart contracts. Thanks to the automated execution and self-sufficiency, there is a substantial reduction of manual operations (and therefore the consequent risk of errors), elimination of duplicate work, time savings, speeding up the execution of operations, refund if conditions are (not) met. Thanks to autonomy, there is no need for intermediaries. In addition, decentralization allows for increased reliability.

[bookmark: _Toc88157878][bookmark: _Toc89783295][bookmark: _Toc89783512][bookmark: _Toc92265118][bookmark: _Toc92280625][bookmark: _Toc93224757][bookmark: _Toc93581167][bookmark: _Toc100492283]Oracles

[bookmark: Ref2_4]Specific conditions trigger the execution of smart contracts. If the condition is internal to the Blockchain, the smart contract can access it directly. If the condition is external, the smart contract must communicate with entities outside the Blockchain to continue execution. Since it cannot communicate directly, it relies on external services called oracles. There are several types of oracles [2], including:

Software Oracle. It retrieves and extracts information online, providing it to the smart contract.

Hardware Oracle. It allows to retrieve information from a CPS and make it available to the smart contract through sensors (e.g., RFID). Data are typically encrypted, and an anti-tamper mechanism is provided to increase security.

Inbound Oracle. It acquires information from external sources. For example, a smart contract can automatically initiate an order when the euro reaches a specific quote. The oracle provides the latter information.

Outbound Oracle. It allows sending information from a smart contract to the outside world. An example is a smart contract that arranges for a garage door to open after the payment for parking.

Consensus-Based Oracle. It consists of a combination of different oracles (even of different types). It is used to make decisions (typically based on data predictions).

[bookmark: _Toc89783296][bookmark: _Toc89783513][bookmark: _Toc92265119][bookmark: _Toc92280626][bookmark: _Toc93224758][bookmark: _Toc93581168][bookmark: _Toc100492284]Issues

There are some issues in using smart contracts:

Scalability: the number of contracts and users cannot increase indefinitely. Increasing the number of contracts increases the number of transactions that each node executes (each node performs all transactions on the Blockchain to which it belongs). This requires an increase in hardware resources.

[bookmark: Ref_31_1]Legal: smart contracts can define and perform legally binding contracts. Novel legal issues (e.g., contract formation, interpretation) can arise in this context. In addition, there is a lack of uniformity in international jurisdiction in resolving disputes that may arise from the performance of smart contracts [31].

Security: smart contracts automated execution potentially endangers applications as they are immutable after storing them on a Blockchain. Design and coding faults and weaknesses in the smart contracts implementing the particular application can still result in exploitable vulnerabilities to malicious attacks despite the well-designed run-time environment.

This Thesis focuses on smart contract security.

[bookmark: _Toc89783297][bookmark: _Toc100492285]Platforms and Use Cases 

[bookmark: Ref_32_1]Ethereum, Hyperledger Fabric, Corda, Stellar, Nem, Neo, Eos are some of the most representative platforms that enable smart contracts. Table 4 compares them (extending [32]) in terms of language and its Turing completeness, consensus algorithm (Section 2.2.3), permissions (Section 2.2.1.2), execution environment and kind of application.

There are languages developed for specific platforms (e.g., Solidity, Vyper) or general-purpose languages (such as Java, Javascript, Python, C++). Turing completeness allows the development of smart contracts with greater expressiveness at the expense of greater susceptibility to attacks. PoW is computationally intensive when BFT-like consensus algorithms are network intensive. Other algorithms have intermediate characteristics, as highlighted in Section 2.2.2. Smart contracts are used in both types of public and private blockchain. The execution environment covers virtual machines and docker (reducing the overhead at the expense of application isolation). The types of applications that can be developed are general or specific, related to financial or smart economy sectors.[bookmark: _Ref88782011][bookmark: _Toc93581664][bookmark: _Ref94172887][bookmark: _Ref94172890]Table 4: Blockchain platforms that enable smart contracts.
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[bookmark: Ref_31_2][bookmark: Ref_32_2][bookmark: Ref_33_1]Smart contracts have a broad spectrum of applications that grows over time. A non-exhaustive list includes [31], [32], [33]: 

Finance and banking: capital markets and investment banking, commercial and retail banking, securities, insurance, trade finance, prediction markets. 

Management: digital properties and rights management, organizational management.

Public sector: E-voting, personal reputation systems, smart property exchange.

Internet of Things and CPS: energy, healthcare, supply chain, intelligent transportation systems.

[bookmark: _Toc89783298][bookmark: _Toc100492286]Ethereum and Principles of Solidity

[bookmark: Ref_34_1]Ethereum is the second platform for market cap [34] after Bitcoin[footnoteRef:2]. This section introduces some concepts related to Ethereum and its primary language, Solidity.  [2:  Data refer to December 2, 2021.] 


[bookmark: Ref_35_1]The Ethereum Virtual Machine (EVM) is the execution environment of Ethereum: each execution changes the EVM state [35]. Ethereum has two kinds of accounts: externally owned accounts and contract accounts; both have a balance field in Ether (the native currency of Ethereum). The first kind of account represents a user account, controlled by its private key; the second is a smart contract account, and its code controls it. A user can send a transaction (signed data package) to other accounts: if the receiver is a contract, it activates its code executing it into the EVM. Other contracts can trigger the code execution of a contract by messages (function calls). Blocks of the Blockchain contain all transactions and the related EVM state.

The gas represents fees to be paid for computations in Ethereum. Executing a transaction requires computational steps and then fees. Every transaction contains a recipient, a sender (identified by a signature), a startgas (maximum number of computational steps), and a gasprice (the fee the sender pays for each unit of gas). The product of startgas by gasprice is the maximum fee (in the units of Ether) paid to the miner processing the transaction. If the transaction terminates successfully, the miner returns unused gas to the sender.

[bookmark: Ref_36_1]The primary high-level language used to develop Ethereum smart contracts is Solidity [36]. C++, Python, and Javascript influenced Solidity. It has a similar programming structure to traditional languages, such as several types of variables, branching instructions, and assertions.

The core of a smart contract consists of one or more logic contracts and optionally libraries and interfaces containing state variables and functions. Functions can execute instructions, interact with other contracts and modify state variables. Variables can have different main types (e.g., boolean, (unsigned) integer, address) and some derived ones (e.g., structures, enum). Each change of a state variable is saved permanently into the Blockchain. Moreover, a modifier changes the visibility of a function and its capability to receive Ether. Besides, functions receive the detail of the transaction. Once deployed into the Blockchain, the contract gets its address, a constructor (a special function) initializes its variables, and its code becomes immutable.

For a better understanding, Figure 4 presents a simple smart contract. The smart contract starts with a Solidity directive (at line 1) that identifies the release of the compiler to be used. A logic contract defines the program's core (at line 3). The Bank contract's state consists of the variable balances, that maps a variable of type address to an uint256 (unsigned integer with 256 bits). The contract has two functions: deposit (at line 8) and withdraw (at line 12).

The function deposit is payable: it can receive Ether. In particular, it receives an amount from the caller through msg.value, added to the balance of the caller at line 9 (available in msg.sender address).[image: ]

[bookmark: _Ref89246442][bookmark: _Toc93678996][bookmark: _Ref94209862][bookmark: _Ref94209864]Figure 4: Sample of Solidity smart contract. 



[bookmark: Ref3_3]The function withdraw permits to withdraw part of the address balance. At first, the requirement statement (at line 13) checks that the sender has enough funds in the Bank. In case of a positive check, withdraw sends Ether through the primitive call using the caller address. Called address can represent a contract: it can perform arbitrary actions (within the gas limits). The result of the call is stored on check_success. If check_success has true value, it passes the requirement at line 15, and the caller's balance is subtracted. This example contains a reentrancy vulnerability [3]. At line 14, the function withdraw transfers the control to the caller before subtracting the amount. This action permits the caller a continuous call of the withdraw function till the exhaustion of funds of contracts.

[bookmark: _Ref89616202][bookmark: _Toc89783299][bookmark: _Toc100492287]Quality Assurance

[bookmark: Ref6_2]Quality assurance (QA) is one of the most tradition-richest fields in software engineering. The ISO/IEC 25000 family of standards defines system and software quality requirements and evaluation at the behavioural level, including extra-functional properties. The new ISO/IEC 5055:2021 standard [6] measures source code quality in an automated way based on an estimation of the complexity of the code under test and an empirical set of antipatterns, i.e., typical weaknesses causing failures. 

This way, our basic assumption is that most weaknesses and resulting vulnerabilities in Solidity are similar to those in conventional programming languages, potentially appearing in a specific form. 

[bookmark: Ref_37_1][bookmark: Ref_38_1]Software security engineering has solid empirical foundations from a well-organized and maintained process of vulnerability data acquisition, abstraction, and generalization. The Common Vulnerabilities and Exposures (CVE) database [37] collects, defines, and catalogues publicly disclosed cybersecurity vulnerabilities, i.e., weaknesses in software (and hardware) components that, when exploited, spoil the security of the system. The Common Weakness Enumeration (CWE) [38] classifies weaknesses as root causes of vulnerabilities into a hierarchical taxonomy; furthermore, each CWE list item highlights the mode of introduction, expected consequences, and potential mitigations.

The hierarchy starting at the Variant level and continuing with the Base (typically related to a particular product, language, or technology) gradually eliminates the implementation details. The highly abstract top two categories of weaknesses in the hierarchy (Class and Pillar) are already independent of any specific language or technology. At the topmost level of abstraction, Pillar is a concept used to group weaknesses that share common characteristics. The notion of Class is abstract enough to be implementation independent but close enough to define functional and/or structural antipatterns leading to weaknesses. 

CVE has more than 160000 entries currently, but only a few hundred are related to Blockchain technologies. However, the close relation of Solidity to traditional programming languages justifies the reuse of CWE classes for faithful fault modelling.

[bookmark: Ref_39_1]The CWE guides classification of vulnerabilities into the US government repository entitled National Vulnerability Database (NVD) [39] used for vulnerability management, security measurement, and compliance in a general technology context. 

While CWE has a primary security focus, it is appropriate to describe weaknesses considering other extra-functional properties. For instance, as mentioned before, ISO/IEC 5055:2021 measures the reliability, performance, and maintenance of a code using CWE patterns. 

This Thesis focuses on the aspect of security; accordingly, with definitions of Section 2.1, we refer to vulnerabilities as exploitable weaknesses.

[bookmark: _2.4_Static_Analysis][bookmark: _Toc89783300][bookmark: _Ref92283300][bookmark: _Toc100492288]Static Analysis

The main types of code analysis are static analysis, dynamic analysis, and formal verification. Static analysis inspects the code without executing it, searching for vulnerable patterns in the code structure. The dynamic analysis examines programs as they run in a run-time environment, acting like an attacker looking for vulnerabilities by providing malicious code or input to functions. Finally, the formal analysis uses theorem provers or formal methods to verify a program's specific properties, such as functional correctness. 

This section focuses on static analysis, providing some introductory concepts and some characteristics of static analysis tools.

[bookmark: _Toc89783301][bookmark: _Toc100492289]Introduction

Static analysis (SA) is one of the most significant and widely used types of code analysis. It inspects the code without executing it. 

At first, it extracts an abstract model of the code under evaluation (typically an AST = abstract syntax tree or CFG = control flow graph). Then it can retrieve several types of information, including:

potential vulnerabilities in the code over the model by pattern matching for weaknesses (antipatterns);

dead code: code paths that cannot be reached;

code anomalies;

information for code optimization.

Software developers who use static analysis tools (referred simply as static analysis) can benefit from the facts produced by the analysis to further understand, evaluate, and modify the associated code. 

[bookmark: Ref_40_1]SA has some advantages on dynamic analysis [40]. An advantage of static analysis is to operate on all possible execution branches in a program. On the contrary, the dynamic analysis only accesses the path of the code currently running. However, dynamic analysis manages to get information such as the location of the data in the memory of the program that is executed, while static analysis could only guess it. 

SA is ubiquitous in modern software engineering. Popular examples include security flaws and defects scanners such as Klockwork and Coverity; programmer error detection tools such as scan-build, an analysis tool aimed at C, Objective-C, C++, and Swift; code formatters such as Python's black; user-oriented editor tools such as Rust's rust-analyzer.

[bookmark: Ref_41_1][bookmark: Ref_40_2][bookmark: Ref_42_1][bookmark: Ref_43_1]There are also some limits to static analysis. No algorithm can determine whether the program terminates or loops indefinitely given a source code and all its possible inputs (the halting problem [41]). Most properties checked by static analysis are equivalent to the halting problem [40], [42]; thus, static analysis problems are undecidable in the worst case [43]. Static analysis approximates the program behaviour; however, this approximation is useful in practice. 

[bookmark: _Toc89783302][bookmark: _Ref90222035][bookmark: _Toc100492290]Characteristics of Static Analysis Tools

This section describes the characteristics of SA tools used throughout the Thesis. The main characteristics are their input format, the internal representation extracted from the code, and the analysis methodologies applied. Some concepts will be further addressed in specific chapters.

[bookmark: _Toc88157886][bookmark: _Toc89783303][bookmark: _Toc89783520][bookmark: _Toc92265126][bookmark: _Toc92280633][bookmark: _Toc93224765][bookmark: _Toc93581175][bookmark: _Toc100492291]The input

SA has the code of the smart contract to be checked. We distinguish here two possibilities:

Bytecode is a list of compiled instructions executed in an Ethereum Virtual Machine (EVM); 

Source code refers to the smart contracts high-level programming language (e.g., Solidity).

[bookmark: _Toc88157887][bookmark: _Toc89783304][bookmark: _Toc89783521][bookmark: _Toc92265127][bookmark: _Toc92280634][bookmark: _Toc93224766][bookmark: _Toc93581176][bookmark: _Toc100492292]The internal representation

The internal representation is about the abstract model extracted from the code for the analysis. Alternatives here are the abstract syntax tree (AST) or the control flow graph (CFG):

AST extracts an abstract representation of the source code by lexical and syntax analysis.

CFG is a directed graph representing the program flow derived from the AST or the bytecode. The basic blocks of a program serve as nodes. An arc connects node A to node B if block B may get executed immediately after block A. The arc labels represent the condition of the path execution.

[bookmark: _Toc88157888][bookmark: _Toc89783305][bookmark: _Toc89783522][bookmark: _Toc92265128][bookmark: _Toc92280635][bookmark: _Toc93224767][bookmark: _Toc93581177][bookmark: _Toc100492293]Methodologies

Methodologies represent the algorithmic approach that tools use to analyze smart contracts for identifying vulnerabilities:

Decompilation (DEC) transforms the bytecode into a language at a higher abstraction level (like an intermediate or Solidity-like language) to enhance the code's readability.

Disassembly (DIS) transforms the EVM bytecode into an assembler language divided into blocks and assigns labels (e.g., to jump destinations and addresses).

Symbolic execution (SE) uses symbols instead of real values of variables, based on determining the path code's reachability through constraints controlled by Satisfiability Modulo Theories (SMT) solvers.

Taint analysis (TA) follows information flows generated from an information source. Initially, only deriving data from the source are considered contaminated. The method keeps track of how this taint propagates (it can happen, e.g., through assignment operation).

[bookmark: _Ref100445460][bookmark: _Toc100492294]Static Analysis for Vulnerability

[bookmark: Ref_44_1]Static analysis is widely used to discover vulnerabilities in the early stages of the software life cycle. Despite its incomplete fault coverage, it can cover 100% of the code at a low cost [44]. 

Checking a program under test may result in a successful test run or a processing failure - an improper or incomplete test run with partial (or no) diagnostic outcome -. A successful test run may result in two different outcomes depending on whether the tool identified a vulnerability or not. A positive result (P - positive – the tool identified a vulnerability) can be a false positive (FP – wrong detection of a non-existing vulnerability) or a true positive (TP – correct detection of an existing vulnerability). Clearly, this is only a partial view as a negative result (N – negative - the tool did not identify a vulnerability) can be a true negative (TN – correct assessment of no vulnerability) or a false negative (FN – missed detection of an existing vulnerability).

[bookmark: Ref_42_2]We explicitly consider false positives and false negatives. In the previous section, we treated the issue of undecidability. Because of this problem, static analysis cannot be free of false positives. Moreover, false positives cause a big problem for all code analysts: a high rate of false positives forces a very high expenditure of time and resources for their detection (to distinguish them from true positives). Reducing the number of false positives takes resources and time [42]. The resulting tradeoff is very subtle: if the analysis is fast, it is likely to report many false positives. Conversely, an analysis is unlikely to finish in a reasonable time for large programs.

On the other hand, a high number of false negatives is dangerous because it leaves doors open for subsequent successful attacks. False negatives can occur for at least two reasons: the analysis is marred by unwarranted assumptions (e.g., not taking into account that malloc can return null), or the analysis does not consider all possible execution paths in the program and it is incomplete. The risk of having false negatives can be reduced by using multiple tools simultaneously (thus increasing the number of false positives).

[bookmark: _Ref91671063][bookmark: _Ref92042972][bookmark: _Toc100492295]The State of the Art

Several studies investigate smart contract vulnerabilities and their systematization and static analysis applied to smart contracts. The following state of the art review includes the most relevant papers as well as online resources available so far, mainly concentrated on Ethereum and its primary language, Solidity.

Table 5 highlights the relations between our systematization and some relevant previous studies by specifying the number of treated vulnerabilities, paired with the number of coinciding ones with our work, the nature of the classification and the analysis of the vulnerability propagations.

[bookmark: Ref_45_1]Atzei et al. [45] have, for the first time, deeply analyzed vulnerabilities, providing a taxonomy. They analyzed 12 kinds of vulnerabilities and linked 9 of them with different attacks. They identify two main reasons that make the smart contracts error-prone in Ethereum: the first reason is the Javascript-like nature of the Solidity language; the second one is the dissemination of the documentation in different sources. Their main focus was to organize a vulnerability taxonomy and check the effectiveness of attacks. Our work, differently, systematizes the vulnerabilities (using 11 of the 12 Atzei’s vulnerabilities) in a non-language-related way and highlights propagation among them.[bookmark: _Ref93489000][bookmark: _Toc93581665][bookmark: _Ref94209022][bookmark: _Ref94209029]Table 5: Comparison between main vulnerability-related works.

Study

Vulnerabilities

Grouped by

Propagations

Chen et al.

26  (21)

Status 

No

Atzei et al.

12  (11)

Solidity, EVM, Blockchain

No

Dika et al.

22  (15)

Solidity, EVM, Blockchain

No

Mense et al.

22  (16)

Solidity, EVM, Blockchain

No

Hasanova et al.

21  (18)

No group

No

Praitheesan et al.

15  (10)

Exploitability to attacks 

No

Bartoletti et al.

Ponzi schemes

Type of Ponzi schemes

No

This Thesis

32 

CWE classes (10)

Yes





[bookmark: Ref_46_1]Dika et al. [46] proposed an up-to-date taxonomy of 21 vulnerabilities, grouping them based on their occurrence location: Solidity language, Ethereum Virtual Machine (EVM), or Blockchain level. This work also conducted experiments with some tools providing 21 vulnerable smart contracts and analyzing results. 

[bookmark: Ref_47_1]The study of Mense et al. [47] used taxonomy to compare tools in discovering issues (based on their research paper). More than this, they analyzed an attack for providing a secure smart contract development.

[bookmark: Ref_48_1]Hasanova et al. [48] first investigated Blockchain vulnerabilities at the consensus level and types of potential attacks. Then it focused on 20 vulnerabilities smart contract related, highlighting adverse effects and providing possible countermeasures.

[bookmark: Ref_49_1]Praitheesan et al. [49] first analyzed vulnerabilities and their detection methods, then focused on the attacks that caused severe losses; finally, they classified the analysis methods into three categories (static, dynamic, and formal analysis).

[bookmark: Ref_50_1] Bartoletti et al. [50] presented a comprehensive survey of Ponzi schemes on Ethereum, analysing their behaviour and their impact from various viewpoints.

[bookmark: Ref_51_1]More recently, Chen et al. [51] presented a survey of 44 vulnerabilities, investigating the application layer, data layer, consensus layer, network layer, and Ethereum environments. Based on these aspects, causes, attacks, and exploit consequences are highlighted. Focusing on the application layer (which we are interested in), they propose a taxonomy of 26 main vulnerabilities (application related), grouping them by status (e.g., Smart contract programming, Solidity language and toolchain, Ethereum design and implementation) and highlighting causes, attacks, and consequences. 

[bookmark: Ref_42_3]Emanuelsson and Nillson [42] performed one of the first comparisons among static analyzers to handle industrial applications. 

[bookmark: Ref_52_1]McLean [52] focused on open source tools analyzing several programming languages (e.g., C, C++, Java). It performed an analysis of a pre-identified set of vulnerabilities, providing findings and uncovered vulnerabilities. 

[bookmark: _Ref92140192][bookmark: _Toc93581666][bookmark: _Ref94209076][bookmark: _Ref94209079]Table 6: Main static analyzers for Solidity.

Tool

Input

Availability

E-EVM

Bytecode

https://github.com/pisocrob/E-EVM

Erais

Bytecode

https://github.com/teamnsrg/erays

ETHBMC

Bytecode

https://github.com/RUB-SysSec/EthBMC

EtherTrust

Bytecode

https://www.netidee.at/ethertrust

EthIR

Bytecode

https://github.com/costa-group/EthIR

eThor

Bytecode

https://secpriv.wien/ethor/

GasChecker

Bytecode

No

Gasper

Bytecode

No

HoneyBadger

Bytecode

https://github.com/christoftorres/HoneyBadger

KEVM

Bytecode

https://github.com/kframework/evm-semantics

MadMax

Bytecode

https://github.com/nevillegrech/MadMax

Maian

Bytecode

https://github.com/ivicanikolicsg/MAIAN

Manticore

Bytecode

https://github.com/trailofbits/manticore

Mythril

Bytecode

https://github.com/ConsenSys/mythril

Octopus

Source code

https://github.com/pventuzelo/octopus

Osiris

Bytecode

https://github.com/christoftorres/Osiris

Oyente

Bytecode

https://github.com/enzymefinance/oyente

Porosity

Bytecode

https://github.com/comaeio/porosity

Rattle

Bytecode

https://github.com/crytic/rattle

Remix

Source code

https://github.com/ethereum/remix-project

SASC

Source code

No

Scompile

Source code

No

Securify

Bytecode

https://github.com/eth-sri/securify

Securify2

Bytecode

https://github.com/eth-sri/securify2

SIF

Source code

https://github.com/chao-peng/SIF

Slither

Source code

https://github.com/crytic/slither





[bookmark: Ref__136_1]More recently, Nunes et al. [136] proposed a benchmark for web application static analyzers based on different criticalities levels, providing a general approach in benchmarking when different scenarios have to be analyzed.

[bookmark: Ref3_4][bookmark: Ref_54_2]Furthermore, the research into applying static analysis to detect Ethereum smart contracts' vulnerabilities increased significantly after the first infamous exploits in 2016 (e.g., DAO [3], starting from Oyente [54]. Main static analyzers developed explicitly for Solidity are summarized in Table 6.

[bookmark: Ref_55_1][bookmark: Ref_56_1]Di Angelo et al. [55] independently analyzed 27 tools (static and dynamic) in terms of the method used, maturity, availability, and detection aspects. More recently, Vacca et al. [56] proposed a survey on Blockchain technologies in which they list several tools for analyzing smart contracts. Through the analysis of related papers, the techniques, datasets used and main results are highlighted.Table 6 (continued): Main static analyzers for Solidity.

Tool

Input

Public availability

SmartCheck

Source code

https://github.com/smartdec/smartcheck

SmartEmbed

Source code

https://github.com/beyondacm/SmartEmbed

SmartInspect

Bytecode

No

SmartBug

Source code

https://smartbugs.github.io

SolAnalyzer

Source code

Yes

SolGraph

Source code

https://github.com/raineorshine/solgraph

SolHint

Source code

https://github.com/protofire/solhint

SolMet

Source code

https://github.com/chicxurug/SolMet-Solidity-parser

solc-verify

Bytecode

https://github.com/SRI-CSL/solidity

Vandal

Bytecode

https://github.com/usyd-blockchain/vandal

teEther

Bytecode

No

Verisol

Source code

https://github.com/Microsoft/verisol

Zeus

Source code

No





[bookmark: Ref_74_1]Tikhomirov et al. [74] divided 20 kinds of smart contract bugs (we identify 15 vulnerabilities) into four groups (security, functional, operational, and developmental), analyzing several bugs. Then, they proposed a SA tool that uses an intermediate representation to detect them. Finally, a comparison with other tools is performed.

[bookmark: Ref_57_1]Durieux et al. [57] analyzed two datasets: the first one composed of more than 47.000 contracts, retrieve tools statistics, and the second one consisting of 69 contracts to deep analyze vulnerabilities. The set of vulnerabilities in their focus is related to the DASP repository. First, they evaluated the tool precision; in the large dataset, they identified the distribution of positives and analyzed the contract analysis time. 

[bookmark: Ref_58_1]Parizi et al. [58] conducted an experimental assessment of static smart contracts security testing tools. They tested Mythril, Oyente, Securify, and Smartcheck on ten real-world smart contracts. Concerning the accuracy of the tools, Mythril was the most accurate.

[bookmark: Ref_59_1]Pinna et al. [59] performed a comprehensive empirical study of smart contracts deployed on the Ethereum blockchain to overview smart contract features, such as type of transactions, the development community's role, and the source code characteristics.

[bookmark: Ref_60_1][bookmark: Ref__104_1]Ghaleb et al. [60] implemented SolidFI, a systematic method for automatically evaluating smart contract analysis tools using fault injection. They inserted a selected set of bugs in all valid identified locations. Akca et al. [104], by injecting a single bug into the contract code, compared the effectiveness of their static analyzer with some other tools.

[bookmark: Ref_61_1]Zhang et al. [61] focused on analyzing several bugs (among them, we can identify 20 vulnerabilities), grouped in 9 categories and based on the IEEE framework. It identified bugs that some tools do not cover. It provided a benchmark and based its analysis on precision and coverage.

[bookmark: Ref_53_1][bookmark: Ref_62_1]More recently, Dias et al. [53] studied the effectiveness of the three SATs on a set of defects, classified according to the Orthogonal Defect Classification, as defined in [62].

Concerning software security, it is not always possible to analyze all vulnerabilities that have escaped detection; it is crucial to prioritize their analysis. 

[bookmark: Ref_63_1][bookmark: Ref_64_1]Eschelbeck [63] analyzed the problem of prioritizing software vulnerabilities within the vulnerability management process. The work provided general observations on the importance of patching the vulnerabilities with the highest severity. In a first step, Liu et al. [64] compared different prioritization methods using vulnerabilities extracted from the CVE database. In a second phase, vulnerabilities were grouped by type (CWE-based); the experiments improved scoring quality using vulnerability type.

[bookmark: Ref_60_2][bookmark: Ref_61_2][bookmark: Ref_53_2][bookmark: Ref_57_2][bookmark: Ref_58_2][bookmark: Ref_57_3][bookmark: Ref_58_3][bookmark: Ref_53_3][bookmark: Ref_53_4][bookmark: Ref_57_4]Referring to previous works, some focuses on bugs (e.g., [60], [61], [53]); others compare static and dynamic analysis (e.g., [61]). In addition, some works analyze a small set of vulnerabilities (e.g., [57], [58]); others use a small set of tools (e.g., [57], [58], [53]), or provide no ground truth (e.g., [53], [57]). 

[bookmark: Bonomi_1]Below are some of the main problems and limitations identified in state of the art, divided into three main key points:

a) Vulnerability systematization: 

Analyses are too tied to the language construct;

Previous classifications either do not abstract from a specific Solidity release or do not capture the behaviour of vulnerabilities; 

b) Assessment of the smart contract security:

Previous  analyses do not focus specifically on security; 

There is a lack in identifying how tools are built (how tools perform on the vulnerabilities they decided to target); 

Tool performances are investigated in a small set of vulnerabilities; 

There is a general lack of in-depth analysis of the tool detection capabilities in the different vulnerability classes; 

c) Improvement of the smart contract security

There is a lack of analyzing how to improve tool capabilities;

State of the art does not analyze how tools can be combined to increase smart contract security;

Previous works do not identify the most critical types of undetected vulnerabilities; 

The location (physical position) of vulnerabilities in Solidity smart contracts is not investigated. 

Currently, there are no clear state-of-the-art answers on determining the assessment and improving smart contract security. Problems are mainly related to the rapid evolution of Solidity language, the consequent sparseness of vulnerability and the immaturity of checking tools.

[bookmark: _Ref100071599][bookmark: _Toc100492296]Approach

[bookmark: Zoltan_5]Traditional languages (e.g., C, Java) have a long tradition of using SA. The broad spectrum of available tools raised the need to evaluate and compare them in a benchmark-styled way. 

The main objective of end-users in using testing technologies is to ensure a good quality of the code and the productivity of the development process. At the same time, estimation of the insufficiencies is a primary input to the tool developers in their product development strategy. 

Guaranteed quality necessitates a high probability of detecting faults, while productivity needs effective diagnosis and localisation to support debugging.

Measures of the detection effectiveness of an SA tool primarily address fault coverage, i.e., the ratio of fault kinds covered vs all faults anticipated. The minimisation of security risks additionally considers the frequency of occurrence and the severity of impacts of individual vulnerabilities in a more fine granular calculation of the fault coverage. 

Creating the benchmark input set for software testing tools underlies several requirements. The programs consisting of the input benchmarking set have to represent the anticipated faults rooting in and covering observed vulnerabilities. This way, the set of tool testing input programs results from extensive vulnerabilities collection, root-cause analysis, categorisation, and potentially generalisation (e.g., mapping to CE) process. Evaluating the vulnerability and diagnosis capabilities of the tools requires the avoidance of benchmark test programs incorporating multiple vulnerabilities to avoid potential interferences between them.

Note that the statistically valid estimation of the frequency of occurrence needs a sufficiently large scale database. The assessment of the severity characteristics requires expert analysis of the potential impacts of a vulnerability.  

[bookmark: Ref__138]One of the first examples to standardise the evaluation of SA tools was the NIST Software Assurance Reference Dataset Project covering, resulting in Juliet Test Suites for the most widely used programming languages, like Java, C/C++, and C# [138].

The main resulting vital points are:

It is possible to identify the trigger of the corresponding vulnerabilities and weaknesses, which permits the study of the coverage.

Each language-specific Juliet Test Suite can rely on an extensive, well-organised historical vulnerabilities database. Juliet anticipates a set of Base or beyond the Base level weaknesses from the CWE hierarchy as the source of vulnerabilities and covers them by test programs. Using such low-level weaknesses as a basis assures a close correlation between the tests and vulnerabilities. At the same time, the CWE-benchmark mapping delivers the ground truth by construction.

The availability of a considerable number of (patterns) candidates permits a selective choice for inclusion into the benchmark to reduce false diagnoses due to multi-vulnerability interferences without compromising the fault coverage. 

While the sound engineering principles of Juliet lead to a wide practical use for traditional programming languages, their adaptation to evolving languages faces severe difficulties due to the lack of sufficiently extensive experience.

Solidity, as already stated, is a new and evolving technology with changes in the language specification, as typical for technologies in their early lifecycle. According to the novelty of Solidity, only a limited set of well-documented and analyzed faulty patterns is available. Moreover, the relatively rapid evolution of the language definitions eliminates the most prevalent ones by improving the safety of the language constructs offered to the programmer. No similar deep analysis of the remaining patterns has happened yet, as for the repositories of vulnerable code fragments in traditional languages. Accordingly, there is no clear ground truth related to faults and selectivity. 

In Solidity, it is possible having very similar patterns with different impacts. The lack of an extensive base confines the options of composing the benchmark set, especially to comply with the requirement of selectivity. Accordingly, we used the natural language description of vulnerabilities in the selection process. 

At the same time, in the case of Solidity, our experience indicates that the current solutions are not extraordinarily sophisticated and well-elaborated. Thus, we use a top-down approach for the reasons listed above and contrary to Juliet. We generalise typical patterns into high-level categories by referring to Classes or Pillars instead of going to the lowest level of the CWE hierarchy (using Bases or Variants). Using large aggregate types of weaknesses avoids statistically unjustified partitioning of a relatively sparse dataset. In addition, we also have to create the ground truth due to the inadequate evaluation and documentation of vulnerability patterns. 

Our patterns for evaluation can not cover all the potential patterns; however, we provide a representative model of Solidity in terms of observed vulnerabilities and weaknesses extracted from them. That means we can not guarantee that each pattern base is covered, but we offer a rough granular characterisation of the individual SA tools. 


3

VULNERABILITY TAXONOMY AND PROPAGATIONS

[bookmark: _Ref88135248][bookmark: _Toc100492297]VULNERABILITY TAXONOMY AND PROPAGATIONS

[bookmark: Zoltan_6_a]This chapter investigates the first research question we address:  How to overcome the language evolution? (RQ1). 

To do so, Section 3.1 provides an overview of the motivations, Section 3.2 determines the set of vulnerabilities to focus on, and Section 3.3 systematizes vulnerabilities and provides a Solidity fault model based on CWE. Finally, Section 3.4 highlights some vulnerability propagations.

[bookmark: _Ref88036860][bookmark: _Toc100492298]Motivation and Open Challenges

[bookmark: Ref_45_2][bookmark: Ref_46_2][bookmark: Ref_47_2][bookmark: Ref_51_2][bookmark: Ref_65_1][bookmark: Ref3_5][bookmark: Ref_66_1][bookmark: Ref_67_1]To have a global view on the topic, we have examined several papers (e.g., [45], [46], [47], [51], [65]) that analyze and classify platform-related vulnerabilities, and well-known exploits (e.g., [3], [66], [67]). Solidity is a new language, and it evolves rapidly. Considering previous studies, we noticed a difference in the number and categorization of such vulnerabilities, depending on the language or the specific platform. The missing agreement led to user confusion and vulnerabilities proliferation, as well as a difficulty for researchers to compare them. Moreover, previous classifications either do not abstract from a specific Solidity release or do not capture the behaviour of vulnerabilities.

The main motivation of this chapter is to overcome the strict dependence of the previous categorizations on the language release. Moving beyond language evolution is the foundation for the next steps in our research. To do so, we first provide Solidity-specific vulnerabilities analysis, then we identify CWE as a basis to classify vulnerability in a language-independent way. Our opinion is that this classification may help software developers limit weaknesses explosion and their effects, and researchers compare vulnerabilities of other platforms. In addition, this systematization allows us to focus on the vulnerabilities propagations between different CWE-based categories.

The contribution of this chapter is twofold:

We provide a Solidity fault model, systematising smart contract vulnerabilities in a language-independent way. This model is the basis for the following chapters.

We emphasize some propagations among classes of vulnerabilities based on well-known exploited contracts.

[bookmark: _Ref88036905][bookmark: _Ref89682980][bookmark: _Toc100492299]Smart Contract Vulnerabilities

[bookmark: Ref_51_3]This section identifies the vulnerabilities addressed in this work. The focus is on vulnerabilities originating in the development process of smart contracts. Accordingly, the underlying run-time platform is considered only as a potential error propagation path. Existing surveys (e.g., [51]) and sites provide lists of vulnerabilities, which, unfortunately, are updated very frequently due to the relative novelty of the technology.

[bookmark: Ref_68_1][bookmark: Ref_36_2]To provide a list of vulnerabilities, we ran a Google Scholar search using the keywords "Ethereum survey," "smart contracts analysis," and "smart contracts vulnerabilities." Additionally, we consulted the Smart Contract Weakness Classification and Test Case (SWC) registry [68], the Solidity documentation [36], and other referenced GitHub repositories to create a unified list of candidate vulnerabilities. 

[bookmark: Ref_69_1][bookmark: Ref_70_1]We then discarded from this list all the vulnerabilities already resolved at the language level from the Solidity release 0.5 onwards that we found on Ethereum Improvement Proposals (EIPs). EIPs are the standard Ethereum improvement; some EIPs mitigate or solve vulnerabilities (e.g., Call-stack DepthValue, fixed by EIP-150 [69] and Under-priced Opcodes, fixed by EIP-1884 [70]).

Finally, grouping vulnerabilities with similar or overlapped definitions resulted in a list composed of 32 items listed below in alphabetical order.

[bookmark: _Toc100492300]Arbitrary Jump

[bookmark: Ref_71_1][bookmark: Ref_68_2]Solidity supports function types [71]; a variable of function type can be assigned with reference to a function with a matching signature. The function saved to such a variable can be called just like a regular function [68]. 

Solidity does not support a generic pointer type; this does not (in general) allow changing this variable arbitrarily. However, if a smart contract uses specific assembly instructions (particularly mstore or assign operator), an attacker can execute random code instructions by changing the function type variable. This way, the attacker can alter, for example, state changes (directly impacting the data written in the Blockchain).

[bookmark: _Toc100492301]Arithmetic Precision

Solidity supports integers and (partially) fixed-point numbers. So, to represent floating points, integers must be used.  

The 256-bit Ethereum virtual machine assembles types shorter than 32 bytes together in the 32-byte slot. This process affects the accuracy of any operation: for example, rounding is not correct if a division is performed before multiplication. If the result is used for critical operations, an attacker can force the use of data that alter the originally intended process.

Authorization through tx.origin (Atx) [image: ]

[bookmark: _Ref86911746][bookmark: _Toc93678997][bookmark: _Ref94209871][bookmark: _Ref94209874]Figure 5: Authorization through tx.origin: vulnerable and safe code snippets.



[bookmark: Ref_51_4][bookmark: Ref_47_3]Solidity’s field tx.origin contains the address of the account that sent a transaction. Using it for authorization/authentication can make a contract vulnerable, potentially causing a fund loss. If an authorized account calls into a malicious contract, the latter can use its address to call the vulnerable contract and pass the authorization check (performed through tx.origin). This situation happens because tx.origin does not return the latest function call’s sender, but the origin of the whole transaction, i.e., the authorized account [51]. The vulnerability can be prevented using msg.sender for authorization instead of tx.origin [47]. Two code snippets (vulnerable and safe) are shown in Figure 5.

Blockhash Usage (BU) and Timestamp Dependency (TD)[image: ]

[bookmark: _Ref86832079][bookmark: _Ref86832075][bookmark: _Ref88047161][bookmark: _Toc93678998]Figure 6: Code snippet of blockhash usage.



[bookmark: Ref_48_2][bookmark: Ref_45_3]Blockhash usage [48] and Timestamp Dependency [45] vulnerabilities result from the usage, in critical operations, of blockhash and global timestamp variables, respectively. A malicious miner can manipulate such values. The code snippet in Figure 6 highlights that the use of blockhash value generates a BU vulnerability. 

[bookmark: _Toc100492304]Call to the Unknown (CU) 

[bookmark: Ref_45_4][bookmark: Ref_47_4]Some Solidity’s primitives for function invocation and Ether transfer (e.g., call, send) have the side effect of invoking the fallback function of the callee/recipient. This may lead to unexpected behaviours since an external portion of code is executed [45]. Mitigation is to avoid external calls whenever possible [47]. 

[bookmark: _Toc100492305]Delegated Call to Untrusted Callee (DUC) 

[bookmark: Ref_72_1][bookmark: Ref_51_5]The vulnerability was first observed in the Parity wallet attack [72]. The primitive delegatecall generates a message call that executes the code at the target address in the context of the calling contracts [51]. This way, an attacker can modify the state of the caller contract using the callee.

[bookmark: _Toc100492306]DoS by External Contracts (EC): 

[bookmark: Ref_48_3]This vulnerability results from the dependence of conditional statements on external calls since the condition to continue the execution may never be satisfied [48].

[bookmark: _Toc100492307]DoS Costly Patterns and Loops (CPL)

[bookmark: Ref_51_6]Useless code and loops related patterns [51] could lead to a DoS situation when the gas needed to complete an execution exceeds the block gas limit. This issue is mainly caused by the use of unbounded operations (e.g., loops that depend on the function parameters that an attacker can manipulate). A possible mitigation for this vulnerability is to reduce the use of loops with a high or unknown number of iterations.

[bookmark: _Toc100492308]Ether Lost in Transfer (ELT)

[bookmark: Ref_45_5]Specifying a 160-bit address is required to transfer Ether. If the address is orphan (i.e., it is not associated with any accounts), the amount of money to be transferred will be lost, and it cannot be recovered. Developers that would avoid this problem have to ensure the correctness of the recipient’s address with a check [45].

[bookmark: _Toc100492309]Exceptions Disorder (ED)

[bookmark: Ref_45_6]Exceptions can be raised in different situations, such as an out-of-gas exception, an error string exception, or a panic exception [45]. The inconsistency in the Solidity exception propagation policy can lead to implementation confusion, making contracts vulnerable. This issue can cause different effects and even allow attacks. Therefore, mitigation consists of checking any possible error condition.

[bookmark: _Toc100492310]Freezing Ether (FE)

[bookmark: Ref_51_7]This vulnerability results from the impossibility of a contract to send Ether while it can still receive it. It can result when a contract relies on no more available external code (for instance, after a selfdestruct operation) to perform the money transfer [51].

[bookmark: _Toc100492311]Gasless send (Gs)

[bookmark: Ref_45_7]The vulnerability results when the gas consumption for executing an operation exceeds the expected amount, raising an out-of-gas exception [45]. In particular, the function send does not specify the maximum amount of expendable gas for executing the recipient fallback function. Such an amount is fixed and likely to be reached when the fallback function contains many or expensive instructions. Considering that send does not propagate exceptions, the contract keeps the amount that should have been transferred.

Generating Randomness (GR)[image: ]

[bookmark: _Ref88051016][bookmark: _Toc93678999][bookmark: _Ref94209887][bookmark: _Ref94209890]Figure 7: Generating randomness code snippet.



The execution of EVM bytecode is deterministic. To simulate non-deterministic choices, many contracts generate pseudo-random numbers, using the timestamp or other information (retrieved from global variables) about a block that will be added at a given time on the Blockchain. As an example, Figure 7 shows two different ways of generating randomness in such a way.

[bookmark: Ref_45_8]Since miners control the blocks of the Blockchain, a malicious one could craft a block to bias specific values [45], thus discovering the randomness and managing to manipulate events. A possible countermeasure consists of using an external source via oracles.

[bookmark: _Toc100492313]Insufficient Gas Griefing

[bookmark: _Toc88143327][bookmark: _Toc88157907][bookmark: _Toc89783328][bookmark: _Toc89783545][bookmark: _Toc92265151][bookmark: _Toc92280658][bookmark: _Toc93224787][bookmark: _Toc93225287][bookmark: _Toc93581197][bookmark: Ref_68_3][bookmark: Ref_73_1]A contract can accept data and use them for a sub-call to another contract. An attacker can provide enough gas for executing a transaction but not enough for the sub-call to succeed [68]. This way, the attacker can censor all transactions; the attacker has no direct benefit but causes damage to the victim of the attack [73].

[bookmark: _Toc100492314]Integer Overflow/Underflow (IOU)

[bookmark: Ref_48_4][bookmark: Ref_51_8]A smart contract overflow occurs when a variable of type integer exceeds the maximum value that the type supports. Conversely, when the type is unsigned, decrementing a variable below the value zero will cause an underflow. Both an unmanaged arithmetic overflow and underflow can cause a software vulnerability [48], [51] (e.g., when the result value is used to manage resources or control the execution flow). However, the vulnerability can be mitigated by checking the operation’s result.

Malicious Libraries (ML) [image: ]

[bookmark: _Ref88053157][bookmark: _Toc93679000][bookmark: _Ref94209896][bookmark: _Ref94209899]Figure 8: Reentrancy code snippet.



[bookmark: Ref_74_2]Solidity permits building libraries that contracts can invoke. However, using libraries from untrusted sources may result in vulnerability by allowing the potential execution of malicious code [74].

[bookmark: _Toc100492316]Missing Protection against Signature Replay Attack (MPRA)

[bookmark: Ref_68_4]A smart contract can perform operations that need signature verification. In this case, protection against the Signature Replay Attack is needed (e.g., keeping track of all message hashes and only allowing new message hashes to be processed) [68]. A lack of this protection makes a contract vulnerable.

[bookmark: _Ref89781688][bookmark: _Toc100492317]Reentrancy (Re)

[bookmark: Ref_45_9][bookmark: Ref3_6]This vulnerability occurs when a callee calls the calling function back before its completion. This call can lead to the repeated execution of functions designed to be executed only once [45]. The situation can easily occur when a contract sends Ether to another. In fact, in Solidity, a fallback function is called whenever a contract receives Ether or when a given not existing function is called. If the fallback function performs a callback, it will lead to a loop of calls that may drain the funds of the paying contract (as in the DAO attack [3]). 

An example of a simplified version of the DAO attack is shown in Figure 8. If the malicious contract Eve calls the function withdraw of Alice (row 20) to get its deposited credit, its execution (row 10) invokes the Eve fallback function (row 19), generating a loop that will drain Alice's balance. This loop happens because the Eve credit update is performed after the payment (row 12) instead of before. A possible countermeasure to this vulnerability is to ensure that any external contract is called only once, updating appropriate variables before performing the call.

[bookmark: _Toc100492318]Right to Left Override (RLO)

[bookmark: Ref_68_5]Right-To-Left-Override is a special Unicode character (U+202E) that allows the use of right-to-left (RTL) characters within the text normally rendered left-to-right (LTR). For example, consider a smart contract: it is possible to insert an RTL character at appropriate points in the code to modify the behaviour in a hidden way. This way, the logic of the contract can be completely altered without a user being aware of it [68].

[bookmark: _Toc100492319]Requirement Violation (RV)

[bookmark: Ref_68_6]This vulnerability results from a violation of the requirements specified in a function for external input validation. Requirements violation indicates the presence of a vulnerability in the caller contract or an erroneous validation condition [68].

[bookmark: _Toc100492320]Secrecy Failure (SF)

[bookmark: Ref_51_9]Declaring a variable as private does not guarantee its secrecy because of the public nature of the Blockchain. Other contracts can not access the variable, but anyone can inspect published values and infer possible subsequent ones [51]. Using cryptographic techniques could mitigate the problem.

[bookmark: _Toc100492321]Short Addresses (SA)

[bookmark: Ref_51__10]When a contract’s invocation is performed, the corresponding transaction’s input field contains the callee function and all the call’s arguments. Each argument is encoded in 32 bytes automatically filled by the EVM with extra leading zeros if the length is shorter than allowed. The missing check of the validity of addresses by the EVM causes the vulnerability (EVM assumes that users always input 20-byte long addresses). For instance, transfer(address to, uint fund) allows the attacker to increase the amount of funds to gain [51] whether to is shorter than 32 bytes. The countermeasure to this vulnerability is checking the length of the transaction’s input.

[bookmark: _Toc100492322]Signature Malleability (SM)

[bookmark: Ref_68_7]The Blockchain uses the public-private key mechanism (Chapter 2). Thus, users assume the uniqueness of the implementation of the signing mechanism in Ethereum smart contracts. However, the EVM specification allows the use of precompiled contracts (e.g., ecrecover) to retrieve the public key through a triple (v, r, s). According to [68], if the signature is part of the hash of a previously signed message, an attacker can modify the three parameters to create still-valid signatures (without possessing the private key).

[bookmark: _Toc100492323]Transaction Ordering Dependence (TOD)

[bookmark: Ref_51__11][bookmark: Ref_75_1]This vulnerability arises when a contract relies on the order in which transactions are executed since miners decide this. There is no guarantee that the execution order matches the order in which transactions were requested, and this can affect the state of the dependent contract [51]. Using a pre-commit scheme [75] could mitigate the vulnerability.

[bookmark: _Toc100492324]Typecasts (Ty)

[bookmark: Ref_45_10]Receiving a contract as a function argument without checking its actual type represents a vulnerability. The Solidity type checker does not verify that the type is correct. Thus, calling a function of the received contract allows an attacker to execute arbitrary code. In fact, if a malicious contract contains a function having the same name as the invoked one, no error is raised, and the execution continues normally [45]. 

[bookmark: _Ref89560434][bookmark: _Toc100492325]Unchecked Call Return Values (UV)

[bookmark: Ref_51__12][bookmark: Ref_68_8]Some Solidity functions for Ether transfer return the boolean value false in case of failure without raising an exception. Thus, a missing check of the return value results in a vulnerable condition [51], [68], leading to unexpected behaviours. The vulnerability can be mitigated by handling the return value. [image: ]

[bookmark: _Ref86912512][bookmark: _Toc93679001][bookmark: _Ref94209905][bookmark: _Ref94209909]Figure 9: Unprotected Ether withdrawal code snippet.



[bookmark: _Toc100492326]Unchecked send (Us)

[bookmark: Ref_36_3]Unchecked send is a vulnerability produced by using the primitive function send. The primitive returns a boolean value; considerations are similar to Section 3.2.26. Therefore, the use of the send primitive is discouraged [36].

[bookmark: _Toc100492327]Unprotected Ether Balance (UEB)

[bookmark: Ref_68_9]Transactions that depend on the balance of a smart contract should be adequately protected. For example, suppose a contract performs a critical transaction when its balance reaches a certain amount (or it is greater than zero). Then, it is always possible to forcibly send Ether to a contract (e.g., using selfdestruct) by changing its balance even when there are mechanisms to disable receiving Ether. This way, a failure to protect access to the operation makes the contract vulnerable [68]; in the worst-case scenario, the vulnerability could lead to a DoS situation.

[bookmark: _Toc100492328]Unprotected Ether Withdrawal (UEW)

[bookmark: Ref_68__10]This vulnerability arises when malicious actors drain funds from a contract due to missing, insufficient, or wrong access controls [68]. The contract shown in Figure 9 allows other contracts to deposit and withdraw Ether, keeping track of each contract's deposited balance. The code is vulnerable since the function withdraw allows a contract to get a specified amount of Ether even if it does not have enough in its balance. Because of the missing condition, a malicious contract could drain all the victim funds.

Unprotected selfdestruct (Usd) [image: ]

[bookmark: _Ref88074576][bookmark: _Toc93679002][bookmark: _Ref94209915][bookmark: _Ref94209918]Figure 10: Unprotected selfdestruct code snippet.



[bookmark: Ref_51__13]The use of the function selfdestruct without an appropriate check on the caller [51] may result in unintended destruction of the contract. For example, consider the code of Figure 10. If a non-authorized contract invokes the function kill passing its address as an argument, it will manage to destroy the contract Alice and gain Alice’s entire current balance.

[bookmark: _Toc100492330]Visibility of Exposed Functions (VEF) 

[bookmark: Ref_51__14]An attacker could execute a function for arbitrary purposes when its visibility is wrongly defined. Consider the function definitions as shown in Figure 11. In both cases, the function visibility has been set incorrectly since external contracts can invoke the function that should only be called internally. The use of wrong function modifiers may allow unauthorized execution [51]. The effects can be various depending on the nature of the exploited function.

[bookmark: _Ref91620431][bookmark: _Toc100492331]Vulnerability Systematization

This section deals with vulnerability systematization. It first reports on a more detailed description of CWE (introduced in Section 2.3.4) and then provides the Solidity fault model. [image: ]

[bookmark: _Ref89559421][bookmark: _Toc93679003][bookmark: _Ref94209924][bookmark: _Ref94209926]Figure 11: Vulnerability of exposed function code snippet.



[bookmark: _Toc100492332]CWE and Hierarchical Representation

To better understand the systematization process (addressed in the next section), this section provides more details related to CWE. 

[bookmark: Ref_38_2]The Common Weakness Enumeration (CWE) is a community-developed list (updated periodically) of common weakness types that involve security [38]. CWE community includes 58 members among some of the major technology companies (e.g. Apple, IBM, Microsoft), U.S. Government Institute/Agency (e.g. the National Security Agency, National Institute of Standard and Technology), security and cyber-security companies, and non-profit organizations. 

[bookmark: Ref_38_3]According to [38], CWE proposes to:

have a common language for the weakness description, identification, mitigation;

asses the coverage of tools (that target those weaknesses); 

prevent software vulnerabilities prior to deployment.

The Common Weakness Enumeration (CWE) classifies weaknesses as root causes of vulnerabilities in a hierarchical taxonomy. CWE provides three main hierarchical representations (research concepts, hardware design, software development) based on a specific point of view, others based on entries subset or specific domain or use case. For our purpose, we focus on the research concepts view that highlights:

the abstraction of weakness behaviour, permitting to overcome the dependency on specific language and platforms;

where and in which phase weakness appears in the code;

Each entry contains three elements that help in understanding how the vulnerability is relevant in a particular environment:

The introduction phase identifies when the weakness is introduced in the software (e.g., architecture, design, implementation).

Common consequences determine eight pre-defined technical impacts (read-data, modify-data, DoS-unreliable execution, DoS-resource consumption, execution of unauthorized command, gain privilege/assume identity, bypass protection mechanism, hide activities). 

Potential mitigations provide suggestions and recommendations on the countermeasures to be applied during the software development phases.

[bookmark: Ref_76_1]Figure 12 shows an example of hierarchy (extracted and adapted from [76]). The Pillar (Improper Access Control) has both Classes and Bases as sons (depending on the defined abstraction level); each Class could have a sub-hierarchy starting with other Classes, Bases or Variants. We highlight that each Pillar has its sub-hierarchy (independent from others) and that leaves are represented by Variants or Bases, depending on the represented level of detail.[image: ]

[bookmark: _Ref86834914][bookmark: _Toc93679004][bookmark: _Ref94209932][bookmark: _Ref94209934]Figure 12: Hierarchy sample of CWE.



[bookmark: _Ref90239117][bookmark: _Toc100492333]Solidity Fault Model 

[bookmark: Bononi_2]This section systemizes the vulnerabilities addressed in this Thesis and identified in Section 3.2.

[bookmark: _Toc100492334]Mapping vulnerabilities to CWE 

[bookmark: Ref_76_2]We have grouped the list of 32 vulnerabilities in a language-independent classification, in general abstract classes using a subset of the CWE-1000 Research Concepts [76] (based on abstractions of software behaviour).

[bookmark: Bonomi_z]As CWE is only a semi-formal taxonomy without formal semantics, mapping Solidity vulnerabilities into CWE is manual. Our methodology (introduced in Section 2.6) has its foundation in two main key points: 

identifying the CWE-ID level that best fits each vulnerability, placing it in a Pillar sub-hierarchy. 

finding Classes or Pillars (in the Pillar sub-hierarchy) that group multiple vulnerabilities of similar behavior.

Our first target is to identify the CWE-ID Base or Class-level weakness that is the best abstraction for each vulnerability. This process follows the criteria for the best match [137].

We consider vuln as a type of vulnerability that belongs to our taxonomy. To map the vulnerabilities onto CWE, we used the following method:



1. We identified the main characteristics of vuln (e.g., the software's resources' exhaustion), extracting some keywords;

1. We identified the candidate shortlist CWE-IDs by performing an abstract keyword and synonym search in the CWE list.

1. An in-depth review of every element in this list led selecting the specific CWE-ID Base or Class-level (under the Pillar sub-hierarchy) to represent vuln. 

Our final target is group vulnerabilities. Starting from the CWE-IDs identified in the previous step, we proceed bottom-up in the hierarchy until we find Classes or Pillars (in the Pillar sub-hierarchy) that group vulnerabilities with similar behaviour. Thus, we select them as our classification categories.

Consider two vulnerabilities as examples of the classification:

[bookmark: Ref_45_11]Gasless send (Gs): it happens when a call invocation provides a limited quantity of gas to the callee, and the gas consumption for executing an operation exceeds the provided amount [45].

[bookmark: Ref_51__15]DoS costly Patterns and Loops (CPL): a DoS situation can happen if the gas needed to complete an execution exceeds the gas block limit [51]. A potential cause is using an unbounded operation (e.g., loops that depend on a function parameter).

In the case of the example, the first step identifies CWE-400 (Class-level) to represent both vulnerabilities. By performing the second step, we have to select a class or a Pillar that groups the vulnerabilities. CWE-400 is still a Class and contains vulnerabilities with similar behaviour; thus, we select it as our classification category for Gs and CPL.

The classification of 32 vulnerabilities (Table 7) contains the acronym (Acr.), the full name, the reason for classification, the CWE category (specifying Class or Pillar), and finally, a short description. 

[bookmark: _Toc100492335]Comparison between the fault model and the ISO/IEC 5055:2021 standard

As the next step, we check that the similarity between Solidity and conventional programming languages manifests in their respective fault model. We compare our proposed model for Solidity (10 CWE-IDs) and the ISO/IEC 5055:2021 standard (71 CWE-IDs) for conventional languages. 

Note that the comparison of the fault models should cover both identities and similarities of the weaknesses in the two fault models. For instance, two weaknesses sharing a joint abstract ancestor in the CWE hierarchy indicate a common root cause manifested in different forms due to the peculiarities of the different programming languages.

[bookmark: Zoltan_2][bookmark: Ref124_5]12 CWE-IDs in the ISO list are irrelevant as Solidity has no similar language constructs. 7 ISO CWE-IDs related to software obsolescence are irrelevant for our purposes. 20 ISO CWE-IDs are descendants of our Solidity model. One CWE-ID is identical in the ISO and Solidity lists. Two Solidity and ISO CWE-IDs have a joint ancestor in the CWE hierarchy. 29 ISO CWE-IDs are derivatives of the family containing our Solidity CWE-IDs. A detailed comparison is available in [124]. The model for Solidity contains 3 Solidity-specific CWE-IDs that extend the list of the ISO standard:

CWE-330 (Use of Insufficiently Random Values) is related to generating random numbers whose seed comes from a value stored in the Blockchain.

CWE-345 (Insufficient Verification of Data Authenticity), concerning the use of signature and invalid data.

CWE-284 (Improper Access Control), related to improper authorizations or controls that permit unauthorized operations and Ether manipulations.



For instance, two weaknesses sharing a joint abstract ancestor in the [bookmark: _Ref81393836][bookmark: _Ref90642236][bookmark: _Toc93581667][bookmark: _Ref94209090][bookmark: _Ref94209093]Table 7: Mapping between vulnerabilities and CWE based classification.

Vulnerabilities

Classification

Acr.

Name

Reason for classification

CWE-ID

CWE description

ELT

Ether Lost in Transfer 

Missing address validity checks.

CWE-20

(Class)

Improper Input Validation: the software does not validate or improperly validates input data.

RV

Requirement Violation 

Improper input validation conditions.





SA

Short Addresses 

Improper validation of the address length.





Atx

Authorization through tx. origin 

Improper authorization restriction using tx origin.

CWE-284

(Pillar)

Improper Access Control: the software does not restrict or incorrectly restricts access to a resource. It involves authentication, authorization, accountability.

UEW

Unprotected Ether Withdrawal 

Improper access control in Ether withdrawal.





Usd

Unprotected selfdestruct 

Self-destruction with improper authorization checks.





VEF

Visibility of Exposed Functions 

Improper access control or authorization allows improper function usage.





GR

Generating Randomness 

Use of predictable random numbers.

CWE-330

(Class)

Use of Insufficiently Random Values: the software generates predictable values in a context that requires unpredictability.

MPRA

Missing Protection against Signature Replay Attack 

Missing check or protection in data authenticity.

CWE-345

(Class)

Insufficient Verification of Data Authenticity: the software accepts invalid data, improperly verifying their validity or authenticity.

SM

Signature Malleability 

Improper verification of data signature.





Ty

Type Casts 

Improper verification of data validity.





CPL

DoS costly Patterns and Loops 

Improper management of resources (gas) in pattern and loop execution.

CWE-400

(Class)

Uncontrolled Resource Consumption: the software does not correctly control the allocation of limited resources, permitting an attacker to exhaust them.

Gs

Gasless send 

Improper check in the usage of gas using send.





BU

Blockhash Usage 

Blockhash usage in critical operations exposes to manipulation from miners.

CWE-668

(Class)

Exposure of Resource to Wrong Sphere: the software provides unintended actors with inappropriate access to the resource.

ML

Malicious Libraries 

Inappropriate access to resources.





SF

Secrecy Failure 

Anyone can accede to a private variable.





TD

Timestamp Dependency 

Timestamp usage in critical operations exposes to manipulation from miners.














Table 7 (continued): Mapping between vulnerabilities and CWE based classification.

Vulnerabilities

Classification

Acr.

Name

Reason for classification

CWE-ID

CWE description

CU

Call to the Unknown 

Low-level function calls can be unintended controlled from the resources of another sphere.

CWE-669

(Class)

Incorrect Resource Transfer Between Spheres: the software provides an unintended control over the resource importing (transferring) it from (to) another sphere.

DUC

Delegatecall to the Untrusted Callee 

Low-level function calls can provide unintended control to a resource of another sphere.





EC

DoS by External Contracts 

External contracts can cause unintended control from a resource of another sphere.





AP

Arithmetic Precision Order 

Divide before multiply can lead to incorrect results.

CWE-682

(Pillar)

Incorrect Calculation: software performs a calculation that leads to incorrect or unintended results.

IOU

Integer Overflow or Underflow 

Overflow or underflow can lead to incorrect results.





AJ

Arbitrary Jump 

Execution of unexpected instructions.

CWE-691

(Pillar)

Insufficient Control Flow Management: the software does not properly manage the program control flow, permitting to modify it unexpectedly.

FE

Freezing Ether 

Modification of the program flow makes it impossible to send Ether.





IGG

Insufficient gas griefing 

Prevention of sub-call execution alters the program flow.





Re

Reentrancy 

A callee calls the function back before its completion.





RLO

Right Left Override 

The standard flow of the program is modified.





TOD

Transaction Ordering Dependence 

An attacker can artificially favor the execution of one transaction over another.





UEB

Unexpected Ether Balance 

Strict Ether balance assumptions cause an unexpected program flow.





ED

Exception Disorder 

Incorrect handling of Solidity exception propagation.

CWE-703

(Pillar)

Improper Check or Handling of Exceptional Conditions: the software manages improperly exceptional conditions.

Us

Unchecked send 

Improper checks of exceptional conditions using send.





UV

Unchecked Call Return Values 

Missing checks of return values.











[bookmark: _Ref92283768]The fault models for the general-purpose elements in conventional languages (ISO standard) and Solidity are similar, while in addition, Solidity has some Ethereum-specific faults. If the Solidity-relevant fault classes are identical to or descendants of the ISO standards, then the algorithms elaborated for traditional languages are reusable. Otherwise, new or extended algorithms are needed.

[bookmark: _Toc100492336]Propagation and Relations among Vulnerabilities

[bookmark: Ref3_7][bookmark: Ref_66_2][bookmark: Ref_72_2][bookmark: Ref_67_2][bookmark: Ref_77_1]This section aims to emphasize some relations and propagations among the above-described vulnerabilities. Main information is extracted from most famous attacks (e.g., Dao [3], King of the Ether Throne [66], the Parity Multisig [72], Government [67]), and exploited smart contracts monitored by NVD. Furthermore, we include some code snippets and references to real contracts to support the explanation. Let us only note that the shown code (compliant to Solidity 0.5.x) may differ from the original one (Solidity 0.4.x): refer to Solidity breaking changes [77] for details. 

Relations among vulnerabilities are shown in Figure 13 through circle intersections, where circles stand for vulnerabilities, each identified by its acronym. In particular, when a circle is contained in another, its corresponding vulnerability is a subset of the external one. Moreover, an arrow from circle A to circle B means that A may imply the presence of B under specific conditions. Rectangles identify CWE-IDs. After this premise, we describe some interdependencies and propagations.

[bookmark: Ref_78_1]First, let us consider the upper-left part of Figure 13. Timestamp Dependency (TD) and Blockhash Usage (BU) intersect since both are related to the usage of blockchain global variables controlled by miners. For example, the code snippet in Figure 6, highlights the use of blockhash value that generates a BU vulnerability: in fact, each global variable could be manipulated by miners. In addition, using a blochask or timestamp-dependent variable can lead to a GR vulnerability (that can be exploited as in [78]). 

[bookmark: Ref_79_1]Let us now consider the secrecy failure (SF). Making a variable private prevents other smart contracts from reading its value; however, the value of the variable is visible on the Blockchain. Whether a private variable is used as a seed of randomness, the secrecy failure could lead to GR (as in [79]). 





[bookmark: _Ref86832094][bookmark: _Ref86832063][bookmark: _Toc93679005][bookmark: _Ref94209940][bookmark: _Ref94209942]

[bookmark: _Ref100418458]Figure 13: Vulnerability propagations.



As a global view, vulnerabilities that belong to CWE-668 (Exposure of Resource to Wrong Sphere) can propagate to CWE-330 (Use of Insufficiently Random Values). Exploiting the possibility to read secret data may allow an attacker to bypass protection mechanisms and guess the pseudo-random value.

The upper right part of Figure 13 shows the relationship between vulnerabilities of CWE-284 (Improper Access Control) and those of other classes. 

[bookmark: Ref_80_1][bookmark: Ref_81_1]Consider the chain Integer Overflow or Underflow (IOU) -> (that leads to) Requirement Violation (RV) -> (that leads to) Unprotected Ether Withdrawal (UEW). An example is shown in Figure 14. The RV is caused (row 13) by the fact that an external contract may craft the function parameter value, leading to an integer overflow in the require clause (a real contract is shown in [80]). After the RV succeeds because of an overflow, the attacker may exploit the UEW vulnerability, gaining a potentially enormous amount of Ether (as shown in row 15 of Figure 14). On some occasions, as in Figure 15 (extracted from a [81]), an attacker (the contract’s owner) could exploit an IOU to lead directly to a UEW.[image: ]

[bookmark: _Ref86832130][bookmark: _Toc93679006][bookmark: _Ref94209949][bookmark: _Ref94209951]Figure 14: Code snippet of IOU leading to RV.



[bookmark: Ref_82_1]A simple wrong function visibility setting that generates a Visibility of Exposed Function (VEF) is listed in Figure 16. If a user misuses the function, it may be possible for an attacker to withdraw Ether (UEW) illicitly. In the code snippet, the function setOwner has improperly public visibility allowing any user to modify the contract’s owner, thus possibly causing the UEW (as in [82]). Also, the Authorization from tx.origin (Atx) vulnerability could propagate to a UEW with the same mechanism just explained.[image: ]

[bookmark: _Ref93677134][bookmark: _Toc93679007][bookmark: _Ref94209958][bookmark: _Ref94209962]Figure 15: Code snippet of IOU leading to UEW.



[bookmark: Ref_72_3]The Unprotected selfdestruct (Usd) intersects with UEW because an improper access control causes both vulnerabilities; moreover, Usd could lead to a Freezing Ether (FE) if a contract is improperly destroyed (a famous related exploit is the Parity Multi-Sig [72]). [image: ]

[bookmark: _Ref86833060][bookmark: _Toc93679008][bookmark: _Ref94209970][bookmark: _Ref94209974]Figure 16: Code snippet of VEF leading to UEW.



From a classification point of view, it appears that vulnerabilities that belong to CWE-682 (Incorrect Calculation) could lead to CWE-284 (Improper Access Control). In addition, improper controls could cause a loss of normal program flow.

[bookmark: Ref_66_3]Let us consider the bottom left part of Figure 13. The picture represents Unchecked send (Us) as a subset of Unchecked Value (UV) that includes primitive functions such as call, delegatecall, send (as shown in Figure 17). Moreover, the Us and Gasless send (Gs) originate from the send function (justifying the intersection in our picture). All these vulnerabilities (UV, Us, Gs) can lead to an Exception Disorder (ED): missing a check on a returned value of the involved functions implies the impossibility to manage an exceptional situation (an attacker may also provoke that): an example is the King of the Ether Throne [66].

[bookmark: Ref_72_4]Let us then consider the bottom right part of Figure 13. The figure indicates Delegatecall to Untrusted Callee (DUC) as a subset of Call to the Unknown (CU). Using a function call to send Ether could cause the execution of the fallback function of a malicious attacker (Reentrancy – Section 3.2.18). Reentrancy, if exploited, could lead to the UEW (all contract funds are drained): an excellent example of this vulnerability propagation can be found in [72]. 

Considering this propagation from the classification point of view, we could infer that an unintended control over a resource could cause an insufficient control of the control flow, leading to an access control problem. 


[image: ]

[bookmark: _Ref93677521][bookmark: _Toc93679009][bookmark: _Ref94209985][bookmark: _Ref94209988]Figure 17: Code snippet of Us, UV.



4

ASSESSMENT OF THE SMART CONTRACT SECURITY

[bookmark: _Ref92107066][bookmark: _Toc100492337]ASSESSMENT OF THE SMART CONTRACT SECURITY

[bookmark: Zoltan_6_b]This section deals with the assessment of smart contract security, addressing RQ2: How can we evaluate the security of smart contracts by using static analysis to detect the most relevant vulnerability-related weaknesses? 

After selecting SA tools in Section 4.1, we provide the experimental settings and the methodology in Section 4.2. Section 4.3 investigates the testing performances of SA tools, and Section 4.4 deals with the validity and limitations.

[bookmark: _Ref91704346][bookmark: _Toc100492338][bookmark: _Ref81985655]Static Analyzers

This section describes the tools selection process, and a qualitative analysis identifying vulnerabilities not targeted for detection by the individual tools.

[bookmark: _Ref90300378][bookmark: _Toc100492339]Tools Selection 

[bookmark: Ref_55_2][bookmark: Ref_56_2]At first, an extensive search of different sources such as research papers (e.g., [55], [56]) and other online resources (sites for developers of the Ethereum environment and GitHub's most referenced tools repositories) produced a shortlist of 38 candidate tools.

The final set of 9 tools (Table 8) selected for detailed analysis included only those fulfilling the following criteria: 

handling of contracts written in Solidity version 0.5 or higher;

stand-alone tools targeting vulnerabilities detection;

analysis of smart contracts without user-defined properties or assertions;

free public availability (for a white box analysis discussed later).

[bookmark: Ref_83_1]Input, internal representation and methodology refer to concepts described in Section 2.4.2. A * in the table indicates that specific options extend the support of the original Solidity tool to the 0.5 release (e.g., [83]).  [bookmark: _Ref81485599][bookmark: _Ref87269976][bookmark: _Toc93581668][bookmark: _Ref94209137][bookmark: _Ref94209140]Table 8: Selected tools.

 Tools

Analysis Methods

Name

Release

Input

Internal

representation

Methodology

Securify2 

Mai 2020

BC

CFG

DEC, DIS

Securify 

Mai 2020

BC

CFG

DEC, DIS

Slither 

0.7.1

SC

AST, CFG

TA

SmartCheck

2.1

SC

AST

DEC

Remix IDE 

March 2021

SC

AST

Various

Mythril 

0.22.17

BC

CFG

SE

Oyente 

November 2020

BC

CFG

SE

Osiris 

0.0.1*

BC

CFG

SE

HoneyBadger 

0.0.1*

BC

CFG

SE







[bookmark: Ref_84_1][bookmark: Ref_85_1][bookmark: Ref_86_1][bookmark: Ref_87_1][bookmark: Ref_88_1][bookmark: Ref_89_1][bookmark: Ref_90_1][bookmark: Ref_91_1][bookmark: Ref_92_1][bookmark: Ref_93_1][bookmark: Ref_94_1][bookmark: Ref_95_1][bookmark: Ref_96_1][bookmark: Ref_97_1][bookmark: Ref_98_1][bookmark: Ref_99_1][bookmark: Ref__100_1][bookmark: Ref__101_1][bookmark: Ref__102_1][bookmark: Ref__103_1][bookmark: Ref_57_5][bookmark: Ref__104_2][bookmark: Ref__105_1][bookmark: Ref__106_1][bookmark: Ref__107_1][bookmark: Ref__108_1][bookmark: Ref__109_1][bookmark: Ref_23_3][bookmark: Ref__110_1]For the sake of completeness, the list of tools excluded due to the violation of one or multiple selection criteria consists of E-EVM [84], Erays [85], ETHBMC [86], EtherTrust [87], EthIR [88], eThor [89], GasChecker [90], Gasper [91], KEVM [92], MadMax [93], MAIAN [94], Manticore [95], Octopus [96], Porosity [97], Rattle [98], SASC [99], sCompile [100], SIF [101], SmartEmbed [102], SmartInspect [103], SmartBug [57], SolAnalyzer [104], SolGraph [105], SolHint [106], SolMet [107], solc-verify [108], Vandal [109], Verisol [23], Zeus [110].

A short description of the selected tools follows:

[bookmark: Ref__111_1][bookmark: Ref__112_1]Securify (Sfy) uses antipatterns to decide if the software has unsafe behaviour, with the support of a domain-specific language [111]. Fallback functions, libraries, and abstract contracts are not supported. We used the main branch release [112].

[bookmark: Ref__113_1]Securify2 (Sfy2) represents a development of Securify taking a Solidity file as input and supporting only flat contracts. The tool decompiles the stack-oriented bytecode into an assignment-based form and transforms the code to DataLog. We used the release of the main branch [113].

[bookmark: Ref__114_1][bookmark: Ref__115_1]Slither (Sli) converts Solidity smart contracts into an intermediate representation called SlithIR [114]. We downloaded the 0.7.1 release from [115].

[bookmark: Ref_74_3][bookmark: Ref__116_1]SmartCheck (SmC) ) identifies smart contracts vulnerabilities by searching specific source code antipatterns [74]. The tool converts the code into an XML syntax tree, and Xquery path expressions retrieve the vulnerable patterns. We used the master branch [116].

[bookmark: Ref__117_1]Remix-IDE (Rmx) is continuously under development [117]. Based on different modules, it also performs a static analysis on that we focus. Transforming the code into an AST representation checks the software security by checking unsafe patterns. We installed the release of March 2021.

[bookmark: Ref__118_1]Mythril (Myt) uses symbolic execution based on EVM bytecode for Ethereum and other EVM-compatible blockchains [118]. 

[bookmark: Ref_54_1][bookmark: Ref__120_1]Oyente (Oye) is a precursor in the field [54], and several other projects have used it as a starting and reference point. It uses symbolic execution. We used the master branch [120].

[bookmark: Ref__119_1][bookmark: Ref__121_1]Osiris (Osi) extends Oyente’s fault model by integer overflows and underflows [119]. It combines symbolic execution and taints analysis. The version downloaded [121] extends Oyente 0.2.7.

[bookmark: Ref__122_1][bookmark: Ref__123_1]HoneyBadger (HoB) is another Oyente-based tool that employs symbolic execution and a set of heuristics to pinpoint specific vulnerabilities in smart contracts [122]; we used the release based on Oyente 0.2.7 [123].

[bookmark: _Ref87279078][bookmark: _Toc100492340][bookmark: _Ref81985668]Preliminary Evaluation

[bookmark: Zoltan_6_c]Which vulnerabilities and weaknesses are checked in each tool? 

The detection capabilities and diagnostic resolution of the individual tools differ significantly. In addition, their diagnostic messages lack a uniform and comparable form. This way, their comparison necessitates mapping the individual targeted sets of weaknesses and diagnostic messages into a consistent basis. This needed a white-box reverse engineering approach. Therefore, we performed a qualitative analysis that:

1. identifies the checking rules applied; 

1. maps them into weaknesses or vulnerabilities; 

1. estimates the classes of vulnerabilities remaining uncovered. 

Checking rules have a slightly different meaning, specified as follows. Rules of Securify represent the checks of the violation of patterns. Securify2 provides a list of checked antipatterns. Slither's rules designate the different detectors that identify anomalies in the smart contracts. SmartCheck's checking rules are determined by evaluating all Xpaths that the tool can check; the Xptah represents a rule and a specific pattern and can be retrieved as output when it identifies anomalies. Mythril and Remix rules consider the output of each module of the SA. The number of rules of Oyente, Osiris, and HoneyBadger represents the number of different outcomes that they provide.

[bookmark: Ref__124_1]We use examples, descriptions, definitions, recommendations, exploits, and other sources linked to checking rules (into the documentation and sometimes into the tool's code) to identify the ones related to the vulnerabilities (the tools also identify other defects). Finally, we map the checking rules to vulnerabilities (and consequently to classes) [124].

The white-box analysis used all the program and documentation-related information sources to reverse engineer the checking rules and their relevance for vulnerability detection.

[bookmark: Zoltan_9][bookmark: Ref124_6]Table 9 highlights, for each tool, the resulting rules and the vulnerability-related ones, showing how many vulnerabilities the tool can identify (and the number of classes involved). A detailed mapping is available at [124].


[bookmark: _Ref81388012][bookmark: _Toc93581669][bookmark: _Ref94209162][bookmark: _Ref94209165]Table 9: Analysis of the internal codes of the tools.

Tools

Resulting rules

Vulnerabilities

related rules

Vulnerabilities

involved

CWE-IDs

involved

Securify

10

10

7

5

Securify2

43

25

18

7

Slither

71

25

17

8

SmartCheck

85

42

17

8

Remix-IDE

22

13

10

6

Mythril

17

15

13

7

Oyente

7

7

6

5

Osiris

10

7

6

4

HoneyBadger

9

5

5

3



[bookmark: _Ref81391950][bookmark: _Toc93581670][bookmark: _Ref94209185][bookmark: _Ref94209188]Table 10: Anticipated and uncovered vulnerabilities.

Tools

CWE-20

CWE-284

CWE-330

CWE-345

CWE-400

CWE-668

CWE-669

CWE-682

CWE-691

CWE-703

Securify





x

x

x

x



x





Securify2





x

x

x











Slither







x

x











SmartCheck

x



x















Remix-IDE

x



x

x







x





Mythril

x





x

x











Oyente

x



x

x

x









x

Osiris

x

x

x

x

x









x

HoneyBadger

x

x

x

x

x

x







x





Table 10 shows instead the vulnerability classes escaping detection completely. An x in cell (z,y) means that the tool in row z can NOT find any vulnerability belonging to the class in column y. Analyzing the table, we can observe some facts: 

Securify, Securify2, and Slither are the only ones capable of detecting vulnerabilities in CWE-20 (Improper Input Validation).

CWE-330 (Use of Insufficiently Random Values) can be detected only by Mythril and Slither. 

Only SmartCheck investigates CWE-345 (Insufficient Verification of Data Authenticity) and two tools (SmartCheck and Remix) CWE-400 (Uncontrolled Resource Consumption).

Table 10 highlights that no tool in the selection covers by design the entire fault model; thus, diagnostic coverage metrics need a finer resolution of the individual classes intended to be covered by it. We refer to this subset of the fault model described in Section 3.3.2 as the working domain of the particular tool.

Besides the view based on classes, we investigated the individual vulnerabilities and found a few that the entire set of SATs cannot detect.

Vulnerabilities out of the detection capabilities of our set of static analysis tools:

[bookmark: Ref__125_1]Missing Protection against Replay Attack (CWE-345): it occasionally depends on a specific function of the ERC-20 token [125]. 

Vulnerabilities-related weaknesses related to specific constructs of Solidity that would permit to catch: Malicious Libraries (CWE-668), Requirement Violation (CWE-20), Type Casts (CWE-345), Insufficient Gas Griefing (CWE-691).

[bookmark: _Toc100492341]Experimental settings and methodology

[bookmark: Zoltan_6]This section focuses on the settings (e.g., data sets and subsequent creation of a reference ground truth) and the methodology of the experimental campaign. 

[bookmark: _Ref100483529][bookmark: _Ref100483537][bookmark: _Toc100492342][bookmark: _Ref90300856]The Reference Dataset 

[bookmark: Ref__126_1]We built a reference dataset of smart contracts, extracting randomly smart contracts (around 400) from the Etherscan (the Ethereum blockchain explorer) [126].

A smart contract can contain different logic contracts (contract keyword) that include functions (function keyword). A measure of the logical contracts or functions of smart contracts helps to highlight their essential characteristics.

The Thesis uses the following definitions for the number of lines of software. Physical lines of code (LOC) are the total number of lines of a smart contract's code. Logical lines of code (LLOC) identify the number of lines of code that are neither comments nor empty. These measures indicate the length of a program; the programming style strongly influences them.

[bookmark: _Ref91927847][bookmark: _Ref91928178][bookmark: _Toc100492343]The Pilot Set

[bookmark: _The_pilot_set]The lack of standard benchmarks to compare Solidity checking tools necessitates the creation of a pilot set, a set of representative smart contracts with known vulnerabilities as a ground truth comparison basis. For instance, without additional knowledge, we cannot distinguish between true positives (TP – correct detection of an existing vulnerability) and false positives (FP – false detection of a non-existing vulnerability) and quantify the vulnerability detection precision of the individual tools.

[bookmark: Ref__124_2]Thus, we extracted a subset of contracts from the reference dataset for manual inspection, which constitutes our pilot set to assemble a ground truth [124]. Smart contracts selected from the reference dataset into the pilot set had to fulfil the following constraints inspired by benchmarks principles. 

[bookmark: Ref__127_1]Representativeness of typical domains. At least one contract of the set must belong to each of the top 5 categories: gambling, exchange, games, finance, and properties [127].

Compliance. All tools can process all contracts without errors.

Representativeness to Solidity. Contracts must contain the main features of the language (e.g., functions that exchange Ether, assembly usage, low-level calls, libraries, structures, arrays).

Representativeness of the kind of vulnerabilities. The whole set of contracts must contain all kinds of vulnerabilities predicted by SA tools on the reference dataset.

[bookmark: Ref_57_6]Although the number of contracts in the pilot set is limited to 15, the number of logical contracts is 88 (with a total LLOC of 4684), and it is comparable to the dataset used in other works [57]. The total number of existing vulnerabilities is 486; moreover, a single line may contain multiple vulnerabilities. Accordingly, we consider vulnerable rows instead of total vulnerabilities. After finding a vulnerability in a row, a manual inspection is required to apply a countermeasure; thus, the probability of finding other existing ones is very high. The number of vulnerable rows in the pilot set is 411.

Table 11 summarizes the main characteristics of the contracts in the pilot set.

Table 12 provides the total number of vulnerabilities (in the first row) and vulnerable rows (in the second one) per class. In the rest of the Thesis, the term vulnerability refers to the vulnerable row unless otherwise specified.

[bookmark: _Toc100492344][bookmark: _Ref87279315]Performance Indicator Definitions 

Vulnerability detection is a classification task; accordingly, we use the standard statistical metrics for binary classification to quantify the behaviour of the individual tools. The confusion matrix is a 2x2 matrix used to describe the classifier behaviour. Columns and rows represent the true values and classifier results. The matrix's main diagonal represents the correct classification in terms of true positives (TP) - correct detection of an existing vulnerability - and true negatives (TN) - correct assessment of no vulnerability -. The anti-diagonal matrix contains the false classification: false negatives (FN – missed detection of an existing vulnerability) and false positives (FP – false detection of a non-existing vulnerability).

[bookmark: Ref__128_1]Based on the confusion matrix several performance indicators can be defined [128].






[bookmark: _Ref81404772][bookmark: _Toc93581671][bookmark: _Ref94209213]Table 11: Pilot set characteristics.

Smart Contracts IDs

Characteristics



LOC

LLOC

Logic Contracts

Functions

Vulnerable

rows

0x01a5c0

190

133

1

22

13

0x16eb29

891

298

9

54

22

0x1cdcc3

776

408

8

113

27

0x239669

244

121

4

24

24

0x4b89f8

929

650

8

41

27

0x5571d1

297

145

4

24

10

0x605cc9

640

185

4

37

14

0x607620

180

149

4

14

25

0x999999

488

252

1

18

42

0xaa4de9

709

269

3

37

22

0xbc205b

1267

616

7

85

27

0xbd3149

227

108

5

22

23

0xd82556

1031

561

8

53

45

0xe042c2

1299

521

12

80

42

0xfd77ef

564

268

5

43

48

Total

9732

4684

83

667

411





 

 
[bookmark: _Ref81405537][bookmark: _Toc93581672][bookmark: _Ref94209242][bookmark: _Ref94209244]Table 12: Pilot set vulnerabilities grouped by CWE-IDs.

Analysis

CWE-IDs



CWE

-20

CWE

-284

CWE

-330

CWE

-400

CWE

-668

CWE

-669

CWE

-682

CWE

-691

CWE

-703

Tot. Vuln. (486)

119

256

4

12

24

6

12

34

19

Vul. Rows (411)

74

235

4

12

24

4

11

29

18







Recall (R) is the percentage of detected anomalies (true positives) over all the anomalies (true positives + false negatives):

[bookmark: _Ref87461419][bookmark: _Toc88143366][bookmark: _Toc88157946][bookmark: _Toc89783360][bookmark: _Toc89783577][bookmark: _Toc92265183][bookmark: _Toc92280690][bookmark: _Toc93224819][bookmark: _Toc93581229][bookmark: _Toc100492345]					(1)

The term coverage is often used with the same meaning of recall. In the rest of the paper, we use the term coverage. 

Precision (P) is the ratio of true and total fault indications penalizing false alerts: 

[bookmark: _Ref87461509][bookmark: _Toc88143367][bookmark: _Toc88157947][bookmark: _Toc89783361][bookmark: _Toc89783578][bookmark: _Toc92265184][bookmark: _Toc92280691][bookmark: _Toc93224820][bookmark: _Toc93581230][bookmark: _Toc100492346]					(2)

F1 score is the harmonic mean between precision and recall, defined as follows:

[bookmark: _Ref87461548][bookmark: _Toc88143368][bookmark: _Toc88157948][bookmark: _Toc89783362][bookmark: _Toc89783579][bookmark: _Toc92265185][bookmark: _Toc92280692][bookmark: _Toc93224821][bookmark: _Toc93581231][bookmark: _Toc100492347]			 		(3)

Accuracy (A) describes the ratio of correct diagnostic results among all:

[bookmark: _Toc88143369][bookmark: _Toc88157949][bookmark: _Toc89783363][bookmark: _Toc89783580][bookmark: _Toc92265186][bookmark: _Toc92280693][bookmark: _Toc93224822][bookmark: _Toc93581232][bookmark: _Toc100492348]	 		(4)

However, accuracy can be misleading when used for unbalanced data, like those we expect for the SA tool with dominating true negatives. 

[bookmark: Ref__129_1]Balanced accuracy (BA) [129] normalizes true negatives and true positives prediction, as the average of the true positive and negative rates:

[bookmark: _Ref87461565][bookmark: _Toc88143370][bookmark: _Toc88157950][bookmark: _Toc89783364][bookmark: _Toc89783581][bookmark: _Toc92265187][bookmark: _Toc92280694][bookmark: _Toc93224823][bookmark: _Toc93581233][bookmark: _Toc100492349]			(5)

All the metrics above become in case of a perfect fault coverage with no false alerts to 1.0.

1.1.1 [bookmark: _Toc100492350]Methodology 

We use the static analyzers of Section 4.1.1, and datasets of Sections 4.2.1 and 4.2.2.

Each tool processed the whole reference dataset. Checking a contract under test may result in a successful test run or a processing failure - an improper or incomplete test run with partial (or no) diagnostic outcome -. A successful test run may deliver a no-vulnerability found message (negative result) or a vulnerability indication complemented with diagnostic information on the location and type. At first, we focus only on the vulnerability detection capabilities and refer to all cases with a vulnerability indication as a positive.

We observed many successful runs and sporadic errors in processing smart contracts using our selected SA tools for the reference dataset. Processing errors happen mainly for two reasons: 

· the tool uses an external module that exhausts memory resources (e.g., Securify2); 

· the tool covers the Solidity language only incompletely.

[bookmark: Zoltan_20]The set of smart contracts that are processed by each tool without any errors forms the reduced dataset. 

We consider the number of lines of code (LOC) of each contract and define the location of detection (LoD) as the line of a smart contract where a tool detects a positive. Each positive is detected by a vulnerability-related rule. Each vulnerability-related rule is mapped to a vulnerability and consequently to a CWE-ID of our taxonomy. The tuple (tool, address, LoD, CWE-ID) identifies a positive that a specific tool detects in a smart contract under test. 

Determining whether each positive is a true or false positive requires a massive amount of (manual) work. Thus, we used the annotated pilot set (Section 4.2.2) extracted from the reference dataset. The ground truth of the pilot set permits calculating the upper-limit of class coverage for each tool and CWE-ID. Moreover, the ground truth permits determining whether each positive outcome is a TRUE positive or a FALSE one, and whether each negative is a TRUE negative or a FALSE one. We used a new tuple (tool, address, LoD, CWE-ID, diagnosis), adding the field diagnosis, which can assume values TP, FP, TN, and FN.

As shown previously in Section 4.1.2, no tool in the selection covers by design the entire set of vulnerabilities; thus, diagnostic coverage metrics need a finer resolution of the individual classes intended to be covered by it. We refer to this subset of the anticipated anomaly classes (described in Chapter 3) as the working domain of the particular tool. A detection is missing (for a specific tool) if a vulnerability from its working domain escapes detection (false negative). We use for this the pilot set, and the purpose of this experimental campaign is to assess how tools perform in their respective working domain, determining how good are built.

Finally, we provide a benchmark evaluating each SA tool as a black box. 

[bookmark: _Toc100492351]Testing Performance[bookmark: _Ref81406812][bookmark: _Toc93581673][bookmark: _Ref94209226][bookmark: _Ref94209229]Table 13: The upper-limit of class coverage.

Tools

CWE-

20

CWE-

284

CWE-

300

CWE-

400

CWE-

668

CWE-

669

CWE-

682

CWE-

691

CWE-

703

Securify

1.0

0.2

N/A

N/A

N/A

1.0

N/A

0.9

1.0

Securify2

1.0

1.0

N/A

N/A

0.6

1.0

0.1

1.0

1.0

Slither

0.6

0.8

1.0

N/A

0.6

1.0

0.1

0.9

1.0

SmartCheck

N/A

0.8

N/A

1.0

1.0

1.0

0.1

0.3

1.0

Remix-IDE

N/A

0.1

N/A

0.9

0.9

1.0

N/A

0.7

0.1

Mythril

N/A

0.1

1.0

N/A

0.6

1.0

1.0

0.7

1.0

Oyente

N/A

0.1

N/A

N/A

0.6

1.0

1.0

0.8

N/A

Osiris

N/A

N/A

N/A

N/A

0.6

1.0

1.0

0.8

N/A

HoneyBadger

N/A

N/A

N/A

N/A

N/A

1.0

1.0

0.2

N/A





This section focuses on testing performance, starting from determining the upper-limit of class coverage (e.g., data sets and subsequent creation of a reference ground truth) and the methodology of the experimental campaign.

[bookmark: _Toc100492352][bookmark: _Ref91078834][bookmark: _Ref91756837]The Upper-limit of Class Coverage

[bookmark: Zoltan_6_d]Which is the upper-limit of class coverage for each tool? 

[bookmark: Zoltan_12]Manual inspection allowed to identify vulnerabilities for each class. The classwise ratio between the number of vulnerabilities detectable by a particular tool and the ones present in the pilot set indicates the upper-limit of the coverage, assuming vulnerabilities are uniformly distributed (Table 13). A concrete example can help clarify values in the table. Consider Slither and the class CWE-284. In the pilot set, the number of existing vulnerabilities that belong to the class CWE-284 is 235. Among them, the occurrences of the vulnerability types that Slither can detect are 185. Thus, the upper bound of the CWE-284 coverage is 185/235, i.e.,  0.8. 

Class CWE-345 is omitted from the table because no vulnerability belongs to this class in the reference and pilot set. The following section investigates the quantification of the testing performance of the individual static analyzers. 

Some observations follow:

For each CWE-ID in the taxonomy, there is at least one tool for which the upper-limit of class coverage is 1.0;

All tools have the upper-limit of CWE-669 coverage of 1.0;

One tool that has the upper-limit of the coverage of 1.0 for  CWE-284 (Securify2), CWE-400 (SmartCheck), CWE-668 (SmartCheck) and CWE-691 (Securify2).

Mythril has the maximum upper-limit coverage of 1.0 for the three classes with fewer occurrences (CWE-330, CWE-669, CWE-682). 

[bookmark: _Toc100492353]How Tools Perform in the Working Domain 

[bookmark: Zoltan_6_e]How do tools perform in their working domain? 

We focus on the pilot set. By combining the evaluation of tools in Section 4.1.2 and the findings described in Section 4.2.3, we can build confusion matrices for each class of the taxonomy.

[bookmark: Zoltan_x]Table 14 and Table 15 provide coverage and precision for each tool and class, respectively. Light-red cells (x, y) indicate that the tool in row x chose NOT to detect vulnerabilities of the class y. In both tables, light-green cells highlight the best tool x for each class y. HoneyBadger is omitted from the tables because it finds no TP in its working domain in the pilot set. 

[bookmark: Zoltan_y]The following example shows how the values of Table 14 are calculated. The vulnerabilities in the pilot set belonging to the working domain of Slither in the CWE-284 class are 185 (the total number of vulnerabilities in the CWE-284 class is 235). Slither detects 170 of them; therefore, the coverage is the ratio of 170 to 185, i.e. 0.9. 



[bookmark: _Ref87280583][bookmark: _Toc93581674][bookmark: _Ref94209274][bookmark: _Ref94209277]Table 14: Classwise vulnerability coverage – tool working domain.

Tools

CWE-

20

CWE-

284

CWE-

330

CWE-

400

CWE-

668

CWE-

669

CWE-

682

CWE-

691

CWE-

703

Securify2

0.5

0.9

N/A

N/A

0.0

0.8

0.1

0.2

1.0

Securify

0.2

0.6

N/A

N/A

N/A

0.0

N/A

0.2

0.4

Slither

0.2

0.9

0.0

N/A

0.5

0.8

0.0

1.0

0.7

SmartCheck

N/A

0.9

N/A

0.4

0.0

0.3

0.0

0.3

0.0

Remix-IDE

N/A

1.0

N/A

0.7

0.7

0.8

N/A

0.8

0.0

Mythril

N/A

0.8

1.0

N/A

0.3

1.0

0.0

0.1

0.4

Oyente

N/A

0.0

N/A

N/A

0.0

0.5

0.3

0.1

N/A

Osiris

N/A

N/A

N/A

N/A

0.0

0.3

0.4

0.1

N/A







[bookmark: Zoltan_15][bookmark: _Ref87280591][bookmark: _Toc93581675][bookmark: _Ref94209297][bookmark: _Ref94209299]Table 15: Precision of tools.

Tools

CWE-

20

CWE-

284

CWE-

330

CWE-

400

CWE-

668

CWE-

669

CWE-

682

CWE-

691

CWE-

703

Securify2

0.5

0.8

N/A

N/A

0.0

1.0

0.3

0.3

0.2

Securify

0.6

0.3

N/A

N/A

0.0

0.0

N/A

0.5

0.8

Slither

1.0

1.0

0.0

N/A

0.9

1.0

0.0

0.7

1.0

SmartCheck

N/A

0.9

N/A

1.0

0.0

1.0

0.0

0.3

0.0

Remix-IDE

N/A

0.5

N/A

1.0

0.8

1.0

N/A

0.9

0.0

Mythril

N/A

0.8

1.0

N/A

0.8

0.4

0.0

0.5

0.9

Oyente

N/A

0.0

N/A

N/A

0.0

1.0

0.6

0.3

N/A

Osiris

N/A

N/A

N/A

N/A

0.0

1.0

0.7

1.0

N/A








[bookmark: Zoltan_17]We would emphasize that the different tool’s precision values cannot be directly compared in this section because they refer to different sets of vulnerabilities (TP+TN). 

Through the tables, developers can determine how well their tools perform on the vulnerabilities they decided to target. Some observations follow: 

Slither has a high precision (>= 0.9) in five classes and has a high coverage (>= 0.9) in two. 

Securify2 and Slither perform well both in precision and coverage in two classes (CWE-284 and CWE-669). Securify2 covers the class CWE-703 completely (but with low precision) and has the highest coverage in CWE-20.

Mythril has complete coverage and perfect precision in CWE-330.

Remix has good coverage and high precision in CWE-669 and CWE-691.

Next, we want to assess the aggregate coverage and precision of the tools without distinguishing among classes. We generate the new confusion matrices (Figure 18) and summarize the main derived metrics in Table 16. Green and light green indicate the top two performances in the tools working domain. Some observations follow: 

[bookmark: Bonimi_2_3]The working domains of Securify2 and Slither contain the largest and second-largest number of vulnerabilities, respectively. 

Slither and Remix have the best and the second-best performance both in coverage and precision. However, Remix targets fewer vulnerabilities than Slither;  

Securify2 covers more than 70% of vulnerabilities, with low precision (0.6);

Mythril has low coverage (0.3) and a precision lower than 0.7. 

In this section, we analyzed the behaviour of the tools in their working domain. Once we identified the tool's working domains, we quantified their classwise and aggregate detection capabilities (Tables 14-16).




[image: ]

[bookmark: _Ref88136355][bookmark: _Toc93679010][bookmark: _Ref94209994][bookmark: _Ref94209996]Figure 18: Confusion matrices in the tool working domain.

[bookmark: _Ref90288337][bookmark: _Ref90287802][bookmark: _Toc93581676][bookmark: _Ref94209319][bookmark: _Ref94209321]Table 16: Tools performances – working domain.

Pilot Set

Sfy2

Sfy

Sli

SmC

Rmx

Myt

Oye

Osi

Precision

0.63

0.42

0.93

0.79

0.86

0.68

0.60

0.50

Coverage

0.72

0.42

0.77

0.72

0.74

0.33

0.11

0.15

Balanced 

accuracy

0.84

0.70

0.88

0.86

0.87

0.66

0.56

0.57

F1 Score

0.67

0.42

0.84

0.76

0.80

0.44

0.19

0.23





[bookmark: _Toc100492354][bookmark: _Ref91078847]Tools Benchmarking [bookmark: _Ref87282507][bookmark: _Toc93581677][bookmark: _Ref94209345][bookmark: _Ref94209348]Table 17: Classwise vulnerability coverage – tool benchmarking.

Tools

CWE-

20

CWE-

284

CWE-

330

CWE-

400

CWE-

668

CWE-

669

CWE-

682

CWE-

691

CWE-

703

Securify2

0.4

0.9

N/A

N/A

0.0

0.7

0.1

0.2

1.0

Securify

0.2

0.2

N/A

N/A

N/A

0.0

N/A

0.2

0.4

Slither

0.1

0.7

0.0

N/A

0.3

0.7

0.0

0.9

0.7

SmartCheck

N/A

0.7

N/A

0.4

0.0

0.2

0.0

0.1

0.0

Remix-IDE

N/A

0.1

N/A

0.7

0.6

0.7

N/A

0.1

0.1

Mythril

N/A

0.1

1.0

N/A

0.2

0.5

0.0

0.1

0.3

Oyente

N/A

0.0

N/A

N/A

0.0

0.5

0.3

0.1

N/A

Osiris

N/A

N/A

N/A

N/A

0.0

0.2

0.4

0.1

N/A





[bookmark: Zoltan_6_f]What is the tool benchmark in the general case? 

This section extends our benchmark on the capabilities of the individual tools in the general case evaluating the outcomes obtained by processing the entire pilot set. We use the same four performance metrics as above. The number of TPs and FPs per tool and class, considering the tool working domain and tools as black boxes, coincides. Instead, FNs and TNs differ. Accordingly, because of the definitions (1), (2), (3), (5), the precision of Section 4.3.2 (Table 15) and this section coincide; conversely, the other metrics differ. 

Table 17 provides the coverage for each tool and class. These results can help choose the best tool once specific vulnerabilities are targeted. Some observations follow:

Securify2 has the highest coverage in classes CWE-20, CWE-284, and CWE-703 (with low precision).

Slither and Remix have the highest coverage, respectively, in classes CWE-669 and CWE-691 (Slither), and CWE-400 and CWE-668 (Remix) - with high precision-.


[image: ]

[bookmark: _Ref88136553][bookmark: _Toc93679011][bookmark: _Ref94210002][bookmark: _Ref94210004]Figure 19: Confusion matrices for benchmarking.



[bookmark: _Ref87461761][bookmark: _Toc93581678][bookmark: _Ref94209368][bookmark: _Ref94209373]Table 18: Tools performances – benchmark.

Pilot Set

Sfy2

Sfy

Sli

SmC

Rmx

Myt

Oye

Osi

Precision

 0.63

0.42

0.93

0.79

0.86

0.68

0.60

0.50

Coverage

0.66

0.18

0.55

0.44

0.10

0.06

0.01

0.02

Balanced 

accuracy

0.81

0.58

0.78

0.71

0.55

0.53

0.51

0.51

F1 Score

0.64

0.25

0.70

0.56

0.19

0.11

0.03

0.04





Mythril and Osiris have the highest coverage in the class CWE-330 and CWE-682.

Figure 19 shows the new confusion matrices by aggregating data without distinguishing among classes. Table 18 provides the overall benchmark results. Again, green and light-green cells highlight the best and second-best results. Some observations follow: 

No tool can cover more than 66% of the vulnerabilities in the pilot set (coverage), and no tool exceeds the value of 70% (Slither) in the F1 score.

Securify2 has the best coverage (even if it misses 1/3 of vulnerable rows) and the second F1 score performance. It has the highest balanced accuracy; however, it has low precision.

Slither has a coverage of 0.10 lower than Securify2, but it has a very high precision (0.93). Moreover, it has the second performance (0.78) of balanced accuracy.

SmartCheck has lower performances than Slither by about 0.10 in every metric.

Dedicated tools with a specific purpose and limited working domain have worst performances than others when analyzing a broad set of vulnerabilities.

This evidence permits us to argue that considering the coverage alone (disregarding the false positives cost), Securify2 is a good choice. If we target a balance between precision and coverage, Slither is to be preferred. However, the low diagnostic accuracy (coverage) demands an investigation on the potential improvement using a combination of tools.

[bookmark: _Ref91773628][bookmark: _Ref91933863][bookmark: _Toc100492355]Validity and Limitations

[bookmark: Ref__130_1]The quality of smart contracts has a significant influence on our analysis results. For instance, widely used quality estimators, like COnstructive QUALity MOdel (COQUALMO [130]), use many influencing factors. The sample set of smart contracts considered in our study originated from a public repository with no information on such essential factors as the developers' skills. Qualified people in software security-oriented companies possessing a sophisticated background could produce better contracts regarding software weaknesses and vulnerabilities than the cuff developers. Variance in skills influences both the total number and distribution of the vulnerabilities in smart contracts.

The uncovered classes and vulnerabilities of Table 10 are independent of the smart contract selection.

We suppose that eliminating over-represented contracts makes the distribution of CWE classes in a general dataset and pilot set comparable. Tools have different precision and coverage in each class (as highlighted in Tables 15 and 17). Thus, precision and coverage in a set of smart contracts depend on the distribution of CWE classes. We want to compare the CWE distribution of the pilot set and a general set. The pilot set is processed by each tool (each tool contributes to the CWE distribution) without any processing error. In our set, smart contracts from the reference dataset, which are processed without any errors by each tool, form the reduced dataset (around 300 smart contracts). The distribution of the positive rows found by the tools and grouped into CWE classes of a reduced dataset is comparable to distributions in the pilot set (Figure 20). Then, with these premises, findings on precision and coverage are generalizable.[bookmark: _Ref88143096][image: ]

[bookmark: _Ref93678865][bookmark: _Toc93679012][bookmark: _Ref94210010][bookmark: _Ref94210012]Figure 20: Distribution of positives in the pilot and reduced dataset.








5

IMPROVEMENT OF THE SMART CONTRACT SECURITY

[bookmark: _Ref92014445][bookmark: _Toc100492356] IMPROVEMENT OF THE SMART CONTRACT SECURITY

Reducing the number of residual vulnerabilities is crucial and can be achieved through static analysis. In Chapter 4, we analyzed how the security of smart contracts can be evaluated by using static analyzers at the early stage of the software life cycle. This section tackles the third research question we address: How to improve the smart contract security using SA tools? (RQ3)

[bookmark: Bonimi_4]We address the problem by considering the outcomes of SA tools. Increasing the TPs means increasing the detected vulnerabilities and the number of FPs (costly in terms of time and resources spent for their reduction - Section 2.4.3). The first goal is to increase the number of TPs without increasing FPs excessively. Moreover, increasing TPs means decreasing FNs. However, FNs cannot be eliminated and are dangerous because they enable subsequent successful attacks. To increase the smart contract security, we have to look for which FNs are most critical to prioritise mitigation actions. Moreover, each TP is mapped to a CWE-ID in our taxonomy and is also identified by its physical location in a contract. Identifying clusters of TPs (characterised by belonging to a specific CWE-ID) in specific areas of contracts allows for identifying similar clusters of vulnerabilities in the same locations. This information suggests specific areas in Solidity smart contracts where the search for vulnerabilities should focus. 

Thus, Section 5.1 treats the improvement of the coverage by combining tools. Sections 5.2 and 5.3 respectively address the prioritization of vulnerabilities escaping detection and where vulnerabilities are more likely located. Finally, Section 5.4 highlights some remarks.

[bookmark: _Ref87534431][bookmark: _Ref90650505][bookmark: _Toc100492357][bookmark: _Ref81985727]Coverage Improvement

Is it possible to improve the coverage by using a combination of tools? As the previous experiments indicated highly different classwise detection capabilities of the individual tools, we may consider combining them.

[bookmark: Ref__131_1]There are several ways to combine tools [131]. We use multiple SA tools to test a smart contract from the pilot set in our experiment and consider the combined test result positive if any of the tools have a positive outcome (OR type combination). This way, fault coverage improves, at a price to increase the number of false positives. 

True positives are rows in which at least one of the tool predictions is positive, and the row really contains at least one vulnerability. False positives are rows in which at least one of the tool predictions is positive but they contain no vulnerabilities. False negatives and true negatives follow accordingly. 

We run our experiments for all the possible combinations of 2, 3 or 4 tools and report in Table 19 the combinations with the highest fault coverage. [bookmark: _Ref87283730][bookmark: _Toc93581679][bookmark: _Ref94209394][bookmark: _Ref94209396]Table 19: Tool combinations.

Pilot Set

Sfy2

Sli

Sfy2

SmC

Sfy2

Rmx

Sfy2

Myt

Sfy2

Sli

SmC

Sfy2

Sli

Rmx

Sfy2

Sli

SmC

Rmx

Sfy2

Sli

SmC

Myt

Precision

0.67

0.62

0.65

0.64

0.64

0.68

0.64

0.64

Coverage

0.81

0.76

0.71

0.68

0.88

0.85

0.90

0.90

Balanced 

accuracy

0.89

0.86

0.84

0.82

0.92

0.91

0.93

0.93

F1 Score

0.73

0.68

0.68

0.66

0.74

0.75

0.75

0.75





More false positives to be analyzed (i.e., the precision of the combination is less than that of the best tool) is the cost paid for using the combination. As an asymptotic result, we report that using all the considered tools together 382 of the 411 vulnerable lines are detected, with the coverage of 0.93. The best coverage combining two tools remains at 0.81. By combining three tools, the coverage reaches at best the value of 0.88 (Securify2 – Slither – SmartCheck). The second-best solution (Securify2 – Slither – Mythril) has a value of 0.85 with no meaningful difference in balanced accuracy and F1 score. Moreover, we investigated four-tool combinations. We obtained the best result by adding Remix or Mythril to the best combination of three tools: the coverage and precision have a value of 0.90 and 0.64.

Another evaluation targeted the coverage for each of the classes rather than considering the aggregate. Proper combinations should include: a tool between Securify2, Securify, and Slither for CWE-20; Mythril to cover CWE-330; SmartCheck or Remix for CWE-400. The best combination contains four tools (Securify2 – Slither – SmartCheck - Mythril). This combination is also one of the best four-tool combinations found earlier, which appears thus to be the best from the point of view of both aggregate and classwise vulnerability coverage.

Finally, we report the cost in terms of execution run time. The architecture used is a Virtual Machine (Ubuntu64 based, 8GB of memory) that ran in a Linux Server with 24 GB. Slither, Remix, and SmartCheck require less than a minute to analyze the entire pilot set. Securify2, Securify, and Mythril need 30 minutes, 2 hours, and 4 hours respectively. 

We run some experiments over big contracts (between 1500 and 6300 LOC). The maximum required time for the analysis of a big smart contract remains within a minute for Slither, Remix, and SmartCheck. Securify2, Securify, and Mythril require a maximum time of one hour, three hours, and seventeen hours.

[bookmark: _Vulnerabilities_prioritization_(ver][bookmark: _Ref91773607][bookmark: _Toc100492358][bookmark: _Ref81986123]Vulnerabilities Prioritization

Even using combinations of tools we have undetected vulnerabilities. We want to investigate whether they are all equally critical or if some can be more dangerous. 

[bookmark: Ref__132_1][bookmark: Ref__133_1][bookmark: Ref__134_1][bookmark: Ref__134_2]To do this, we need to determine their severity, thus identifying the most critical types of undetected vulnerabilities, which would become a top priority in an effort for mitigation. We investigated several prioritization methods (e.g., [132], [133], [134]) and choose two ([133], [134]) that are dealing explicitly with vulnerability prioritization: the typical severity of the Common Attack Pattern Enumeration and Classification (CAPEC); ii) the severity determined by the Common Weakness Scoring System (CWSS) developed by the CWE.

[bookmark: _Toc100492359]CAPEC 

[bookmark: _Toc88157956][bookmark: _Toc89783370][bookmark: _Toc89783587][bookmark: _Toc92265195][bookmark: _Toc92280702][bookmark: _Toc93224831][bookmark: _Toc93581241][bookmark: _Toc100492360]Overview

CAPEC [133] provides a public catalog of common attack patterns that an attacker uses to exploit known weaknesses. Each pattern captures the design and execution of an attack, thus providing information about the severity and mitigation of the attack. CAPEC uses four levels of abstraction for attack patterns (ordered by increasing level of detail): category, meta, standard, detailed.

Currently[footnoteRef:3], the CAPEC archive contains 546 attack patterns, divided into two main hierarchical views:  [3:  In December 2021, the latest version of the CAPEC list is 3.6.] 


Mechanisms of attack, consisting of 9 categories, representing the fundamental mechanisms used to exploit a vulnerability; 

Domains of attack, represented by six different categories: software, hardware, communications, supply chain, social engineering, physical security.

CAPEC attack patterns capture the exploitation of weaknesses. Each attack pattern contains some information, including a description of the attack, relationships to other attack patterns, and a typical severity (which we will use for prioritization).

[bookmark: _Toc88157957][bookmark: _Toc89783371][bookmark: _Toc89783588][bookmark: _Toc92265196][bookmark: _Toc92280703][bookmark: _Toc93224832][bookmark: _Toc93581242][bookmark: _Toc100492361]Mapping CAPEC patterns to vulnerabilities

We consider vuln as a type of vulnerability that belongs to our taxonomy. To determine the mapping between vulnerabilities and CAPEC attack patterns, we used the following method:



1. Considering the known exploit scenarios:

6. we determined the mechanism of the attack;

6. we extracted some keywords;

1. We identified a set of CAPEC patterns (C_set) by performing a keyword search on the CAPEC list, filtered through the mechanism of the attack.

1. Then, we selected the maximum severity of attack patterns belonging to C_set.

[bookmark: _Toc100492362]CWSS 

[bookmark: _Toc88157959][bookmark: _Toc89783373][bookmark: _Toc89783590][bookmark: _Toc92265198][bookmark: _Toc92280705][bookmark: _Toc93224834][bookmark: _Toc93581244][bookmark: _Toc100492363]Overview

[bookmark: Ref__134_3][bookmark: Ref__134_4]CWSS [134] provides a way to prioritize weaknesses by proposing a methodology combining three groups of metrics: base finding metric (information extracted from the weakness class), attack surface metric (barriers an attacker must overcome), and environmental metric (characteristics of the environment of the weakness). Each type of metric group is composed of several factors that, combined with appropriate weights, determine the metric's subscore. The combination of subscores determines the final CWSS score [134]. CWSS explicitly supports cases of incomplete information (factors taking unknown value) and allows ignoring irrelevant factors in the analyzed context (not applicable value).

[bookmark: _Toc88157960][bookmark: _Toc89783374][bookmark: _Toc89783591][bookmark: _Toc92265199][bookmark: _Toc92280706][bookmark: _Toc93224835][bookmark: _Toc93581245][bookmark: _Toc100492364]CWSS calculation

[bookmark: Ref__134_5]For the scoring calculation, we followed [134]. Our basic assumption is that in case of a vulnerability, an attacker is always able to discover and exploit it. The main factors to consider are: 

Common consequences of the CWE-ID (associated with the vulnerability-related weakness) leading to potential technical impacts on the Blockchain;

Worst-case scenarios in terms of business impact;

Vulnerability mitigation capability provided by an internal (e.g., mandatory software construct) or external control (e.g., EVM). 

The resulting score is a value from 0 to 100, then reported on a scale from 0 to 10.

[bookmark: _Toc100492365]CAPEC and CWSS Severity

[bookmark: Ref__135_1]CAPEC uses natively four severity classes (critical, high, medium, low), CWSS returns a score from 0 to 10. To compare the two scoring systems, we determine the CWSS severity class using the following score-to-severity conversion (used by NIST [135]): 0 - 3.9 low; 4.0 - 6.9 medium; 7.0 - 8.9 high; 9.0 - 10 critical. 

Table 20 (using the acronyms in Table 7) shows the severity of classes and vulnerabilities of our taxonomy. The following colours indicate the severity: blue - critical, red - high, green – medium; grey represents vulnerabilities whose severity is not identified. The maximum severity of the vulnerabilities that belong to a specific class determines the severity of the class.

[bookmark: _Toc92265201][bookmark: _Toc100492366]Prioritization of False Negatives

[bookmark: Zoltan_21]Once we have determined the severity, we prioritize vulnerability escaping detection (FNs). We process the manually annotated pilot set (Section 4.2.2) with the n-tool combinations of Section 5.1; the number of false negative types of each combination, grouped by severity, is shown in Figure 21 (CAPEC) and Figure 22 (CWSS ). As an example, we examine the case of using a 3 (or more) SA tool combination. This setup results in fewer types of false negatives than a 2-tool combination.

By considering the union of the FN types in each scoring method, we can argue that:

CWSS and CAPEC identify 6 FNs with critical or high priority (BU, TD, FE, IOU, Re, SA);

CWSS and CAPEC identify 5 FNs with medium priority (CPL, ELT, GR, SF, VEF);

CWSS and CAPEC identify 0 FNs with low priority;

The two methods differ in identifying FNs with critical and high priority.

In general, technical and business impacts dominate the CWSS score. The values of these factors reflect the particular nature of the Blockchain and the resulting criticality that each breach entails. CAPEC cannot account for this specificity: the severity is a consequence once the pattern is determined. To summarize, CWSS focuses on consequences and CAPEC on the attack method.

[bookmark: _Ref83230364][bookmark: _Toc93581680][bookmark: _Ref94209421][bookmark: _Ref94209424]Table 20: Severity of vulnerabilities and classes based on CAPEC and CWSS.

CWE-IDs

CWE-20

CWE-284

CWE-330

CWE-345

CWE-400

CWE-668

CWE-669

CWE-682

CWE-691

CWE-703

CAPEC:

severity of vulnerabilities



SA RV

ELT

Atx UEW

Usd

VEF

GR

MPRA SM

Ty

CPL Gs

BU

TD

ML

SF

CU

DUC

EC

IOU

AP

RLO

FE

Re

TOD UEB

IGG

AJ

ED

Us

UV

CAPEC:

CWE-ID criticality

H

C

M

H

M

C

C

H

C

M

CWSS:

severity of vulnerabilities



SA RV

ELT

Atx UEW

Usd

VEF

GR

MPRA SM

Ty

CPL Gs

BU

TD

ML

SF

CU

DUC

EC

IOU

AP

RLO

FE

Re

TOD UEB

IGG

AJ

ED

Us

UV

CWSS:

CWE-ID criticality

H

C

M

C

M

C

C

C

C

H
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[bookmark: _Ref88137374][bookmark: _Toc93679013][bookmark: _Ref94210018][bookmark: _Ref94210022]Figure 21: Types of false negatives (CAPEC), n-tool combinations.

[image: ]

[bookmark: _Ref88137396][bookmark: _Toc93679014][bookmark: _Ref94210028][bookmark: _Ref94210031]Figure 22: Types of false negatives (CWSS), n-tool combinations.



By analyzing the two figures, we can refine considerations in Section 5.1:

the Sfy2-Sli-SmC-Myt four-tool combination, although it has fewer occurrences of FNs than Sfy2-Sli-Rmx, contains more critical (CAPEC) or high (CWSS) severity types. 

Sfy2-Sli-SmC-Myt and Sfy2-Sli-SmC-Rmx are equivalent in terms of coverage and precision; however, the combination that includes Remix contains fewer types of FNs with high or critical severity.

[bookmark: _Toc100492367]Location of Vulnerabilities

[bookmark: _Toc100492368]Motivations 

Although vulnerabilities and analysis tools are a widely debated topic, the characterization of the position of vulnerabilities in Solidity smart contracts is surprisingly less investigated compared to other programming languages. Locating a specific class of vulnerabilities into smart contracts can help in different ways. On one side, tool developers can be guided for improving the vulnerability detection capabilities of the tool, while on the other side, software developers can produce more secure contracts focusing on the specific areas where such vulnerabilities are more likely located.

To locate vulnerabilities, we use the fault model proposed in Chapter 3. The starting point was the datasets of Section 4.2. We focus on vulnerabilities instead of vulnerable rows. We analyze the distributions of the locations where tools find positive outcomes. We create the ground truth of vulnerabilities for a subset S of smart contracts through manual inspection, and we first perform a comparison of the distributions within this set. Then we generalize our findings by comparing the distributions between the manually inspected subset and the full set. Such comparison allows us to identify where certain classes of vulnerabilities are located, suggesting specific areas in Solidity smart contracts where the search for vulnerabilities should focus.

[bookmark: _Toc100492369][bookmark: _Ref91952921]Experimental Settings and Methodology 

From the list of static analyzers defined in Section 4.1.1, we exclude HoneyBadger because of its low effectiveness.

[bookmark: Ref__124_3]We built an experimental dataset (more than 300 smart contracts [124]) starting from the reference dataset of Section 4.2.1, excluding contracts that generated some processing failures when processed by tools.

Each tool processed the whole experimental dataset. Testing each row of a contract can result in two different outcomes: negative or positive detection. By focusing on positives, each tool delivers results with its own codes and specific format. For each tool, we identified the codes related to the vulnerabilities belonging to our taxonomy, excluding the other codes from the analysis. Finally, we harmonized the results as described below.

Let consider the number of lines of code (LOC) of each contract and define the location of detection (LoD) as the line of a smart contract where a tool detects a positive. We define the relative location of detection (RLoD) as the ratio between the LoD and the LOC of the smart contract under analysis. The RLoD identifies where positives are located in the contracts. Thus, a tuple (tool, address, RLoD, category) represents a positive. Tool is the tool that identifies the positive, address is the smart contract address, RLoD is the relative location of detection, and category is the class of the CWE taxonomy the vulnerability belongs to. 

Determining whether each positive is a true or false positive requires a massive amount of (manual) work. Thus, we extracted a subset composed of 15 contracts (referring to it as a pilot set) from the experimental dataset. Guided by the construction criteria of Section 4.2.2, we could use the same pilot set of that section.

We first analyzed the pilot set. The manual inspection permitted to determine the ground truth, i.e., to determine for each positive finding whether it is a TRUE positive or a FALSE one. In addition, it permitted to determine for each negative whether it is a TRUE negative or a FALSE one. For our purpose, however, we sought for the location of positives. We used the RLoD (defined above) to determine the location. We used a new tuple (tool, address, RLoD, category, diagnosis), adding the field diagnosis, which can assume values TP or FP. For each class of the taxonomy, we determined the location of the vulnerabilities by analyzing the TPs. Next, we analyzed our results by comparing the TPs to all the positives (including FPs). Then, by comparing the distributions of positives between the pilot and reference set and having a clue on the true positives, we tried to understand and discuss the generality of our findings.

[bookmark: _Toc100492370]Pilot Set Analysis and Datasets Comparison 

As a preliminary step, the focus is on the sum of the occurrences of positives that the whole set of SA tools finds in the contracts. We found that 65% of the contracts in the reference set (55% in the pilot set) contain from 0 to 50 positives; 20% of the contracts in the reference set (33% in the pilot set) contain from 51 to 100 positives; the remaining 15% of the contracts in the reference set have more than 100 positives (12% in the pilot set).

Then we focus on the pilot set. First, we determine the ground truth (GT) for each class of our taxonomy. Then, we calculate the coverage as the percentage of detected vulnerabilities (TP) over all the vulnerabilities (GT).

The whole number of vulnerabilities (GT = 486), TPs, FPs, and the coverage are shown in Table 21. The analysis of the pilot set, detailed for each class, is shown in Table 22. The whole set of SA tools identifies 446 TPs over 486 vulnerabilities (92%). Results slightly differ from Chapter 4, as the focus is on vulnerabilities instead of vulnerable rows. [bookmark: _Ref88156546][bookmark: _Toc93581681][bookmark: _Ref94209454][bookmark: _Ref94209456]Table 21: Pilot set analysis –vulnerabilities.

GT=486

Securify2

Securify

Slither

SmartCheck

Remix

Mythril

Oyente

Osiris

TP

320

40

229

182

43

27

6

8

FP

241

88

16

50

7

18

4

8

Coverage

0.67

0.08

0.48

0.38

0.09

0.06

0.01

0.02





As observed, the tool coverage change based on the class; thus, the coverage of a dataset depends on the class distribution. Figure 23.a highlights the distributions of CWE categories in the pilot (red) and reference set (blue). As it can be observed, the classes have comparable frequency distributions in the two sets.

 Moreover, Figure 23.b shows that CWE-345 (in grey) has no positives in either set; thus, we decided to exclude this class from further analysis. 




[bookmark: _Ref88156569][bookmark: _Toc93581682][bookmark: _Ref94209591][bookmark: _Ref94209594]Table 22: Coverage detailed for each class.



CWE-20

CWE-284

CWE-330

CWE-400

CWE-668

CWE-669

CWE-682

CWE-691

CWE-703

Securify2

0.7

0.8

-

-

-

0.5

0.1

0.2

1.0

Securify

0.1

0.1

-

-

-

-

-

0.2

0.4

Slither

0.1

0.7

-

-

0.3

0.5

-

0.7

0.6

SmartCheck

-

0.7

-

0.4

-

0.2

-

0.1

-

Remix

-

-

-

0.7

0.6

0.5

-

0.5

-

Mythril

-

0.1

1.0

-

0.2

1.0

-

0.1

0.4

Oyente

-

-

-

-

-

0.3

0.3

0.1

-

Osiris

-

-

-

-

-

0.3

0.3

0.1

-

SA toolset

0.8

1.0

1.0

0.8

0.8

1.0

0.8

1.0

1.0
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[bookmark: _Ref88156949][bookmark: _Toc93679015][bookmark: _Ref94210038][bookmark: _Ref94210040]Figure 23: Data overview – vulnerability location. On the left, the distribution of CWE classes. On the right, which classes tools can detect.



[bookmark: _Toc100492371][bookmark: _Toc92265208][bookmark: _Toc92280714][bookmark: _Toc93224843][bookmark: _Toc93581253][bookmark: _Toc100492372]Analysis of Vulnerability Location 

This section analyzes the location of specific classes of vulnerabilities. To perform a comparison of distributions, we use boxplots with the median and the interquartile range (IQR), the interval between the upper hinge (UH – 75th percentile of the distribution) and the lower hinge (LH – 25th percentile).

First, we focus on the pilot set, in which we analyze locations of the true positives (TPs) and compare them with all positives. Then, whether the distributions are different, we look at the false positives (FPs). Finally, by comparing the distributions of positives between the pilot and reference set and having a clue on the true positives, we try to understand and discuss the generality of our findings.

Comparison in the pilot set[image: ]

[bookmark: _Ref88157016][bookmark: _Toc93679016][bookmark: _Ref94210045][bookmark: _Ref94210047]Figure 24: Comparison of RLoD distributions in the pilot set.



The distributions of the positives in the pilot set are shown in Figure 24. Boxplots compare distributions of true positives (on the left), positives (in the middle), and false positives (on the right). Each boxplot shows the interquartile range for a specific CWE-ID of the taxonomy. A horizontal line within the box represents the median. The red boxplot highlights the distribution of positives without SmartCheck and Osiris for the CWE-668. As only four positives for CWE-330 have been detected, we decided to exclude this class from further analysis. 

When we consider true positives, we can observe that:

CWE-20, CWE-400, CWE-691, CWE-668, and CWE-703 have an LH greater than 50%; thus, more than 75% of TPs locates in the second half of contracts. In particular, more than 75% of TPs locates in the last quarter of contracts for CWE-703;

The CWE-682 IQR (50% of TPs) is between 40 and 65;

The IQR of CWE-284 and CWE-669 spread between 35 and 77.

When comparing the TPs to the positives, we determine that distributions of CWE-20, CWE-284, CWE-400, CWE-691, CWE-682, and CWE-703 differ in the upper, lower hinge, and median less than 5%. As a result, the distributions of positives are representative of distributions of TPs. 

CWE-668 distributions differ significantly in the LH. FPs (at the right of Figure 24) affect the distribution of positives. The manual inspection of the pilot set shows that Osiris and SmartCheck detected 36 FPs and no TPs. Thus, we analyzed the distribution of positives without the outcomes of SmartCheck and Osiris (PSCO) (as shown in the red boxplot of Figure 24). TPs and PSCO distributions do not differ significantly; therefore, locations of PSCO are representative of locations of true positives.

Finally, the focus is on CWE-669. Again, the distributions differ in the LH. However, for values greater than the median, which has a value of 65, the distributions are comparable. Locations of positives represent locations of true positives over the median.

[bookmark: _Toc92265209][bookmark: _Toc92280715][bookmark: _Toc93224844][bookmark: _Toc93581254][bookmark: _Toc100492373]Generalization

Comparing the distributions of positives between the pilot and reference set and having a clue on the true positives permits us to discuss the generality of our findings. 

Figure 25 highlights the comparison. Boxplots compare distributions between the positives of the pilot set (on the left) and the reference set (on the right). The red boxplot highlights the distribution of positives without the outcomes of SmartCheck and Osiris (CWE-668). 

The distributions of CWE-20, CWE-284, and CWE-682 differ in the upper, lower hinge, and median less than 5%. Consequently, locations of positives in the reference set are representative of locations of positives in the pilot set. By considering the pilot set, locations of positives are representative of the locations of TPs. We can then generalize our findings: [image: ]

[bookmark: _Ref90549435][bookmark: _Toc93679017][bookmark: _Ref94210053][bookmark: _Ref94210056]Figure 25: Comparison of location distribution between the pilot and reference set.



concerning CWE-20, 75% of vulnerabilities locates in the second half of the contracts; 

CWE-682 vulnerabilities locate mainly on the second third of contracts; 

CWE-284 spreads throughout all the length of contracts. 

We analyze the distributions of positives of CWE-669 without the outcomes of SmartCheck and Osiris (Figure 26 – red boxplots). Distributions differ less than 10% in the UH median and LH, whereas the IQRs differ less than 5%. By generalizing findings from the previous section, 75% of vulnerabilities are located over the 60 (LH) value.  

The distribution of CWE-400 in the reference set has lower values than the pilot set for the LH, median, and UH; however, the difference between the values is less than 10%. Therefore, the IQR between the distributions does not differ significantly: we can argue that distributions are comparable. We generalize findings with the same arguments used for CWE-669: 75% of vulnerabilities are located over the value of 50 (i.e., in the second-half of contracts).

CWE-691 and CWE-703 differ less than 5% in the UH and median but differ significantly in the LH. So, only the upper part of the distributions of positives (over the 50th percentile) is representative of TPs. This evidence allows us to locate the 50% of vulnerabilities in the last quarter of contracts for both distributions (median has a value greater than 75). No assumptions can be made for the lower part.

CWE-669 distributions have the same median. Analyzing the pilot set, we found that the distribution of positives represents TPs above the median. Thus, 50% of the vulnerabilities locates over the value of 65 (median of the distribution in the reference set). 

[bookmark: _Ref92014172][bookmark: _Toc100492374]Remarks

We can repeat the same considerations about the quality of the contracts used for our analysis as in Section 4.4. Different tools find positives in different classes. The difference has two root causes: 

tools aim to detect different vulnerabilities; 

tools can detect vulnerabilities with different capabilities. 

There are several ways to combine tools whereby different choices lead to different results. As shown, using OR in the decision function increases TPs and FPs while using AND decreases TPs and FPs. Clearly, more complex decision functions could be used to pursue different objectives. The choice made here fits to improve the coverage. Tools detecting a vulnerability in a class can miss detecting other kinds of vulnerabilities belonging to the same class.

The severity of vulnerabilities and classes, determined through CAPEC and CWSS, is independent of the chosen set of smart contracts. The prioritization of FNs is qualitative rather than quantitative; this makes our results generically applicable to types that belong to our taxonomy.

True positives are a subset of vulnerabilities. As a general statement, static analysis tools can miss detecting vulnerabilities: this leads to wrong locate the range of TPs in case of multiple missed detections. Using eight tools reduces this risk (processing the pilot set with all tools permits finding 92% of the vulnerabilities).

Our preliminary findings are based on a pilot set. However, we generalize results using the distributions of positives in the reference set only in the case of comparable distributions. 

Consider two distributions. This work uses the lower hinge (LH), median, upper hinge (UH), and interquartile range (IQR) for comparison. We consider that two distributions are comparable in the following two cases: i) the differences between LH, median, and UH values are less than 5%; ii) the difference is less than 10%, and the IQR ranges differ less than 5%. 

To determine where vulnerabilities are most likely to be located, we use the relative location of detection (RLoD). This way, we can refer to the various areas of the smart contract without being bound by its length.  For example, a range between 0 to 25 identifies the first quarter of a contract, a range from 26 to 50 identifies the second quarter. Other values follow accordingly.
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CONCLUSIONS 
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Blockchain technologies promise an out-of-the-box solution to improve the security of distributed systems. The diffusion of smart contracts (automated execution of computerized transactions) allowed the development of applications in different areas (e.g., financial, medical, insurance, gaming, betting). Blockchain ensures data immutability, integrity and non-repudiability, protecting smart contracts, data, and transaction logs by a strong hash encoding. Design and coding faults in the smart contracts that implement a particular application can result in exploitable weaknesses. This problem is even more critical, considering that developers cannot patch smart contracts once deployed on the Blockchain.

Ethereum is one of the most widely used platforms for smart contract development and offers Solidity as its primary and Turing-complete programming language. There exist checking tools for smart contracts written in Solidity; however, they are immature due to the novelty and rapid evolution of the Solidity technology and a lack of a large set of vulnerability records. On the other hand, Solidity is just another new programming language. This way, our basic assumption is that most weaknesses and resulting vulnerabilities are similar to those in other languages, potentially appearing in an Ethereum-specific form. Thus, the most promising way to create a quality assurance process for Solidity is adapting existing technologies to the peculiarities of Ethereum and, in particular, Solidity.

This Thesis proposed and discussed our approach towards assessing and improving smart contract security by dealing only with Solidity Versions 0.5 and upper. Our approach has its foundation in three main key points: overcoming the language evolution, assessing smart contract security, and improving smart contract security.

At first, this Thesis focused on the identification of vulnerability-related weaknesses to Solidity smart contracts. Then, we presented a general-purpose classification of 32 Solidity-specific vulnerabilities, based on CWE general software weaknesses categories (10), to overcome the language evolution dependence. This way, we provided a Solidity fault model that was the basis for the next steps in our research. Moreover, the use of CWE in abstracting a Solidity-specific vulnerability classification enriched our systematization with a widely used ‘de facto’ standard. In addition, this helps both software developers in limiting weaknesses explosion and their effects, and researchers in comparing Ethereum smart contracts vulnerabilities with others existing in other environments (i.e., platforms, frameworks). As the next step, we checked the similarity between Solidity (our 10 CWE-IDs) and conventional programming languages (ISO/IEC 5055:2021 – 71 CWE-IDs) in their respective fault model. Finally, to better understand the behaviour of vulnerabilities, we highlighted some relations and propagations between them.

Then, the Thesis investigated how to assess the smart contract security by applying static analysis. As a preliminary analysis, we showed that no tools of the selection cover by design the entire set of vulnerabilities, identifying vulnerability classes that escape detection by each particular SA tool. Furthermore, smart contracts showed several positives when processed by SA tools; thus, extracting a meaningful set of contracts permitted determining its ground truth. 

We assessed smart contract security by computing basic statistical metrics for comparing the detection capabilities of different SA tools. Considering the anticipated vulnerability model, only in specific classes do the tools perform well (and thus are well built for those classes). This analysis serves as a guide for developers to increase the impact of tools in smart contract security. Considering tools when exposed to a generic set of smart contracts (tools as black boxes), we built a tool benchmark. Moreover, focusing on coverage, we quantitatively determined that using a single tool (even the best performing one) is not a good idea if security is the goal.  

Previous findings brought directly to the analysis of the improvement of smart contract security. We investigated the coverage by using a combination of tools. This way, at the cost of increasing the false positives, we found the best n-tool combination (a combination of four tools achieves coverage of 0.9). 

As the next step, we investigated several prioritization methods. Prioritization allowed us to identify which vulnerabilities that escape the tool combinations should be analyzed first due to higher severity. These analyses serve as a guide for users to make smart contracts more secure before deployment. 

As a third step, we investigated where classes are most likely located into contracts. We first compared true positives and positives distribution in the pilot set and then generalized findings in the reference set. We identified where a relevant percentage of vulnerabilities is located for specific classes. Tool developers can use results to be guided to improve the tool's vulnerability detection capabilities; software developers, on the other side, can produce more secure contracts focusing on the specific areas where such vulnerabilities are most likely to be located. 

Further concrete development could use the Solidity fault model as a basis for comparing Solidity-specific vulnerability categories with others affecting different smart contract languages and platforms (e.g., Hyperledger). A possible goal could be to systematize such vulnerabilities using the same categories to have a homogeneous reference that can easily be used to understand if different environments suffer from the same vulnerabilities by identifying similar behaviours occurring in such environments. 

Moreover, based on static analysis results, future research can define and apply specific countermeasures against the vulnerabilities which are escaped detections. In addition, future research directions can involve the role of the contract complexity and the vulnerability and tool outcomes. Investigating which contract characteristics (e.g., software complexity) affect the tool outcomes can help software developers build more effective tools. 
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