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Abstract: Afforestation processes, natural and anthropogenic, involve the conversion of other land
uses to forest, and they represent one of the most important land use transformations, influencing
numerous ecosystem services. Although remotely sensed data are commonly used to monitor forest
disturbance, only a few reported studies have used these data to monitor afforestation. The objectives
of this study were two fold: (1) to develop and illustrate a method that exploits the 1985–2019
Landsat time series for predicting afforestation areas at 30 m resolution at the national scale, and
(2) to estimate afforestation areas statistically rigorously within Italian administrative regions and
land elevation classes. We used a Landsat best-available-pixel time series (1985–2019) to calculate
a set of temporal predictors that, together with the random forests prediction technique, facilitated
construction of a map of afforested areas in Italy. Then, the map was used to guide selection
of an estimation sample dataset which, after a complex photointerpretation phase, was used to
estimate afforestation areas and associated confidence intervals. The classification approach achieved
an accuracy of 87%. At the national level, the afforestation area between 1985 and 2019 covered
2.8 ± 0.2 million ha, corresponding to a potential C-sequestration of 200 million t. The administrative
region with the largest afforested area was Sardinia, with 260,670 ± 58,522 ha, while the smallest
area of 28,644 ± 12,114 ha was in Valle d’Aosta. Considering elevation classes of 200 m, the greatest
afforestation area was between 400 and 600 m above sea level, where it was 549,497 ± 84,979 ha.
Our results help to understand the afforestation process in Italy between 1985 and 2019 in relation
to geographical location and altitude, and they could be the basis of further studies on the species
composition of afforestation areas and land management conditions.

Keywords: afforestation; land monitoring; remote sensing; Landsat; random forests; C-sequestration

1. Introduction
1.1. Importance of Afforestation Monitoring

Forests are defined by the Food and Agriculture Organization (FAO) agency of the
United Nations as “territory with arboreal coverage greater than 10% compared to an
extension greater than 0.5 ha, where the trees reach a minimum height of 5 m when mature
and a minimum width of 20 m” [1]. Changes between forest and other land use classes
include the gain and the loss of arboreal cover. Afforestation constitutes the gain of arboreal
cover and is characterized by the conversion of other land uses to forest, while deforestation
constitutes the loss of arboreal cover and is characterized as the conversion of forest to other
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land uses [2]. According to the FAO definition, afforestation can be natural via spontaneous
colonization of vegetation or anthropogenic through trees planting or direct sowing on
land that was not previously forested.

Afforestation, one of the most important land use transformations, produces many
positive effects. Afforestation processes increase the terrestrial carbon sink, create new
ecological corridors, protect soil [3] and water, contribute to combating global warming,
and increase biodiversity [4,5]. On the one hand, monitoring afforestation is important
for evaluating these positive effects; on the other hand, proper monitoring is also needed
to assess the negative impacts that mismanaged afforestation processes may impose on a
territory such as loss of grazing habitats [4–7]. Afforestation may also be a symptom of the
effect of climate change, such as in the case of movement of the tree line, the elevation or
latitude above which trees give way to shrubs, to higher elevations or latitudes [8]. Finally,
because of its important contribution to land use evolution, afforestation processes have a
central role in the formulation of policies that aim to preserve forest resources and provide
ecosystem services [2].

The agreements stipulated by COP 26 (https://ukcop26.org/it/iniziale/, accessed on
10 May 2022), the actions contained in the EU Forest Strategy [9], the Italian national legis-
lation on forestry and forestry supply chain (legislative decree 34/2018), and the Italian
National Forest Strategy [10] all raise the profile and priority of reforestation interventions
and the construction of a series of cartographic products that collect information on forest
heritage, including afforestation. Afforestation should be considered in reforestation pro-
grams, making the analysis of afforestation areas a central feature of forest and landscape
planning and management. Because few existing datasets or products with appropriate
spatial resolution can be used to monitor afforestation effectively, greater research atten-
tion should be focused on the development of accurate and up-to-date tools to support
afforestation-related decision-making processes.

1.2. Remote Sensing Support for Afforestation Monitoring: The State of the Art

Remotely sensed data are well suited for land monitoring applications at both
global and local scales, facilitating analysis of numerous elements at fine spatial resolu-
tion [11] preferably using open access data [12,13], cloud computing platforms, and
Big Data processing [14].

Afforestation can be analyzed using remotely sensed data. An afforestation classification
model can be constructed using a single model that analyzes observations of change between
two dates in both the land cover response variable and changes in remotely sensed predictor
variables [15]. This method links trends in afforestation during the observation period to
trends in variables or indices such as the Normalized Difference Vegetation Index (NDVI) via
a predictive model which is then used to classify the afforestation spectral response [16–18].

A currently popular algorithm for automated classification of remotely sensed images
is the random forest (RF) algorithm [19], which is a classification algorithm that uses a
series of decision trees based on a sample of data. RF can be used with large datasets
because it is not severely adversely affected by overfitting [20].

Although forest disturbance monitoring through automated analysis of remotely
sensed imagery is a common topic [21–25], afforestation assessment is rarely investigated,
being treated as a central subject in only a few studies. Among the studies that consider
afforestation prediction, Qiu et al. [26] used MODIS images (500 m spatial resolution) to
map afforestation areas between 2001 and 2016, in China. They proposed the automated
method for detecting multiple vegetation changes (AMCC) based on five temporal indices.
Yin et al. [27] used RF with MODIS data and a modified version of LandTrendr with Landsat
images to monitor the effect of re-vegetation programs between 2000 and 2014, in China,
while Ramírez-Cuesta et al. [28] used MODIS-based NDVI seasonal variables to analyze
the main land cover changes that occurred in Europe between 2000 and 2018, focusing on
the maximum value of the NDVI that accurately predicted locations where main changes
such as afforestation occurred.

https://ukcop26.org/it/iniziale/
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Although these studies achieve large accuracies, products with a spatial resolution of
500 m are not useful for monitoring afforestation in the fragmented and morphologically
diverse areas typical of Italy and many other Mediterranean countries. Moreover, af-
forestation processes are characterized by patches of limited size whose accurate prediction
requires finer resolution images.

Zhu et al. [29] illustrated a method for land cover classification and continuous land
cover change detection, between 1986 and 2010, using Landsat images. Huang et al. [30]
used NDVI to analyze land cover dynamics in China, detecting vegetation gain and loss
from 1985 to 2015, and then classified the land cover in 2015. However, this approach is not
useful for our purposes because continuous change detection is not effective for predicting
afforestation which is characterized by longer development times which, therefore, require
longer observation periods than other land-cover change approaches. Further, the complex
Italian morphology requires a larger number of vegetation indices for accurate classification,
not a single index as illustrated in the Huang approach [30]. For example, a larger number
of vegetation indices is needed to accommodate shaded areas created by mountains which
can adversely affect the classification by limiting the vegetation spectral response.

Therefore, cartographic data derived from satellite images are effective sources of
information for predicting locations of phenomena related to land cover and its changes
and for facilitating direct calculation of multiple useful indicators [31]. However, the
variability of forest changes which differ in type, magnitude, and definition, can contribute
to inaccurate map products and therefore, make maps less suitable for direct estimation
of the spatial extent of the phenomena under investigation [32]. Integration of maps and
sample reference data is a useful and potentially unbiased approach for increasing the
precision of estimates of the phenomenon of interest. Moreover, using map classes as strata
for stratified sampling and estimation can reduce the required sample size, and thus, can
accelerate the data acquisition and analysis procedures [33–35].

Multiple issues related to mapping and monitoring afforestation require additional
attention. First, afforestation prediction using remotely sensed data is seldom investigated.
Second, stratified sampling that is based on selection of a simple random sample from
within each stratum [36] supports both accuracy assessment and rigorous and unbiased
statistical estimation [33] in support of remote sensing-assisted land cover classification.
Third, training data sample sizes needed for calibration of prediction techniques tend to be
very large, but increasing the sample size increases acquisition costs and the time needed
for analysis. Fourth, stratified random sampling and estimation can increase accuracies
with only moderate sample sizes.

1.3. Objectives of the Study

The objectives of this study were two fold: (1) to develop and illustrate a method
that exploits the 1985–2019 Landsat time series for predicting afforestation areas at 30 m
resolution at the national scale, and (2) to estimate afforestation areas statistically and
rigorously within Italian administrative regions and land elevation classes using a unique
validation sample. We considered two forms of afforestation, both natural through sponta-
neous colonization of vegetation succession and anthropogenic through planting or direct
sowing. Because afforestation contributes to increasing the carbon sink, we also estimated
the potential carbon (t of C) that would be sequestered once the forest has matured, in areas
where afforestation occurred between 1985 and 2019.

The research was conducted as follows: the study area was the whole area of Italy
(Section 2.1.1). To define forest boundaries, we used a forest mask; to define boundaries
of Italian administrative regions we used the corresponding shapefile; to define elevation
class boundaries, we used a digital elevation model (DEM) (Section 2.1.2). Because veg-
etative recovery of forest-disturbed areas has a spectral response which could be similar
to afforestation and, thereby, decreases model prediction accuracy, and because forest
disturbance does not involve any land use change, we considered disturbed forest areas
as forest (Section 2.1.5). Afforestation areas were mapped using RF in combination with
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Landsat best-available-pixel (BAP) composites (Section 2.1.3). We used photointerpetations
of reference polygons (Section 2.1.4) in combination with a corresponding subset of BAP
composites as a training dataset to calibrate the RF classification algorithm (Section RF Tem-
poral Predictors), which was then used (Section Random Forests) to construct an afforestation
map. Then, we selected an estimation dataset of sample points acquired using stratified
random sampling with afforestation-based map classes as strata (Section 2.2.2). This sample
dataset was used with the map to estimate the afforestation area at the national level and
for both administrative regions and elevation classes (Section 2.2.3). Finally, we estimated
the carbon that would potentially be sequestered in the afforestation areas (Section 2.2.4).

While RF and Landsat data have been historically used for land cover classification, in
this study, they were combined with a statistically rigorous method to estimate afforestation
areas at the national level, at the level of the administrative regions, and at the level of
elevation classes, to provide relevant results and, more importantly, missing information
that was needed for properly supporting decision makers. In more detail, our study had
five main outcomes: (1) the afforestation map (Section 3.1), (2) the accuracy assessment
(Section 3.2), (3) the afforestation area estimates obtained from the sample data, (4) the map
at the national level map for administrative regions and for elevation classes (Section 3.3
and Appendix A), and (5) the estimate of potential C-sequestration in the afforested areas
(Section 3.4 and Appendix E). In the Discussion (Section 4) and Conclusions (Section 5) we
present the primary results and suggest future research.

2. Materials and Methods
2.1. Materials

Below, we describe the study area (Section 2.1.1), and then we describe the input data
used. First, we introduce three country-wide datasets that were used to stratify the study
area with respect to (i) forest/non-forest, (ii) administrative regions, and (iii) different
elevation classes (Section 2.1.2). Then, the data used to construct the afforestation map
are presented: the Landsat best-available-pixel composites that were used as predictors
(Section 2.1.3), the reference dataset that was used to train a RF model (Section 2.1.4), and,
finally, a forest disturbance mask was used to identify areas that could not be considered
afforestation areas (Section 2.1.5). More details are provided in the following sections.

2.1.1. Study Area

The study area included the whole of Italy which covers 301,338 km2 and is character-
ized by mountains (35%), hills (42%), and plains (23%). The maximum elevation of more
than 4000 m above sea level (a.s.l.) is observed in the Alps. The climate varies considerably
along the Italian peninsula: alpine in the north, continental in internal areas, and Mediter-
ranean along the coasts. Forests occupy almost 35% of the area, about 11 million ha [37]. In
some administrative regions, forests cover more than 50% of the territory as in Trentino-Alto
Adige, Tuscany, Liguria, Umbria, and Sardinia.

Italian forests are characterized by a rich diversity of plant species, which are pre-
dominately deciduous broadleaf forests (Fagus sylvatica, Quercus spp., Castanea sativa, and
others), spruce (Picea abies), larch (Larix decidua), black pines (Pinus nigra), and Mediter-
ranean pines forests. Shrublands (above all Mediterranean, thermophilic, and Alpine) cover
about one million ha [37].

2.1.2. Forest Mask, Italian Administrative Regions, and Digital Elevation Model

The forest mask of D’Amico et al. [38] was used to distinguish forest from non-forest
areas, and therefore, the afforestation process could be analyzed separately inside and
outside the forest area as defined by the forest mask. The analysis inside the forest mask,
on the one hand, served to identify areas that were previously not forest but are now forest;
the analysis outside the mask, on the other hand, served to identify ongoing afforestation,
which has not yet been classified by the mask as forest. The mask is based on forest maps for
16 administrative regions at scales between 1:5000 and 1:25,000 and was supplemented with
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Corine Land Cover or Corine Biotopes data for administrative regions where data were not
available. The photointerpretaion was performed using aerial orthophotos, overcoming
the limit of the MMU of the input data.. The data were standardized in the reference
system, rasterized, and reclassified into “forest” and “non-forest” where FAO defines
forest as having canopy cover greater than 10% and minimum area of 0.5 ha [1]. These
operations resulted in a 23 × 23 m binary forest/non-forest map with accuracy greater
than 85% [39]. Moreover, to predict afforestation areas within administrative regions and
elevation classes, the Italian National Institute of Statistics (ISTAT) administrative regions
boundary shapefile [40] and the TINITALY/01 DEM with a spatial resolution of 10 m [41,42]
were used, respectively.

2.1.3. Landsat Best Available Pixel (BAP) Composite

We used Landsat best-available-pixel (BAP) composites as input data to calibrate the
RF classification model and to classify afforestation between 1985 and 2019 by analyzing
the trend of 234 temporal predictors (as described in Section RF Temporal Predictors). The BAP
composites used as RF calibration data are composed of a subset of the BAP data used to
apply the classifier to the study area.

In particular, the BAP data associated with the 1578 training dataset polygons
(Section 2.1.4) and the temporal predictors calculated inside training dataset polygons are part
of the RF calibration data, while the rest of the BAP composite and the temporal predictors
are used as input to the RF classification model applied to the study area.

The BAP procedure was implemented in 2021 in Google Earth Engine (GEE), and
the code is openly available (https://code.earthengine.google.com/?accept_repo=users/
sfrancini/bap, accessed on 30 January 2022). GEE is a cloud platform for analyzing and
processing geospatial data which, by exploiting the computational capacity of Google
systems, facilitates the study and monitoring of important environmental phenomena such
as changes in land cover including afforestation [14]. GEE makes available and enables the
integration of numerous image collections and datasets ready to be processed [43]. GEE
permits multiple programming languages, such as Javascript and Python, so that data
processing systems can be constructed, easily replicated, and adapted to different situations
and needs [44].

GEE provides images preprocessed with respect to multiple factors including surface
reflectance and brightness orthorectification (the thermal infrared), atmospheric correction,
and cloud masking. We used Landsat 5, 7, and 8 images and all 30 m spatial resolution
bands, in the visible spectrum and in the infrared spectrum, to construct the Italian annual
composites from 1985 to 2019, from 1 June to 31 August, using the BAP procedure [45]. The
period between June and August is usually characterized by the absence of clouds which
facilitates acquisition of many clear images. Moreover, the boreal summer is the season in
which the photosynthetic activity is greater, thereby producing clearer spectral responses.
With BAP, it is possible to obtain a final image that is a composite of the best pixel reflectance
values where “best” is characterized using four criteria as defined in White et al., 2014 [46]
(i) sensor score to penalize Landsat 7 images where the Scan Line Corrector malfunction
(SLC-off) is present; (ii) target day score, to preferably select the images acquired close to a
defined acquisition day (in this case 15th of August); (iii) distance to cloud/cloud shadow
score, to decrease the scores of those pixels which are in the proximity the cloud cover;
and (iv) opacity score (calculated using opacity band produced by LEDAPS), to prefer the
pixel with low opacity. Sensor scores and target day are applied to the whole image, while
distance to cloud and opacity scores are applied to each pixel.

The BAP application is described on GitHub (https://github.com/saveriofrancini/
bap, accessed on 30 January 2022); Griffiths et al., Hermosilla et al. and White et al. [45–49]
provide more details.

https://code.earthengine.google.com/?accept_repo=users/sfrancini/bap
https://code.earthengine.google.com/?accept_repo=users/sfrancini/bap
https://github.com/saveriofrancini/bap
https://github.com/saveriofrancini/bap
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2.1.4. Training Dataset

The training dataset (Figure 1) was used to define the area to calculate the temporal
predictors together with the associated BAP composite to calibrate the RF classification
model, which was then applied to the whole of Italy, as described in Section 2.2.1. The
training dataset included information for 1578 selected training polygons with sizes ranging
from 0.09 ha, the Landsat pixel resolution, to 60 ha, distributed as follows:

• 526 polygons (A) that experienced a change from non-forest to forest between 1985
and 2019;

• 526 polygons (B) in non-forest areas that did not change between 1985 and 2019;
• 526 polygons (C) in forest areas that did not change between 1985 and 2019.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 28 
 

 

 

Figure 1. Training dataset. On the right are three examples of the classes considered: (A) afforesta-

tion; (B) non-forest; (C) forest. Polygons A, B, and C falling in areas close to each other have the 

same shapes because, to better calibrate RF, it is important to use training areas with similar areas. 

The figure also illustrates the Italian administrative regions boundaries and the forest mask of 

D’Amico et al. [38]. CRS, WGS84/UTM Zone 32N. 

2.1.5. Forest Disturbance Data 

Because vegetative recovery of disturbed forest areas (both anthropogenic and natu-

ral) that does not involve a conversion of land use is not considered to be afforestation, 

we considered disturbed forest areas to be forest. The identification of disturbed forest 

areas was necessary because spectral recovery for these forest disturbances may be similar 

to spectral trends for afforestation, and therefore, failure to distinguish them from affor-

estation can adversely influence and decrease the accuracy of the afforestation classifica-

tion model. To predict forest disturbances that occurred during the study period, we used 

the forest disturbance map constructed with the unsupervised algorithm Three Indices 

Three Dimensions (3I3D) algorithm [52,53]. The 3I3D algorithm considers three photosyn-

thetic activity indices (3I) and their trend over three consecutive years using them as the 

axes of a three-dimensional space (3D). It was recently implemented on GEE [43], where 

forest disturbances that occurred in Italy between 1985 and 2019 were mapped using 

Landsat data, with an OA = 99.79% [53]. Forest disturbances predicted by 3I3D include all 

changes characterized by relevant decreases in the photosynthetic activity including clear-

cuts, forest fires, wind damage, drought, frost, and pest disease [43]. 

  

Figure 1. Training dataset. On the right are three examples of the classes considered: (A) afforestation;
(B) non-forest; (C) forest. Polygons A, B, and C falling in areas close to each other have the same shapes
because, to better calibrate RF, it is important to use training areas with similar areas. The figure also
illustrates the Italian administrative regions boundaries and the forest mask of D’Amico et al. [38].
CRS, WGS84/UTM Zone 32N.

The training dataset was constructed using data from the Land Use Inventory of Italy
(IUTI, [50]), which was conducted as part of the Extraordinary Plan of Environmental
Remote Sensing by the Italian Ministry of Environment and Protection of Land and Sea in
1990 and was updated between 2000 and 2016. The inventory consists of 1,217,032 randomly
selected points that were photointerpreted using a minimum mapping unit (MMU) of 0.5 ha
and a minimum mapping width (MMW) of 20 m (RSE < 3%). The classification system
considers different land use categories including forest, based on FAO definitions [51]. The
30-year historical dataset can be used to identify areas where afforestation has occurred. We
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used IUTI data that identify afforestation, and then we added other training data through
photointerpretation of composite of BAP (1985–1988), aerial imagery (1988–2012, spatial
resolution 50 × 50 cm), and very fine resolution images (2012–2019, spatial resolution
30 × 30 cm).

The training data were selected to represent the diversity of the national Italian forest
area and included other cartographic data such as Corine Land Cover, both coniferous and
broadleaf forest types and multiple environmental conditions. Photointerpretation of aerial
images and very fine resolution images for different years facilitated prediction of areas
that had been subject to afforestation and areas that had not been affected by such changes
but had maintained either stable forest or stable non-forest cover during the study period.
The photointerpretation incorporated the FAO minimum canopy cover percentage of 10%
when attributing the forest class (C) to a polygon. A square-meshed grid aligned with the
Landsat pixels was constructed so that the photointerpreted polygons corresponded to
groups of Landsat pixels. Each polygon was drawn following the shape of the afforestation
area and classified as either afforestation, forest, or non-forest classes. The afforestation
class was assigned to polygons for which afforestation occurred during the study period
and included all areas that satisfied the definition of forest including canopy cover >10% at
the end of the afforestation process but excluded areas that did not satisfy the definition
such as agricultural areas, mainly olive groves and orchards.

In the afforestation class (A), 44% of the polygons were located at altitudes below
1000 m a.s.l., a percentage that increased to 55% in the forest class (C) and to 72% in the
non-forest class (B).

2.1.5. Forest Disturbance Data

Because vegetative recovery of disturbed forest areas (both anthropogenic and natural)
that does not involve a conversion of land use is not considered to be afforestation, we
considered disturbed forest areas to be forest. The identification of disturbed forest areas
was necessary because spectral recovery for these forest disturbances may be similar to
spectral trends for afforestation, and therefore, failure to distinguish them from afforesta-
tion can adversely influence and decrease the accuracy of the afforestation classification
model. To predict forest disturbances that occurred during the study period, we used the
forest disturbance map constructed with the unsupervised algorithm Three Indices Three
Dimensions (3I3D) algorithm [52,53]. The 3I3D algorithm considers three photosynthetic
activity indices (3I) and their trend over three consecutive years using them as the axes of
a three-dimensional space (3D). It was recently implemented on GEE [43], where forest
disturbances that occurred in Italy between 1985 and 2019 were mapped using Landsat
data, with an OA = 99.79% [53]. Forest disturbances predicted by 3I3D include all changes
characterized by relevant decreases in the photosynthetic activity including clearcuts, forest
fires, wind damage, drought, frost, and pest disease [43].

2.2. Methods

The analyses focused on constructing a map of afforestation that occurred
between 1985 and 2019 (Section 2.1.1). The BAP composites, the training dataset
(Sections 2.1.3 and 2.1.4), and the temporal predictors (Section 2.2.1) were used to calibrate
the RF classification model and to construct an afforestation map. Accuracy was assessed
and the map was used to support estimation of the area of afforestation, using an estimation
dataset selected using stratified sampling (Sections 2.2.2 and 2.2.3). Finally, the potential
C-sequestration that would occur in areas afforested between 1985 and 2019 when the
forest in those areas mature was estimated (Section 2.2.4). Figure 2 illustrates the flowchart
of the methods.
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2.2.1. Afforestation Map Construction
RF Temporal Predictors

The six bands of the Landsat BAP composites acquired for each year between 1985 and
2019 were augmented with seven vegetation indices (VI): Normalized Difference Vegetation
Index NDVI [54]; Normalized Burnt Ratio NBR [55]; Enhanced Vegetation Index EVI [56];
and Tasseled Cap Brightness B, Wetness W, Greeness G, and Angle A Indices [57]. The
six bands together with the seven VIs comprised a dataset of 13 annual time series (TS)
of 35 years of bands and indices. The bands and indices used to construct the TS were
selected from among those considered in the literature to be the most useful for predicting
forest changes [43].

Then, 18 temporal statistics were calculated for each TS of each polygon of the
training dataset: mean, standard deviation, Kendall correlation [58], 11 percentiles from
0 to 100, mean of the first five years, mean of the last five years yearly minimum and
yearly maximum. The result was a set of 234 temporal predictors (13 TS * 18 temporal
statistics = 234 temporal predictors) which were used to calibrate the RF classification model,
to directly predict afforestation areas in Italy and to construct the afforestation map via
analyses of the trends of the temporal statistics linked to afforestation (A), non-forest (B),
forest (C).

Random Forests

For classifying Italy into afforestation and non-afforestation areas, we used an RF
model which was first calibrated using the training dataset and the associated BAP compos-
ite using the 234 temporal predictors, and then applied to Italy using the temporal predictors
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calculated for the rest of the BAP composite. Even though the RF algorithm accuracy is
similar to accuracies for linear models, k-nearest neighbors [59,60], and more complex
models such as neural networks, it was chosen because it can achieve large accuracy values
as illustrated in [61,62] and because it is not excessively influenced by overfitting [20,63].

The RF hyperparameters can be calibrated to minimize error; two were calibrated for
this study using a random search procedure [25,64]: (1) maximum features, the maximum
number of temporal predictors considered and (2) maximum depth, the maximum depth of
the tree, i.e., the longest path between the root node and the leaf node. For the random
searches, we defined a grid of maximum features (1–52) and maximum depth (1–40) ranges,
from which a subset of 100 combinations were randomly selected. The performance of
each combination was assessed using k-fold cross validation (CV) with k = 5. Finally,
the k-fold CV overall accuracy was calculated, and we selected the maximum features-
maximum depth combination that produced the greatest accuracy. The number of trees
in the algorithm was set to 500 and the minimum number of training sample units for
splitting a node was set to one [25].

Finally, RF importance rankings were used to estimate the degree to which predictor
variables contributed to increasing the accuracy of the map, to assess the most suitable
variables for the classification model, and to verify their usefulness. The importance of the
variables was calculated using the Mean Decrease Gini Index (MDG) which estimated the
contribution of the variable to increasing the classification model accuracy. MDG is directly
proportional to the contribution of the variable within the algorithm [65].

2.2.2. Selection of the Estimation Sample

To increase the precision of the afforestation area estimates and to increase the objec-
tivity of the statistical inference from a sample [66], sample units were concentrated in the
areas near the forest/non-forest map boundaries where classification errors were more
likely. To this end, we used the forest/non-forest mask of Italy [38] described in Section 2.1.2.
It was chosen because it has large accuracy (85%) and because as compared with other
forest data (as Corine Land Cover and Corine Biotopes) it was the most accurate [39]. We
resampled the forest mask to 30 m to be consistent with the afforestation map and to define
a buffer of 120 m (four Landsat pixels) on each side of the forest/non-forest boundary to
facilitate increasing the sampling intensity in the areas where classification errors were
more likely [43]. The mean patch area of 11,104 m2 and median of 1512 m2 suggest that
patches with centers near the forest/non-forest boundary are likely to be entirely within the
240 m total buffer width. By intersecting the buffer and the two classes of the afforestation
map we obtained a map, hereafter designated the afforestation-buffer (AB) map, with four
map classes: (i) afforestation inside the forest buffer, (ii) non-afforestation inside the forest
buffer, (iii) afforestation outside the forest buffer, and (iv) non-afforestation outside the
forest buffer.

Then, stratified random sampling with the four AB map classes serving as strata was
implemented in three phases.

In the first phase, an initial random sample of points was selected from the four AB
map classes, concentrating the larger number of points inside the forest buffer where the
classification errors were more likely. A total of 2000 sample points was selected: 660 points
were randomly selected in each of the afforestation and non-afforestation map classes inside
the buffer, each representing 33% of the total sample, while 340 points were randomly
selected in each of the afforestation and non-afforestation map classes outside the buffer,
each representing 17% of the total sample.

These 2000 points were photointerpreted following a procedure similar to the proce-
dure described for the training dataset using fine resolution imagery (Section 2.1.4). The
photointerpretations were used to construct a confusion matrix for the afforestation/non-
afforestation classification. Unlike the training dataset, for which the photointerpretation
involved polygons, because the classification of BAP composite to construct the afforesta-
tion map is pixel based, the photointerpretation of the estimation sample dataset entailed
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classification of single Landsat pixels as afforestation or not afforestation. The matrix
facilitates use of the stratified estimator described in Francini et al. [43] for estimating the
afforestation area.

The second phase aimed at increasing the precision of the estimates. A second sample
of 2000 points was selected with new within-class sample sizes proportional to the first
phase within-class variance estimates: AB map classes with greater first-phase variances
were sampled with greater intensities. In other words, in the second phase, more points
were selected in the map classes with lower first-phase accuracies. The second phase
distribution was 194 points in afforestation inside the forest buffer class, 835 points in
non-afforestation inside the forest buffer class, 75 points in afforestation outside the forest
buffer class, and 896 points in non-afforestation outside the forest buffer class. The second-
phase sample was photointerpreted and the results were merged with the results of the
first-phase sample photointerpretation, resulting in a total sample of 4000 points (Table A1
in Appendix A). As for the first sample, a confusion matrix was constructed.

The third phase augmented the first and second phase samples to facilitate analyses of
afforestation for (i) administrative regions and (ii) elevation classes. To align the admin-
istrative regions’ boundary shapefile and the DEM raster with the afforestation map, the
boundary shapefile was rasterized at 30 m, while the DEM was resampled at 30 m and
reclassified into 14 elevation classes (200 m intervals). The 20 administrative regions and
the 14 elevation classes were intersected with the four AB map classes to produce a map
with, respectively, 80 classes and 56 classes. Then, the 4000 points were assigned to their
respective map classes obtained from the intersection of the four AB map classes and the
administrative regions and the intersection of the four AB map classes and the elevation
classes. The within-class samples were augmented with additional randomly selected
points where necessary to obtain at least 30 points per class as a means of assuring reliable
estimates of within-class variances.

The original estimation sample dataset of 4000 points was augmented as follows:

- (i) For administrative region samples, we assigned the 4000 points to the 80 map
classes obtained by intersecting the four AB map classes and the 20 administrative
regions and augmented the samples for within-class estimation datasets that had
fewer than 30 points. For this sample, we photointerpreted 254 additional points for a
total of 4254 points.

- (ii) For elevation class samples, we assigned the 4000 points to the 56 map classes
obtained by intersecting the four AB map classes and the 14 elevation classes from the
DEM and augmented the samples for within-class estimation datasets that had fewer
than 30 points. For this sample, we photointerpreted 401 additional points for a total
of 4401 points.

The two separate samples for the administrative regions and elevation classes were
used to estimate afforestation areas inside and outside the forest buffer for each administra-
tive region and each elevation class.

2.2.3. Accuracy Assessment and Afforestation Area Estimation

Using the estimation sample of size 4000, the stratified estimator was used to estimate
overall accuracy (OA) and the national afforestation area. Then, we used the stratified
estimators to estimate afforestation areas for each Italian administrative region using
the estimation sample of size 2254 and, for each elevation class, using the estimation
sample of size 4401. For individual administrative regions and for the national estimate
over administrative regions, we used the stratified estimation with intersections of the
20 administrative regions and the four AB map classes as strata. In the same way, for
individual elevation classes and for the national estimate over elevation classes, we used
the stratified estimation with intersections of the 14 elevation classes and the four AB map
classes as strata.

Following the photointerpretation, similar to that of the first phase (Section 2.1), the
confusion matrices for administrative regions and elevation classes were constructed and
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used with the stratified estimator (Table 1). The area of afforestation that occurred between
1985 and 2019, was then estimated. The 95% confidence interval (CI) for the estimated area
of each class was calculated following the estimator in Francini et al. [43], as illustrated
in Table 1. Moreover, the stratified estimator is unbiased, meaning that the average of
estimates over all possible samples of the same size obtained using the same sampling
design equals the true value [36,43], although the estimate for any particular sample may
deviate from the true value.

The national estimates were calculated by applying the stratified estimator to the
confusion matrix for the map. For administrative regions, the intersection of the 20 ad-
ministrative regions’ raster and the four AB map classes served as strata for the stratified
estimator, and for the elevation classes, the intersection of the 14 elevation classes from the
DEM raster and the four AB map classes from the afforestation map served as strata for the
stratified estimator.

2.2.4. Potential Carbon Sequestration

To estimate the potential carbon that would be sequestered in areas predicted to be
afforested between 1985 and 2019 once the forest had matured, we used the estimates of
total biomass per unit of forest area over all pools (aboveground biomass, belowground
biomass, litter, necromass, and organic and mineral soil) from the National Inventory of
Forests and Carbon Sinks [67] for individual administrative regions [37]. For each region,
we multiplied the estimated area of afforestation by the INFC estimate of biomass per unit
area to obtain an estimate of total biomass once the forest is mature.

To estimate the potential C-sequestration (t), we multiplied the estimate of total
biomass by the default carbon fraction in biomass of 0.5 [68,69]. The 95% confidence interval
estimates were also calculated for the carbon estimates at the national and administrative
region levels; as we did for the potential C-sequestration estimate, we multiplied the CI
of the afforestation estimates (ha) and the total carbon stock (t/ha) given by the national
forest inventory, and then we multiplied the total biomass CI (t) and the default carbon
fraction of 0.5. It is important to emphasize that this estimate was affected by increased
uncertainty due to the error associated with the INFC per unit area biomass estimates
(SE is linked to the carbon pools and, at the national level, the aboveground biomass,
belowground biomass, litter, necromass, and organic and mineral soil SE is about 1.4%)
and the assumption of a common biomass to carbon conversion factor.
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Table 1. Stratified estimator, confusion matrix to area estimates and CI width.

Map Class Reference Class

Sum wj
#1 p̂j wj ∗ p̂j V̂ar(p̂j) w2

j ∗ V̂ar(p̂j)Afforest-
Ation

Non-
Afforest-
Ation

Afforestation
outside buffer n11 n12 n1 = n11 + n12 w1 p̂1 = n11

n1
w1 ∗ p̂1 V̂ar( p̂1) =

p̂1∗(1− p̂1)
n1

w2
1 ∗ V̂ar( p̂1)

Afforestation
inside buffer n21 n22 n2 = n21 + n22 w2 p̂2 = n21

n2
w2 ∗ p̂2 V̂ar( p̂2) =

p̂2∗(1− p̂2)
n2

w2
2 ∗ V̂ar( p̂2)

Non-afforestation
outside buffer n31 n32 n3 = n31 + n32 w3 p̂3 = n31

n3
w3 ∗ p̂3 V̂ar( p̂3) =

p̂3∗(1− p̂3)
n3

w2
3 ∗ V̂ar( p̂3)

Non-afforestation
inside buffer n41 n42 n4 = n41 + n42 w4 p̂4 = n41

n4
w4 ∗ p̂4 V̂ar( p̂4) =

p̂4∗(1− p̂4)
n4

w2
4 ∗ V̂ar( p̂4)

n1 n2 n = ∑n
j nj ∑4

j wj = 1 p̂ = ∑4
j wj ∗ p̂j

#2 V̂ar( p̂) = ∑4
j w2

j ∗ V̂ar
(

p̂j

)
#3

#1wj is the proportion of the map in each afforestation/non-afforestation inside/outside buffer class; #2 p̂ = ∑4
j wj ∗ p̂j is the estimate of the proportion of the total area in one

of the afforestation/non-afforestation inside/outside buffer classes; #3 V̂ar( p̂) = ∑4
j w2

j ∗ V̂ar
(

p̂j
)

is the variance of the estimate of the total proportion of the area in one of the
afforestation/non-afforestation inside/outside buffer classes [43].
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3. Results
3.1. Afforestation Map

The afforestation map (Figure 3) predicted two classes of land cover: afforestation
between 1985 and 2019 and non-afforestation between 1985 and 2019. The afforestation
map was intersected with the forest map buffer of 120 m (Section 2.2.2) to obtain the four
AB map classes used to assess map accuracy and to estimate afforestation areas.
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figures on the right show the area in 1988 and 2020. The afforestation can be seen in the areas mapped
in yellow, while the other areas do not change. CRS, WGS84/UTM Zone 32N.

3.2. Accuracy Assessment

The estimated map OA was 87% with estimated afforestation classification accuracy
of 49% inside the forest buffer class and 26% outside the buffer class. Non-afforestation
classification accuracy estimates were larger both inside and outside the forest buffer,
reaching 90% or greater (Table A2 in Appendix B).

3.3. Area Estimates

Afforestation did not occur uniformly at the national level; in fact, when consider-
ing administrative region boundaries (Figure 4A,A1), estimates of afforestation areas for
four administrative regions (Abruzzo, Calabria, Latium, and Sardinia) were greater than
200,000 ha, with the greatest estimate of 260,653 ± 58,522 ha (10.80% of the administrative
region area) for Sardinia. Estimates were less than 90,000 ha for Apulia, Friuli Venezia
Giulia, Molise, Valle d’Aosta, and Veneto, with the lowest estimate of 28,644 ± 12,114 ha
(8.78% of the administrative region area) for Valle d’Aosta. In the remaining administrative
regions, the estimated afforestation areas were between 100,000 and 200,000 ha (Table A3
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in Appendix C). Abruzzo and Liguria had the greatest percentage afforestation estimates
relative to the administrative region area.
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estimates and corresponding 95% confidence intervals (ha) (1985–2019) in Italian administrative
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The estimated afforestation area estimates for the elevation classes and at the national
level are illustrated in Figure 4B,B1 and Table A4 in Appendix C. The largest afforestation area
between 1985 and 2019 was estimated in the intermediate elevation classes. Below 1200 m
a.s.l., estimates were greater than 200,000 ha, with the greatest estimate of 549,497 ± 84,979 ha
(13.94%) for the 400–600 m a.s.l. class. For higher altitudes, estimates were less than 100,000 ha,
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a finding that aligns with the decrease in forest habitats. The greatest percentage afforestation
area estimate was about 20.00% for the 600–1200 m a.s.l. class.

With the final estimation sample dataset, we estimated the national afforestation area
using the stratified estimator three ways, each with a different set of map classes serving
as strata: the four original AB map classes, the 80 classes obtained by intersecting the
four AB map classes and the 20 administrative regions, and the 56 classes obtained by
intersecting the four AB map classes and the 14 elevation classes. As expected, because
the stratified estimator is unbiased and also because the estimates are based on the same
afforestation map and on a common estimation sample, all three national estimates for
the period 1985–2019 were very similar, approximately 2.8 ± 0.2 million ha, as shown
in Table 2.

Table 2. National afforestation area estimates.

Area (ha) SE (ha) SE (%) CI Width (ha) CI Width (%)

National map 2,833,365 101,125 3.57 202,250 7.14
Elevation classes 2,801,050 94,647 3.38 189,293 6.76

Administrative regions 2,855,009 98,087 3.43 196,175 6.87

3.4. C-Sequestration Assessment

Considering administrative regions (Figure 5, Table A5 in Appendix E), the region
with the largest estimate of potential sequestered carbon was Calabria with
17,479,338 ± 4,289,144 t, while the region with the smallest estimate of potential carbon
sequestrated was Valle d’Aosta with 1,468,005 ± 620,842 t. In 11 of the 20 administrative
regions, estimates were greater than 10 million t of potential carbon sequestrated, and
nationwide, 202,420,138 ± 13,908,807 t of potential carbon would be sequestrated when the
trees in the afforestation areas mature.
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4. Discussion

Afforestation processes can be natural via spontaneous colonization of vegetation
succession or anthropogenic through planting or direct sowing. Afforestation is a profound
and potentially long-lasting land use transformation that has implications for ecosystems
and their associated services. It is, therefore, extremely important to monitor afforestation
and to locate its occurrence as a means of facilitating development of effective and timely
management plans.

4.1. Random Forest for Afforestation Map Construction

Using the RF model with the Landsat BAP composite (spatial resolution 30 m) data,
we constructed a map that predicted areas in Italy where afforestation occurred between
1985 and 2019. Implementation of the classification method on GEE produced the afforesta-
tion map for the entirety of Italy in about three hours. The methodology is based on the use
of Landsat BAP composites because their long historical series facilitates the prediction of
slow phenomena such as afforestation. In addition, the use of multiple temporal predictors
produced large accuracy estimates. Afforestation classification focused on mapping and
predicting the area where afforestation had occurred in the past 35 years, as opposed to the
exact year in which the forest was established which involves considering many different
variables such as the forest type, elevation, latitude, and aspect.

Finally, the analysis of the importance of the variables (illustrated in Figures A1 and A2
in Appendix D) used in the RF model allowed us to identify the variables that contributed
most to the classification, thus, reducing the number of variables and speeding up classifi-
cation operations. A variable with a greater weight in the classification means that it more
accurately distinguishes among the afforestation/non-afforestation classes considered.

The most important predictor in the RF model was Kendall’s correlation (tau) of
several bands and indices (mean value MDG > 8) and also the average of the values of
several bands and indices (mean value MDG > 1). The predictor variables that had the
greatest weight in the algorithm were Swir2 tau (MDG = 15.22), Swir1 tau (MDG = 14.79),
TCW, and green band tau (MDG = 13.60).

4.2. Afforestation Map Validation and Accuracy Assessment

The validation of the map was carried out in two phases. A qualitative phase involved
the visual analysis of the map and identified the major issues in the mapping process such
as afforestation of agricultural areas including orchards, agroforestry and olive groves
planted during the observation period, or even trees planted in urban areas. However, the
visual analysis also made it possible to observe the accuracy with which the map predicted
areas of afforestation due to agricultural abandonment or movement of the tree line to
higher altitudes, as well as areas of afforestation, which involved many reforestations.

In the second stage of validation, we estimated the OA = 87%. The estimates of
accuracies for the individual classes were quite large in non-afforestation classes (>95%)
and smaller for the afforestation class outside the forest buffer where the accuracy was
26%, and 50% for the afforestation class inside buffer; this difference is probably due to
the fact that outside the forest buffer the classification method was more influenced by the
spectral response of other land cover types such as agricultural areas that can have similar
spectral responses as afforestation. These results confirm the utility of constructing the
120 m buffer to increase the precision of the estimates. As before, increasing the sampling
intensity where classification errors are more likely and area variance estimates are larger
increases the precision of the estimates. Accordingly, we concentrated 18% of points in the
class with accuracy 26%, 21% of points in the class with accuracy 49%, and 15% of points in
each of the two classes with accuracies >90% (the two non-afforestation classes).

The map has some systematic commission errors, including agricultural areas, some
urban areas, and linear elements such as roads. In general, agricultural areas are most
prone to these errors. We have observed this feature in other maps and attribute it to crop
variability which is subject to periodic cycles of growth. This error is also present in the



Remote Sens. 2023, 15, 923 17 of 26

afforestation inside the forest buffer class which could explain the smaller accuracies for
classes inside the buffer as compared with those outside the buffer.

Map errors can also be traced back to the input data. Although the Landsat images
have the advantage of a long time series, they can be affected by the diversity of the sensors
mounted on different satellites which, in turn, can influence the output of the classification.
The analysis of accuracy is important for focusing future research on the classes that have
smaller accuracies, looking for an effective method to increase it.

4.3. Afforestation Area Estimates

The statistically rigorous, unbiased stratified estimator resulted in more precise es-
timates of the afforestation areas. The intermediate result based on the first-phase sam-
ple of 2000 random points showed that predicted afforestation between 1985 and 2019
covered 3,273,496 ± 401,557 ha. Following the second-phase sample which produced
a total of 4000 random points, the estimate of the area subject to afforestation was
2,833,365 ± 202,250 ha. With the final sample, the area of afforestation between 1985 and
2019 was estimated to be 2,801,050 ± 189,293 ha when using the intersection of the 14 ele-
vation classes and four AB map classes as strata, and 2,855,009 ± 196,175 ha when using
the intersection of the 20 administrative regions and the four AB map classes as strata, or
an average of ±82,000 ha per year (0.3% of the national area). It is important to note that
the increase in the sample size reduced the estimates of the variances and SEs. Overall, all
the estimates are reliable, and the SEs are similar and small (from 3.30 to 3.50%), moreover
the estimate for any estimate is included in the CIs for the other estimates, e.g., the CI
of the national afforestation estimate assessed using elevation classes (189,239 ha) and
administrative regions (196,175 ha) are included in the CI of the national afforestation
(202,250 ha). Confidence interval widths as percentages of the estimates were between
6.76% for the elevation classes, 6.87% for the administrative regions, and 7.14% for the
national map.

Afforestation estimates at the national level corresponded well with results from
the National Inventory of Forests and Carbon Sinks (INFC) which estimated an annual
percentage increase of 0.2–0.3% in the national area, equal to approximately 77,960 ha
between 1985 and 2005 and 52,856 ha between 2005–2015 [37]. The estimates for this
study and the INFC estimates are not completely comparable because the INFC estimates
afforestation for forest and other wooded land following the FAO definition, whereas this
study focused on the definition of afforestation proposed by FAO [2]. Nevertheless, the
general comparability of the estimates lends credibility to them.

Studying afforestation within individual administrative regions and elevation classes
was important because it facilitated assessment of afforestation in Italy in which it generally
differs, not only in terms of the physical characteristics of the land, but also in terms of
forest management systems. The DEM facilitates analyses of afforestation in the different
elevation classes, and therefore, it is then possible to reflect on the forests and species most
subject to afforestation.

The afforestation area estimates for the elevation classes showed that the greatest
increase in area has been in deciduous or evergreen broadleaf forests at lower altitudes,
while coniferous areas have expanded at higher altitudes. Above 1200 m, but below the
tree line, afforestation has been less, so presumably, the expansion of coniferous forests
such as Larix decidua has been less than in forests at lower altitudes.

The distribution of afforestation in the Italian administrative regions showed greater
estimates in the southern regions, where an increase of 1,315,280 ha was estimated, while
in the north and center the estimates were 928 ha and 611 ha, respectively.

These results can be attributed to agricultural abandonment which occurred at lower
altitudes and in southern Italy which generally have fewer intensive forms of management
than in center-north Italy where farms are more specialized.

In addition to INFC afforestation estimates, another result which is consistent with our
afforestation results, was reported by Pompei [70] for Abruzzo, specifically that between
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1954 and 2002 estimated afforestation areas covered almost 18% of the administrative region
area with an annual percentage increase of 0.4%. These estimates corresponded to our
estimates in which the estimate of afforestation area between 1985 and 2019 in Abruzzo
covered 20% of the administrative region area with an annual percentage increase of 0.6%.

4.4. Potential C-Sequestration

Afforestation estimates were also used to estimate the potential C-sequestration in
areas where afforestation occurred between 1985 and 2019. Potential C-sequestration refers
to the amount of carbon (t) which would be absorbed by trees in the afforestation areas
when they are mature. The estimates of the potential carbon sequestered in afforestation
areas showed a slight decoupling between administrative region afforestation areas and the
amount of carbon sequestered. In fact, while Sardinia had the greatest afforestation area, it
was not the administrative region with the greatest amount of potential carbon sequestered.
This is because carbon content in forests depends on different distributions of carbon in
different forest pools, a result influenced both by climatic and geographic factors.

Considering the average 50-year age of Italian forests, it is important to note that
because afforestation areas are not yet mature forests, our results illustrate the potential
C-sequestration, therefore, the amount of carbon which a mature forest would sequester.
To precisely assess the amount of C-sequestration, it would be important to know the forest
age and other elements such as the geographical location, as well as the environmental and
soil characteristics.

The large uncertainty in the potential C-sequestration estimates is due to the associa-
tion of several errors arising from the uncertainty in the conversion of biomass to carbon
which is used together with afforestation areas to approximately estimate the carbon from
biomass values.

4.5. Future Developments

Afforestation is an extremely important environmental phenomenon. On the one
hand, it is a topical issue and it is included in many international and national programs
and legislation. On the other hand, afforestation mapping through remote sensing imagery
analysis is still unexplored, very few studies have been reported, most of which have
focused on small study areas [71].

The analysis of afforestation areas can be strengthened by improving the classification
to decrease omission and commission errors using additional auxiliary data related to the
afforestation process such as aspect, slope, pedology, and geographical area. The analysis
of afforestation could also be useful for accurately predicting the vegetation associations
and, therefore, the species that have been the protagonists of afforestation over the last
35 years, and for establishing the year when the afforestation process ended. This could
also be useful to define a minimum time range in which afforestation could be estimated
with consideration of the different growth rates for different species.

The method of afforestation classification can be the basis for studying afforestation
dynamics. Future research can involve the classification method to assess many ecosystem
services such as C-sequestration which can be estimated using both the classification
method and chronosequences [72]. The classification method can be useful to predict where
afforestation is occurring in support of ad hoc forest management strategies. Since the
beginning of the 20th century until the 1970s, afforestation in Italy has occurred mainly
by tree planting. Currently, afforestation in Italy is mostly via spontaneous vegetative
succession [73], therefore, the classification method and the analysis of the afforestation
spectral response can be adjusted to distinguish anthropogenic and natural afforestation.
Finally, the classification method facilitates assessment of the rate of afforestation within
elevation classes or ecoregions, and to characterize afforestation trends.
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5. Conclusions

In this study, we constructed a 30 m map of afforestation areas that occurred between
1985 and 2019 using random forests and Landsat composite BAP data, and we estimated
afforestation areas using the statistically rigorous stratified estimator. Three main conclusions
were drawn from the study. Firstly, thanks to remotely sensed data with fine spatial resolution
and available for long time series, it is possible to predict locations of afforestation areas by
analyzing their evolution over time. Secondly, predicted afforestation maps can be integrated
with a photointerpretation phase and auxiliary information such as administrative region
boundaries and the DEM to facilitate analyses of territorial differences of the afforestation
phenomenon, offering estimates that can be important from a management point of view.
Finally, integration of the map with sample data in combination with the statistically rigorous
stratified estimators has shown that afforestation in Italy over the last 35 years has been about
2 million ha, associated with 202 million t of carbon sequestrated. The uncertainties of the
results are relatively small, about 7.14% for the national estimates, 6.76% for the elevation
classes, and 6.87% for the administrative regions, and these results confirm the effectiveness
of the stratified estimator in increasing the accuracy of the estimates using an initial sample of
points that is supplemented as needed. These results contribute to a greater understanding of
the evolution of tree cover which is fundamental for monitoring climate change. For these
reasons it will be important to strengthen the analysis and to improve the quality of the
information that can be extracted from cartographic data in support of decision making.
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Appendix A. Intermediate Results of the Sample Selection

Table A1. Selection of first and second estimation sample dataset. The first estimation sample dataset
composed of 2000 sample points. Per-class variance and resulting second sample selection. Through
this procedure, the 2000 random points were selected in direct proportion to the variance of the first
sample of points. At the end, the estimation sample dataset of 4000 points used for the next steps
was extracted.

AB Map Class

Reference Class

Afforestation Non-
Afforestation

First
Sample

Total

% Class
Variances

Second
Sample

Total

Final
Sample

afforestation inside buffer (i) 164 496 660 9.68 194 854
non-afforestation inside buffer (ii) 329 331 660 41.76 835 1495

afforestation outside buffer (iii) 9 331 340 3.75 75 415
non-afforestation outside buffer (iv) 26 314 340 44.80 896 1236

Total 528 1472 2000 100.00 2000 4000
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Appendix B. Accuracy Assessment

Table A2. Overall accuracy assessment for the map. The table shows the overall and the class
accuracies for the map, estimated from the confusion matrix and the sample of 4000 points.

AB Map Classes

Reference Total Accuracy Weight
(Wt) Wt *Acc

Afforestation Non-
Afforestation

afforestation inside buffer (i) 418 436 854 0.49 0.11 0.05
non-afforestation inside buffer (ii) 60 1115 1175 0.95 0.30 0.29

afforestation outside buffer (iii) 191 544 735 0.26 0.08 0.02
non-afforestation outside buffer (iv) 16 1220 1236 0.99 0.52 0.51

Overall Accuracy 0.87

Appendix C.

Appendix C.1. Afforestation Estimates in Administrative Regions

Table A3. Stratified area estimates for Italian administrative regions. This table shows the afforesta-
tion estimates for each Italian administrative region in ha and percentage, with the associated standard
error and 95% confidence interval width.

Administrative Region Afforestation
(ha)

Afforestation
(%) SE (ha) SE (%) CI Width

(ha)
CI Width

(%)

Abruzzo 218,839 20.27 23,035 10.53 46,071 21.05
Apulia 61,313 3.17 11,254 18.36 22,509 36.71

Basilicata 142,766 14.29 22,028 15.43 44,057 30.86
Calabria 222,525 14.75 27,302 12.27 54,604 24.54

Campania 151,133 11.11 24,805 16.41 49,610 32.83
Emilia-Romagna 183,743 8.19 26,858 14.62 53,716 29.23

Friuli Venezia Giulia 64,950 8.20 10,864 16.73 21,727 33.45
Latium 217,336 12.63 31,482 14.49 62,964 28.97
Liguria 108,395 20.00 15,639 14.43 31,277 28.85

Lombardy 129,382 5.42 17,173 13.27 34,346 26.55
Marche 120,337 12.82 15,784 13.12 31,569 26.23
Molise 74,489 16.78 12,987 17.44 25,975 34.87

Piedmont 187,841 7.40 26,166 13.93 52,333 27.86
Sardinia 260,653 10.81 29,261 11.23 58,522 22.45

Sicily 183,561 7.14 27,181 14.81 54,361 29.61
Trentino-Alto Adige 136,171 10.01 22,885 16.81 45,771 33.61

Tuscany 169,211 7.36 26,327 15.56 52,653 31.12
Umbria 104,304 12.34 18,450 17.69 36,900 35.38

Valle d’Aosta 28,644 8.78 6057 21.15 12,114 42.29
Veneto 89,398 4.88 21,365 23.90 42,731 47.80

National 2,855,009 9.53 98,087 3.44 196,175 6.87
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Appendix C.2. Afforestation Estimates in Elevation Classes

Table A4. Stratified area estimates for elevation classes. This table shows the afforestation estimates
for each elevation class in ha and percentage, with the associated standard error and 95% confidence
interval width.

Elevation
Classes

Afforestation
(ha)

Afforestation
(%)

SE
(ha)

SE
(%)

CI
Width

(ha)

CI
Width

(%)

<200 359,769 3.37 37,499 10.42 74,998 20.85
200–400 498,396 8.20 40,165 8.06 80,330 16.12
400–600 549,497 13.94 42,489 7.73 84,979 15.46
600–800 468,891 17.49 39,854 8.50 79,708 17.00

800–1000 354,437 19.55 37,065 10.46 74,131 20.92
1000–1200 226,546 18.53 29,391 12.97 58,782 25.95
1200–1400 94,722 10.56 11,994 12.66 23,988 25.33
1400–1600 101,565 15.18 20,946 20.62 41,891 41.25
1600–1800 64,805 12.55 12,066 18.62 24,133 37.24
1800–2000 47,693 11.26 10,289 21.57 20,578 43.15
2000–2200 55,295 16.01 10,420 18.84 20,841 37.69
2200–2400 16,226 5.92 3620 22.31 7240 44.62

>2400 474 0.11 441 93.14 883 186.27
National 2,801,050 9.35 94,647 3.38 189,293 6.76

Appendix D. Random Forests Importance Ranking

The temporal predictors importance ranking for the classification approach are illustrated
in Figure A2. Because the predictors were numerous, the mean values of MDG for each
band/index and for each predictor are shown in the figure, while the importance rankings
for all the temporal predictors are illustrated in Figure A2.
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Appendix E. Potential C-Sequestration Estimation

Table A5. Potential C-sequestration (t) and CI width (t) estimated in administrative regions in
afforestation areas between 1985 and 2019.

Administrative
Region Afforestation(ha) AfforestationCI

Width (ha)

Total
Biomass

Stock (t/ha)

Afforestation
Potential

Biomass (t)

Potential
C(t)

Potential
Biomass CI

Width(t)

Potential C
CI Width (t)

Calabria 222,525 54,604 157.10 34,958,678 17,479,339 8,578,288 4,289,144
Abruzzo 218,839 46,071 140.00 30,637,460 15,318,730 6,449,940 3,224,970
Latium 217,336 62,964 135.40 29,427,294 14,713,647 8,525,326 4,262,663
Sardinia 260,653 58,522 99.50 25,934,974 12,967,487 5,822,939 2,911,470

Emilia-Romagna 183,743 53,716 140.00 25,724,020 12,862,010 7,520,240 3,760,120
Piedmont 187,841 52,333 136.70 25,677,865 12,838,932 7,153,921 3,576,961

Trentino-Alto Adige 136,171 45,771 181.30 24,687,802 12,343,901 8,298,282 4,149,141
Sicily 183,561 54,361 133.30 24,468,681 12,234,341 7,246,321 3,623,161

Campania 151,133 49,610 158.30 23,924,354 11,962,177 7,853,263 3,926,632
Tuscany 169,211 52,653 130.60 22,098,957 11,049,478 6,876,482 3,438,241

Lombardy 129,382 34,346 160.50 20,765,811 10,382,906 5,512,533 2,756,267
Basilicata 142,766 44,057 135.60 19,359,070 9,679,535 5,974,129 2,987,065
Marche 120,337 31,569 131.20 15,788,214 7,894,107 4,141,853 2,070,926
Liguria 108,395 31,277 131.40 14,243,103 7,121,552 4,109,798 2,054,899
Veneto 89,398 42,731 158.70 14,187,463 7,093,731 6,781,410 3,390,705
Umbria 104,304 36,900 121.50 12,672,936 6,336,468 4,483,350 2,241,675
Molise 74,489 25,975 155.60 11,590,488 5,795,244 4,041,710 2,020,855

Friuli Venezia Giulia 64,950 21,727 159.30 10,346,535 5,173,268 3,461,111 1,730,556
Apulia 61,313 22,509 138.20 8,473,457 4,236,728 3,110,744 1,555,372

Valle d’Aosta 28,644 12,114 102.50 2,936,010 1,468,005 1,241,685 620,843
Italy 2,855,009 196,175 141.80 404,840,276 202,420,138 27,817,615 13,908,808
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