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Simple Summary: Knowledge of grassland system characteristics is of primary importance in
livestock feeding to apply proper management strategies and maintain specific territories and their
biodiversity. This study aims to test the application of discriminant analysis based on principal
components to near-infrared spectra derived from intact fresh herbage. Samples were collected
from recently sown (pure and mixed) grasslands and old meadows that were naturalized from
the previously sown north-central Apennine (Italy). Classification achieved an overall assignment
success rate of 77%, and the discrimination seemed to be applicable with success (up to 80%) for
pure alfalfa crops and old permanent meadows derived from the same. Grass–legume mixtures and
permanent meadows originating from old grass–legume mixtures achieved lower assignment success
and seemed more similar. The application of discriminant analysis combined with near-infrared
spectra is promising for grassland types, which differ in their botanical and chemical characteristics,
for quick assessment of pasture qualitative levels, considering that it can be performed without
drying and milling.

Abstract: This study aims to classify plant communities by applying discriminant analysis based
on principal components (DAPC) on near-infrared spectra (FT-NIRS) starting from fresh herbage
samples. Grassland samples (n~156) belonged to (i) recent alfalfa pure crops (CAA), (ii) recent
grass–legume mixtures (GLM), (iii) permanent meadows derived from old alfalfa stands that were
re-colonized (PMA), and iv) permanent meadows originated from old grass–legume mixtures (PLM).
Samples were scanned using FT-NIRS, and a multivariate exploration of the original spectra was
performed using DAPC. The following two scenarios were proposed: (i) cross-validation, where all
data were used for model training, and (ii) semi-external validation, where the group assignment
was performed without samples of the training set. The first two components explained 98% of the
total variability. The DAPC model resulted in an overall assignment success rate of 77%, and, from
cross-validation, it emerged that it was possible to assign the CAA and PMA to their group with more
than of 80% of success, which were different in botanical and chemical composition. In comparison,
GLM and PLM obtained lower success of assignment (~52%). External validation suggested similarity
between PLM and GLM groups (93%) and between GLM and PLM (77%). However, a dataset increase
could improve group differentiation.

Keywords: forage resources; DAPC; herbage mass; FT-NIRS; grassland evolution

1. Introduction

Grasslands are ecosystems or ecological communities representing almost a third of
the earth’s surface and 22% of European land area [1,2], involving high biodiversity [3],
to which biotic and abiotic factors are linked. In this context, pastoral lands are indirectly
associated with maintaining biosphere stability, and nowadays, they have a significant role
in the mitigation strategy for climate goals [1]. In the last decades, the grassland area has
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decreased because of other agricultural uses, such as conversion to arable land [2,3], to
support the continuously increasing food demand. Land use intensification or changes in
agricultural land use and other anthropogenic activities, such as intensive livestock grazing,
are the principal drivers of biodiversity loss. This reduces local species diversity and biotic
homogenization at larger spatial scales [4,5]. The importance of grasslands in the world
for livestock systems is recognized by their distribution, occupying 3.5 billion ha, of which
almost 2 billion ha are used for grazing livestock, even if not all grasslands are grazed
by domesticated animals. Knowledge of the grassland system characteristics is the basis
for both the conservation of biodiversity and the improvement in grassland management
practices, according to [6], who reported that the priority of information availability on
pasture characteristics contributes to achieving optimal pasture management, particularly
if devoted to animal grazing.

Studies [7] have reported the use of hyperspectral images (HSIs) to detect and clas-
sify grassland botanical composition, especially crops and weeds, implying high use of
human and material resources and the combination of hyperspectral images with remote
sensing [8–11]. The use of remote sensing involving spectral bands and structural (textural,
geometric) features has shown that similarities in grassland characteristics confound their
classification [12]. Other research [13] performed, with a laboratory-scale NIR-HSI system,
the discrimination of grassland species of three botanical functional groups as follows:
Poaceae, Fabaceae, and species belonging to other families focusing on the ecological
plant aspects.

Near-infrared spectroscopy (NIRS), considering the full range of near-infrared regions,
could represent an opportunity to discriminate grassland features for the livestock sector.
The advantage of NIRS is that the methodology is speedy and non-destructive, has a
high throughput, and can be cost-effective. On the other hand, NIRS technologies also
include implications such as the need for extensive calibration of the prediction equations
and the lack of cost-effectiveness in combining external/commercial calibration. Near
spectroscopy has already been applied directly to estimate the chemical composition of
natural or artificial fresh samples of mixed and pure herbage [14–16]. At the same time,
fewer studies have been performed on the classification of vegetation typologies in a
livestock direction. Study [17] tried to develop NIRS models to predict species composition
in mixed swards, considering mainly artificial samples. Classification using a qualitative
discriminant procedure of fresh grassland vegetation by spectral information (NIRS), based
on different functional traits [18], can save labor in research and quickly evaluate grassland
classes. The recognition of specific species or botanical groups, as well as different economic
levels of grassland, in the long term, could be of topic appeal in the online application on
the field.

The present study aims to test the application of discriminant analysis based on princi-
pal components to near-infrared spectra derived from fresh herbage samples originating
from naturalized and sown grasslands in north-central Apennine (Italy). The hypothesis
assumes that distinct plant communities can be classified by near-infrared spectra capturing
and evidencing information by a discriminant analysis based on principal components.

2. Materials and Methods
2.1. Forage Sample Set

Samples were collected in different areas of north-central Apennine (Italy) at an
altitude higher than 300 m.a.s.l. They are referred to the provinces of Modena, Bologna,
Pistoia, Prato, Firenze, Arezzo, and Siena, which were representative of the grassland
types in the study area. Samples were collected from a 1 m2 representative area at each
site [19]. The sample sites are reported in Figure 1. Sampling was repeated 1 to 3 times for
each site, covering different phenological phases along the vegetative season. Sampling
was performed from 2016 to 2022. Forage sampling refers to cropped and re-colonized
grasslands devoted to hay production and animal grazing, as reported by Parrini et al. [16].
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Figure 1. Sampling sites.

For each sample, information on age (from sowing to sampling), present type, original
crop, and composition was collected. Grassland species were identified (Table 1) using
a tray with a white background. The weight and proportion of each botanical group
(legumes, grasses, and other forbs) for each sample were identified [20,21] and expressed
as the percentage contribution to the herbage mass on a wet matter basis.

Subsequently, the samples were classified into the following four groups using criteria
based on their origins and ages (summarized in Table 2):

CAA (n = 27): Alfalfa crops recently established (less than 4 years old), presenting a
very high percentage of sown legumes (~80%) mainly identified as Medicago sativa, grasses
belonging to the genera Bromus, Lolium, and Poa (~16%), and other forbs, representing the
remaining 4%.

GLM (n = 33): grass–legume mixtures recently established (less than 5 years of age).
These presented a high presence of legume species (~60%), mainly represented by species
belonging to the genera Medicago, Lotus, Onobrychis, and Trifolium, grasses (~35%) belonging
to the genera Dactylis, Festuca, Lolium, Poa, and Phleum, and other forbs (~5%).

PLM (n = 36): permanent meadows originated from old grass–legume mixtures (more
than 7 years old) re-colonized by native species, mainly grasses (~55%) belonging to the
genera Dactylis, Festuca, Phleum, Avena, and Bromus, low legume presences (~31%), mostly
Lotus and Trifolium, and other forbs (about 14%).

PMA (n = 60): permanent meadows derived from old alfalfa meadows (over 7 years
old) re-colonized primarily by grasses with some forbs. These permanent meadows were
highly naturalized by local species belonging to grasses (~62%), such as Avena, Bromus,
and Hordeum. In comparison, the ground cover of legumes was reduced to 26% (mainly
Trifolium) and other forbs (about ~12%).
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Table 1. Grassland species identified in the samples of the present study.

Grasses Legumes Other Forbs

Arrhenatherum elatius L.
Agropyron repens L.

Agrostis tenuis L.
Avena sativa L.

Arrhenatherum elatius L.
Bromus erectus Huds.
Bromus hordeaceus L.

Bromus sterilis L.
Cynosurus cristatus L.

Dactlis glomerata L.
Festuca arundinacea Schreb.

Hordeum murinum L.
Hordeum vulgare L.

Lolilum multiflorum Lam,
Lolium perenne L.
Poa pratensis L.
Poa trivialis L.

Phleum pratense L.

Medicago sativa L.
Lotus corniculatus L.

Hedysarum coronarium L.
Onobrychis viciifolia Scop.

Trifolium pratense L.
Trifolium repens L.

Achillea millefolium L.
Amaranthus retroflexus L.
Angelica archangelica L.

Artemisia vulgaris L.
Bellis perennis L.
Brassica napus L.

Capsella bursa-pastoris L.
Cerastium arvense L.
Cichorium intybus L.

Convolvulus arvensis L.
Dianthus carthusianorum L.

Erigeron annuus L.
Geranium dissectum L.

Geum urbanum L.
Hypericum perforatum L.

Lamium purpureum L.
Leucanthemum vulgare Lam.

Malva sylvestris L.
Mentha arvensis L.

Myosostis arvensis L.
Ornithogalum umbellatum L.

Papaver rhoeas L.
Picris hieracioides L.
Potentilla erecta L.

Plantago lanceolata L.
Potentilla erecta L.

Ranunculus arvensis L.
Rumex obtusifolius L.

Senecio vulgaris L.
Silene vulgaris Moench

Taraxacum officinale F.H. Wigg.
Tragopogon spp. L.
Verbena officinalis L.
Veronica persica Poir

Table 2. Summary of forage characteristics by classification groups.

CAA GLM PLM PMA

Number of samples 27 33 36 60

Grassland type alfalfa crops grass–legume mixtures permanent meadows
naturalized

permanent meadows
naturalized

Age (years) 1–4 1–5 7–12 7–12
Original crop alfalfa crops grass–legume mixtures grass–legume mixtures alfalfa crops

Legumes % (µ, ± SD) 80 ± 15 60 ± 19 31± 26 26 ± 18
Grasses % (µ, ± SD) 16 ± 10 35 ± 16 55 ± 27 62 ± 17

Other forbs % (µ, ± SD) 4 ± 0.8 5 ± 1 14 ± 3 12 ± 5

CAA: pure alfalfa crops; GLM: grass–legume mixtures recently established; PLM: permanent meadows originated
from old grass–legume mixtures; PMA: permanent meadows originated by old alfalfa.

2.2. Sample Preparation, Spectral Measurement, and Chemical Analysis

Each sample of fresh herbage was reduced by hand-clipping to 2–4 cm diameter.
Three aliquots were randomly selected and scanned for each sample by a cup spinner
after acquiring a background spectrum. Each spectral measurement was obtained from
32 scans performed at a wave number resolution of 4 cm-1 over the range of 1000 to 2500 nm
wavelength (4000–9999 cm−1 wavenumber) and corrected against the background spectra
of the room environment. Absorbance data were collected as log 1/R, and 3112 data points
were recorded per sample by FT-NIRS Antaris II model (Thermo Scientific, Waltham, MA,
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USA), maintaining a constant temperature in the laboratory room. An average spectrum of
the three measurements was calculated for each sample.

After the FT-NIRS collection, the samples were dried in a forced-air oven to constant
weight and ground through a mill (Brabender OHG, Duisburg, Germany) to pass 1 mm.
The chemical analysis was performed according to the following AOAC [20] methods: dry
matter (DM) content using the 934.01 method, crude protein (CP) by the 976.05 method,
ash via the 942.05 procedure, crude fat (EE) using the 2003.05 method, acid detergent fiber
inclusive of residual ash (ADF), and acid detergent lignin (ADL) using the 973.18 method.
Neutral detergent fiber, including residual ash (NDF), was determined according to the
procedure described by [21].

2.3. Statistics Analysis and Chemometrics Application

Individual spectra were evaluated, even if no pre-treatment was used, and all wave-
lengths were equally weighted. Outliers were detected based on the high residual values
and high Hotelling’s T2 statistic values calculated from the sample scores, which were
indicated as the variation in each sample within the model. Missing and abnormal values
were discarded from the dataset.

Principal components analysis (PCA) was conducted using the “prcomp” function of
the R package [22] on the absorbance of the 3112 wavenumbers to observe the differences
among groups.

Discriminant analysis of principal components (DAPC) was performed on spectra us-
ing the adegenet R package [23], considering the four origin groups as a classification factor.
The discriminant analysis of principal components approach was applied to identify the
potential cluster separation of NIR spectra based on the four grassland groups previously
described (CAA, GLM, PMA, PML). The aim was to evaluate the spectra assignment to the
own group.

DAPC was performed in two steps as follows: first, a PCA was conducted and then,
a small number of selected PCs (instead of 3112 wavenumbers) was used as input for
the linear discriminant analysis (LDA). The number of PCs subsequently used for LDA
was selected by cross-validation (CV), where the data were split into training (TRN) and
validation (VAL), represented respectively by 70% and 30% of the total dataset. The
procedure for selecting PCs considered that the number of replicates was set to 30 for each
level of PC retention, the maximum number of tested PCs was 20, and the number of PCs
retained was established on the highest mean success.

For spectra discrimination, two approaches were applied as follows:

• Cross-validation, where the full dataset was considered simultaneously using all data
for model training. Subsequently, discriminant functions were extracted based on all
samples, and the correct assignment of samples to their origin was assessed.

• A semi-external validation, in which the assignment group was tested in the training
set without any samples belonging to the group. Therefore, spectra of the testing
sample consisting of one group were classified into the remaining 3 groups of the
training set, showing the similarity among groups.

Sample classification was explained by the percentage of successful assignments. The
outcomes were reported in a confusion matrix, with rows representing the classes to which
samples belonged and columns representing the classes to which samples were assigned
by the classification rule [24].

3. Results

Descriptive statistics of chemical analysis are reported in Table 3, considering class
based on grassland type.
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Table 3. Descriptive statistics of the chemical analysis of the samples.

DM % CP (g100g−1) Ash (g100g−1) EE (g100g−1) NDF (g100g−1) ADF (g100g−1) Lignin (g100g−1)
Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range Mean SD Range

CAA 14.7 3.1 11.5–21.1 21.0 2.9 15.5–25.0 11.6 1.5 8.3–13.6 2.4 0.5 1.6–3.4 48.9 8.0 37.2- 72.9 36.6 4.5 25.6–43.7 7.5 2.6 1.9–9.7
GLM 16.8 3.1 12.2–25.3 20.4 3.1 14.6–25.8 11.0 1.5 8.1–13.2 2.5 0.5 1.4–3.7 45.7 7.7 30.8- 65.6 33.4 6.2 21.3–45.5 6.8 2.1 2.7–9.6
PMA 25.2 8.4 11.1–43.9 15.2 4.5 7.4–24.1 10.0 1.8 4.5–12.5 2.2 0.6 0.6–4.0 54.5 8.7 33.0–71.3 36.2 7.1 12.5–48.8 7.0 1.9 2.3–9.9
PLM 20.5 6.7 12.4–43.0 16.9 4.9 8.9–24.8 10.3 1.8 6.5–11.9 2.3 0.6 1.0–3.8 51.1 10.7 32.8- 71.7 35.5 6.9 24.9–50.1 6.4 2.3 2.5–10.1

CAA: pure alfalfa crops; GLM: grass–legume mixtures recently established; PMA: permanent meadows originated by old alfalfa; PLM: permanent meadows originated from old
grass–legume mixtures. DM: dry matter; CP: crude protein; EE: crude fat; NDF: neutral detergent fiber; ADF: acid detergent fiber; ADF: acid detergent fiber; ADL: acid detergent lignin.
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In the full dataset, five samples were considered outliers based on the high Hotelling’s
T2 statistic values of the wavelengths and removed from the following analysis. In contrast,
one sample was removed for chemical analysis after data quality control was performed.
The cultivated meadow groups (CAA and GLM), characterized by a higher presence of
legume forages, especially alfalfa, showed high protein contents and lower levels of dry
matter and NDF. Conversely, naturalized meadows (PMA and PLM), as expected, showed
a lower CP content and a higher DM and NDF content.

Regarding the PCA, the total explained variance reported in the scree plot (Figure 2)
presented 10 dimensions per newly defined principal component on the x-axis and the
percentage of the explained variance on the y-axis (based on eigenvalue). The first PC
dimension represented 80.9% of the variance; the second represented 17.3%, and the third
represented 1.3% of the explained variance, with little information gained by adding other
PCs. Indeed, most of the spectra variability (roughly 98%) was summarized by the two
principal components, and the number of principal components to be retained could not
exceed three dimensions for the explorative PCA analysis. The explorative PCA analysis
(Figure S1) positioned each cluster on PC1 and PC2 in the two-dimensional scatter plot of
scores. PC2 allowed the discrimination of the PMA fields from the others, while PC1 could
not cluster the group mentioned above; otherwise, PC1 slightly separated PLM from others.
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The DAPC analysis results are shown in Figure 3, considering the full dataset. This
approach defined three groups based on the diversity of the spectra as follows: (i) CAA,
(ii) PMA, and, finally, (iii) PLM and GLM resulting overlaps. The first 11 PCs were used in
the final DAPC model, considering that the root mean square error decreased from 0.64
obtained by PC1 to 0.31 by PC11. The overall assignment success rate for the origin group
was 76.9%. Using three discriminant functions, this model retained the lowest root mean
square error and explained about 99% of the total variance.
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Figure 3. Biplot of the DAPC analysis.

Table 4 reports the post-successful assignment of individuals to their original clusters
based on the previous model in cross-validation as a confusion matrix. The values higher
than 80% of correct assignment for CAA and PAM suggest clear-cut clusters, while GLM
and PLM were confirmed as admixed, attributing 30% and 37% of samples to each other.

Table 4. Confusion matrix of post-assignment success per group (%) in the cross-validation.

CAA GLM PLM PMA

CAA 81.1 6.7 7.5 4.7
GLM 8.0 52.2 30.7 9.1
PLM 4.1 37.2 53.8 4.9
PMA 1.0 6.8 6.8 85.4

CAA: pure alfalfa crops; GLM: grass–legume mixtures recently established; PLM: permanent meadows originated
from old grass–legume mixtures, PMA: permanent meadows originated from old alfalfa. Rows: actual classes to
which samples belonged. Columns: classes to which samples were assigned.

The results of the semi-external validation approach are presented in Table 5 as per-
centages of posterior assignment probability. The training set did not include the validation
data set for each group. Indeed, the membership of a sample to its class could not be
evaluated; contrariwise, it was possible to highlight the similarity among groups.

Table 5. Confusion matrix of posterior assignment probability of each group in the semi-external
validation.

CAA GLM PLM PMA

CAA - 56.6 21.7 21.7
GLM 9.7 - 77.4 12.9
PLM 3.1 9.8 - 3.1
PMA 8.8 38.6 52.6 -

CAA: pure alfalfa crops; GLM: grass–legume mixtures recently established; PLM: permanent meadows originated
from old grass–legume mixtures, PMA: permanent meadows originated from old alfalfa. Rows: actual classes to
which samples belonged. Columns: classes to which samples were assigned.

The following two groups showed a high percentage of assignment to only one group:
PLM with GLM (93%) and GLM with PLM (77%), showing reciprocity between the pairs.
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Also, CAA was assigned 56% of the time to GLM and in a similar percentage to PLM and
PMA (~21%). Samples of the last group, PMA, were mainly assigned to PLM (52%) and
GLM (22%), and a small group (8.8%) were assigned to CAA. Even if there was no complete
reciprocity in the pair’s assignment, it is evident that GLM was the group that reported the
highest percentage of assignments, and CAA was the lowest.

4. Discussion

A fast assessment of grassland system characteristics is the basis for improving biodi-
versity conservation, applying appropriate management practices, and evaluating grass-
land resources in livestock systems, mainly if samples can be analyzed without drying
time. Some previous studies [25,26] reported that grassland ecosystems, including sown
and natural meadows, are challenging to investigate because of their natural diversity and
complexity, as well as the wide range of management and environmental conditions that
they are exposed to, even if monitoring both quality and origin features are primary for
livestock management purposes [27].

The chemical composition of the grassland samples studied suggested that the qual-
itative characteristics of the grassland were directly affected by the presence of species
and their abundance in the processed samples. In particular, recent legume crops (CAA
and GLM) were favorably linked with increasing protein and fat content [28–30], even if
it seemed that there was no direct association with the content of fiber, probably covered
by the effect of the entire vegetative season included in the sampling. Previous research
in different Italian regions, i.e., Emilia–Romagna [31] and Calabria [32], reported a lower
crude protein content for prevailing alfalfa crops and permanent meadow hay compared
with the results obtained in our study. However, beyond species composition, many fac-
tors can affect the nutritional value of herbage, i.e., climatic conditions, soil composition,
phenological state [25], nutrient availability [33], and stage of maturity [34,35].

The present study showed that the explorative PCA on spectral data could represent
the main part of variability using a low number of PCs (two components retained, ex-
plaining 98% of the total variability). The low number of PCs used confirmed the direct
association among plant tissue, their structure, and wavelength characteristics, according
to Asner [36], who described this phenomenon as the wavelength dependence of plant
tissue. It is important to point out that spectral data were used as raw spectra derived
from fresh herbage without applying preprocessing treatments on the samples and data.
A study [18] suggested using raw spectral data without preprocessing steps because they
did not decrease performance but could complicate the models. In quantitative NIRS
calibration models, a reduced number of math pre-treatments on spectra is often sug-
gested to avoid the complexity of interpretation and artifacts derived from the loss of some
information and the minor structural differences among very similar signals [24]. Still,
in the chemometrics approach, it is also interesting to note that our study used the full
range of near-infrared regions for the classification, and it was not necessary to provide
different weights or select some regions. Such considerations are concordant when there is
no evident wavelength-specific relevance and the model does not suggest a prior variable
region that implies a variable selection based on the absence of differences in the variance
explained by the model [37].

The results of DAPC coupled with FT-NIR pointed out an overall assignment of 77%
to its origin group, highlighting two clear trends as follows: PMA and CAA seemed to be
the clusters more distant from the others. At the same time, GLM and PLM were almost
overlapped, indicating that the spectral information contained in both types of spectra
was very similar. From the first scenario of DAPC analysis (cross-validation), it emerged
that it is possible to correctly assign and classify two types of grassland (CAA and PMA)
extreme for their botanical and chemical composition, even if they originated from the
same crops. Alfalfa species effectively characterized the first group of samples from which
PMA differed concretely from the prevalence of Gramineae, which is acknowledged to
encroach remarkably on pure legume fields after the average persistence of the crop [38]. In
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accordance with our research, ref. [31] reported the highest assignment rate for alfalfa hay,
explained by the different anatomical structure and subsequent proportions in terms of
leaves and fibrous stems of alfalfa legume compared with others [39], although the study
discriminated based on chemical characteristics and not on spectral data.

In our study, the chemical composition of the sample groups was translated into a
high and low protein content, different dry matter content, and NDF composition. Indeed,
botanical composition was the factor that affected the chemical characteristics (consistent
with previous research, e.g., [39]) and, in turn, the structure of the spectra in the near-
infrared regions. At this time, it is known that NIR regions are represented by the absorption
produced by the combination of harmonics and overtones of the fundamental frequencies
of functional groups. However, the high water content of fresh herbage can modify and
complicate results. A previous study [7], using a NIR-HSI system in the region between
1100 and 2400 nm, reported better discrimination of fresh herbage species according to
botanical family membership, with results including between 96 and 100% classifications
of Gramineae, the Leguminosae family (Faba), and other botanical families (OBF) using
the PLS-DA algorithm. Nevertheless, those authors reported that the results worsened if
the number of grassland species increased in a group. Our study did not confirm their
results because the PMA samples obtained better results but comprised the most significant
number of species. However, the model selected can be an affecting factor. For example,
better results were obtained using multilayer perceptron (MLP) than PLS-DA in species
group identification by HIS technology considering grasses, legumes, and herbs by [18].
However, in comparison with our study, those researchers used a higher number of samples
and a reduced site area: two sites in [18] and one area typology in [7].

The posterior assignment in a semi-external validation scenario is focused on the
similarity between the groups, allowing the separation of two trends. First, the reciprocal
relationship between PLM and GLM (93%) and GLM and PLM (77%) was confirmed,
indicating that the spectral information included in both types of spectra was very similar, as
overlapped in Figure 3. The status of GLM and PLM, which had only different ages, suggest
that spectra similarity is probably related to lower differences in chemical composition.
On the contrary, the CAA and PMA assignments showed more significant variability
in the assignment’s success. However, reasonably, the spectra of CAA were closer to
GLM, and PMA was mainly assigned to PLM. The results of our study suggested that
the greater diversity of information derived from the spectra allowed the assignment to
be the most successful. Accordingly, study [17] reported the positivity of high variation
present in the absorption of spectral data because of calibration performance when a real
sample model was developed compared with artificial samples and spectra, even though
the botanical composition was the same. The group that collected the highest similarity
success from other groups was GLM, probably because it represented both Gramineae and
Leguminosae in intermediate degree and prevalence. However, as expected, pairs in the
main case were not reciprocal among the assignment success, as already verified by [31] in
the discrimination of hay based on chemical composition.

The application of DAPC and NIR spectra on fresh herbage, not dried or ground, could
be helpful as quick support in the field technicians for CAA and PMA, achieving more
than 80% of assignments, according to previous studies [18,31], especially for prevalent
legumes. The discrimination performance should be improved for specific grasslands as
GLM and PLM, which are closer in botanical and chemical composition than CAA and
PMA. One step, which is often used in chemometrics, could be increasing the number of
samples for the specific type, focusing on the spectra contribution of variation in the dataset.
Finally, in the long term, applying research systems to practical use could be the first step to
enable grassland management in a more sustainable mode, adapting agriculture systems to
environmental change according to the new suggestion of FAO [2]. In addition to ecological
aspects, the output of such a study will include the recognition of economic values based
on distinct grassland classes. The perspective of future studies should include synergic
cooperation among agronomists, animal experts, and engineers for the construction of
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devices that will be low-cost, suitable for users, and friendly and speedy for different
stakeholders. In the meantime, it is necessary to consider that technologies need a long
time to achieve accessible interfaces that are compatible and comprehensible for direct use
by producers in the field. In this context, both policy and efficient strategy information will
be useful [40].

5. Conclusions

Considering the successful assignment of specific grassland types to their groups, their
sensitivities, and their lower similarities with other groups, the newly developed DAPC
method coupled with NIR could effectively differentiate and classify specific grassland
types based on fresh herbage directly. Noteworthily, the top successful assignments were
achieved by recent pure alfalfa (CAA) and permanent meadows derived from the previous
meadows (PMA) that were reciprocally extreme in chemical composition and botanical
prevalence, even if they originated from the same crop. Effectively, the greater diversity
of information derived from the spectra allowed the assignment to be the most successful.
Further steps should be undertaken to increase the dataset to improve differentiation
between grass–legume mixtures and permanent meadows with intermediate composition,
improve the accuracy and precision of the model, and, in the future perspective, develop
the dataset for identifying toxic or invasive species.

The fast classification of fresh grassland herbage and derived hay could be useful as a
practice to improve grassland management and evaluate the value of production properly.
In the future perspective, it could even be carried out without drying and grinding as a
basis for developing models on nutritional value. From an ecological point of view, NIRS
coupled with DAPC can be applied to the study of site-specific management and possible
future applications for the study of grassland evolution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani14182646/s1, Figure S1: Biplot of principal components analysis,
where CAA is pure alfalfa crops; GLM is grass–legume mixtures; PLM is permanent meadows
originated from old grass–legume mixtures and PMA is permanent meadows originated from
old alfalfa.
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