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A B S T R A C T   

The pressing issue of atmospheric pollution has prompted the exploration of affordable methods 
for measuring and monitoring air contaminants as complementary techniques to standard 
methods, able to produce high-density data in time and space. The main challenge of this low-cost 
approach regards the in-field accuracy and reliability of the sensors. This study presents the 
development of low-cost stations for high-time resolution measurements of CO2 and CH4 con
centrations calibrated via an in-field machine learning-based method. The calibration models 
were built based on measurements parallelly performed with the low-cost sensors and a CRDS 
analyzer for CO2 and CH4 as reference instrument, accounting for air temperature and relative 
humidity as external variables. 

To ensure versatility across locations, diversified datasets were collected, consisting of mea
surements performed in various environments and seasons. The calibration models, trained with 
70 % for modeling, 15 % for validation, and 15 % for testing, demonstrated robustness with CO2 
and CH4 predictions achieving R2 values from 0.8781 to 0.9827 and 0.7312 to 0.9410, and mean 
absolute errors ranging from 3.76 to 1.95 ppm and 0.03 to 0.01 ppm, for CO2 and CH4, respec
tively. These promising results pave the way for extending these stations to monitor additional air 
contaminants, like PM, NOx, and CO through the same calibration process, integrating them with 
remote data transmission modules to facilitate real-time access, control, and processing for end- 
users.   

1. Introduction 

Air quality has emerged as one of the most pressing environmental issues of the modern era, posing significant risks to human 
health, global climate, and the overall well-being of ecosystems. According to the World Health Organization, almost all of the global 
population breathes air with levels of harmful pollutants exceeding those recommended by guidelines, causing up to 4.2 million 
premature deaths worldwide [1] primarily due to the insurgence of cardiovascular and respiratory diseases, e.g. Ref. [2], as well as 
cancers, e.g., Refs. [3,4]. Furthermore, several drivers of air pollution, e.g., activities involving fossil fuel combustion, contribute 
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significantly to major climate forcers, including carbon dioxide (CO2) and methane (CH4), which are major greenhouse gases 
accountable for global warming. Therefore, managing policies to reduce air pollution offers a win-win strategy for climate change 
mitigation and human health safeguarding. Nevertheless, effective air quality monitoring is crucial. Traditional methods involving 
sophisticated equipment at stationary monitoring sites, while long-standing, encounter hindrances due to high setup costs and 
maintenance expenses [5]. This results in insufficient monitoring coverage in rural and non-urban areas, particularly in 
resource-limited regions and developing countries, leading to limited data resolution in terms of time and space that does not allow to 
capture the significant variability that atmospheric pollutant concentrations exhibit depending on local sources and features of the 
surrounding environment [6,7]. 

In recent years, a paradigm shift in air quality monitoring has occurred with the rise of low-cost sensors (LCSs) for detecting a wide 
variety of atmospheric pollutants, from particulate matter to gaseous compounds. Gas sensors mostly work on metal oxide semi
conductor (MOS) and electrochemical (EC) technologies, whilst non-dispersive infrared (NDIR) and photo-ionization detectors (PID) 
are other less used technologies. The MOS sensors detect the target gas through the changes in the electrical proprieties (i.e., resistance 
or conductivity) due to the adsorption of the gas on a semiconductor film exposed to the air [8]. The EC sensors generally operate in 
amperometry mode, wherein the electrochemical reactions between the target gas and an electrolyte produce a current dependent on 
the gas concentration [8]. The NDIR technology, widely applied for CO2 sensor making [9–11], is based on the spectroscopic principle 
in which the gas concentrations are proportional to the amount of infrared (IR) light being absorbed by the gas molecules in the air, 
measured as the difference between the amount of light radiated by the IR lamp and the amount of IR light received by the detector 
[12,13]. In the PID sensors, the air samples are ionized by UV light; this ionization process leads to the release of electrons and the 
creation of positively charged ions that generate an electric current signal output. The concentration of the target gas influences the 
number of ions produced, resulting in a higher or lower current [14]. 

Extensive research has been conducted on LCSs, e.g. Refs. [5,7,12,14–23], pointing out that the new sensing technologies, though 
cannot replace traditional equipment, can create new opportunities for broadening access to air quality monitoring. LCSs provide 
cost-effective means to measure atmospheric pollutant levels in real-time that may enable the tracking of emitting sources [5,24]. This 
great potential must be accompanied by the evaluation of the accuracy and reliability of data measured by LCSs compared to those of 
the reference instruments. A shared concern is that these sensors cannot be employed out-of-the-box relying on manufacturer-provided 
conversion models for calibration [25,26], since it cannot be assumed that they exhibit the same responses to the target pollutant under 
standard conditions and in outdoor environments where they would be applied [27,28]. In fact, LCSs are dependent on environmental 
temperature and humidity, cross-sensitivity to other species, and their responses can change as they age due to factors like poisoning 
[5,29]. In the MOS and EC sensors, these limitations are related to the physicochemical properties of the sensors according to the type 
of electrolyte, electrode, or semiconductor material used, e.g., Refs. [30–32]; whilst the NDIR sensors for CO2 undergo cross-sensitivity 
in presence of high humidity content, since H2O absorbs the same infrared wavelength of CO2 [12]. Many studies have supported that 
some of these constraints can be overcome with careful data processing and network design [27,29,33–38]. Given the non-linearity 
and cross-sensitivity of these sensors, the challenge lies in developing a model that can convert the measured sensor parameter into 
an output that accounts for external variables. Regression-based models (e.g., linear regression, orthogonal regression, multiple linear 
regression, polynomial regression) can provide reasonable results and are still widely used for the calibration of LCSs [39]. Despite 
their many advantages, the calibration coefficients generally change under varying meteorological and microenvironmental condi
tions, not describing the very complex system of pollutants formation and dispersion in the air [28,40]. Machine learning (ML)-based 
algorithms have recently emerged as a promising avenue for facing calibration problems, by enhancing the applicability and reducing 
the effort required in this process [29,41]. Compared to the other methods, ML techniques are problem-specific and data-driven, so 
usually gain higher accuracies [40]. The general idea of these approaches is to co-locate LCSs next to a reference station and to train a 
supervised model that can correct the error of the LCSs [18]. There are different categories of supervised learning, the most common 
are (i) Random Forest (RF), an ensemble learning method that works by constructing a multitude of decision trees during the training 
phase, the results of which are used collectively to produce the final output [42]; (ii) Gradient Boosted Decision Tree, as the RF is an 
ensemble learning method but, instead of combining the different results of multiple decision trees at the end of the process, it 
combines the results during the process itself [43]; (iii) Artificial Neural Network, which are structures consisting of a large number of 
parallel and strongly interconnected processing units simulating the physiology of the human brain, where each processing unit is 
similar to a biological neuron and all neurons are organized into layers; the first layer receives input using the activation function and 
produces outputs, which are analyzed by the next layer of neurons [44]. 

In this study, we present the assembling of a network of low-cost stations, equipped with NDIR sensors for CO2 and MOS sensors for 
CH4, as well as sensors for air temperature and relative humidity, based on Arduino UNO Rev3 microcontroller boards and featured 
with data loggers. We aim to improve the calibration strategies of low-cost sensors by using the LinearForestRegressor (LFR) algorithm, 
available in the Phyton library linear-tree by Cerliani [45], an ensemble machine learning algorithm that combines the strength of 
Linear Regression Models with the nonparametric learning ability of RF. The choice was driven by the algorithm’s relative simplicity 
and robustness, as well as its rapid data processing time, which are pivotal characteristics for expanding the use of these technologies to 
(almost) everyone. The calibration approach involved the simultaneous collection of measurements conducted with both the low-cost 
sensors and the Picarro G2201i Cavity Ring-Down Spectroscopy (CRDS) analyzer, used as a reference for CO2 and CH4, and accounting 
also for air temperature and relative humidity. In order to develop a general calibration model and mitigate site transferability issues, 
which refer to the decline in the performance of calibrated devices when moved from one location to another, e.g. Ref. [41], we built 
the calibration model via a dataset that encompassed several measurements collected in different environments and seasons. This 
approach broadens the scope of the training dataset to encompass a wide range of concentrations and environmental conditions. 
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2. Materials and methods 

2.1. Low-cost station design 

Fig. 1 displays the overall architecture of the low-cost stations. They are powered by a supply unit (1) consisting of a rechargeable 
12 V car battery (to be equipped with a solar panel for extended battery life) and a voltage regulator to drop the voltage to 5 V (i.e., the 
operating voltage of Arduino [46]). Alternatively, they can be powered using a 9 V charging cable to be connected to a 220 V socket, 
depending on the availability of electrical current. The core of the setup is an Arduino UNO Rev3 board based on the Atmel ATme
ga328P microcontroller (2) [46]. The board has been programmed through the Arduino IDE software, an integrated development 
environment in C/C++ (https://www.arduino.cc/en/software), exploiting the manufacturers’ libraries and the hosting code available 
online. 

The sensing unit consists of a Sensirion SCD30 sensor for CO2 (3), a Figaro NGM2611-E13 sensor for CH4 (4), and an Adafruit 
DHT22 sensor for air temperature (T) and relative humidity (RH) (5). The Sensirion SCD30 is a digital CO2 sensor based on NDIR 
technology. It measures CO2 concentrations in the range of 400-10,000 ppm with a declared accuracy of (±30 ppm) and a response 
time of 2 s [47]. In addition to CO2, it measures the temperature (from − 40 to 70 ◦C with an accuracy of ± (0.4 ◦C + 0.023 × (T [◦C] – 
25 ◦C))) and humidity (0–100 % with an accuracy of ±3 % RH) of the surrounding environment using a thermistor and a capacitive 
humidity sensor, respectively [47]. The sensor communicates via I2C or UART bus; in this study, the I2C bus connection was used. 

The Figaro NGM2611-E13 is an analog module for natural gas alarms based on the Figaro TGS 2611-E00, which operates based on 
the principle of MOS. Under the presence of CH4, the sensing area (a metal oxide semiconductor, such as SnO2 or TiO2, in the form of 
granular micro-crystals; see Ref. [15] and references therein for more information) responds to the target gas molecules by exhibiting a 
proportional decreasing resistance (Rs) [15,23,48], calculated from the following equation [48]: 

Rs =

(
Vc

VL
− 1

)

× RL  

where Vc is the total circuit voltage across both the sensing area and the reference resistor (5 V), VL is the output voltage across the 
reference resistor and varies in response to how the sensing area resistance (Rs) varies, and RL is a reference resistor connected in series 
with the sensing area. According to Refs. [15,23], it can be challenging to determine RL, so it could be advantageous to calculate the 
relative sensor response as follows: 

RS

R0
=

(
VC
VL
− 1

)

(
VC
V0
− 1

)

where R0 represents empirical reference resistance corresponding to the lowest measured sensor output voltage in clean air [23]. The 
Rs/R0 ratio was used to convert sensor signal output to CH4 concentration readings in the calibration procedure (Section 2.2). The 
sensor underwent a factory calibration at 5,000 ppm, 20 ◦C, and 65 % of RH, and the detection range specified by the manufacturer is 
500–10,000 ppm [48]. While this mole fraction is not relevant for atmospheric concentration applications, the NGM2611-E13 was 
successfully used for measuring indoor [49] and outdoor [15] ambient concentrations of methane (2–9 ppm), and for flux mea
surements from water bodies [23,50]. 

The Adafruit DHT22 employs a capacitive humidity sensor and a thermistor for the measurement of ambient conditions. It 

Fig. 1. Low-cost stations’ design drawn with the open-source software Fritzing (https://fritzing.org/). 1) Power unit; 2) Arduino UNO electronic 
board; 3) Sensirion SCD30, NDIR sensor for CO2 concentrations; 4) Figaro NGM2611-E13 MOS sensor for CH4 concentrations; 5) Adafruit DHT22 
sensor for air temperature and relative humidity; 6) Adafruit DS3231 Real-Time Clock; 7) Adafruit microSD Break Board data logger. More details 
are available in the text. 
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measures relative humidity within a range of 0–100 % and an accuracy of 2–5%, and temperature spanning from − 40 to 80 ◦C with an 
accuracy of ±0.5 ◦C. The sensor then generates a digital signal on the data pin [51]. 

The architecture includes also an Adafruit DS3231 Real-Time Clock (RTC) as a precise temporal reference (6). Finally, the data 
logger, consisting of an Adafruit MicroSD Breakout Board (7), allows the recording and storing of data collected by the sensors with a 
time resolution of 10 s in a text file on a micro-SD card. A technical note with the circuit scheme and the programming code is 
accessible in the Supplementary Material. 

2.2. Calibration procedure 

2.2.1. Measuring instruments 
Aiming to correct the response of the low-cost stations in real-world environments, we developed a calibration procedure based on 

a ML algorithm using data measured by six low-cost stations for CO2 and CH4 (hereafter named stations M (mother station), 1, 2, 3, 4, 
and 5; the architecture and functions are explained in Section 2.1) and a Picarro G2201i, the latter being used as a reference in
strument. The Picarro G2201i (hereafter referred to as Picarro) is a high-frequency (1 measure per second) CRDS analyzer of CO2 and 
CH4 concentrations (in ppm). Its operating interval ranges from 380 (average atmospheric values) to 2,000 ppm for CO2, from 1.8 to 
12 ppm for CH4 in high-precision mode, and from 10 to 1,000 ppm for CH4 in high-range mode [52]. The Picarro’s calibration was 
performed at the beginning of each measuring period using the following standards (Air Liquide): (i) 380, 500, and 1,000 ppm CO2, (ii) 
1.8, 5, and 10 ppm CH4. The precision was within 0.2 ppm CO2 and 0.05 ppm CH4. The instrument was further checked at the end of 
the measurements. 

2.2.2. Measuring sites 
One of the major concerns when calibrating LCSs regards site transferability, i.e., moving a calibrated device from the location 

where the calibration has been performed to another one, which usually leads to a performance loss due to measurement conditions 
beyond the training domain [41], and reference therein. To mitigate this issue and create cost-effective stations capable of delivering 
robust performance in different locations, i.e. encompassing a wide range of concentrations and ambient conditions, the datasets used 
for ML-based calibration procedure included measurements performed in different seasons and a variety of environmental settings, as 
follows: (i) Municipality of Scandicci (Metropolitan area of Florence, Tuscany), representing a widely urbanized and industrialized 
area; (ii) locality of Galluzzo (south of Florence, Tuscany), chosen as a sub-urban site; (iii) localities of Renazzo and (iv) Barbiano in the 
Po Plain (the first in Ferrara Province, and the latter located in Ravenna Province, Emilia-Romagna), characterized by the presence of 
two domestic wells emitting notably high concentrations of CH4 (up to 16 ppm of CH4 measured in air); (v) Vulcano Island (Aeolian 
Archipelago, Sicily) and (vi) Municipality of Pozzuoli (Naples, Campania), chosen as hydrothermal end-members characterized by 
considerable concentrations of H2S in the air (up to hundreds of ppb), which can possibly act as an interference species for LCS; (vii) an 
industrial plant extracting and refining CO2 in the Municipality of Montepulciano (Siena, Tuscany); (viii) the Padule di Fucecchio 
wetland, the largest Italian inner wetland, stretching between the provinces of Florence, Pistoia, Lucca and Pisa (northwestern Tus
cany). It should be pointed out that, due to sporadic malfunctions in some stations, the calibration datasets varied in the amount of 
data, both for CO2 and CH4. The measurements covered the summer, fall, and winter of 2022, and the winter and part of spring of 2023. 
Minute-averages were obtained from the datasets acquired from each sampling site, both for the low-cost stations and the reference 
instrument, and further used for the calibration treatment. 

2.2.3. Calibration methods 
The calibration models were constructed using the LFR algorithm, available in the library linear-tree for Phyton by Cerliani (2022) 

(https://github.com/cerlymarco/linear-tree). The LFR is an ensemble machine learning algorithm, revised starting from the work of 
[53], which generalizes the well-known RF algorithm by combining it with linear models. RF is one of the best-performing learning 
algorithms in environmental science since it easily adapts to nonlinearities found in environmental data [54]. It is a supervised al
gorithm based on the construction of multiple decision trees that follows the concept of ensemble learning, where the combination of 
multiple ML models results in predictions that are more reliable than those of individual models. Each decision tree consists of a series 
of nodes, which branch out into multiple tree levels until reaching the final one, known as the leaf node. In each leaf node, there are at 
least one or more samples extracted from the training data. The prediction made by each tree for any set of predictors is determined by 
calculating the average of these samples [41]. To prevent the trees from becoming correlated with each other, RF enhances their 
diversity by having them grow from distinct training data subsets. This is achieved through a process known as bagging, which in
volves the creation of training data by repeatedly sampling from the original dataset with replacement. In other words, data is drawn 
from the initial sample to form the next subset, with no data being permanently removed from the input sample. Consequently, some 
data may be included multiple times during training, while others may not be used at all. Thus, greater stability is achieved [55]. 
However, being a completely non-parametric predictive algorithm, RF may display some limitations in describing the relationship 
between the response and the predictors, running into issues of underfitting, which occurs when the model is too simple to capture the 
complexity of the data, or overfitting, i.e. when the model is too complex and fits the training data too closely, but generalizes poorly to 
new data. Moreover, RF is not able to perform extrapolation when predictions are required on data that fall outside the domain of the 
training dataset. To address these limitations and achieve an accurate model over a wider concentration range, the LFR algorithm first 
fits a linear model on the whole dataset, then a RF is trained on the same dataset but using the residuals of the previous steps as the 
target. The final predictions are the sum of the raw linear predictions and the residuals modeled by the RF [45]. In this way, the 
strength of linear models improves the nonparametric learning ability of tree-based algorithms. The signals from the low-cost sensors 
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(i.e., CO2 concentrations and Rs/R0 ratio for CO2 and CH4 sensors, respectively), which have been generically renamed raw concen
trations in Fig. 2, and the environmental variables were set as predictors (X), or features of the models, whilst the reference station 
signal represented the prediction target (y). 

Fig. 2. Scheme of the calibration procedure. Six low-cost stations for CO2 and CH4 were co-located with a reference measurement station (Picarro 
G2201i). Air temperature and relative humidity were also measured as key environmental variables that can disturb the sensors’ signal outputs. The 
low-cost sensor signal (i.e., CO2 concentrations and Rs/R0 ratio for CO2 and CH4 sensors, respectively), which have been generically renamed raw 
concentrations, and the environmental variables were set as predictors (X), or features of the models, whilst the reference station signal represented 
the prediction target (y). The time resolution was set to minute averages. We trained separate calibration datasets for each CO2 and CH4 sensor with 
the Linear Forest Regression (LFR) machine learning algorithm. The training models were evaluated using the R2 coefficient and the mean absolute 
error (MAE), assessing the 95 % confidence interval through the bootstrap technique (1,000 bootstrap samples). The ability of the model to predict 
unknown data was evaluated on out-of-sample test data, i.e. on data that were not used during the training phases, using the R2 coefficient and 
the MAE. 
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Before the construction of the predictive models, the entire datasets were processed to clean from outliers through the interquartile 
range statistical method (IQR). Then, datasets were divided into three parts to construct the predictive models: training, validation, 
and test data. The training and validation datasets were used during the learning phase. The test dataset was used afterward to evaluate 
the quality of the model. In this way, it was possible to determine the ability of the model to predict new cases not used during the 
learning phase. The training datasets were 70 % of the primary datasets, whereas the test and validate datasets included the remaining 
15 % and 15 %, respectively. This type of splitting is commonly used in the supervised training of ML models [56–58], allowing 
sufficient data for training and model quality control. The degrees of freedom of the algorithms were tuned by selecting the best 
hyperparameter values through the GridSearchCV function, (available in the Scikit-Learn library for Phyton). These hyperparameters 
control the growth of the random forest and the shape of decision trees, avoiding the overfitting problem and obtaining a model with 
good generalization capability, i.e., the ability to transfer the high accuracy achieved in the training phase to the test one. The training 
models and test data were evaluated through the coefficient of correlation R2 and the mean absolute error (MAE). To assess the 95 % 
confidence interval of R2 and MAE in the training datasets, bootstrap elaborations were performed with the construction of 1,000 
samples through resampling. This process involved repeatedly selecting and training the model on different subsets of the training 
data, allowing us to capture a range of performance outcomes and quantify the uncertainty associated with our R2 and MAE estimates. 
A scheme of the procedure’s steps is reported in Fig. 2. 

3. Results 

In the following sections, the summary descriptive statistical parameters of the calibration datasets are reported for each station 
(Table 1 and Table 2). Counts, minimum, maximum, mean, and standard deviation values of CO2 and CH4 concentrations measured by 
the low-cost stations (referred to as CO2_station and Rs/R0, respectively in Table 1 and Table 2, and hereafter broadly referred in the text 
to as raw concentrations), as well as those relative to the reference instrument (CO2_Picarro, Table 1, and CH4_Picarro, Table 2), are 
described together with the environmental parameters (T and RH). 

Table 1 
Summary descriptive statistical parameters of CO2 datasets collected for each station and used for the calibration procedure. The concentrations of 
CO2, of both the Picarro reference instrument and the low-cost stations, are in ppm; temperature is in ◦C; relative humidity is in %.  

Station 1 Station 2  

CO₂₂_Picarro CO₂₂_station T RH  CO₂₂_Picarro CO₂₂_station T RH 
units (ppm) (ppm) (◦C) (%) units (ppm) (ppm) (◦C) (%) 
count 30377 30377 30377 30377 count 10732 10732 10732 10732 
mean 467 518 22.2 60 mean 433 485 31.5 38 

std 43.6 49.0 5.5 15.9 std 14.5 25.0 5.2 13.6 
min 404 397 7.1 14 min 409 406 13.4 14 
25 % 430 479 18.4 48 25 % 422 467 27.6 26 
50 % 457 510 20.8 67 50 % 428 479 31.7 36 
75 % 495 554 25.6 72 75 % 437 505 35.6 47 
max 592 654 37.8 79 max 475 558 47.2 90 

Station 3 Station 4  

CO₂₂_Picarro CO₂₂_station T RH  CO₂₂_Picarro CO₂₂_station T RH 
units (ppm) (ppm) (◦C) (%) units (ppm) (ppm) (◦C) (%) 
count 9340 9340 9340 9340 count 9459 9459 9459 9459 
mean 430 628 32.2 35 mean 429 337 31.8 36 

std 10.6 43.6 5.0 11.9 std 10.1 20.0 5.0 12.7 
min 406 517 16.2 13 min 409 276 21.2 14 
25 % 422 592 28.3 24 25 % 422 323 28.1 25 
50 % 426 621 32.6 33 50 % 426 333 32.4 34 
75 % 433 665 36.2 42 75 % 433 349 35.7 46 
max 460 778 43.4 73 max 459 406 41.8 78 

Station 5 Station M  

CO₂₂_Picarro CO₂₂_station T RH  CO₂₂_Picarro CO₂₂_station T RH 
units (ppm) (ppm) (◦C) (%) units (ppm) (ppm) (◦C) (%) 
count 9398 9398 9398 9398 count 9765 9765 9765 9765 
mean 429 506 31.6 36 mean 430 362 30.7 41 

std 9.4 21.0 5.2 12.4 std 10.8 16.7 5.2 13.2 
min 407 445 16.5 14 min 407 314 14.1 15 
25 % 422 492 27.8 25 25 % 422 350 26.7 29 
50 % 426 504 32.5 34 50 % 426 360 31.3 39 
75 % 432 520 35.7 45 75 % 433 373 34.5 50 
max 457 575 42.0 77 max 462 419 42.1 77  
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3.1. CO2 and environmental parameters datasets 

The dataset gathered for station 1 was the broadest one, with a total of 30,377 data, and presented the widest CO2 concentration 
range measured by the Picarro (varying from 409 to 475 ppm, mean value: 467 ppm, standard deviation: 43.6 ppm), whilst the raw 
concentrations, recorded by the CO2 low-cost sensor, ranged from 404 to 592 ppm, with a mean value of 518 ppm and a standard 
deviation of 49.0 ppm. Temperature and relative humidity ranged from 7.1 to 37.8 ◦C, and from 14 to 79 %, respectively (mean values 
of 22.2 ◦C and 60 %, and standard deviations of 5.5 ◦C and 15.9 %, respectively) (Table 1). 

The dataset collected for station 2 (10,732 data) displayed CO2 concentrations from 409 to 475 ppm (mean value: 433 ppm, 
standard deviation: 14.5 ppm), and from 406 to 558 ppm (mean value: 485, standard deviation: 25.0), for the Picarro and the low-cost 
sensor, respectively. The temperature reached a minimum value of 13.4 ◦C and a maximum of 47.2 ◦C (mean value: 31.5 ◦C, standard 
deviation: 5.2 ◦C), while the relative humidity ranged from 14 to 90 % (mean value: 38 %, standard deviation: 13.6 %) (Table 1). 

Concerning station 3, the model was built on a dataset of 9,340 data, with CO2 concentrations between 406 and 460 ppm for the 
Picarro (mean value: 430 ppm, standard deviation: 10.6 ppm), and raw concentrations between 517 and 778 ppm (mean value: 628 
ppm, standard deviation: 43.6 ppm). The temperature and relative humidity ranged from 16.2 to 43.4 ◦C (mean value: 32.2 ◦C, 
standard deviation: 5.0 ◦C) and from 13 to 73 % (mean value: 35 %, standard deviation: 11.9 %), respectively (Table 1). 

Station 4’s dataset (9,459 counts) displayed CO2 concentrations measured by the Picarro ranging from 409 to 459 ppm, with a 
mean value of 429 ppm and a standard deviation of 10.1 ppm, and CO2 raw concentrations ranging from 276 to 406 ppm, with a mean 
value of 337 ppm and a standard deviation of 20.0 ppm. The temperature varied from a minimum of 21.2 ◦C to a maximum of 41.8 ◦C, 
with a mean value of 31.8 ◦C (standard deviation: 5.0 ◦C). The relative humidity ranged from 14 to 78 %, with a mean value of 36 % 
and a standard deviation of 12.7 % (Table 1). 

The dataset of Station 5 included 9,398 data. CO2 concentrations of Picarro ranged from 407 to 457 ppm (mean value: 429 ppm, 
standard deviation: 9.4 ppm), whilst those of the low-cost sensor were from 445 to 575 ppm, with a mean value of 506 ppm and a 
standard deviation of 21.0 ppm. The temperature and relative humidity varied from 16.5 to 42 ◦C, and from 14 to 77 %, respectively, 
with mean values of 31.6 ◦C (standard deviation: 5.2 ◦C) and 36 % (standard deviation: 12.4 %), respectively (Table 1). 

Finally, station M’s dataset was made of 9,765 data, displaying CO2 concentrations that varied from 407 to 462 ppm for the Picarro 

Table 2 
Summary descriptive statistical parameters of CH4 datasets collected for each station and used for the calibration procedure. Rs/R0 is the relative 
sensor response (see Section 2.1) and is a pure number. The concentrations of CH4, of both the Picarro reference instrument and the low-cost stations, 
are in ppm; temperature is in ◦C; and relative humidity is in %.  

Station 1 Station 2  

CH₄₄_Picarro Rₛs/R₀₀ T RH  CH₄₄_Picarro Rₛs/R₀₀ T RH 
units (ppm)  (◦C) (%) units (ppm)  (◦C) (%) 
Count 29607 29607 29607 29607 count 3221 3221 3221 3221 
mean 2.14 0.78 22.0 61 mean 2.05 0.46 33.2 40 

std 0.096 0.064 5.3 15.8 std 0.057 0.026 4.2 11.7 
min 1.99 0.595 6.7 14 min 1.96 0.40 25.8 19 
25 % 2.05 0.733 18.4 50 25 % 2.00 0.44 29.7 30 
50 % 2.12 0.764 20.6 67 50 % 2.04 0.46 33.0 41 
75 % 2.21 0.817 25.2 72 75 % 2.09 0.49 37.0 49 
max 2.42 0.944 38.5 79 max 2.23 0.54 42.4 62 

Station 3 Station 4  

CH₄₄_Picarro Rₛs/R₀₀ T RH  CH₄₄_Picarro Rₛs/R₀₀ T RH 
units (ppm)  (◦C) (%) units (ppm)  (◦C) (%) 
count 3228 3228 3228 3228 count 3230 3230 3230 3230 
mean 2.05 0.87 33.5 40 mean 2.05 0.34 33.1 41 

std 0.057 0.05 4.1 11.4 std 0.057 0.020 4.2 11.7 
min 1.96 0.72 26.3 18 min 1.96 0.28 25.4 20 
25 % 2.00 0.83 30.1 30 25 % 2.00 0.33 29.4 31 
50 % 2.04 0.85 33.3 40 50 % 2.04 0.34 33.3 41 
75 % 2.09 0.92 36.9 49 75 % 2.09 0.36 36.8 49 
max 2.22 1 43.4 60 max 2.23 0.39 41.8 62 

Station 5 Station M  

CH₄₄_Picarro Rₛs/R₀₀ T RH  CH₄₄_Picarro Rₛs/R₀₀ T RH 
units (ppm)  (◦C) (%) units (ppm)  (◦C) (%) 
count 10337 10337 10337 10337 count 9810 9810 9810 9810 
mean 2.04 0.35 31.2 37 mean 2.05 0.07 30.4 41 

std 0.04 0.024 5.1 13.1 std 0.038 0.004 5.2 13.9 
min 1.96 0.26 20.6 14 min 1.97 0.06 20.5 15 
25 % 2.01 0.33 27.2 26 25 % 2.01 0.07 26.3 29 
50 % 2.03 0.35 31.7 37 50 % 2.03 0.07 30.4 41 
75 % 2.07 0.37 35.4 46 75 % 2.07 0.07 34.5 51 
max 2.15 0.41 42.0 77 max 2.15 0.08 42.1 77  
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(mean value: 430 ppm, and standard deviation: 10.8 ppm), and from 314 to 419 ppm for the low-cost sensor (mean value: 362 ppm, 
and standard deviation: 16.7 ppm). The temperature was on average 30.7 ◦C (standard deviation: 5.2 ◦C), ranging between 14.1 and 
42.1 ◦C; whilst the relative humidity ranged from 15 to 77 %, with a mean value of 41 % and a standard deviation of 13.2 % (Table 1). 

3.2. CH4 and environmental parameters datasets 

Analogously to CO2, different datasets specific to each station were gathered for CH4 concentrations, raw data, and the relative 
environmental parameters to train and evaluate the calibration models, wherein the Rs/R0 ratios were used to convert the sensor signal 
output (see Section 2.1) to CH4 concentrations. 

As it was for CO2, the dataset for CH4 calibration relative to station 1 was the largest, including 29,607 data, with CH4 concentration 
values measured by the Picarro ranging from 1.99 to 2.42 ppm (mean value: 2.14 ppm, standard deviation: 0.096 ppm), and raw values 
(Rs/R0) measured by the low-cost sensor ranging from 0.59 to 0.94 (mean value: 0.78, standard deviation: 0.064). The environmental 
parameters varied from 6.7 to 38.5 ◦C (mean value: 22.0 ◦C, standard deviation: 5.3 ◦C) for the temperature, and from 14 to 79 % 
(mean value: 61 %, standard deviation: 15.8 %) for the relative humidity (Table 2). 

Station 2’s dataset, counting 3,221 data, displayed CH4 concentrations between 1.96 and 2.23 ppm (mean value: 2.05 ppm, 
standard deviation: 0.057 ppm), and Rs/R0 values ranging from 0.40 to 0.54 (mean value: 0.46, standard deviation: 0.026). The 
temperature was on average 33.2 ◦C, with a minimum of 25.8 ◦C and a maximum of 42.4 ◦C (standard deviation: 4.2 ◦C), while relative 
humidity varied from 19 to 62 %, with a mean value of 40 % and a standard deviation of 11.7 % (Table 2). 

For station 3, the calibration dataset consisted of 3,228 data, with Picarro’s CH4 concentrations ranging from 1.96 to 2.22 ppm 
(mean value: 2.05 ppm, standard deviation: 0.057 ppm), and Rs/R0 ratios from 0.72 to 1 (mean value: 0.87, standard deviation: 0.05). 
The temperature varied between 26.3 and 43.4 ◦C, with a mean value of 33.5 ◦C (standard deviation: 4.1 ◦C), whilst the relative 
humidity ranged from 18 to 60 %, with a mean value of 40 % (standard deviation: 11.4 %) (Table 2). 

Station 4 (3,230 data) displayed mean values of 2.05 ppm for CH4 concentrations recorded by the Picarro (minimum value: 1.96 
ppm, maximum value: 2.23 ppm, standard deviation: 0.057 ppm), and 0.34 for the Rs/R0 ratio (minimum value: 0.28, maximum value: 
0.39, standard deviation: 0.020). Temperature and relative humidity of air varied from 25.4 to 41.8 ◦C, and from 20 to 62 %, 
respectively, with means values of 33.1 ◦C (standard deviation: 4.2 ◦C) and 41 % (standard deviation: 11.7 %), respectively (Table 2). 

In the calibration dataset collected for station 5 (counting 10,337 data), CH4 concentrations varied from 1.96 to 2.15 ppm, with a 

Fig. 3. A) R2 across 1,000 bootstrap samples of the training models for CO2, showing median and 95 % confidence intervals. B) MAE across 1,000 
bootstrap samples of the training models for CO2, showing median and 95 % confidence intervals. 
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mean value of 2.04 ppm and a standard deviation of 0.04 ppm. Meanwhile, the raw data of the low-cost sensor ranged from 0.26 to 
0.41, with a mean value of 0.35 and a standard deviation of 0.024. The mean value of the temperature was 31.2 ◦C, with values ranging 
from 20.6 to 42.0 ◦C (standard deviation: 5.1 ◦C), while relative humidity was between 14 and 77 %, with a mean value of 37 % and a 
standard deviation of 13.1 % (Table 2). 

Finally, for Station M a total of 9,810 data were gathered for the calibration dataset, with CH4 concentrations acquired by the 
Picarro ranging from 1.97 to 2.15 ppm (mean value: 2.05 ppm, standard deviation: 0.038 ppm), and the Rs/R0 ratio from 0.06 to 0.08 
(mean value: 0.07, standard deviation: 0.004). The environmental parameters varied from 20.5 to 42.1 ◦C for the temperature and 
from 15 to 77 % for the relative humidity, with mean values of 30.4 ◦C (standard deviation: 5.2 ◦C) and 41 % (standard deviation: 13.9 
%), respectively (Table 2). 

4. Discussion 

4.1. Assessing models fit on training data 

Following the calibration models for each station, the goodness of fit between the models’ output concentrations and the reference 
instrument concentrations during the training phases (i.e., on the 70 % of datasets randomly selected to build the models) was assessed. 
Through the bootstrap statistical technique, the median value of the R2 coefficient and the MAE of each model were paired with the 
relative 95 % confidence intervals (reported between the square brackets [] in the following text) which allowed to evaluate the 
variability of the scores, and thus to assess the accuracy of the models and the uncertainty associated to their previsions. The distri
bution plots of both the R2 coefficient (Fig. 3) and the MAE (Fig. 4) were obtained through frequency histograms to which the kernel 
density estimates (KDE) were superimposed, using 20 classes for the histograms and the default parameters bw_method=’scott’ and 
bw_adjust =1 to calculate the bandwidth in KDE (seaborn library). 

All the models for CO2 and CH4 calibrations were shown to be well correlated to the reference values during the training phase, with 
R2 values ranging from 0.9855 [0.9844, 0.9865] (station 5; Fig. 3A) to 0.9974 [0.9972, 0.9975] (station 1; Fig. 3A), for CO2 (R2 scores 
and confidence intervals for each station are reported in Fig. 3A), and from 0.9611 [0.9598, 0.9624] (station 1; Fig. 4A) to 0.9918 
[0.9912,0.9924] (station M; Fig. 4A), for CH4 (R2 values and confidence intervals for each station are reported in Fig. 4A). The R2 

distribution curves, both for CO2 and CH4 models, displayed normal distributions with narrow intervals of confidence around the 

Fig. 4. A) R2 across 1,000 bootstrap samples of the training models for CH4, showing median and 95 % confidence intervals. B) MAE across 1,000 
bootstrap samples of the training models for CH4, showing median and 95 % confidence intervals. 
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median values (red dashed lines in Figs. 3 and 4), demonstrating the predictive models to be robust and accurate. As just depicted, CO2 
calibration models showed on average slightly higher values of R2 than those obtained for CH4, this may be due to the generally larger 
size of the datasets used to train the models, and the wider range of concentrations experienced during the training window, whilst CH4 
values were around those of the atmospheric background. For this reason, each CO2 model was trained on a more diversified dataset, 
resulting in higher R2 values and a more accurate predictive ability. CH4 models, on the other hand, having trained on smaller and less 
variable datasets, produced lower, but anyway optimal, R2 values. 

Further evaluation of calibration models’ accuracy was carried out based on the MAE and its 95 % confidence interval, for both CO2 
and CH4, (Figs. 3B and 4B, respectively). In particular, the MAE ranged from 0.71 [0.69, 0.73] to 1.44 [1.42, 1.47] ppm for CO2 
(stations 4 and 1, respectively; Fig. 3B) and from 0.0023 [0.00225, 0.00240] to 0.0127 ppm [0.0126, 0.0129] for CH4 (stations M and 
1, respectively; Fig. 4B). Although the model of CO2 relative to station 1 showed the best R2 score, the MAE was higher than the other 
models. This may be due to training performed with a dataset that had on average higher reference concentration values (as reported in 
Table 1, Section 3.1). Analogously, station 1’s model for CH4 calibration has suffered the highest MAE, but in this case, it was asso
ciated with the worst R2 value. Anyway, the magnitude of these MAEs can be considered more than satisfying, confirming the good 
performance of the calibration models thus trained. In a similar fashion to the R2 distributions, the MAE distributions (Fig. 4) suggested 
that the training models can be seen, in the first analysis, as reliable and robust. 

4.2. Evaluation of models using test data 

To test the performance of the calibration models, they were applied to the testing data that were not used for model fitting (i.e., the 
remaining 15 % of the total dataset). This was a key step to further assess the quality and the generalization ability of the models when 
predicting new data, providing an unbiased sense of model effectiveness. 

Fig. 5. Binary plots comparing CO2 (A) and CH4 (B) concentrations resulting from correction using the calibration models (x-axis) and the actual 
measured reference concentrations (y-axis). Red (A) and green (B) shaded points represent, respectively, CO2 (in ppm) and CH4 (Rs/R0 ratio, as pure 
numbers on the secondary x-axis) sensors’ response before the calibration. The yellow lines represent the linear regression fit performed on the data, 
whilst the black dotted line is reported as the 1:1 line. The relative R2, MAE, and MAPE values are reported in Table 3. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The binary plots in Fig. 5A and B depict, respectively, CO2 and CH4 concentrations resulting from correction using the calibration 
models (full points), juxtaposed with the raw sensors’ signals (shaded points), alongside the actual measured reference concentrations. 
It is evident that linear regression fit models between the raw sensors’ signals and the reference data are entirely unsuitable, as 
indicated by R2 scores ranging from − 21.3543 (station 4, Table 3) to − 0.1899 (station 1, Table 3) for CO2 sensors, and from − 2,506 
(station M, Table 3) to − 403 (station 5, Table 3) for CH4 sensors (note that the R2 values were computed using the function sklearn. 
metrics.r2_score, which can return negative values). On the other hand, the R2 values performed on the test data relative to CO2 
showed excellent performances, with values ranging from 0.8781 (station 5, Table 3) to 0.9827 (station 1, Table 3), and MAE values of 
2.22 and 3.76 ppm, respectively (Table 3). Regression lines integrating the test data (Table 3) had a slope (m) close to or equal to 1, 
demonstrating the efficiency of the calibration procedure. However, for some stations, the y-axis intersection (b) differed from 0. While 
this deviation from the origin intersection fell within the mean absolute error for stations 1 and 2 (Table 3), the y-axis intersection 
values for stations 4 and 5 were − 10.03 and + 6.08 ppm, respectively (Table 3). Therefore, these shifts from zero are to be taken into 
account when using stations 4 and 5 for CO2 measurements. 

Compared to CO2, the calibrations on CH4 data achieved a lower correlation, with data predictions relatively more dispersed than 
the reference values (R2 values ranging from 0.7312 to 0.9410, and corresponding MAEs of 0.03 and 0.01 ppm, for station 1 and M 
respectively; Table 3), but slope and y-axis intersection values close to 1 and 0 ppm, respectively (Table 3). As aforementioned, this 
limitation stems from the relatively smaller training datasets gather for CH4 and the reduced variability in sensor-recorded concen
trations. Moreover, although station 1 had the highest counts in the CH4 datasets, it exhibited the poorest performance during the test 
phase, reflecting the lowest scores achieved in the training window (Section 3.1). This could potentially be improved through further 
hyperparameter tuning, which may not have yet yielded the optimal results, and taking into account other potential interferents not 
considered in this study. Nevertheless, the results are highly promising, yielding the model’s best generalization to date. This enables 
us to detect concentration fluctuations at levels as low as tens of ppb, even against a backdrop of background CH4 values, a level of 
sensitivity and precision that would not have been expected based on the premises of the sensor manufacturer’s datasheet. 

Moreover, the MAEs calculated on the test and validation datasets have been compared during the post-training phase (Fig. 6), to 
evaluate if the models are not subject to overfitting. The MAEs calculated on the validation and test dataset are comparable, in fact, the 
differences in MAE test – MAE validation are in a small range around 0, which points out a low degree of overfitting [59]. 

5. Conclusions 

In recent years, increasing awareness of the harmful impact of air pollution on human health, the global climate, and ecosystems 
has emphasized the need to seek cost-effective approaches for measuring and monitoring air pollution, able to increase the availability 
of high-density and comprehensive data across time and space. This study demonstrates that the LFR machine learning algorithm, 
when applied to low-cost CO2 and CH4 sensors, can provide accurate data to evaluate air quality. Table 4 displays the performance of 
the LFR calibration, determined in this study, along with results from other calibration studies that used sensors with the same 
operating principles [15,17,23,60,61]. It is noteworthy that studies involving machine learning show, on average, the highest R2 

scores, pinpointing that non-parametric regression models are better suited to address the challenges imposed by low-cost sensors. The 
approach proposed for the quantification of CO2 and CH4 in this study showed marked improvement relative to previous efforts, with 
models’ output exhibiting excellent correlations with the reference values (R2 values exceeding 0.8781 for CO2 and 0.7312 for CH4, 
respectively). Such high correlation coefficients underline the model’s effectiveness in capturing variations in atmospheric gas con
centrations. Furthermore, the fractional error of the proposed models at a 1-min time resolution was minimal, with less than 1 % for 
CO2 and between 0.3 % and 2 % for CH4. These small fractional errors corresponded to mean absolute errors of less than 4 ppm for CO2 
and less than 40 ppb for CH4. This analytical precision is fundamental for air quality monitoring and understanding the evolution of 
greenhouse gases, whose even minor fluctuations in concentration levels can have significant implications. Very good results were 
achieved also by Ref. [23] (Table 4) through a two-step calibration approach, involving several linear, power, and Michaelis 
Menten-based equations (Table 4, mean R2 values between 0.58 and 1.00). However, it’s important to note that their calibration setup 
was conducted under laboratory conditions. Furthermore, their study focused on using the Figaro TGS 2611-E00 for measurements in 
flux chambers, and the equations they propose may not be optimized for CH4 background concentrations [23]. 

The successful application of the LFR model to CO2 and CH4 low-cost sensor data indicates the potential of this approach for 
widespread use in air quality monitoring, both in research and practical applications. In fact, the accuracy and cost-effectiveness of this 
method make it a valuable tool for identifying trends and mitigating air pollution in various settings, possibly integrating the 
monitoring stations with sensors for other air contaminants (e.g., PM, NOx, CO, etc.). However, there are still avenues for further 
improvement and exploration in this field. The study findings suggest that additional tuning of hyperparameters could enhance the 
performance of some models, potentially reducing the fractional error even further. Moreover, although the proposed calibration 
approach offers promising results with relatively straightforward implementation, site-specific data collection would be necessary to 
strengthen the calibration dataset before employing these stations and calibration for studying or monitoring purposes. Additionally, a 
key improvement will involve integrating the low-cost stations with remote data transmission modules LoRaWAN type, a low-energy 
communication protocol based on radio waves that will enable the seamless uploading of air quality data onto a centralized web 
server, facilitating real-time access, control, and processing for end-users. This perspective is pivotal to ensure a network of monitoring 
low-cost stations capable of overcoming the spatial heterogeneity that afflicts the current monitoring systems. Indeed, the empow
erment with real-time accessibility to comprehensive air quality data would be instrumental in several domains. Firstly, it could assist 
regulatory bodies and policymakers in monitoring and implementing environmental standards. Secondly, it could equip researchers 
with updated and high-resolution data to manage pollutant species studies and forecasting models. Finally, it could provide a strong 
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Table 3 
R2 scores reached by each calibration model, for both CO2 and CH4, and the relative mean absolute error (MAE) and mean absolute percentage error 
(MAPE). R2 values between the raw sensors’ response and the reference values are also reported (R2 raw concentrations).  

ID CO₂ CH₄ 

R2 raw concentrations R2 calibration MAE MAPE regression line  
(y = mx + b) 

R2 raw concentrations R2 calibration MAE MAPE regression line  
(y = mx + b) 

Station 1 − 0.1899 0.9827 3.76 0.81 % y = 1.00x - 0.85 − 471 0.7312 0.034 1.58 % y = 1.00x - 0.000 
Station 2 − 4.0782 0.9467 2.19 0.50 % y = 1.01x - 2.36 − 603 0.8988 0.012 0.60 % y = 1.01x - 0.025 
Station 3 − 20.3856 0.8906 2.24 0.52 % y = 0.99x + 3.58 − 553 0.8830 0.013 0.66 % y = 1.00x + 0.006 
Station 4 − 21.3543 0.9167 1.95 0.45 % y = 1.02x - 10.03 − 804 0.9077 0.012 0.60 % y = 1.03x - 0.061 
Station 5 − 13.1229 0.8781 2.22 0.52 % y = 0.99x + 6.08 − 403 0.9016 0.008 0.40 % y = 1.01x - 0.012 
Station M − 15.4463 0.8969 2.14 0.50 % y = 1.01x - 4.05 − 2507 0.9410 0.006 0.30 % y = 1.01x - 0.030  

Fig. 6. Boxplots reporting the difference between the MAE calculated from the test data corrected with the calibration models and the MAE 
calculated, across 1000 bootstrap samples, on the validation data, for CO2 (A) and CH4 (B), respectively. A value of MAE test – MAE validation close 
to zero (dashed line) points out a low degree of overfitting. 

Table 4 
Performance (R2 values) of regression models on test data from this study and previous studies [15,17,23,60,61] using CO2 and CH4 low-cost sensors.  

Target 
gas 

Sensor Study Regression type R2 Study location 

CO₂ ELT S–100H Spinelle et al., 2017 LR 0.021- 
0.71 

Po Valley, Italy 

MLR 0.16 
ANN (machine learning) 0.79 

ELT S-100/300 Casey et al., 2019 ANN (machine learning) 0.85 Greeley, CO 
Sensirion NDIR SCD 

30 
This study LFR (machine learning) 0.73-0.94 Several locations in 

Italy 

CH₄ Figaro TGS 2600 Eugster and Kling, 2012 LM 0.2 Toolik Lake, AK 
Figaro TGS 2600 Collier-Oxandale et al., 

2018 
Inverted LM 0.37-0.76 Los Angeles, CA 

Figaro TGS 2600 Collier-Oxandale et al., 
2018 

Inverted LM 0.33-0.46 Platteville, CO 

Figaro TGS 2600 Casey et al., 2019 ANN (machine learning) 0.66 Greeley, CO 
TGS 2611-E00 Bastviken et al., 2020 Step 1: linear, power and Michaelis-Mented 

equations 
0.58-1.00 Laboratory 

experiments  
(flux chambers) Step 2: linear and power functions 

TGS 2611-E00 This study LFR (machine learning) 0.88-0.98 Several locations in 
Italy  
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foundation for didactic purposes, enabling communities to actively engage in environmental awareness and prompt actions to safe
guard public health. 
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