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In this manuscript, we consider smooth multi-objective optimization problems with convex constraints. We pro- 

pose an extension of a multi-objective augmented Lagrangian Method from recent literature. The new algorithm 

is specifically designed to handle sets of points and produce good approximations of the whole Pareto front, as 

opposed to the original one which converges to a single solution. We prove properties of global convergence to 

Pareto stationarity for the sequences of points generated by our procedure. We then compare the performance 

of the proposed method with those of the main state-of-the-art algorithms available for the considered class of 

problems. The results of our experiments show the effectiveness and general superiority w.r.t. competitors of our 

proposed approach. 
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. Introduction 

Multi-objective optimization is a mathematical tool which proved to

e particularly suited to model and tackle real-world problems where

any contrasting goals have to be reached. Successful applications of

ulti-objective optimization can be found, for example, in statistics

 Carrizosa and Frenk, 1998 ), design ( Fu and Diwekar, 2004; Jüschke

t al., 1997; Shan and Wang, 2005 ), engineering ( Campana et al., 2018;

asperska et al., 2004; Liuzzi et al., 2003; Pellegrini et al., 2014; Sun

t al., 2016 ), environmental analysis ( Fliege, 2001; Leschine et al.,

992 ), management science ( Gravel et al., 1992; White, 1998 ) or space

xploration ( Palermo et al., 2003; Tavana, 2004 ). 

Popular classes of algorithms to solve multi-objective problems are

hose of scalarization methods ( Drummond et al., 2008; Eichfelder,

009; Fliege, 2004; Gass and Saaty, 1955; Geoffrion, 1968; Pasco-

etti and Serafini, 1984; Steuer and Choo, 1983; Zadeh, 1963 ) and of

euristic methods based on genetic and evolutionary strategies ( Deb

t al., 2002; Konak et al., 2006; Laumanns et al., 2002; Mostaghim

t al., 2007 ). However, both these families of approaches come with

hortcomings. Indeed, scalarization techniques require a detailed anal-

sis of the problem structure in order to identify the weights defin-

ng a suitable scalarized objective. Moreover, an unfortunate choice

f the weights may lead to unbounded scalar problems, even un-

er strong regularity assumptions ( Fliege et al., 2009 , sec. 7). On

he other hand, convergence properties cannot be stated for heuristic

lgorithms. 
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In order to overcome these limitations, descent methods extend-

ng classical scalar optimization techniques have been proposed to

ddress constrained and unconstrained multi-objective problems (see,

.g., Drummond and Iusem, 2004; Fliege et al., 2009; Fliege and

vaiter, 2000 ). In this work we will bring particular attention to one of

uch algorithms, the extension of scalar augmented Lagrangian method

 Birgin and Martinez, 2014 ) to the multi-objective case proposed by

occhi and Lapucci (2020) . 

This group of algorithms typically produces, similarly to the scalar

ase, a sequence of points that is asymptotically driven to optimality.

owever, in the context of multi-objective applications, it is in practice

rucial to generate a set of solutions constituting an approximation of

he Pareto set, so that the user can choose, a posteriori, the solution

roviding the most appropriate trade-off among many. 

Some recent works actually focused on strategies allowing to handle

equences of sets of points, instead of sequences of points, within multi-

bjective descent methods. This idea was first explored for derivative-

ree methods ( Custódio et al., 2011; Liuzzi et al., 2016 ) and then consid-

red for derivative based methods, both in the constrained ( Fliege and

az, 2016 ) and the unconstrained ( Cocchi et al., 2020 ) case. 

The contribution of this paper consists of the definition of

n extended version of the augmented Lagrangian algorithm for

ulti-objective optimization ( ALAMO ) proposed by Cocchi and La-

ucci (2020) , which deals with sets of points and effectively produces an

pproximation of the Pareto front for constrained vector-valued prob-

ems. The key elements that characterize the proposed algorithm are 
gust 2021 
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i) the management of a set of points at each iteration, as proposed by

Custódio et al. (2011) , which are all mutually nondominated w.r.t.

the current augmented Lagrangian; 

ii) the use of an Armijo-type line search, which possibly considers de-

scent w.r.t. only a subset of objectives, in order to enrich the approx-

imate front; 

ii) the use of a common penalty parameter and Lagrange multipliers for

all points in the set of solutions; 

v) the use of the multi-objective steepest descent algorithm from

Fliege and Svaiter (2000) to make each point in the current set

approximately Pareto-stationary w.r.t. the augmented Lagrangian,

with increasing accuracy throughout the iterations. 

For the proposed algorithm, we prove properties of convergence to

areto-stationarity for the generated sequence of sets of points, with-

ut the need to recur to the concept of linked sequence introduced by

iuzzi et al. (2016) . In fact, the convergence along linked sequences is

mplied by our result. 

To the best of our knowledge, the SQP procedure by Fliege and

az (2016) is the only other derivative based method for constructing

n approximated Pareto front of constrained multi-objective problems

hat can be found in the literature. It is worth remarking that, in contrast

ith the SQP method, convergence of our algorithm does not depend

n a final refinement step that follows a finite exploration phase. As

lso noted by its authors, SQP can indeed be seen as a single point pro-

edure run in a multi-start fashion. On the contrary, in our procedure

onvergence and exploration advance alongside, with both asymptoti-

ally improving. 

The rest of the manuscript is organized as follows: in Section 2 , we

ntroduce basic concepts and notation that will be used in the presen-

ation of the proposed procedure; in Section 3 we describe in detail our

pproach; we then provide the convergence analysis in Section 4 . In

ection 5 , we show the result of computational experiments highlight-

ng the good performance of the proposed procedure compared to a set

f different state-of-the-art approaches. We finally give some concluding

emarks in Section 6 . 

. Preliminaries 

In this paper, we consider optimization problems of the form 

min 
 ∈ℝ 𝑛 

𝐹 ( 𝑥 ) = 

(
𝑓 1 ( 𝑥 ) , … , 𝑓 𝑚 ( 𝑥 ) 

)𝑇 
.t. 𝑔 ( 𝑥 ) ≤ 0 , 

(1) 

here 𝐹 ∶ ℝ 

𝑛 → ℝ 

𝑚 is a continuously differentiable function and 𝑔 ∶
 

𝑛 → ℝ 

𝑝 is a continuously differentiable, component-wise convex func-

ion, so that the feasible set Ω = { 𝑥 ∈ ℝ 

𝑛 ∣ 𝑔( 𝑥 ) ≤ 0} is a closed convex

et, which we assume to be nonempty. We denote by 𝐽 𝐹 and 𝐽 𝑔 the Ja-

obian matrices associated respectively with 𝐹 and 𝑔. In the following,

e will also denote by 𝑒 the vector of all ones. Note that equality con-

traints can be equivalently expressed as couples of opposite inequality

onstraints, so this formulation is in fact general. Actually, specific man-

gement of equality constraints can often be convenient from a compu-

ational perspective; the following discussion could easily be extended

o address the presence of explicit equality constraints, but we prefer

ot to take them into account for the sake of simplicity. 

In the following we will make use of a partial ordering of points in

 

𝑚 . Given two vectors 𝑢, 𝑣 ∈ ℝ 

𝑚 , we have 

 < 𝑣 ⇔ 𝑢 𝑖 < 𝑣 𝑖 ∀ 𝑖 = 1 , … , 𝑚, 

 ≤ 𝑣 ⇔ 𝑢 𝑖 ≤ 𝑣 𝑖 ∀ 𝑖 = 1 , … , 𝑚. 

e also say that 𝑢 dominates 𝑣 , and denote it by 𝑢 ≨ 𝑣 , if 𝑢 ≤ 𝑣 and 𝑢 ≠ 𝑣 .

inally, we say that 𝑥 ∈ ℝ 

𝑛 dominates 𝑦 ∈ ℝ 

𝑛 w.r.t. 𝐹 if 𝐹 ( 𝑥 ) ≨ 𝐹 ( 𝑦 ) . 
Ideally, we would like to find a point simultaneously minimizing all

he objectives 𝑓 1 , … , 𝑓 𝑚 ; however, such a solution is very unlikely to

xist; instead, we rely on the concept of Pareto optimality. 
2 
efinition 2.1. A point �̄� ∈ Ω is Pareto optimal for problem (1) if there

oes not exist 𝑦 ∈ Ω such that 𝐹 ( 𝑦 ) ≨ 𝐹 ( ̄𝑥 ) . If there exists a neighborhood

 ( ̄𝑥 ) such that the previous property holds in Ω ∩ ( ̄𝑥 ) , then �̄� is locally

areto optimal . 

Pareto optimality is a strong property which is hard to attain in prac-

ice. A slightly weaker, but certainly more viable to obtain condition is

eak Pareto optimality. 

efinition 2.2. A point �̄� ∈ Ω is weakly Pareto optimal for problem (1) if

here does not exist 𝑦 ∈ Ω such that 𝐹 ( 𝑦 ) < 𝐹 ( ̄𝑥 ) . If there exists a neigh-

orhood  ( ̄𝑥 ) such that the previous property holds in Ω ∩ ( ̄𝑥 ) , then

̄ is locally weakly Pareto optimal . 

The set of all Pareto optimal solutions constitutes the Pareto set of

he problem. The image of the Pareto set through 𝐹 is referred to as the

areto front . We can now turn to the first order necessary conditions for

areto optimality. 

efinition 2.3. A point �̄� ∈ Ω is Pareto-stationary for problem (1) if,

or all feasible directions 𝑑 ∈  ( ̄𝑥 ) = { 𝑣 ∈ ℝ 

𝑛 ∣ ∃𝑡 > 0 ∶ �̄� + 𝑡𝑣 ∈ Ω ∀ 𝑡 ∈
0 , ̄𝑡 ]} , it holds 

max 
=1 , …,𝑚 

∇ 𝑓 𝑗 ( ̄𝑥 ) 𝑇 𝑑 ≥ 0 . 

Under differentiability assumptions, Pareto-stationarity is a neces-

ary condition for all kinds of Pareto optimality; note that the Pareto-

tationarity condition can be compactly written as 

min 
∈ ( 𝑥 ) 

max 
𝑗=1 , …,𝑚 

∇ 𝑓 𝑗 
(
𝑥 
)𝑇 

𝑑 = 0 . 

Now, let us address well known results for unconstrained problems

f the form 

min 
 ∈ℝ 𝑛 

𝐹 ( 𝑥 ) = 

(
𝑓 1 ( 𝑥 ) , … , 𝑓 𝑚 ( 𝑥 ) 

)𝑇 
. (2) 

Pareto optimality notions match those of the constrained case. Even

areto-stationarity can be defined as in Definition 2.3 , recalling that in

uch case  ( 𝑥 ) = ℝ 

𝑛 for all 𝑥 ∈ ℝ 

𝑛 . 

If a point �̄� is not a Pareto-stationary point for problem (2) , then

here exists a direction which is a descent direction w.r.t. all objective

unctions. Hence (according to Fliege and Svaiter, 2000 , sec. 3.1) we can

efine the steepest common descent direction as the solution of problem

min 
𝑑∈ℝ 𝑛 
𝑑‖≤ 1 max 

𝑗=1 , …,𝑚 
∇ 𝑓 𝑗 ( ̄𝑥 ) 𝑇 𝑑, (3)

hich, if 𝓁 ∞ norm is employed, can be reformulated as the LP problem 

min 
∈ℝ , 𝑑∈ℝ 𝑛 

𝛽

.t. −1 ≤ 𝑑 𝑖 ≤ 1 ∀ 𝑖 = 1 , … , 𝑛, 

∇ 𝑓 𝑗 ( ̄𝑥 ) 𝑇 𝑑 ≤ 𝛽 ∀ 𝑗 = 1 , … , 𝑚. 

ote that a slightly different characterization of steepest common de-

cent directions, based on an 𝓁 2 -regularized formulation of problem

3) and again proposed by Fliege and Svaiter (2000) , could be employed.

ere we preferred to use formulation (3) because of the simplicity of the

P problem. 

The solution of problem (3) may in fact be not unique, but this is not

 real technical issue; we can define function 𝜃 ∶ ℝ 

𝑛 → ℝ such that 𝜃( ̄𝑥 )
ndicates the optimal value of problem (3) at �̄� ; function 𝜃 is continuous.

e also denote by 𝑣 ( ̄𝑥 ) the set of optimal solutions of (3) , which is cer-

ainly nonempty. As previously stated, if �̄� is Pareto-stationary, 𝜃( ̄𝑥 ) = 0 ,
f it is not, 𝜃( ̄𝑥 ) < 0 . 

Now, based on the concept of steepest common descent, the stan-

ard (single-point) multi-objective steepest descent ( MOSD ) algorithm

as proposed by Fliege and Svaiter (2000) . We report the algorithm in

lgorithm 1 . 

The algorithm makes use of a backtracking Armijo-type line search,

hich is described in Algorithm 2 . The idea of the latter procedure is
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Algorithm 1: MultiObjectiveSteepestDescent. 

1 Input: 𝐹 ∶ ℝ 

𝑛 → ℝ 

𝑚 , 𝑥 0 ∈ ℝ 

𝑛 

2 𝑘 = 0 
3 while 𝑥 𝑘 is not Pareto stationary do 

4 Compute 

𝑑 𝑘 ∈ arg min 
𝑑∈ℝ 𝑛 ‖𝑑‖≤ 1 max 

𝑗=1 , …,𝑚 
∇ 𝑓 𝑗 ( 𝑥 𝑘 ) 𝑇 𝑑 

5 𝛼𝑘 = ArmijoTypeLineSearch ( 𝐹 ( ⋅) , 𝑥 𝑘 , 𝑑 𝑘 ) 
6 𝑥 𝑘 +1 = 𝑥 𝑘 + 𝛼𝑘 𝑑 

𝑘 

7 𝑘 = 𝑘 + 1 

8 return 𝑥 𝑘 

Algorithm 2: ArmijoTypeLineSearch. 

1 Input: 𝐹 ∶ ℝ 

𝑛 → ℝ 

𝑚 , 𝑥 ∈ ℝ 

𝑛 , 𝑑 ∈ ℝ 

𝑛 , 𝛼0 > 0 , 𝛿 ∈ (0 , 1) , 𝛽 ∈ (0 , 1) 
2 𝛼 = 𝛼0 
3 while 𝐹 ( 𝑥 + 𝛼𝑑) ≰ 𝐹 ( 𝑥 ) + 𝛽𝛼𝐽 𝐹 ( 𝑥 ) 𝑑 do 

4 𝛼 = 𝛿𝛼

5 return 𝛼
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hat of reducing the step size as long as a sufficient decrease has not

een reached for all the objective functions. 

We now recall the main theoretical property characterizing the line

earch ( Fliege and Svaiter, 2000 , Lemma 4). 

emma 2.1. If 𝐹 is continuously differentiable and 𝐽 𝐹 ( 𝑥 ) 𝑑 < 0 (i.e., 𝜃( 𝑥 ) <
 ), then there exists some 𝜀 > 0 , which may depend on 𝑥 , 𝑑 and 𝛽, such that 

 ( 𝑥 + 𝑡𝑑) < 𝐹 ( 𝑥 ) + 𝛽𝑡𝐽 𝐹 ( 𝑥 ) 𝑑 

or all 𝑡 ∈ (0 , 𝜀 ] . 

The above lemma guarantees finite termination of the line search

rocedure along a common descent direction. The following conver-

ence properties ( Fliege and Svaiter, 2000 , Theorem 1 and Section 9.1)

old instead for the MOSD procedure. 

emma 2.2. Every accumulation point of the sequence { 𝑥 𝑘 } produced by

lgorithm 1 is a Pareto stationary point. If the function 𝐹 has bounded level

ets, in the sense that { 𝑥 ∈ ℝ 

𝑛 ∣ 𝐹 ( 𝑥 ) ≤ 𝐹 ( 𝑥 0 )} is bounded, then the sequence

 𝑥 𝑘 } stays bounded and has at least one accumulation point. 

Now, we need to introduce relaxations to the concepts of Pareto-

tationary and common descent directions. First, we recall the concept

f 𝜀 -Pareto-stationarity introduced by Cocchi and Lapucci (2020) . 

efinition 2.4. Let 𝜀 ≥ 0 . A point ̄𝑥 ∈ ℝ 

𝑛 is 𝜀 -Pareto-stationary for prob-

em (2) if 

min 
𝑑∈ℝ 𝑛 
𝑑‖≤ 1 max 

𝑗=1 , …,𝑚 
∇ 𝑓 𝑗 ( ̄𝑥 ) 𝑇 𝑑 ≥ − 𝜀. 

Next, inspired by Cocchi et al. (2020) , we can introduce the concept

f steepest partial descent at �̄� w.r.t. a subset of indices of objectives 𝐼 ⊆

1 , … , 𝑚 } . Given problem 

min 
𝑑∈ℝ 𝑛 
𝑑‖≤ 1 max 

𝑗∈𝐼 
∇ 𝑓 𝑗 ( ̄𝑥 ) 𝑇 𝑑, 

e denote by 𝜃𝐼 ( ̄𝑥 ) its optimal value and by 𝑣 𝐼 ( ̄𝑥 ) the set of optimal

olutions, which we refer to as steepest partial descent directions w.r.t.

. Partial descent directions, if used appropriately, can be useful in al-

orithms to perform exploration steps to enrich the current Pareto set

pproximation. It is easy to see (by analogous reasonings as Cocchi et al.,

020 , Proposition 3) that, if �̄� is not a Pareto-stationary point for (2) ,

hen 𝜃𝐼 ( ̄𝑥 ) < 0 for any 𝐼 ⊆ {1 , … , 𝑚 } . 
3 
Finally, we recall, from Cocchi and Lapucci (2020) , the definition

f multi-objective augmented Lagrangian for problems with inequality

onstraints. 

efinition 2.5. The multi-objective augmented Lagrangian function of

enalty parameter 𝜏 associated with problem (1) is given by 

 𝜏 ( 𝑥, 𝜇) = 𝐹 ( 𝑥 ) + 

𝜏

2 

( 

𝑝 ∑
𝑖 =1 

(
max 

{ 
0 , 𝑔 𝑖 ( 𝑥 ) + 

𝜇𝑖 
𝜏

} )2 ) 

𝑒, 

here 𝜇 ≥ 0 ∈ ℝ 

𝑝 is the vector of Lagrange multipliers. 

. The algorithm 

In this section, we describe the multiple-points multi-objective

ugmented Lagrangian method proposed in this paper, which

e call FRONT-ALAMO , to solve problem (1) . The algorithmic

cheme is reported in Algorithm 3 . Note that we have de-

oted by MultiobjectiveSteepestDescent ( ⋅, ⋅, 𝜀 𝑘 ) the procedure in

lgorithm 1 run until the solution is 𝜀 𝑘 -Pareto-stationary. We also de-

ote by  

𝐼 
𝜏 ( 𝑥, 𝜇) the components of  𝜏 ( 𝑥, 𝜇) indexed by 𝐼 , and by 𝜃𝑘 and

 𝑘 maps 𝜃 and 𝑣 associated with  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) . 

Algorithm 3: FRONT-ALAMO. 

1 Input: 𝜇0 ∈ ℝ 

𝑝 
+ , �̄� ≥ 0 , 𝜌 > 1 , 𝜎 ∈ (0 , 1) , 𝜏0 > 0 , 𝑋 

0 a list of feasible 

non-dominated points for the original problem, { 𝜀 𝑘 } ⊂ ℝ a 

decreasing sequence 

2 for 𝑘 = 0 , 1 , … do 

3 Let  𝜏𝑘 
the current Augmented Lagrangian function defined 

as: 

 𝜏𝑘 
( 𝑥, 𝜇𝑘 ) = 𝐹 ( 𝑥 ) + 

𝜏𝑘 
2 

⎛ ⎜ ⎜ ⎝ 
𝑝 ∑

𝑖 =1 

( 

max 

{ 

0 , 𝑔 𝑖 ( 𝑥 ) + 

𝜇𝑘 
𝑖 

𝜏𝑘 

} ) 2 ⎞ ⎟ ⎟ ⎠ 𝑒 
4 set �̂� 

𝑘 = 𝑋 

𝑘 ⧵ { 𝑥 ∈ 𝑋 

𝑘 ∣ ∃ 𝑦 ∈ 𝑋 

𝑘 s.t.  𝜏𝑘 
( 𝑦, 𝜇𝑘 ) ≨  𝜏𝑘 

( 𝑥, 𝜇𝑘 )} 
5 set 𝑋 tmp = �̂� 

𝑘 

6 for 𝑥 𝑐 ∈ �̂� 

𝑘 do 

7 for 𝐼 ∈ 2 {1 , …,𝑚 } do 

8 if 𝜃𝐼 
𝑘 
( 𝑥 𝑐 ) < 0 then 

9 set 𝑑 ∈ 𝑣 𝐼 
𝑘 
( 𝑥 𝑐 ) 

10 set 𝛼 = ArmijoTypeLineSearch (  

𝐼 
𝜏𝑘 
( ⋅, 𝜇𝑘 ) , 𝑥 𝑐 , 𝑑) 

11 set 𝑧 = 

MultiObjectiveSteepestDescent (  𝜏𝑘 
( ⋅, 𝜇𝑘 ) , 𝑥 𝑐 + 

𝛼𝑑, 𝜀 𝑘 ) 
12 if ∄ 𝑦 ∈ 𝑋 tmp ∶  𝜏𝑘 

( 𝑦, 𝜇𝑘 ) ≨  𝜏𝑘 
( 𝑧, 𝜇𝑘 ) then 

13 set 𝑋 tmp = 𝑋 tmp ⧵ { 𝑥 ∈ 𝑋 tmp |  𝜏𝑘 
( 𝑧, 𝜇𝑘 ) ≨ 

 𝜏𝑘 
( 𝑥, 𝜇𝑘 )} ∪ { 𝑧 } 

14 set 𝑋 

𝑘 +1 = 𝑋 tmp 

15 for 𝑖 = 1 , … , 𝑝 do 

16 set 𝑉 𝑘 +1 𝑖 = min 

{ 

min 
𝑥 ∈𝑋 𝑘 +1 

{− 𝑔 𝑖 ( 𝑥 )} , 
𝜇𝑘 
𝑖 

𝜏𝑘 

} 

17 set 𝜇𝑘 +1 
𝑖 = max 

{ 

0 , min { 𝜇𝑘 
𝑖 + 𝜏𝑘 max 

𝑥 ∈𝑋 𝑘 +1 
{ 𝑔 𝑖 ( 𝑥 )} , 𝜇} 

} 

18 if ( ||𝑉 𝑘 +1 || > 𝜎||𝑉 𝑘 ||) or (∃ 𝑥 𝑘 +1 ∈ 𝑋 

𝑘 +1 s.t. 𝑔 𝑖 ( 𝑥 𝑘 +1 ) < 0 and 

𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 ) > 0 for some 𝑖 ∈ {1 , … , 𝑝 }) then 

19 set 𝜏𝑘 +1 = 𝜌𝜏𝑘 

20 else 

21 set 𝜏𝑘 +1 = 𝜏𝑘 

Through the iterations, the algorithm produces a sequence of sets of

oints { 𝑋 

𝑘 } , which approximate the Pareto set of the original problem

ith increasing accuracy. At each iteration, an augmented Lagrangian
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unction defined as in Definition 2.5 is considered, with penalty param-

ter 𝜏𝑘 and multipliers 𝜇𝑘 . At the beginning of the generic iteration 𝑘 , all

oints that are dominated w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) are filtered out of the set; we

enote such filtered set by �̂� 

𝑘 . Now, the following iterate is initialized

s �̂� 

𝑘 ; then, each point 𝑥 𝑐 ∈ �̂� 

𝑘 is used as a starting point for explo-

ation; in particular, for any possible subset 𝐼 ⊆ {1 , … , 𝑚 } the steepest

artial descent direction is explored by an ArmijoTypeLineSearch
estricted to the components of  

𝐼 
𝜏𝑘 
( 𝑥, 𝜇𝑘 ) , provided that a partial de-

cent direction actually exists. After the line search step, the obtained

oint is refined by steepest descent on all the objectives up to 𝜀 𝑘 -Pareto-

tationarity. If it is then not dominated w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) by any other

oint currently in the new iterate set, it is consequently added to such

et, while all points that are dominated by it are removed. 

Once all points in �̂� 

𝑘 are tested, the constructed set will constitute

he next iterate 𝑋 

𝑘 +1 . The multipliers and the penalty parameter are

pdated similarly as in the scalar ALM with multipliers safeguarding

 Kanzow and Steck, 2017 ), with one key adjustment: to evaluate how

uch a constraint is violated, the worst violation attained on that con-

traint by any point in 𝑋 

𝑘 +1 is considered. In addition, the second clause

f the conditional statement at line 18 allows to avoid unfortunate cases

here a point which is strictly feasible w.r.t. some constraint 𝑔 𝑖 is un-

ecessarily pushed to satisfy it with a larger margin. 

emark 3.1. At each iteration 𝑘 , the set 𝑋 

𝑘 +1 is a list of mutually non-

ominated points w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) . As we will shortly see, maintaining a

et of mutually nondominated points with respect to the augmented La-

rangian does not provide theoretical asymptotic properties. However,

his has a remarkable impact from a computational point of view: it al-

ows, especially at late iterations, to remove solutions that are too far

rom feasibility or that have bad values for all the objectives; in addi-

ion, in practice the algorithm will be run for a large enough number

f iterations and then stopped; the solutions in the returned set are mu-

ually nondominated w.r.t. the final augmented Lagrangian; because of

his property, most of the points in the returned set that are “sufficiently

easible ” are nondominated also w.r.t. the original problem. 

In the next section, we will show in detail that Algorithm 3 is well

efined and we will carefully address its convergence properties. 

. Convergence analysis 

In this section, we provide a rigorous formal analysis of

lgorithm 3 from a theoretical perspective. We first show that the pro-

edure is actually well defined and then we state its asymptotic con-

ergence properties. Before proceeding, we need to make a reasonable

ssumption. 

ssumption 4.1. The objective function 𝐹 has bounded level sets in

he multi-objective sense, i.e., the set { 𝑥 ∈ ℝ 

𝑛 ∣ 𝐹 ( 𝑥 ) ≤ 𝑧 } is bounded for

ny 𝑧 ∈ ℝ 

𝑚 . 

Concerning algorithm well-definiteness, we begin by noting that the

ine search procedure at line 10 of Algorithm 3 stops in a finite time,

roducing a valid stepsize. Indeed, this result holds straightforwardly

rom Lemma 2.1 and the fact that the procedure is performed consider-

ng  

𝐼 
𝜏𝑘 
( 𝑥, 𝜇𝑘 ) , starting at a point 𝑥 𝑐 such that 𝜃𝐼 

𝑘 
( 𝑥 𝑐 ) < 0 . 

The other nontrivial instruction of the FRONT-ALAMO procedure is

tep 11, that we address in the following proposition. 

roposition 4.1. The MultiObjectiveSteepestDescent pro-

edure at line 11 of Algorithm 3 stops in a finite number of iterations. 

roof. Finite termination can be proved as in Proposition 4 from

occhi and Lapucci (2020) , recalling that Assumption 4.1 holds. □

Now, we are able to characterize the points belonging to each iterate

et 𝑋 

𝑘 . 
4 
roposition 4.2. Let { 𝑋 

𝑘 +1 } be the sequence of sets generated by Algorithm

 . Then, for each 𝑘 and for each 𝑥 𝑘 +1 ∈ 𝑋 

𝑘 +1 , we have: 

a) 𝑥 𝑘 +1 is not dominated by any other point in 𝑋 

𝑘 +1 w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) , i.e.,

there does not exist 𝑦 ∈ 𝑋 

𝑘 +1 such that  𝜏𝑘 
( 𝑦, 𝜇𝑘 ) ≨  𝜏𝑘 

( 𝑥 𝑘 +1 , 𝜇𝑘 ) ; 
b) 𝑥 𝑘 +1 is 𝜀 𝑘 -Pareto-stationary w.r.t.  𝜏𝑘 

( 𝑥, 𝜇𝑘 ) . 

roof. We prove the two statements one at a time: 

a) 𝑋 

𝑘 +1 is equal to 𝑋 tmp at the end of the main loop of each iteration,

at step 14. 𝑋 tmp is initialized with �̂� 

𝑘 , which contains mutually non-

dominated points w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) by its definition at line 4. Then,

𝑋 tmp can be modified only at step 13, where a point is added only

if it is nondominated, from the condition at line 12, and all points

dominated by it are removed. 

b) We have two possible cases: 𝑥 𝑘 +1 ∈ �̂� 

𝑘 or 𝑥 𝑘 +1 ∉ �̂� 

𝑘 . In the latter

case, 𝑥 𝑘 +1 has necessarily been added to 𝑋 tmp through instructions

9–13; in particular, 𝑥 𝑘 +1 was produced by instruction 11 and is thus

𝜀 𝑘 -Pareto-stationary. 

So, let us assume that 𝑥 𝑘 +1 ∈ �̂� 

𝑘 and, by contradiction, that

𝜃𝑘 ( 𝑥 𝑘 +1 ) < − 𝜀 𝑘 . In this case, 𝑥 𝑐 = 𝑥 𝑘 +1 would satisfy the conditions

at step 8 for 𝐼 = { 1 , … , 𝑚 } , as 𝜃𝐼 
𝑘 
( 𝑥 𝑘 +1 ) = 𝜃𝑘 ( 𝑥 𝑘 +1 ) < − 𝜀 𝑘 < 0 . The line

search hence is guaranteed, by Lemma 2.1 , to find a step 𝛼 such that

 𝜏𝑘 
( 𝑥 𝑐 + 𝛼𝑑, 𝜇𝑘 ) <  𝜏𝑘 

( 𝑥 𝑐 , 𝜇𝑘 ) , and by the properties of the MOSD pro-

cedure we have  𝜏𝑘 
( 𝑧, 𝜇𝑘 ) ≤  𝜏𝑘 

( 𝑥 𝑐 + 𝛼𝑑, 𝜇𝑘 ) . Hence, this new point 𝑧

(strictly) dominates 𝑥 𝑘 +1 w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) . Now, from the instructions

of the algorithm, either 𝑧 belongs to 𝑋 

𝑘 +1 or there exists 𝑦 ∈ 𝑋 

𝑘 +1 

such that  𝜏𝑘 
( 𝑦, 𝜇𝑘 ) ≨  𝜏𝑘 

( 𝑧, 𝜇𝑘 ) <  𝜏𝑘 
( 𝑥 𝑘 +1 , 𝜇𝑘 ) . However, this is ab-

surd, since 𝑥 𝑘 +1 ∈ 𝑋 

𝑘 +1 and from statement (a) 𝑋 

𝑘 +1 contains mutu-

ally nondominated points. Hence, 𝜃𝑘 ( 𝑥 𝑘 +1 ) ≥ − 𝜀 𝑘 . 

□

Let { 𝑋 

𝑘 } be the sequence of (finite) sets produced by the algorithm.

n order to assess the asymptotic convergence properties of Algorithm 3 ,

e need to consider sequences of points { 𝑥 𝑘 } such that 𝑥 𝑘 ∈ 𝑋 

𝑘 for all

 . 

We are now able to begin the convergence analysis with a technical

emma. 

emma 4.3. Let { 𝑋 

𝑘 } be the sequence of sets generated by Algorithm 3 ,

nd let { 𝑥 𝑘 } be any sequence of points such that 𝑥 𝑘 ∈ 𝑋 

𝑘 for all 𝑘 . Let �̄� be

 limit point of { 𝑥 𝑘 } , i.e., there exists an infinite subset 𝐾 ⊆ {0 , 1 , …} such

hat 

lim 

 →∞
𝑘 ∈𝐾 

𝑥 𝑘 = �̄� , 

nd suppose that 𝑔( ̄𝑥 ) ≤ 0 , i.e., �̄� ∈ Ω. Then, for all 𝑖 = 1 , … , 𝑝 such that

 𝑖 ( ̄𝑥 ) < 0 we have 

ax {0 , 𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 )} = 0 

or all 𝑘 ∈ 𝐾 sufficiently large. 

roof. Let 𝑔 𝑖 ( ̄𝑥 ) < 0 and 𝑘 1 ∈ 𝐾 be such that 𝑔 𝑖 ( 𝑥 𝑘 +1 ) < 𝑐 < 0 for all 𝑘 ≥

 1 , 𝑘 ∈ 𝐾. From the instructions of the algorithm we know that 𝜇𝑘 
𝑖 ≥ 0

or all 𝑘 . There are two possible cases: 

a) 𝜏𝑘 → ∞
The sequence { 𝜇𝑘 } is bounded by definition, hence there exists 𝑘 2 ≥

𝑘 1 , 𝑘 2 ∈ 𝐾, such that for all 𝑘 ∈ 𝐾, 𝑘 ≥ 𝑘 2 we have 𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 ) <

0 and thus max {0 , 𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 )} = 0 . 

b) { 𝜏𝑘 } is bounded. 

From instruction 18 of the algorithm, there must exist 𝑘 2 ≥ 𝑘 1 such

that, for all 𝑘 ≥ 𝑘 2 , condition 

∀ 𝑥 ∈ 𝑋 

𝑘 +1 𝜇𝑘 
𝑗 + 𝜏𝑘 𝑔 𝑗 ( 𝑥 ) ≤ 0 ∀𝑗 ∈ {1 , … , 𝑝 } s.t. 𝑔 𝑗 ( 𝑥 ) < 0 

holds. Hence, for 𝑘 ≥ 𝑘 2 , 𝑘 ∈ 𝐾, we have 𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 ) ≤ 0 . Thus,

we have max {0 , 𝜇𝑘 
𝑖 + 𝜏𝑘 𝑔 𝑖 ( 𝑥 𝑘 +1 )} = 0 for 𝑘 ∈ 𝐾 sufficiently large. 

□
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Next, we prove feasibility of limit points of all possible points se-

uences { 𝑥 𝑘 } produced by the algorithm. 

roposition 4.4. Let { 𝑋 

𝑘 } be the sequence of sets generated by Algorithm

 , with 𝜀 𝑘 → 0 , and let { 𝑥 𝑘 } be any sequence of points such that 𝑥 𝑘 ∈ 𝑋 

𝑘

or all 𝑘 . Let �̄� be a limit point of { 𝑥 𝑘 } . Then, �̄� is feasible for problem (1) ,

.e., 𝑔( ̄𝑥 ) ≤ 0 . 

roof. Let 𝐾 ⊆ {0 , 1 , …} be an infinite subset such that 

lim 

 →∞
𝑘 ∈𝐾 

𝑥 𝑘 +1 = �̄� . 

f the sequence { 𝜏𝑘 } is bounded, from the instructions of the algorithm

here must exist 𝑘 1 such that, for all 𝑘 > 𝑘 1 , we have ‖𝑉 𝑘 +1 ‖ ≤ 𝜎‖𝑉 𝑘 ‖.
ince 𝜎 < 1 , this implies 

lim 

 →∞
‖𝑉 𝑘 ‖ = 0 , 

.e., for all 𝑖 ∈ {1 , … , 𝑝 } , 

lim 

 →∞
𝑉 𝑘 +1 𝑖 = lim 

𝑘 →∞
min 

{ 

min 
𝑥 ∈𝑋 𝑘 +1 

{− 𝑔 𝑖 ( 𝑥 )} , 
𝜇𝑘 
𝑖 

𝜏𝑘 

} 

= 0 . 

ince by definition 𝜇𝑘 
𝑖 ≥ 0 for all 𝑖 and 𝑘 , it has to be 

lim 

 →∞
min 

𝑥 ∈𝑋 𝑘 +1 

{
− 𝑔 𝑖 ( 𝑥 ) 

}
≥ 0 . 

ut min 𝑥 ∈𝑋 𝑘 +1 {− 𝑔 𝑖 ( 𝑥 )} ≤ − 𝑔 𝑖 ( 𝑥 𝑘 +1 ) . Hence 

 𝑖 

(
𝑥 
)
= lim 

𝑘 →∞
𝑘 ∈𝐾 

𝑔 𝑖 
(
𝑥 𝑘 +1 

)
≤ lim 

𝑘 →∞
𝑘 ∈𝐾 

max 
𝑥 ∈𝑋 𝑘 +1 

{
− 𝑔 𝑖 ( 𝑥 ) 

}
≤ 0 . 

Now, assume 𝜏𝑘 → ∞. From Proposition 4.2 , we know that each point

 ∈ 𝑋 

𝑘 +1 is 𝜀 𝑘 -Pareto-stationary w.r.t.  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) . Hence 

max 
=1 , …,𝑚 

⎧ ⎪ ⎨ ⎪ ⎩ 
( 
∇ 𝑓 𝑗 ( 𝑥 𝑘 +1 ) + 𝜏𝑘 

𝑝 ∑
𝑖 =1 

max 

{ 

0 , 𝑔 𝑖 ( 𝑥 𝑘 +1 ) + 
𝜇𝑘 
𝑖 

𝜏𝑘 

} 

∇ 𝑔 𝑖 ( 𝑥 𝑘 +1 ) 

) 𝑇 
𝑑 

⎫ ⎪ ⎬ ⎪ ⎭ ≥ − 𝜀 𝑘 ∀ 𝑑 ∈ ℝ 𝑛 ∶ ‖𝑑‖ ≤ 1 . 
ividing both sides of the inequality by 𝜏𝑘 and taking the limits for

 → ∞, 𝑘 ∈ 𝐾, recalling the continuity of 𝐽 𝐹 and 𝐽 𝑔 , the boundedness

f 𝑑 and { 𝜇𝑘 } and that 𝜏𝑘 → ∞, we get 

max 
=1 , …,𝑚 

⎧ ⎪ ⎨ ⎪ ⎩ 
( 

𝑝 ∑
𝑖 =1 

max {0 , 𝑔 𝑖 ( ̄𝑥 )}∇ 𝑔 𝑖 ( ̄𝑥 ) 

) 𝑇 

𝑑 

⎫ ⎪ ⎬ ⎪ ⎭ ≥ 0 ∀ 𝑑 ∈ ℝ 

𝑛 ∶ ‖𝑑‖ ≤ 1 , 

hich, since the arguments of the outer max operator are independent

f 𝑗, is equal to 

1 
2 
∇ 

(‖max {0 , 𝑔( ̄𝑥 )} ‖2 )𝑇 𝑑 ≥ 0 ∀ 𝑑 ∈ ℝ 

𝑛 ∶ ‖𝑑‖ ≤ 1 , 

here the max operator is intended component-wise. Thus, �̄� is a critical

oint for problem 

min 
 ∈ℝ 𝑛 

1 
2 
‖max {0 , 𝑔( 𝑥 )} ‖2 . 

ince Ω ≠ 0 and the above problem is convex, �̄� is a global minimum

oint with max {0 , 𝑔( ̄𝑥 )} = 0 , i.e., 𝑔( ̄𝑥 ) ≤ 0 . □

Finally, we show that limit points are Pareto-stationary for the orig-

nal problem. 

roposition 4.5. Let { 𝑋 

𝑘 } be the sequence of sets generated by Algorithm

 , with 𝜀 𝑘 → 0 , and let { 𝑥 𝑘 } be any sequence of points such that 𝑥 𝑘 ∈ 𝑋 

𝑘 for

ll 𝑘 . Let �̄� be a limit point of { 𝑥 𝑘 } . Then, �̄� is Pareto-stationary for problem

1) . 

roof. Recalling that, from Proposition 4.2 , 𝑥 𝑘 +1 is 𝜀 𝑘 -Pareto-stationary

or  𝜏𝑘 
( 𝑥, 𝜇𝑘 ) , the result follows as in Proposition 6 from Cocchi and

apucci (2020) , where Lemma 4.3 can be used in place of Lemma 9

rom the referenced paper. □
5 
emark 4.1. Pareto-stationarity, which we are able to prove for limit

oints of FRONT-ALAMO , is the same property that holds for limit

oints of the sequence produced by the single point ALAMO and anal-

gous, in the scalar context, to stationarity attained by limit points of

calar ALM . Therefore, it is reasonable to assume that stronger properties

re unlikely to be obtained by an ALM -like algorithm. 

emark 4.2. In the literature of Pareto front constructing descent meth-

ds ( Cocchi et al., 2020; Liuzzi et al., 2016 ), convergence analysis is

ased on the concept of linked sequence. A sequence { 𝑥 𝑘 } is a linked

equence if, for all 𝑘 , 𝑥 𝑘 ∈ 𝑋 

𝑘 and 𝑥 𝑘 is generated at iteration 𝑘 − 1
tarting the search procedure from 𝑥 𝑘 −1 . It is easy to see that linked se-

uences are a particular instance of the sequences of points considered

n Propositions 4.4 and 4.5 , hence the convergence result obtained for

lgorithm 3 is somewhat stronger than those based on linked sequences.

emark 4.3. In our theoretical analysis we assumed the existence of

 limit point �̄� . As commonly done in the literature of augmented La-

rangian methods ( Birgin and Martinez, 2014; Cocchi and Lapucci,

020 ), we do not directly address properties of existence of limit points,

eaving it to boundedness arguments on the sequences, level sets, lower-

evel feasible sets or restart strategies. 

emark 4.4. The SQP algorithm from Fliege and Vaz (2016) which is,

o the best of our knowledge, the only other derivative-based method

n the literature to generate an approximation of the Pareto front, has

imilar convergence properties as Algorithm 3 , in the sense that limit

oints of sequences of solutions are Pareto-stationary. However, the set-

ing is basically different, as the exploration phase of the SQP method

s eventually stopped and all the obtained points are then indepen-

ently driven to Pareto-stationarity by an iterative method. Conver-

ence hence follows from a single-point mechanism. On the other hand,

n Algorithm 3 exploration and convergence are performed somewhat

n parallel, in an effectively multiple-points fashion. 

. Computational experiments 

In this Section, we show the results of thorough computational ex-

eriments, focusing on the comparisons between FRONT-ALAMO and

ome state-of-the-art methods in the multi-objective constrained opti-

ization context. All the tests were run on a computer with the follow-

ng characteristics: Intel Xeon Processor E5-2430 v2 6 cores 2.50 GHz,

6 GB RAM. The code for all the algorithms considered in the experi-

ents was written in Python3. 

.1. Experiment Settings 

Before commenting the results, we list the state-of-the-art methods

sed in the comparisons with FRONT-ALAMO . In addition, we describe

he tested problems and the metrics used in the comparisons. 

.1.1. Metrics 

In order to evaluate the performance of the algorithms, we employed

he three metrics defined by Custódio et al. (2011) , which are very pop-

lar and used by the multi-objective optimization community: purity ,

–spread and Δ–spread . We recall that the purity metric measures the

uality of the generated front, that is, how good the non-dominated

oints computed by a solver are with respect to those obtained by the

ther ones. Clearly, a higher value is associated with a better perfor-

ance. In order to calculate this metric, we need a reference front to

hich compare the generated front of an algorithm. In our experiments,

he reference front was the one obtained by combining the fronts of all

he considered algorithms and by discarding the dominated points. The

pread metrics are equally essential because they measure the uniformity

f the generated front in the objectives space. In particular, the Γ–spread

s defined as the maximum 𝓁 ∞ distance in the objectives space between

djacent points of the Pareto front, and the Δ–spread is quite similar
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Table 1 

Problems used in the computational experiments. #L.C. indicates the num- 

ber of linear constraints (in this column the boundary constraints are not con- 

sidered). #N.L.C. indicates the number of non linear constraints. B.C. 
indicates the type(s) of the boundary conditions. 

PROBLEM 𝑛 𝑚 𝑝 #L.C. #N.L.C. B.C. 

M-BNH1 2 2 2 – 2 –

M-BNH2 2 2 2 – 2 –

LAP1 2 2 3 1 2 –

LAP2 2, 5, 10, 20, 30, 2 1 – 1 –

40, 50, 100, 200 

M-OSY 6 2 18 4 2 lb, ub 

CEC1, CEC2, 5, 10, 20, 30, 2 2 𝑛 – – lb, ub 

CEC3, CEC7 40, 50, 100, 200 

CEC8, CEC9, 5, 10, 20, 30, 3 2 𝑛 – – lb, ub 

CEC10 40, 50, 100, 200 

ZDT1, 

ZDT2 

2, 5, 10, 20, 30, 2 2 𝑛 – – lb, ub 

40, 50, 100, 200 

MOP1 1 2 2 – – lb, ub 

MOP2 2, 5, 10, 20, 30, 2 2 𝑛 – – lb, ub 

40, 50, 100, 200 

MOP3 2 2 4 – – lb, ub 
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o the standard deviation of the 𝓁 ∞ distances between adjacent Pareto

ront points. In these metrics, good performance is associated with a low

alue. 

In addition to the three previous metrics, we evaluated the number

f non-dominated points obtained by a method with respect to the ref-

rence front ( ND–points ). We supposed that this metric was as important

s the purity one. Indeed, ND–points metric allowed us to see how many

on-dominated points an algorithm was capable to obtain with respect

o the whole reference front. 

Lastly, we employed the popular performance profiles introduced by

olan and Moré (2002) , that are an useful tool to better appreciate the

elative performance and robustness of the algorithms. The performance

rofile for a solver is the (cumulative) distribution function for the ratio

f the value of the performance measure obtained by the solver to the

est one of all of the solvers. In particular, it is the probability for solver

 that one of its performance measure values achieved in a problem is

ithin a factor 𝜏 ∈ ℝ of the best possible value obtained by all of the

olvers in that problem. For a more detailed explanation about perfor-

ance profiles, we refer to Dolan and Moré (2002) . Note that perfor-

ance profiles w.r.t. purity and ND–points were generated considering

he inverse of the obtained values, since the metrics have increasing

alues for better solutions. 

.1.2. Algorithms and hyper-parameters 

The choices about the FRONT-ALAMO hyper-parameters values

ere made based on some preliminary results on a subset of the tested

roblems, which we do not report here for the sake of brevity. The val-

es are the following: 

• 𝜏0 = 1 ; 
• if the problem only has bound constraints 𝜌 = 10 , otherwise 𝜌 = 2 ; 
• 𝜎 = 0 . 9 ; 
• 𝜇 = 10 4 ; 
• 𝜇0 = 0 ∈ ℝ 

𝑝 ; 
• in the ArmijoTypeLineSearch 𝛽 = 10 −4 and 𝛿 = 0 . 5 . 

The first algorithm we chose to use in the comparison with

RONT-ALAMO is MOSQP ( Fliege and Vaz, 2016 ), which is a gradient-

ased method for constrained and unconstrained nonlinear multi-

bjective optimization problems that implements an SQP –type ap-

roach. Since it is the only gradient-based algorithm from the literature

esigned to produce Pareto front approximations, we consider it our

ost important competitor. The chosen hyper-parameters for MOSQP
ere the best ones according to Fliege and Vaz (2016) . For the quadratic

pproximations, we used 𝐻 𝑖 = 𝐼 𝑚 ( 𝐼 𝑚 being the identity matrix) in the

econd stage and 𝐻 𝑖 = ∇ 

2 𝑓 𝑖 ( 𝑥 𝑘 ) + 𝐸 𝑖 ( 𝐸 𝑖 being obtained by a modified

holesky algorithm) in the third stage, as Fliege and Vaz (2016) state

hat it is the most robust and efficient way to use MOSQP . For a more de-

ailed explanation about the various MOSQP stages and versions, we re-

er to Fliege and Vaz (2016) . Lastly, we used the Ipopt software pack-

ge ( Wächter and Biegler, 2006 ) ( https://github.com/coin-or/Ipopt ) in

rder to solve the SQP problems. 

DMS ( Custódio et al., 2011 ) is the second algorithm used in

he comparisons. It is a multi-objective derivative-free methodology,

hich is inspired by the search/poll paradigm of direct-search meth-

ds of directional type and uses the concept of Pareto dominance to

aintain a list of non-dominated points, from which the new iter-

tes or poll centers are chosen. The hyper-parameters for DMS were

et according to Custódio et al. (2011) and to the authors code

 http://www.mat.uc.pt/dms ). 

The third and last algorithm is NSGA-II ( Deb et al., 2002 ), which is

 non-dominated sorting-based multi-objective evolutionary algorithm.

n particular, NSGA-II is a genetic algorithm that is mainly composed

y a fast non-dominated sorting approach and a selection operator that

reates a mating pool by combining the parent and offspring populations

nd selecting the best 𝑁 solutions. In contrast to the other algorithms,

SGA-II considers a fixed number of solutions in the pool, which was
6 
et to 100 in our experiments. The hyper-parameters of the algorithm

ere the ones chosen by Deb et al. (2002) . 

For each algorithm and problem, we decided to execute the test for

p to 2 min. A termination criterion based on a time limit is the fairest

ay to evaluate the behavior of such diverse algorithms on the tested

roblems. Clearly, specific stopping criteria indicating that a certain al-

orithm cannot improve the solutions anymore were also taken into ac-

ount. Since NSGA-II is the only non-deterministic algorithm used in

he computational experiments, we decided to run it with 10 different

eeds for the pseudo-random number generator. Every execution had

he same time limit used for the other algorithms (2 min). After the ex-

cution of the 10 runs, we compared the fronts based on the purity met-

ic and we chose the best one among them. In this case, the reference

ront for the comparison was obtained by combining the fronts of the

0 executions. We considered the resulting best front as NSGA-II out-

ut. Executing 10 runs lets NSGA-II reduce its sensibility with respect

o the seed used for its random operations. Note however that, since

e consider a best case scenario for NSGA-II , the overall comparison

hould be considered at least partially biased in favor of this algorithm.

he other methods ( FRONT-ALAMO , DMS , MOSQP ) are deterministic.

herefore, they were executed once. 

.1.3. Problems 

The tested problems are described in Table 1 . In this benchmark, we

onsidered problems whose objective functions are at least continuously

ifferentiable almost everywhere. Since some problems present singu-

arities, we counted them as Pareto-stationary points. All the constraints

re defined by continuously differentiable convex functions. 

We included in our benchmark the slightly modified versions of the

NH problems and the LAP problems from Cocchi and Lapucci (2020) .

e also included a modification of the OSY problem ( Osyczka and

undu, 1995 ). The modified form of this problem can be found in

ppendix A . 

Furthermore, we included into the test set problems characterized

nly by boundary constraints: the CEC problems ( Zhang et al., 2008 ),

he ZDT problems ( Zitzler et al., 2000 ) and the MOP problems ( Huband

t al., 2006 ). It is worth remarking that the CEC and ZDT problems have

articularly difficult objective functions, so they are interesting to study

he effectiveness of the algorithms when solving hard problems. 

For each problem with general constraints, we started the algorithms

rom one feasible point ( Table 2 ). In this way, we intended to study the

xploration capabilities of the algorithms. Indeed, algorithms with great

xploration abilities should create a spread and solid Pareto front on

hese problems. For the bound constrained problems (MOP1 is the only

https://github.com/coin-or/Ipopt
http://www.mat.uc.pt/dms
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Fig. 1. Pareto front approximation for the four algorithms consid- 

ering the M-BNH problems (For interpretation of the references to 

color in text, the reader is referred to the web version of the article). 

Table 2 

Initial points for the tested problems. 

PROBLEM(S) INITIAL POINT(S) 

M-BNH1, LAP1, 0 ∈ ℝ 𝑛 

LAP2, MOP1 

M-BNH2 [8 , −3] 
M-OSY [2 , 0 , 1 , 0 , 1 , 8] 
CEC, ZDT, Points from the 

MOP2, MOP3 hyper-diagonal 
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xception since it is too small in terms of number of dimensions), the ini-

ial points were uniformly selected from the hyper-diagonal defined by

he lower and upper bounds, as done by Custódio et al. (2011) . In these

ases, the number of initial points is equal to the number of dimensions

f the considered problem. 
7 
.2. M-BNH, LAP1 and M-OSY problems 

We begin by studying the performance of the considered algorithms

n the M-BNH1, M-BNH2, LAP1 and M-OSY problems. 

The results on the M-BNH problems ( Fig. 1 ) show the great perfor-

ance of FRONT-ALAMO with respect to the competitors: indeed, our

ethod obtained the best purity value in the M-BNH1 problem and a

urity value very close to the best one in the M-BNH2. In this latter

roblem, the differences with respect to our gradient-based competitor

nd DMS are even clearer, as FRONT-ALAMO obtained a purity value

ery close to 1. Here, the MOSQP method did not manage to obtain a

ingle non-dominated point w.r.t. the competitors. Considering the Δ–

pread , FRONT-ALAMO was the second best method in both problems.

s for the Γ–spread , FRONT-ALAMO appears to have a decent behavior,

eing the second best algorithm in the M-BNH1 problem and outper-

orming all the competitors in the M-BNH2 problem. This behavior can
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Fig. 2. Pareto front approximation for the four algorithms consid- 

ering the LAP1 and M-OSY problems (For interpretation of the ref- 

erences to color in text, the reader is referred to the web version of 

the article). 
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lso be observed on the LAP1 and M-OSY problems ( Fig. 2 ). The worst

lgorithm turned out to be MOSQP , which seems to lack of search ca-

abilities in the objectives space on the M-BNH problems. This fact can

lso be noted for the DMS and NSGA-II algorithms on the M-BNH2

roblem, which turned out to be difficult to solve. DMS outperformed

he NSGA-II method on the M-BNH1 problem in terms of ND–points

nd purity , while on the M-BNH2 one it is the opposite. Lastly, consider-

ng the spread metrics, DMS performed better in terms of Γ–spread , while

SGA-II outperformed DMS on the Δ–spread . 

Considering the LAP1 problem ( Fig. 2 ), FRONT-ALAMO performed

ery well and its scores are close to those of DMS , which was the over-

ll best algorithm on this problem. This fact can be also seen in the

ront plots: the Pareto fronts obtained by the two algorithms are very

imilar, while the other two methods ( NSGA-II and MOSQP ) did not
8 
ave the same performance. Among these two latter algorithms, the

OSQP method managed to outperform FRONT-ALAMO on one met-

ic, that is the purity , while the NSGA-II algorithm performed bet-

er on the Δ–spread . In the M-OSY problem ( Fig. 2 ) NSGA-II was the

ost effective obtaining an uniform and spread Pareto front. In this case,

RONT-ALAMO achieved some interesting results. First of all, it outper-

ormed the DMS algorithm: this achievement is remarkable since DMS is
radient-free and can escape non optimal Pareto-stationary points, while

ur method is gradient-based. In addition, our algorithm obtained more

on-dominated points and a better Γ–spread than its gradient-based com-

etitor ( MOSQP ). 
The last FRONT-ALAMO peculiarity that we can see from these plots

s the number of non-dominated points it achieved. Only the DMS algo-

ithm managed to obtain a much greater value of ND–points in some
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Fig. 3. Performance profiles for the four algorithms on the LAP2 

problems. Each sub-figure represents the performance profiles con- 

sidering as a performance measure one of the metrics explained in 

Section 5.1.1 (For interpretation of the references to color in text, 

the reader is referred to the web version of the article). 

Fig. 4. Pareto front approximation for the four algorithms consider- 

ing LAP2 problems at different dimensionalities (For interpretation 

of the references to color in text, the reader is referred to the web 

version of the article). 

p  

c

5

 

d  

r  

g  

l  

p  

p

 

o  

r  

o  

i  

p  

O  

F
 

c  

i  

i  
roblems. However, in these problems FRONT-ALAMO was equally

ompetitive in terms of this metric and the purity one. 

.3. LAP2 problems 

The LAP2 problems represent another useful class of problems: in-

eed, they allow to discuss about the sensibility of the algorithms with

egard to 𝑛 , that is, how well they scale. Indeed, many algorithms have

reat performance considering small values of 𝑛 . However, when a prob-

em size grows, they lose their abilities to retrieve good Pareto front ap-

roximations. Before seeing some plots and metric values, we show the

erformance profiles considering all the LAP2 problems ( Fig. 3 ). 
9 
The performance profiles highlight that FRONT-ALAMO strongly

utperformed the other competitors with respect to ND–points, pu-

ity and Γ–spread . The second most robust algorithm is the DMS
ne. As for the Δ–spread , the methods performed similarly: here, it

s very difficult to indicate the best algorithm. This fact can be a

roof that no algorithm suffered from a non-uniformity in their fronts.

n the contrary, in terms of the Γ–spread there is a clear winner:

RONT-ALAMO . 
The motivation of these different results on the two spread metrics

an be explained through the Fig. 4 , where we show the Pareto fronts

n four different LAP2 problems. Here, we show the fronts all together

n order to provide a more direct impression of the results. Indeed, in
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Table 3 

Metrics values obtained by the four algorithms in the LAP2 problems with 𝑛 = 2 , 10 , 50 , 100 . The values marked 

in bold are the best values (each of which is related to a specific score) obtained in a specific problem. 

PROBLEM METRIC FRONT-ALAMO DMS NSGA-II MOSQP 

LAP2, 𝑛 = 2 ND–points 3680 3256 34 397 

purity 0.747 1.0 0.34 0.936 

Γ–spread 0.123 0.035 0.185 0.556 

Δ–spread 0.722 0.547 0.518 0.844 

LAP2, 𝑛 = 10 ND–points 1395 477 0 23 

purity 0.775 0.633 0.0 0.92 

Γ–spread 1.149 3.309 43.472 27.501 

Δ–spread 0.997 1.031 0.808 0.999 

LAP2, 𝑛 = 50 ND–points 944 0 0 0 

purity 1.0 0.0 0.0 0.0 

Γ–spread 39.861 1275.832 1235.656 570.599 

Δ–spread 1.003 0.927 0.928 1.165 

LAP2, 𝑛 = 100 ND–points 430 0 0 0 

purity 1.0 0.0 0.0 0.0 

Γ–spread 90.54 5274.549 5384.548 1517.672 

Δ–spread 0.996 0.983 0.972 1.141 

Fig. 5. Performance profiles for the four algorithms on the CEC, 

ZDT and MOP problems. Each sub-figure represents the perfor- 

mance profiles considering as a performance measure one of the 

metrics explained in Section 5.1.1 (For interpretation of the refer- 

ences to color in text, the reader is referred to the web version of 

the article). 
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he LAP2 problems, FRONT-ALAMO results show the superiority of our

ethod at exploring the objectives space and creating a spread and uni-

orm Pareto front. The competitors obtained large Γ–spread values with

espect to those of FRONT-ALAMO , since they struggle to explore the

xtreme regions of the front. 

When 𝑛 = 2 , all the methods managed to obtain the same Pareto

ront. However, increasing 𝑛 , the differences between them become

ore and more clear. For instance, NSGA-II performance got worse

ith 𝑛 ≥ 10 . It seems to be unable to spread the search in the objectives

pace and, also, to create a good, although small, Pareto front. The other

radient-free method ( DMS ) performed better but still it hardly reached

he extremes of the objectives space. MOSQP seems not to have this last

egative feature but it generally retrieved very few points and, in ad-

ition, most of them are dominated. However, the MOSQP performance

as good with 𝑛 ≤ 10 . 
The above comments on the algorithm behaviors on the LAP2 prob-

ems are also supported by the numbers in Table 3 . Observe that
10 
RONT-ALAMO , whose performance was quite good on problems with

mall dimension, outperformed the competitors as the value of 𝑛 in-

reased. The superiority of our method when the dimension of a prob-

em is high is very remarkable, especially considering ND–points (we

btained the best value, by far, for this metric in all the four problems),

urity and Γ–spread . As we just highlighted commenting the performance

rofiles, all the algorithms performed well regarding the Δ–spread met-

ic. 

.4. CEC, ZDT and MOP problems 

In this last section of computational experiments, we comment the

esults on the problems characterized only by boundary constraints.

ome of these are very difficult to solve and, in detail, the hardest

nes are the CEC and ZDT problems. The CEC problems have non-

ontinuously differentiable objective functions. The same feature is

resent in the ZDT problems, where the objective functions are also
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omposite. For the sake of brevity, we preferred to show the perfor-

ance profiles related to all these problems. The performance profiles

re shown in Fig. 5 . 

Regarding the ND–points metric, FRONT-ALAMO managed to out-

erform the competitors once again. Indeed, we can conclude that this

s one of the most important peculiarities of our method: its capabilities

llow it to expand the search towards a great portion of the objectives

pace and to retrieve many Pareto points. Considering this metric, the

ther two best competitors were NSGA-II and DMS : because of their

radient-free nature, allowing them to potentially escape from non opti-

al Pareto-stationary points, they managed to obtain good results in the

ost complex functions. On the contrary, the performance difference be-

ween FRONT-ALAMO and the other gradient-based method ( MOSQP )
s very sharp. 

The performance profiles on the purity metric highlight the effec-

iveness of our method: it was not obvious, a priori, to obtain such great

esults with such complex functions, especially when some of our com-

etitors are derivative-free. 

Lastly, considering the spread metrics, our results are competitive

ith respect to the other competitors. In particular, in the Γ–spread

erformance profiles FRONT-ALAMO was the third best algorithm,

hile the gradient-free methods ( NSGA-II and DMS ) managed to have

lightly better performance. Regarding the Δ–spread , NSGA-II turned

ut to be the most robust algorithm. However, the performance profiles

n this metric are another proof of the effectiveness of the four algo-

ithms to retrieve an uniform Pareto front. 

. Conclusions 

In this paper, we considered smooth multi-objective optimization

roblems subject to convex constraints. We focused on the task of gener-

ting good Pareto front approximations for this class of problems. After

 brief review of the existing literature, we proposed an Augmented La-

rangian Method specifically designed for this task. 

The method represents an extension of the ALAMO procedure from

occhi and Lapucci (2020) , which is designed to produce a single Pareto-

tationary solution. The proposed algorithm handles, at each iteration,

 list of points that are mutually non-dominated and Pareto-stationary

ith respect to the current multi-objective augmented Lagrangian. Line

earches along steepest common and partial descent directions are em-

loyed to carry out an exploration of the objectives space. The penalty

arameter and the Lagrange multipliers are updated taking into account

onstraints violations committed by all the points in the current list. 

For this algorithm, we proved global convergence to Pareto-

tationarity of the sequences of points in the iterates lists. This type

f convergence is more general than that based on linked sequences.

ith respect to the only other derivative-based method for this kind

f problems, the SQP from ( Fliege and Vaz, 2016 ), we obtain similar

symptotic properties for the limit points, but our method does not stop

he exploration phase after a finite number of iterations. 

Moreover, thorough computational experiments show that our

ethod outperforms the SQP algorithm in terms of popular metrics for

ulti-objective optimization. We also compared the proposed procedure

ith the state-of-the-art derivative-free ( DMS ) and genetic ( NSGA-II )
pproaches. Our procedure proved to obtain better results even w.r.t.

he two mentioned ones. 
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11 
ppendix A. Modified form of the OSY problem 

In this Appendix, we introduce the modified version of the OSY prob-

em ( Osyczka and Kundu, 1995 ) used in the computational experiments.

he modification is carried out in order to make the feasible set and the

bjective functions convex. 

min 
 ∈ℝ 6 

𝑓 1 ( 𝑥 ) = 25( 𝑥 1 − 2) 2 + ( 𝑥 2 − 2) 2 + ( 𝑥 3 − 1) 2 + ( 𝑥 4 − 4) 2 + ( 𝑥 5 − 1) 2 

𝑓 2 ( 𝑥 ) = 

∑6 
𝑖 =1 𝑥 

2 
𝑖 

.t. 𝑥 1 + 𝑥 2 − 2 ≥ 0 , 
6 − 𝑥 1 − 𝑥 2 ≥ 0 , 
2 − 𝑥 2 + 𝑥 1 ≥ 0 , 
2 − 𝑥 1 + 3 𝑥 2 ≥ 0 , 
4 − ( 𝑥 3 − 3) 2 − 𝑥 4 ≥ 0 , 
−( 𝑥 5 − 3) 2 + 𝑥 6 − 4 ≥ 0 , 
0 ≤ 𝑥 1 , 𝑥 2 , 𝑥 6 ≤ 10 , 
1 ≤ 𝑥 3 , 𝑥 5 ≤ 5 , 
0 ≤ 𝑥 4 ≤ 6 . 
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