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Abstract

Aims

To compare the biometric data from partial coherence interferometry (PCI) and swept-

source OCT (SS-OCT) in patients with age-related cataract and epiretinal membrane

(ERM): ERM, ERM with foveoschisis and macular pseudohole.

Methods

49 eyes of 49 subjects including 36 ERM, 9 ERM foveoschisis and 4 macular pseudohole

were analysed to evaluate the axial length (AL) measurements and the presence of AL mea-

surement errors, defined basing on the shape of the biometric output graphs and on the con-

cordance of AL values between instruments. Eyes with ERM were divided in four stages

according to OCT features (i.e. presence/absence of the foveal pit, presence of ectopic

inner foveal layers, disrupted retinal layers).

Results

The devices provided similar mean AL measurements in all subgroups, with differences

<0.1 mm in 41/49 cases (83.6%). AL measurement errors were observed in ERM stages 3

and 4, characterized by ectopic inner foveal layers, and were significantly more frequent

with the PCI (8/17, 47%) as compared with the SS-OCT device (2/17, 12%), p = 0.02. The

refractive prediction error in cases with AL measurement errors was significantly greater

using the PCI compared to the SS-OCT device (p<0.05).

Conclusion

Both devices provide reliable biometric data in the majority of patients and can be used in

the preoperative assessment of patients with age-related cataract and ERM. In eyes with
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ectopic inner foveal layers, attention should be paid as AL measurement and refractive pre-

diction errors may occur, more frequently with the PCI device.

Introduction

Surgical procedures for vitreoretinal interface (VRI) disorders are nowadays more frequently

performed on patients presenting with a relatively good visual acuity (i.e. 20/32), with a major

need for optimal refractive and visual acuity outcomes [1, 2].

When a combined procedure (i.e. cataract and vitreoretinal surgery) is chosen, a correct

intraocular lens (IOL) power calculation is among the main determinants of a satisfactory

post-operative refraction [3, 4]. Moreover, with the increased use of premium IOLs (e.g. toric

IOLs) even in patients with VRI disorders, the post-operative refraction has become crucial

[5, 6].

In patients with VRI disorders, incorrect IOL power calculations are more commonly

driven by errors in axial length (AL) measurement, as previously reported [7]. It is the pres-

ence of any epiretinal material (e.g. epiretinal membrane, thick posterior hyaloid), whose

reflectivity may reduce or imitate that of the retinal pigment epithelium (RPE), that may pre-

vent a correct AL estimate. Both ultrasound and optical biometers have been previously evalu-

ated in patients with VRI disorders, with documented underestimations in AL measurements

in those cases presenting epiretinal material [8].

New swept-source devices have been developed to analyse the anterior segment and to pro-

vide corneal, anterior chamber and AL measurements, with the potential advantage of a higher

tissue penetration, faster acquisition, greater depth of field and image quality.

The Anterion swept-source optical coherence tomography (SS-OCT; Heidelberg Engineer-

ing, Germany) has been recently introduced and the accuracy and repeatability of its results

have been tested with promising results [9, 10].

Aim of the present study is to compare the biometric data in patients with age-related cata-

ract and VRI disorders using a partial coherence interferometer (PCI) and a SS-OCT.

Materials and methods

This study, conducted in the Ophthalmology unit of Santa Croce Hospital, Moncalieri, Italy,

was approved by the Ethics Committee (protocol number 155/2020, general registry number n

˚11486 4th September 2020, Inter-Hospital Ethics Committee, San Luigi Gonzaga Hospital,

Orbassano, Italy) and adhered to the tenets of the Declaration of Helsinki. Informed consent

was obtained from all subjects.

Subjects’ inclusion criteria were the presence of age-related cataract and VRI disorders

including epiretinal membrane (ERM), ERM with foveoschisis and macular pseudohole pre-

senting an indication for combined cataract and vitreoretinal surgery.

Epiretinal membranes, ERM with foveoschisis and macular pseudohole were classified

according to the International Vitreomacular Traction Study (IVTS) group and to a recent

consensus [11, 12]. ERM were furthermore classified according to OCT appearance as pro-

posed by Govetto et al [13] (Fig 1). In brief, the authors classified the ERM considering the fol-

lowing OCT features: stage 1 was characterized by the presence of the foveal pit, stage 2 by its

absence while stages 3 and 4 by the presence of ectopic inner foveal layers with well-defined

(stage 3) or disrupted (stage 4) retinal layers.

The indication for surgery was given by the surgeon (FF) basing on symptoms (metamor-

phopsia), visual acuity and clinical findings (degree of cataract, age, OCT features).
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Fig 1. Subgroup biometric outputs and OCT scans. The six rectangular boxes represent the six subgroups analysed

in the study, as reported in the captions (top left). Left part: in the light blue rectangles are reported the biometric

outputs (x-y graphs) from the PCI device. The axial length (AL) in mm is reported on the x-axis, the signal amplitude

is reported on the y-axis. The peak of the blue line is normally placed at the retinal pigment epithelium (RPE) level.

The small blue rectangle on the right reports the mean AL. The small white rectangle on the right reports the signal-to-

noise ratio (SNR). Middle part: anterior segment SS-OCT scan (top), graph reporting the signal intensity throughout

the anterior segment (middle) and the biometric outputs (x-y graphs) from the SS-OCT device (bottom). In the

biometric output the AL in mm is reported on the x-axis, the signal amplitude is reported on the y-axis. The blue line

may present a single or double retinal peak. When present, the first retinal peak is located at the vitreoretinal interface,

while the second peak is located at the RPE level. Right part: infrared image of the posterior pole (left) and horizontal

OCT B scan (right) passing through the fovea. Left part, bottom: PCI and SS-OCT mean AL measurements. Left part,

middle: AL differences between the devices and shape of the biometric outputs; when present, a double peak was

described as minimal (intensity below< 50% of the second peak), moderate (between 50% and 100%), significant

(> 100%).

https://doi.org/10.1371/journal.pone.0257654.g001
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Patients who underwent previous ocular surgery or suffered from other retinal diseases

(e.g. age-related maculopathy, pathologic myopia, glaucoma, uveitis, retinal vascular diseases)

were excluded. Patients presenting opaque media (e.g. corneal leucoma, mature or subcapsular

cataract) or poor fixation stability (e.g. nystagmus) reducing the reliability of acquired data

were also excluded.

Axial length calculation and analysis

IOL Master 500 (Zeiss, Germany) and Anterion SS-OCT examinations were performed before

pupil dilatation. Axial length measurements were performed in both eyes using the IOL master

500 and Anterion SS-OCT devices.

IOL Master examinations with a sound-to-noise (SNR) value < 100 and Anterion SS-OCT

examinations with a “fail” report were recorded but excluded from the analysis.

The IOL master 500 provides data on white-to-white distance, corneal curvature, anterior

chamber depth and AL, as previously described [14]. In the current study, the AL was the out-

come of interest that is, in brief, obtained by partial coherence interferometry, based on the

Michelson interferometer using a laser diode that generates infrared light (λ = 780 μm) of

short coherence length (CL = 160 μm). The system allows precise measurements of distances

between the corneal and retinal interfaces, independent of longitudinal eye movements.

Anterion SS-OCT uses a 1300 nm light source, providing an axial resolution lower than

10 μm, a lateral scan angle up to 16.5 mm wide and a scan depth range of 14±0.5 mm. The

wavelength of the Anterion SS-OCT allows a complete, all-in-one evaluation of the anterior

segment. The device contains 2 imaging modalities, a lateral scanning SS-OCT and an infrared

camera. The first one is used for cross-sectional imaging providing data on corneal thickness

and curvature, corneal aberrations, aqueous depth, lens thickness, anterior chamber volume

and AL; the second one allows an en-face imaging of a subject’s eye showing pupil characteris-

tics [15].

Both instruments provide an AL measurement from the corneal surface to the RPE. The

mean AL measurement values, as reported by each device as the resultant of several consecu-

tive measurements, were recorded for each patient.

Both devices provide an x-y graph showing the intensity peaks (placed on the RPE) used to

calculate the axial length.

The RPE peaks could be influenced in shape and width by several factors like opacities (e.g.

corneal, lenticular, vitreous) and hyper-reflective material (e.g. epiretinal material, vitreomacu-

lar tractions). In case of epiretinal material, a double peak could be observed, with the first at

the ERM level and the second at the RPE level.

In this study, to evaluate the incidence of AL measurement errors, we performed a case-by-

case analysis considering the reported AL obtained with each device, resulting in different

scenarios:

• Equal / similar (i.e. within 0.1 mm) AL obtained with the two devices;

• Different AL obtained with the two devices

Then, considering the AL data, we performed an analysis of the x-y graphs, resulting in dif-

ferent scenarios:

• Single peak with equal / similar AL obtained with the two devices: AL measurement error

unlikely (in case, regarding both devices; example in Fig 1)

• Single (or double) peak with different AL obtained with the two devices: AL measurement

error possible (in case, regarding one device; example in Fig 2)
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• Double peak with equal / similar AL obtained with the two devices: AL measurement error

possible (in case, regarding both devices; example in Fig 3)

In presence of a double peak, an AL measurement error occurs when the first peak (at the

ERM) is higher than the second (at the RPE), resulting in an underestimation of the AL.

The Alcon single-piece IOL AcrySof SN60WF (Alcon Laboratories, Inc.; A-constant 118.7

for optical SRK-T) was chosen for implantation at the end of cataract surgery. The Hoffer Q,

SRK-T and Holladay I formulas for IOL power calculations were chosen according to AL and

manufacturers recommendations. For each case, the same formula was used with both devices.

OCT analysis

Spectral-Domain OCT (SD-OCT) examinations were performed with dilated pupils. In all

subjects, a horizontal raster acquisition of� 20x20˚ centred on the fovea, composed by 97

Fig 2. AL measurement error of the PCI device in a case of ERM stage 3. Left part, upper box: PCI biometric output

in a case of ERM stage 3, as shown in the OCT B-scan on the right. The measured mean AL is 21.56 mm, as reported in

the caption and in the blue rectangle. Left part, lower box: PCI biometric output of the same eye 3 months after

combined cataract and vitreoretinal surgery with ERM removal. The measured mean AL is 21.91 mm. Right part:

anterior segment SS-OCT device output. The measured mean AL is 21.98 mm. The pre-operative AL measurement

obtained with the PCI was considered erroneous. In the pre-operative PCI biometric output, a double peak is present

(first: red arrowhead; second: green arrowhead). After surgery, a single peak is present (green arrowhead), likely

corresponding to the second smaller peak visible in the pre-operative output. The first peak in the pre-operative

biometric output likely corresponds to the hyper-reflective vitreoretinal interface and the second to the RPE. In the

SS-OCT biometric output, a moderate double peak is visible, with the first likely representing the vitreoretinal interface

(red arrowhead) and the second the RPE (green arrowhead).

https://doi.org/10.1371/journal.pone.0257654.g002

Fig 3. AL measurement error of the PCI and SS-OCT devices in a case of ERM stage 4. Left part: PCI biometric

output in a case of ERM stage 4, as shown in the OCT B-scan on the right. The measured mean AL is 25.96 mm.

Middle part: SS-OCT biometric output of the same eye with two different measurements. Top: the mean AL, measured

by moving the cursor on the first peak, is 26.04 (highlighted in yellow); bottom: the mean AL, measured by moving the

cursor on the second peak, is 26.34 (highlighted in yellow). The first peak presents greater signal intensity compared to

the second. AL measurements from both devices were considered erroneous. In the PCI biometric output, a double

peak is present with two distinct peaks presenting similar signal intensity. In the SS-OCT biometric output a

significant double peak is visible. The first peaks (red arrowheads) likely correspond to the vitreoretinal interface. The

second peaks (green arrowheads) may correspond to the RPE or outer retinal structures.

https://doi.org/10.1371/journal.pone.0257654.g003
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parallel B-scans was acquired. Adjunctive scans were performed in areas of interest when

deemed necessary.

OCT features were analysed by two expert examiners (FF and CL) and used for group and

subgroup classification.

Statistical analysis

Continuous variables were checked to meet the normality conditions using the Shapiro–Wilk

test. A parametric t-test or a Wilcoxon test was used when deemed necessary to compare the

variables between groups. Statistical analysis was performed using IBM SPSS Statistics (SPSS

Statistics, version 19.0, Chicago, IL, USA). Binary variables were arranged in cross-correlation

tables and studied using the chi-squared test.

Results are presented as the mean ± standard deviation (SD) or as the median with range

for continuous variables, and as proportions (%) for categorical variables. P-values < 0.05

were considered statistically significant.

Results

Fifty-five consecutive patients were enrolled in the study. Six eyes were excluded from the

study due to a SNR< 100 with the PCI (four cases), “fail report” with the SS-OCT (one case)

or both of them (one case).

Forty-nine eyes from 49 patients (mean ± SD age 72.6 ± 5.7 years, range 62–89 years) were

finally included in the study.

Epiretinal membrane were observed in thirty-six patients, ERM with foveoschisis in nine

patients and macular pseudohole in four patients.

Overall, the mean ± SD AL was 23.73 ± 0.98 mm (range 21.56–26.44 mm) using the PCI

device and 23.75 ± 0.97 mm (range 21.98–26.45 mm) using the SS-OCT. There was no signifi-

cant difference in AL measurements between the two devices (p = 0.89).

Overall, the devices reported a difference in AL measurements < 0.1 mm in 41/49 cases

(83.6%).

The analysis of the AL measurement outputs revealed eight cases of AL measurement errors

using the PCI device and two cases using the SS-OCT device. In all cases a thick posterior hya-

loid or an epiretinal membrane were erroneously considered as the RPE, resulting in an under-

estimation of the AL measurement (Figs 1–3).

Subgroup analysis showed no significant AL measurement differences between the devices

in the ERM with foveoschisis and macular pseudohole groups (Fig 2). The analysis of the AL

measurement outputs from both devices revealed no AL measurement errors, with the retinal

peaks correctly placed at the RPE level.

Subgroup analysis showed no significant AL measurement differences between the devices

in the ERM group. The analysis of the AL measurement outputs revealed eight AL measure-

ment errors with the PCI device and two with the SS-OCT device.

According to the classification from Govetto et al, the ERM group was furtherly divided in

4 groups, with ten patients with ERM stage 1, nine with stage 2, nine with stage 3 and eight in

stage 4 [13].

Subgroup analysis of the ERM groups showed no significant AL measurement differences

between the devices in each group. However, the analysis of the AL measurement outputs

revealed a significantly higher number of AL measurement errors with the PCI device as com-

pared with the SS-OCT device in eyes with ERM stage 3 (three versus one error with the PCI

and SS-OCT device, respectively) and stage 4 (five versus one error with the PCI and SS-OCT
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device, respectively), p = 0.02. No AL measurement errors were observed in eyes with ERM

stage 1 and 2.

Patients with AL measurement errors

The eight patients in groups 3 and 4 presenting AL measurement errors underwent uneventful

combined cataract surgery and vitrectomy; the IOL power was chosen on the basis of the mea-

surement obtained 0with the SS-OCT device, after checking for the correct positioning of the

RPE peak (as described in Figs 2 and 3). Three months after surgery, the mean uncorrected

visual acuity was 0.25 ± 0.09 LogMAR, with an absolute mean postoperative manifest refrac-

tion spherical equivalent of 0.22 ± 0.19 D. The two devices were compared in terms of mean

refractive prediction error (PE) was calculated as the difference between the postoperative and

formula-predicted spherical equivalent using the IOL power implanted, as previously

described [16]. The PE calculated for the PCI was been -0.69 ± 0.36 D, significantly greater

compared to that of the SS-OCT (-0.24 ± 0.28 D; p<0.05). Results are summarized in Table 1.

Discussion

In this prospective cohort study, we evaluated the accuracy of AL measurements using two dif-

ferent devices in a cohort of patients presenting age-related cataract and ERM needing com-

bined cataract and vitreoretinal surgery.

Axial length measurement errors were defined on the basis of AL measurement and retinal

peak(s) appearance (Fig 1). Typically, AL measurement errors are characterized by a double-

peak appearance of the retinal wave, with an apparently shorter AL and a consequent myopic

shift in case of IOL implantation based on that data.

Table 1. Mean axial length values from the two devices in the overall cohort and subgroups and statistical analysis.

N PCI AL SS-OCT AL p-value AL measurement errors (N)
mean±SD; range (mm) mean±SD; range (mm)

All patients 49 23.73 ± 0.98; 23.75 ± 0.97; 0.89� PCI = 8; SS-OCT = 2

21.56–26.44 21.98–26.45

• ERM Foveoschisis 9 23.47 ± 1.24; 23.46 ± 1.25; 0.98† Both devices = 0

22.44–26.44 22.39–26.45

• Pseudohole 4 23.94 ± 1.04; 23.93 ± 1.03; 0.99† Both devices = 0

23.31–25.49 23.27–25.46

• ERM (all) 36 23.77 ± 0.93; 23.81 ± 0.90; 0.84� PCI = 8; SS-OCT = 2

21.56–25.96 21.98–26.04

� ERM stage 1 10 23.77 ± 0.83; 23.78 ± 0.81; 0.99† Both devices = 0

22.62–25.01 22.67–25.03

� ERM stage 2 9 23.80 ± 0.80; 23.80 ± 0.81; 0.99† Both devices = 0

22.41–24.92 22.44–24.92

� ERM stage 3 9 23.62 ± 1.13; 23.77 ± 1.06; 0.78† PCI = 3; SS-OCT = 1

21.56–25.45 21.98–25.47

� ERM stage 4 8 23.89 ± 1.07; 23.91 ± 1.06; 0.97† PCI = 5; SS-OCT = 1

23.00–25.96 23.04–26.04

PCI: partial coherence interferometry; AL: axial length; SD: standard deviation; SS-OCT: swept-source optical coherence tomography; ERM: epiretinal membrane

�: Wilcoxon signed-rank test
†: paired t-test.

https://doi.org/10.1371/journal.pone.0257654.t001
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Overall, no significant differences in AL measurements emerged among the two devices

(p = 0.89) as well as in each subgroup (Table 1).

The SS-OCT device presents a high wavelength (i.e. over 1000 nm), that provides a great tis-

sue penetration and in ocular biometry it demonstrated a high efficiency in both healthy and

age-related cataract eyes [17–19]. However, no previous literature compared PCI and SS-OCT

devices in patients with VRI disorders (e.g. ERM or VMT), where AL measurement errors can

occur, due to the retinal and epiretinal alterations [20].

Previous studies used PCI devices to study AL measurements in patients with VRI disor-

ders, presenting different results. Kojima et al observed the presence of a double peak using a

PCI device in the 35% of patients presenting an ERM, greater than macular oedema (20.5%)

and macular hole (4.2%) [8]. The authors reported a significative positive correlation between

interpeak distance and central retinal thickness and concluded that, in presence of a double

signal within the retinal peak, the second peak (representing the RPE) should be considered

for a correct AL calculation. Kim et al, in a cohort of eyes with cataract and ERM found a post-

operative myopic shift using both ultrasounds and PCI [21]. Similar results were observed by

Kovacs et al, who proposed, in patients with ERM, an adjustment of the AL measured with

ultrasounds considering the central retinal thickness derived with the OCT [22].

On the other hand, Van der Geest et al, using a PCI device to calculate IOL power in

patients undergoing phacovitrectomy for VRI disorders, found no significant differences in

post-operative refractive outcomes as compared to a control group (phacoemulsification only,

no VRI disorders) [23]. More recently, Vounotrypidis et al, compared the IOL Master 500

with the IOL Master 700 in the evaluation of the biometric measurements and predictive

refractive accuracy in patients affected by age related cataract and VRI disorders [24]. The

authors found significant differences between the devices in terms of prediction error within

0.5 dioptres and mean absolute error, both in favour of the IOL Master 700 [24].

In this study, a low rate of AL measurement errors was observed with both devices, being

significantly lower for the SS-OCT (2/49, 4.1%) as compared to the PCI (8/49, 16.3%),

p = 0.045. Interestingly, the AL measurement errors were all observed, for both devices, in eyes

with ERM stages 3 and 4 (i.e. with ectopic inner foveal layers) with, respectively, one and one

error for the SS-OCT and three and five errors for the PCI device (p = 0.02) (Figs 2 and 3).

These findings resulted in a clinically relevant difference in terms of refractive PE, that would

have brought to a significantly greater mean myopic shift of 0.69 D with the PCI compared to

0.24 D for the SS-OCT device (p<0.05).The cause of AL measurement errors in patients with

severe ERM could be related to: (1) a thick ERM / posterior hyaloid (that being highly reflective

accentuate the vitreo-retinal interface), (2) the attenuation of the RPE reflectivity caused by the

ERM itself, and (3) by a thicker retina and the presence of ectopic inner foveal layers [8, 25].

However, a thick ERM / posterior hyaloid could be found in ERM stages 1 and 2, where no

AL measurement errors were observed and the presence of intraretinal cysts, as well, could be

observed in all ERM stages, in ERM with foveoschisis and in other retinal diseases, with a

lower incidence of AL measurement errors [8, 26]. Finally, the presence of inner foveal layers

is also observed in cases of foveal dysgenesis (e.g. foveal aplasia, Fig 4) and may persist after

ERM+ILM peeling, with no reported cases of AL measurement errors.

As previously reported, ERM stage 3 and 4, presenting a poorer surgical prognosis, are

characterized by greater retinal thickness, ectopic inner foveal layers and a consequent lower

visibility of the outer retinal structures [13, 27, 28]. We can hypothesize that the coexistence of

all these features is at the basis of the AL measurement errors in our cohort of patients with

ERM stage 3 and 4.

Although a significantly lower number of AL measurement errors was observed using the

SS-OCT device due to its intrinsic characteristics, the risk of a significant postoperative myopic
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shift in patients with severe ERM remains remarkable. In such cases, a differed approach with

the vitreoretinal surgery performed before the cataract surgery may reduce this by removing

the epiretinal hyperreflective material and inducing a normalization of the retinal thickness.

However, this approach unlikely resolves the inner retinal layers ectopia and, on the other

hand, presents the disadvantages of a two-step surgery [3, 29–31].

This study has some limitations. First, our results should be interpreted with caution as the

sample size is small, especially for subgroup analysis; this is particularly evident in the subco-

hort of pseudohole patients; nevertheless, the main finding of the study was the significantly

higher number of axial length measurement errors with the PCI in ERM patients groups 3 and

4, which was observed on a relatively larger sample size. Further studies on bigger cohorts are

needed to support our data. Second, a single valid exam was performed with each machine,

therefore impeding an evaluation of data repeatability. However, the repeatability of each

instrument was already tested in previous studies [9, 10]. Third, although the aim of our study

was to compare the AL measurements using two different technologies, we do not have post-

operative data on patients’ refraction, that would have been useful in quantifying the refractive

outcomes.

In conclusion, the PCI and SS-OCT devices present great accuracy in the AL calculation in

patients with age-related cataract and ERM. In a limited subgroup of patients presenting more

severe ERM, characterized by inner foveal layer ectopia, AL measurement errors were

observed with both devices and were significantly less frequent with the SS-OCT. The choice

of the IOL in such cases should be cautiously performed by looking at the biometric graphs, to

avoid unexpected postoperative refractive outcomes.
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tial Coherence Interferometry (PCI) and the Swept-Source OCT (SS-OCT) device. Patients

data are sequentially reported and grouped on the basis of their vitreoretinal interface disorder

in: epiretinal membrane (ERM, stages 1 to 4), macular pseudohole and ERM with foveoschisis.
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