
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN MATEMATICA
CICLO XXXVI

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Matteo Focardi

Reconstruction problems on graphs
and discrete sets: theoretical results

and algorithms
Settore Scientifico Disciplinare MAT/03

Dottorando:
Niccolò Di Marco

Tutore
Prof. Andrea Frosini

Coordinatore
Prof. Matteo Focardi

Anni 2020/2023

Contents

1 Introduction 3
1.1 Graph and Hypergraph Theory . 3
1.2 Discrete Tomography . 6

2 Basic Notions 9
2.1 Graphs and hypergraphs . 9

2.1.1 Classes of intersection graphs 11
2.1.2 Convexity on graphs . 11

2.2 Notions on polyominoes . 13
2.2.1 Coding the boundary of a convex polyomino 14
2.2.2 Christoffel words . 15

3 Null label problem 19
3.1 Problem definition and previous results 19
3.2 The 2-intersection graph and its connection to the null label problem . . 21

4 Reconstruction of the 2-intersection graphs 32
4.1 Properties of graphs in L2

3 . 32
4.2 Computational complexity of 2-intersection property 37
4.3 Reconstruction of Claw-Free Graphs 46

4.3.1 Claw-free graphs in L2
3 . 47

4.3.2 Complexity of recognizing claw free graphs in L2
3 49

4.3.3 Complexity of recognition for triangulated claw-free graphs in L2
3 54

4.4 Further results . 62
4.4.1 NP-complete problems in the class L1

k 63
4.4.2 Hamiltonian cycle detection in L2

3 63
4.4.3 Recognition problem for trees 64

5 Minimum Surgical Probing 65
5.1 Definition of MSP and previous results 66
5.2 The MSP problem on classes of hypergraphs 67

1

2

5.2.1 3-hypergraphs whose 2-intersection graph is a line 69
5.2.2 3-hypergraphs whose 2-intersection graph is a tree 74

5.3 Convex Minimum Surgical Probing 78
5.3.1 Reduction Algorithm . 80
5.3.2 Label Vectors with Support 1 81
5.3.3 Graphs with Small Maximum Cliques 82
5.3.4 Grid Graphs . 88
5.3.5 King’s Graphs . 89

6 Reconstruction of convex polyominoes and related problems 92
6.1 Reconstruction of Convex Polyominoes 92

6.1.1 The reconstruction of hv-convex polyominoes from horizontal
and vertical projections . 93

6.1.2 An approach to reconstruct convex polyominoes from horizontal
and vertical projections . 96

6.1.3 Previous results . 98
6.1.4 Convexity preserved by k-SAT clauses 101
6.1.5 Properties of the k-SAT formulas to impose global convexity . . 103

6.2 MSP for polyominoes . 106
6.2.1 P 8 scans to reconstruct hv-polyominoes 108
6.2.2 Small cases for P 8 . 112
6.2.3 P 4 scans to reconstruct hv-polyominoes 113
6.2.4 Small cases for P 4 . 115

7 Appendix 123

Chapter 1

Introduction

This PhD thesis covers research topics belonging to Graph Theory and Discrete Tomog-
raphy, two fields of discrete mathematics. Nowadays, they both have become funda-
mental research areas and constitute a bridge between theoretical computer science and
mathematics.

Graph Theory and Discrete Tomography have many points in common since, usually,
graphs can be considered as a topological generalization of what is generally studied in
Discrete Tomography (e.g. binary matrices, discrete planes, etc.). However, this latter
area is more involved in reconstruction problem, which asks to retrieve some spatial
information starting from some type of aggregate measurements.

The following sections will introduce the main goals and objectives of these two
areas, focusing on the problems that are covered here.

1.1 Graph and Hypergraph Theory
Graphs are mathematical structures that model relationships between objects and Graph
Theory is the discipline that studies their geometrical, topological and statistical proper-
ties.

In particular, a graph is an ordered pair that consists of a set of objects (called vertices
or nodes) and a set of relations between them (called edges).

The story of graph theory begins with a puzzle known as the Seven Bridges of
Königsberg, which posed the question of whether it was possible to take a walk through
the town of Königsberg crossing each one of its bridges on the Pregel river exactly once,
returning to the starting point.

The puzzle was solved by Euler in 1735, who approached the problem analytically
by modelling land masses as vertices and bridges as edges, using for the first time the
concept of graph. In general, mathematicians initially deal with graphs as recreational
objects, studying them as puzzle games [1].

3

4

Quickly after this event, many mathematicians and computer scientists started to
study these objects, focusing also on the computational complexity of problems related
to them. Table 1.1 shows examples of problems on graphs and their relative complexity.
However, many others are still unsolved, as for the graphs isomorphism problem.

Problem Complexity
Hamiltonian cycle NP − complete [2]

Eulerian cycle Polynomial [3]
Graph isomorphism Unknown

Clique detection NP − complete [4]
Vertex cover NP − complete [4]

Table 1.1: Examples of problems on graphs and their complexity.

Mathematicians noted also that this type of structure has an enormous modelling
potential since they can represent important phenomena in different areas of mathematics
and computer science [5, 6, 7, 8, 9, 10]. They also find application in several further areas
such as chemistry, psychology, sociology and economy [11, 12, 13, 14].

Recently, the concept of hypergraph has been introduced as a generalization of graphs.
In particular, hypergraphs are composed, similarly to graphs, by a set of vertices and a
set of edges. The main differences consist in allowing edges to contain a general num-
ber of vertices, thus modelling more than dyadic interactions. Obviously, this new no-
tion depicts much more complex scenarios. For this reason, the simplified concept of
k−uniform hypergraph is usually considered, i.e. a hypergraph in which each hyperedge
contains exactly k vertices. In particular, a graph can be considered as a 2−uniform hy-
pergraph.

In this PhD thesis, we consider reconstruction problems on hypergraphs and graphs.
This class of problem roots in the recognition of graphs from their degree sequences.
This question has been a challenging problem whose solution dates back to the well-
known result of Erdös and Gallai [15] in 1960: an integer sequence d = (d1, . . . , dn) is

graphic (i.e. it exists a graph G with that degree sequence) if and only if
n∑

i=1

di is even

and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, 1 ≤ k ≤ n.

This same problem related to hypergraphs remained open until 2018 when Deza et
al. proved its NP-completeness [6] even in the simplest case of 3-uniform hypergraphs.

Before this result, many necessary and a few sufficient conditions were present in the
literature and they mainly rely on a result by Dewdney [16]. As an example, Behrens et

5

al. [17] proposed a sufficient and polynomially testable condition for a degree sequence
to be k-graphic; their result still does not provide any information about the associated
k-hypergraphs. Soon after, in [18, 19, 20], a series of polynomial time algorithms were
proposed to reconstruct one of the k-hypergraphs associated with each degree sequence
of some classes including that studied in [17].

These type of problems deals with the determination of geometrical properties of un-
known objects, usually modelled by binary matrices, from their projections, i.e., quanti-
tative measurements of the number of primary constituents along prescribed directions
(see [21, 22] for the main results and the open problems). So, the reconstruction of a
k-hypergraph from its degree sequence can be translated in the reconstruction of a bi-
nary matrix, i.e., its incidence matrix, from horizontal and vertical projections, i.e., the
constant vector of entries k and the degree sequence, respectively.

However, some relevant related questions remain open, in particular, the study of the
uniqueness (up to isomorphism) of k-hypergraphs sharing the same degree sequence.

After Chapter 2 in which we provide basic definitions and results, in Chapter 3 we
deal with this problem by considering two hypergraphs H1 and H2 with the same de-
gree sequence. Their symmetric difference H1 ⊖H2 produces a null hypergraph when
assigning a +1 and −1 label to each hyperedge of H1 and H2, respectively. Vice versa,
given a null hypergraph H , call H1 the hypergraph with the same vertex as H but only
the positive hyperedges of H and H2 the same but with only the negative hyperedges of
H . It’s easy to see that H1 and H2 have the same degree sequence. In [23], the notion of
null hypergraph has been used to study the changes performed on hyperedges that allow
one to move through all the 3-hypergraphs with the same degree sequence. We link the
null label of a k-hypergraph with its 2-intersection graph, showing that the existence of
a Hamiltonian cycle in the 2-intersection graph is sufficient to define a null label of the
related k-hypergraph.

Following this line of research, we focused on classes of intersection graphs, that
were revealed to be a useful tool in the null label problem. In particular, intersection
graphs are constructed by general hypergraphs considering connections among the hy-
peredges. These objects have been studied also in previous work, where the main focus
was to determine the complexity of recognizing if a graph can belong to a certain class
of intersection graphs (see [24] for an example).

Following these footsteps, in Chapter 4 we detail the known results about these ob-
jects. In particular, we prove that is NP−complete to decide if a certain graph is the
2−intersection graph of a 3−uniform hypergraph and the same holds considering claw-
free graphs. However, moving to triangulated claw-free graphs, the problem can be
solved polynomially.

To further extend the connection with the Discrete Geometry field, in Chapter 5 we
consider the Minimum Surgical Probing (MSP) problem, which asks to retrieve some
numerical values assigned to each vertex of a hypergraph using aggregate measures over

6

the set of neighbours of each node. This question arises from the Microscopic Image
Reconstruction problem, well-known in Discrete Geometry and it has been recently in-
troduced and solved for graphs [25] having labels with real values.

We finally extend the framework to hypergraphs and we solve the problem for classes
of hypergraphs defined according to their 2−intersection graph. Since in general the
problem is NP−hard if binary labels are considered, we decided to step back to graphs
and consider graph convexities. In particular, in the final section of the chapter, we
consider MSPconv, a variant in which we ask to reconstruct binary labels arranged to
form a convex subset of the graph under consideration.

1.2 Discrete Tomography
Discrete Tomography (DT) is a field of research that emerged in the last 30 years when
researchers in Material Science and Electron Microscopy dealt with reconstruction prob-
lems starting from projections collected by crossing a material with a beam that counts
the number of atoms crossed [26]. They intended to use the same strategies as in Comput-
erized Tomography (CT) in order to reconstruct the 3D structure of different materials.
However, CT algorithms have been created to deal with materials at a scale in which
they can be assumed continuous and poorly adapt for a level where the set of atoms is
closer to a discrete set of points. This issue, together with other difficulties, led to the
development of tomography techniques that can be used to reconstruct discrete objects.
For example, see [27, 28] for crystalline structures analyzed through DT perspective.

In this context, the technologies gave the impulse to study a new range of questions
dealing with the reconstruction of discrete sets of points, initiating Discrete Tomography.

So, DT concerns the retrieval of geometrical information about the internal (and
so sometimes inaccessible) structure of combinatorial objects from quantitative mea-
surements of their primary constituents along linear (or multidimensional, in general)
subspaces. These measurements are usually addressed as projections. The involved
combinatorial objects may vary from generic discrete sets to constrained ones as graphs
or hypergraphs ([21, 23]). Among the studied problems in DT, we find the retrieval of
necessary and sufficient conditions for a pair of vectors to be the horizontal and vertical
projections of an m × n binary matrix. Since, in general, the number of matrices shar-
ing the same projections grows exponentially with their dimension, in most applications
some further information is needed to obtain a solution as close as possible to the orig-
inal object. For example, it has been proven that reconstructing discrete set from three
or more projections is NP−complete [29]. Therefore, research tackles the algorithmic
challenges of limiting the class of possible solutions in different ways, e.g. increasing
the number of projections or adding geometrical information, like adding convexity con-
straints.

Among connected (finite) sets a dominant role deserved to polyominoes, that are

7

4−connected (i.e. vertical and horizontally connected) sets of points of the integer lat-
tice, considered up to translation.

In [30] the authors present an algorithm (called, from now on,HV Rec) to reconstruct
hv-convex set in polynomial time starting from their horizontal and vertical projections.
This algorithm consists of two separate parts: it first reconstructs an internal hv−convex
kernel of points which is common to all the convex polyominoes having the input pro-
jections. Then, it expands the kernel to reach the desired projections maintaining the
hv−convexity by means of a 2− SAT formula φ, one of whose valuations correspond-
ing to one of the searched solutions can be computed in polynomial time.

On the other hand, the computational complexity of the reconstruction of full convex
polyominoes is still an open problem, but it may benefit from the strategy described
above. Interestingly, the problem of the uniqueness for (fully) convex sets has been solved
in [31], where the authors find that in general 7 directions are needed to obtain a unique
reconstruction, since in some particular cases 6 directions create ambiguities.

In particular, in Chapter 6 we consider this problem by defining a generalization of
HV Rec, called CRec. The idea is the following: starting from a couple of horizontal
and vertical projections our algorithm executes the kernel reconstruction performed by
HV Rec with further inclusion of the points in its convex hull, so obtaining a convex
kernel.

The last part of the algorithm expands the kernel reaching the desired projections
by using, in general, a formula whose valuations represent all the possible solutions to
the reconstruction problem. Unfortunately, shifting to full convexity, this formula, say
φConv, becomes a generic SAT one, sliding its computational complexity to the non-
polynomiality, assuming that P ̸= NP . We deepen the characteristics of φConv and
offer a perspective to decrease its computational complexity.

In [32, 33], the authors stressed that, differently from the hv-convex polyominoes
reconstruction, the formula φConv imposes convexity on a specific region of the border
of the kernel without, in general, providing the global convexity of the whole border.
This observation turns out to be the main reason that prevents the extension of HV Rec
to the case of convex polyominoes and the motivation of our study.

In the final section of Chapter 6 we consider the retrieval of hv−convex polyomi-
noes using scans obtained from square and cross windows. This problem is called Mi-
croscopic Image Reconstruction and has been defined in [34]. In particular, the authors
consider projections taken over a rectangular scanning window W .

As previously discussed, an extension of this problem, called Minimum Surgical
Probing (MSP), has been initially introduced in [25]. The authors consider a graph
instead of a set of points lying in the Z2 grid, where each vertex of the G = (V,E) is as-
sociated with a real value ℓv. The task is to find the minimum number of surgical probes
(i.e., the minimum number of known points’ values) to uniquely recover ℓv for each node
v ∈ V given the neighborhood probes (projections) Pv =

∑
u∈N [v] ℓu, with N [v] being

8

the neighbors of v. This question arises from the fact that, in general, there are multiple
configurations satisfying the same projections. In particular, the uniqueness of the re-
construction depends on the rank of the associated adjacency matrix of the considered
graph G.

As one can easily imagine, MSP can be naturally adapted to binary matrices and
polyominoes to deal with cases in which no unique solution exists to the problem. In
general, different matrices satisfy the same projections, and therefore it becomes relevant
to find the minimum number of surgical probes needed to uniquely determine it.

Keeping the framework, our work concerns the MSP problem on polyominoes. More
precisely, we investigate the possibility of a fast and faithful reconstruction of hv-convex
polyominoes using projections obtained from square or diamond windows, i.e., from the
knowledge of the 8 or 4-neighborhood aggregate values, respectively.

We provide some algorithms to perform the reconstruction task: if the dimensions of
the unknown hv-polyomino are greater than 5, then the faithful reconstruction is achieved
without surgical probes; otherwise, at most two surgical probes are required. This same
study related to 4-neighbours scans is then performed, obtaining analogous results.

Chapter 2

Basic Notions

In this chapter, we introduce the main definitions and set the notation used throughout
the Thesis, providing some results that introduce the research lines.

2.1 Graphs and hypergraphs
A graph G is defined as a pair G = (V,E) such that V = {v1, . . . , vn} is the set of
vertices or nodes and E ⊆ V × V is a collection of pairs of vertices called edges.
For each v ∈ V , we define the open neighbourhood N(v) = {w ∈ V | (v, w) ∈ E}.
Similarly, we define N [v] = N(v)∪{v} its closed neighbourhood. The degree of v ∈ V
is d(v) = |N(v)|.

For S ⊆ V , let G[S] denote the subgraph of G induced by S, which has vertex set S
and edge set {(u, v) ∈ E | u, v ∈ S}. For v ∈ V , we write G − v = G[V \ {v}].
Similarly, for S ⊊ V and v ∈ V \ S we write G[S] + v = G[S ∪ {v}]. For e ∈ E, we
write G− e = (V,E \ {e}).

A subset S ⊆ V is a clique if G[S] is a complete graph, i.e., every pairwise distinct
vertices u, v ∈ S are adjacent. We denote with Kp the clique on p vertices and we
indicate K3 as a triangle. K1,p is the star on p + 1 vertices, that is, the graph with
V = {u, v1, v2, . . . , vp} and E = {(u, v1), (u, v2), · · · , (u, vp)}. In particular, a special
case is K1,3, known as claw. For example, consider the graph G depicted in Figure 2.1.
G[{v1, v2, v3}] is a triangle while G[{v4, v5, v6, v7}] is a claw.

For S ⊂ V the clique G[S] is maximal if for any v ∈ V \ S then G[S] + v is not a
clique.

A path is a sequence of distinct vertices such that two consecutive vertices are con-
nected by an edge, i.e. Pk = u1u2 . . . uk, with (ui, ui+1) ∈ E. A cycle C is a path
in which the first and the last nodes are equal, i.e. u1 = uk. A cycle is Eulerian if it
crosses each edge exactly once. On the other hand, a cycle is Hamiltonian if it crosses
each vertex exactly once. For k ≥ 1, Pk = u1u2 · · ·uk is a chordless path if no two

9

10

v1 v2

v3

v4 v7

v5

v6

Figure 2.1: The subgraph induced by {v1, v2, v3} forms a triangle. On the other hand,
the subgraph induced by {v4, v5, v6, v7} forms a claw.

vertices are connected by an edge that is not in Pk, i.e. if VPk
= {u1, . . . , uk} then

G(VPk
) = Pk. Finally, a path Pk = u1u2 . . . un is triangular if each chord has the form

(ui, ui+2) ∈ E, 1 ≤ i ≤ n − 2. Similar definitions hold for chordless and triangu-
lated cycles. For example, consider the graph depicted in Figure 2.3. The path ubcv is
a shortest path, while udegv is a chordless path (it is not a shortest path, but it does not
contain any chord). Finally, the path uabcv is a triangle path. In fact, only a short chord
is present.

A chordless cycle of length greater than 4 is called a hole. A graph without a hole
is chordal or, equivalently, triangulated. A cut-edge in a connected graph G is an edge
e ∈ E such that G− e is not connected.

For a fixed graph H we write H ⊆ G whenever G contains an induced subgraph
isomorphic to H . Instead, G is H-free if G has no induced subgraph isomorphic to H .

The notion of graph can be generalized to that of hypergraph by removing the con-
straint on the cardinality of the edges: a hypergraph H = (V,E) is formed by a set
V = {v1, . . . , vn} of vertices and a set E ⊆ P(V) of hyperedges. In the sequel we
indicate them, with an abuse of notation, as edges. The notion of neighbours and degree
simply generalize the ones of graphs.

In the sequel, we will consider only graphs and hypergraphs that are simple, i.e., they
do not allow multiple edges and an edge cannot contain the same vertex multiple times.
A hypergraph whose hyperedges have fixed cardinality is called k-uniform, or simply a
k-hypergraph (in particular, the case k = 2 corresponds to graphs).

The degree sequence (d1, d2, . . . , dn) of a hypergraph is the list of its vertex degrees
arranged in non-increasing order.

Given two hypergraphs H1 and H2 we define their symmetric difference H1 ⊖H2 as
the hypergraph having the same vertex set and edge set equal to E1⊖E2 := (E1 \ E2)∪
(E2 \ E2).

11

2.1.1 Classes of intersection graphs
Given a k−hypergraph H , it is possible to use the following notion to construct new
graphs related to H .

Definition 1. Given a k-uniform hypergraph H = (V,E), its l-intersection graph G =
Ll
k(H), 1 ≤ l < k is a graph G = (E,F) such that the vertex set is E and ee′ ∈ F if

and only if |e ∩ e′| = l, i.e. two hyperedges of H share exactly l elements.

In general, we define Ll
k as the class of graphs G such that there exists a k-uniform

hypergraph H such that G = Ll
k(H). In such a case we say that G has the l−intersection

property or it is reconstructable. In particular, L1
2 is called the class of the line graphs,

usually denoted as L(G), widely studied in Graph theory. Figure 2.2 shows an example
of a graph G and its L1

2(G).

4

2

3

1

{1, 2}

{3, 4}

{2, 3} {1, 4}

{1, 3}

G L2
1(G)

Figure 2.2: An example of a graph (left) and its line graph (right).

To conclude, for two vertices u, v, we define their multiplicity as the number of edges
containing both u and v. Moreover, m(H) denotes the maximum multiplicity among all
pairs of vertices.

In chapter 4 we investigate the complexity of the reconstruction of graphs in Ll
k,

focusing on L2
3.

2.1.2 Convexity on graphs
Convexity on graphs is a well-studied notion. We introduce standard definitions follow-
ing [35]. Let C ⊆ P(V) be a family of subsets of V . The pair (V, C) is a convexity space
if ∅, V ∈ C, and C is closed under intersection.

The elements of C are the convex sets. For U ⊆ V , the convex hull ⟨U⟩C is the
smallest convex set containing U . The pair (G, C) is a graph convexity space if (V, C)
is a convexity space and G[U] is connected for any U ∈ C. The most natural examples
of graph convexities are path convexities which are defined by interval functions I :

12

V × V 7→ P(V). Interval functions extend to subsets U ⊆ V as follows: I(U) =⋃
u,v∈U I(u, v). For path convexities, the convex hull ⟨U⟩C is given by I(U). Set U is

convex if I(U) = U , i.e., U is closed under the operator I . By definition u, v ∈ I(u, v)
and I(v, v) = {v}.

We consider convexities based on shortest paths and chordless paths. We define the
following interval functions for vertices u, v ∈ V .

IGg (u, v) = {w ∈ V | w is on a shortest path between u and v in G}.
The shortest paths between two vertices are called the geodesics. A set U ⊆ V is g-
convex if U = IGg (U), and Cg := {U | U = IGg (u)} is the geodesic convexity. The
following is the second interval function we consider.

IGm(u, v) = {w ∈ V | w is on a chordless path between u and v in G}.
Chordless paths are induced paths and are called monophonics. A set U ⊆ V is

m-convex if U = IGm(U), and Cm := {U | U = IGm(U)} is the monophonic convexity.
A short chord of a path P is a chord that connects two vertices with distance 2 along

P , i.e., (u, v) is a short chord if (u,w) and (v, w) are path edges, for some vertex w.
Note that u, v, w form a triangle. A triangle path is a path that admits only short chords
and leads us to the final interval function.

IGt (u, v) = {w ∈ V | w is on a triangle path between u and v in G}.
A set U ⊆ V is t-convex if U = IGt (U), and Ct := {U | U = IGt (U)} is the triangle

path convexity.
If the graph G is clear from the context, we drop the super-script in the interval

functions. Figure 2.3 illustrates the differences between the path convexities. Observe
that Ig(u, v) ⊆ Im(u, v) ⊆ It(u, v), for any u, v ∈ V . Finally, we remark that the sets
I(u, v) (for each path convexity) can be computed in polynomial time.

u v

a b c

d e g

Figure 2.3: For vertices u and v, let Ig(u, v) be the set of all vertices on a shortest path
between them (analogously, we define Im(u, v) and It(u, v)). For the example graph,
verify that Ig(u, v) = {u, b, c, v}, Im(u, v) = Ig(u, v) ∪ {d, e, g}, and that It(u, v) =

Im(u, v) ∪ {a}.

We use the notion of convex graphs in Chapter 5, where we study a reconstruction
problem on graphs, call Minimum Surgical Probing, that ask to find a convex subset of
the vertex set.

13

2.2 Notions on polyominoes
Now we move to planar discrete sets of points, that constitute the second main part of the
Thesis. A planar discrete set S is a finite set of points of the integer latticeZ2, considered
up to translation. The dimension of S are those of its minimal bounding rectangle. The
set S can be naturally represented as a set of unitary cells centred on the points of S (see
Fig. 2.4, (a)). Note that we can indicate S equivalently as a binary matrices. In general,
we indicate as p = (x, y) the points of Z2 with integer coordinates (x, y).

A row (resp. column) of S is its intersection, when non-void, with an infinite strip
of cells whose centres lie on horizontal (resp. vertical) lines.

To each discrete set of dimension m × n we can associate two integer vectors H =
(h1, . . . , hm) and V = (v1, . . . , vn) using the following definition.

Definition 2. Given a finite lattice set S ⊆ Z2 included in the rectangle [1,m]× [1, n],
its vertical projections is the vector V ⊆ Zm whose i−th coordinate vi is the number
of points of S in the vertical line x = i. Similarly, its horizontal projections of S is
the vector H ∈ Zn whose j−th coordinate counts the point in the horizontal line y =
m− j + 1.

For example, the horizontal projections of the discrete set depicted in Figure 2.4 are
H = (1, 2, 3, 4, 2, 1, 1) while its vertical projections are V = (3, 3, 1, 6, 1).

Moreover, we define the feet of a finite lattice set S ⊆ Z2.

Definition 3. Given a finite lattice set S ⊆ Z2, suppose that ymin(S) (ymax(S)) is the
minimum ordinate (abscissa) of the points of S and a similar definition holds for xmin(S)
and xmax(S). We define the South, East, North and West feet as the sets:

• South(S) = S ∩ {y = ymin(S)};

• West(S) = S ∩ {x = xmin(S)};

• East(S) = S ∩ {x = xmax(S)};

• North(S) = S{y = ymax(S)}.

A wide literature links the geometrical and topological characteristics of discrete sets
with their projections [21, 22]. A special focus is on the properties of connectedness and
convexity, providing several results on the related sub-classes.

So, we define a polyomino P a 4−connected (i.e. connected along horizontal and
vertical directions) planar discrete set. P is h−convex (resp. v−convex) if each rows
(resp. columns) is connected (see Fig 2.4, (b)). If P is both h-convex and v−convex
then we say that P is hv−convex. Moreover, we say that a binary matrix is hv−convex
if its 1−entries form a hv−convex polyomino.

14

A notion of convexity resembling that of continuous sets has been defined, taking
care of pathological situations that may arise when continuous convex shapes are dis-
cretized into convex discrete sets [36, 37]. In the case of polyominoes, the notion of
convexity turns in the natural simple form of the equivalence between the polyomino
and its convex hull (see Fig 2.4, (c) and (d)).

(b) (c) (d)(a)

Figure 2.4: (a) a generic discrete set of points inZ2 and its representation as a set of cells
on a squared surface; (b) a vertically convex polyomino; (c) a hv-convex polyomino. Its
convex hull and the cell that prevents it to be full convex are dashed and highlighted; (d)
a (full) convex polyomino and its convex hull.

2.2.1 Coding the boundary of a convex polyomino
We initially present some concepts of combinatorics on words. Let Σ denote a finite set
of symbols. Its elements are called characters and Σ is called the alphabet. A word over
Σ is an element of Σ∗ =

⋃
n∈N{wi1 . . . win|wij ∈ Σ, 1 ≤ j ≤ n} . If w = w1 . . . wn ∈

Σ∗, we define its length |w| = n, i.e. the number of characters in it. Moreover, we denote
with |w|a the number of occurrences of letter a in word w. The mirror images of w is
the word w̃ = wn . . . w1. If w = w̃, w is a palindrome word. The words w,w′ are said to
be conjugate if there exists u, v such that w = uv and w′ = vu. The conjugacy class of
a word is defined as the set of all its conjugates and is equivalent to the set of all circular
permutations of its letters.

Taking a step back to discrete geometry, it is common to represent a polyomino
(without holes) through its boundary word [38], i.e., the word on four letter alphabet
W ′ = {0, 0̄, 1, 1̄} obtained by coding the path that clockwise follows the boundary of
the cell representation of the polyomino starting from a specific point. We choose to
associate the letters 0 (resp. 1) to the horizontal (resp. vertical) step, while 0̄ and 1̄ rep-
resent the horizontal step and the vertical step when travelling in opposite directions with
respect to 0 and 1, respectively. Note that the boundary word depends on both the starting
point and the orientation used to travel the border. However, they all belong to the same

15

conjugacy class, previously defined. If the polyomino is hv-convex, we can identify four
points W,N,E and S as the points where the polyomino’s boundary first touches the
west, north, east and south sides of its minimal bounding rectangle, respectively, when
moving clockwise along it.

These four points determine four paths, according to the starting and ending points,
i.e., WN , NE, ES and SW -paths, as depicted in Fig. 2.5. A path is WN -convex (resp.
NE, ES and SW -convex) if it is the WN -path (resp. NE, ES and SW -path) of a
convex polyomino. Each of the four paths is monotone, i.e., it uses only two of the four
Freeman coding steps.

00

0000

00

00

000

1

1

1

1

1

1

1

1

0

0 0

0

0 0

0 0 0

0

0 0

0

1

1

1

1

1

1

1

1

N

E

S

W

Figure 2.5: The boundary of an hv-convex polyomino and its decomposition into four
monotone paths.

Note also that the paths divide the polyomino into 4 areas, which we denote with
WN,NE,ES and SW .

2.2.2 Christoffel words
Recall that if a, b ∈ N, then a and b are co-prime if 1 is the only positive integer that
divides both a and b. We introduce the definition of lower Christoffel path.

Definition 4. Given two co-prime integer numebrs a, b, the lower Christoffel path of
slope a/b is the (discrete) path from (0, 0) to (b, a) in the integer lattice Z2 that satisfies
the following condition:

• the path lies below the line segmente that begins at the origin and ends at (a, b);

• the region in the plane enclosed by the path and the line segment contains no other
points of Z2 besides those of the path.

16

The upper Christoffel path is defined analogously, using paths in Z2 that lie above
the line segment.

Figure 2.6 shows an example of an upper and lower Christoffel path. We also intro-
duce the concept of Lyndon word.

Definition 5. A Lyndon word l ∈ Σ∗ is a word such that l = uv, with u, v,∈ Σ∗ implies
that l < uv, where < is the standard lexicographical order.

For our purposes, Lyndon words are important due to the following result.

Theorem 1. [39] Any word w ∈ Σ∗ admits a unique factorization as a sequence of
decreasing Lyndon words w = ln1

1 . . . lnk
k , l1 > l2 > . . . > lk, where ni ≥ 1 and each li

is a Lyndon word.

To both Christoffel paths one can associate the so-called Christoffel word on the
binary alphabet Σ = {0, 1}, such that the letter 0 represents a horizontal step and the
letter 1 a vertical step. The Christoffel word commonly indicates the word w related to
its lower Christoffel path and whose slope ρ(w) equals a

b
. Since the upper and the lower

Christoffel paths of the same slope are mirror images of each other, the two related words
w̃ and w are mirror images of each other. By definition, |w| = |w̃| = a + b. Figure 2.6
represents the Christoffel words associated with the two paths.

Figure 2.6: (a) the lower Christoffel path of the segment with slope 5
8

and the related
Christoffel word w; (b) the upper Christoffel path of the same segment and the word w̃

associated to it. The points min(w) and c(w̃) are also highlighted

It is well known that each Christoffel word w different from 0 or 1 can be uniquely
split as a concatenation of two smaller Christoffel words w1 and w2, providing the so-
called standard factorization introduced in [40]. In fact, the following Theorem holds.

Theorem 2. [40] A Christoffel word w has a unique factorization w = uv (indicated as
standard factorization), where u and v are both Christoffel words.

17

Such factorization involves the (unique) closest point c(w) from the line segment of
slope ρ(w) = a

b
. So, it holds that w = w1w2, where w1 is the word leading from (0, 0) to

c(w), and w2 is the word leading from c(w) to (a, b). By abuse of notation, we indicate
with c(w) also its index position in w. Moreover, we indicate as min(w) the (index of
the) furthest point from the same line (see Fig. 2.6). Note that min(w) is also (the index
of) the closest point in the upper Christoffel word w̃, i.e., min(w) = c(w̃).

It is worthwhile noticing the following property of Christoffel words.

Proposition 1. [36] A word w is NW−convex if and only if its unique Lyndon factor-
ization w = ln1

1 . . . lnk
k is such that all li are primitive Christoffel words.

This result provides a simple and elegant way to determine if a polyomino is convex.
In [37] it has been proved that such a decomposition is unique and it can be obtained
by the Lyndon factorization of the WN -path. Moreover, the authors also provide an
algorithm that uses these notions to compute the convex hull of a polyomino.

We use the notions of polyominoes and Christoffel words in Chapter 6, where we
study their reconstruction starting only horizontal and vertical projections, and then con-
sidering some aggregate measure over certain types of windows.

18

Chapter 3

Null label problem

In this chapter we consider the null label problem on 3−hypergraphs. In particular, we
focus on the 2−intersection graphs L2

3(H) of a 3−hypergraph H and we prove that if
L2
3(H) is Hamiltonian then H has a null label. We highlight that the results of this

chapter have been published also in [41].

3.1 Problem definition and previous results
Consider a hypergraph H = (V,E). We can assign a label l in the set {+1,−1} to each
edge, resulting in positive and negative ones. We can then define the following notions:

Positive signed degree d+l (v) = |{e ∈ E : v ∈ e and l(e) = +1}|, i.e. the number of
positive edges that contain v;

Negative signed degree d−l (v) = |{e ∈ E : v ∈ e and l(e) = −1}|, i.e. the number of
negative edges that contain v;

Signed degree dl(v) = d+l (v)− d−l (v).

An assignment of ±1 to the edges of H result in a null labelling if d(v) = 0, for all
vertices v and the relative hypergraph is said to be null. Note that an obvious necessary
condition for a hypergraph to have a null labelling is that each vertex must have even
degree, i.e., it is an even hypergraph. In this chapter we consider the following problem.

3-Hypergraph Null Labelling Problem (3-NLP): LetH be a connected, even 3-hypergraph.
Does there exist an assignment of ±1 to the edges of H that produces a null label?

Interestingly, we can consider 3−NLP also from a tomographical perspective. Con-
sider two hypergraphs H1 and H2 with the same degree sequence and assign +1 to each
hyperedge ofH1 and−1 to the edges ofH2. It’s easy to see that the symmetric difference

19

20

H1 ⊖ H2 produces a null hypergraph. Vice versa, given a null hypergraph H , we can
obtain two hypergraphs with the same degree sequence following this procedure: call
H1 the hypergraph with the same vertices as H but containing only the positive edges of
H . Similarly, H2 contains only the negative edges of H . As said, it’s easy to see that H1

and H2 have the same degree sequence.
Null hypergraphs have been firstly used in [23] to study a set of operations that allow

one to move through all the 3-hypergraphs with the same degree sequence. Moreover,
in a follow-up paper [42], the following conjecture has been proposed.

Conjecture 1. All connected, even 3−hypergraphs on n vertices with more than 1
2

(
n
3

)
edges have null labelling.

In the appendix we provide some Matlab code that generates 3−hypergraphs and
checks if they are null. So far, the empirical results obtained through computations sup-
port the previous statement.

In fact, in the case of n ≤ 7 and even hypergraphs, the exhaustive computations show
that:

i) if |E| ≥ 1
2

(
n
3

)
then all the hypergraphs admit null labelling;

ii) if |E| < 1
2

(
n
3

)
then there exist hypergraphs both admitting and non-admitting null

labelling.

However, no formal proof is present at the moment, even if some results (also the one
presented in this chapter) seem to suggest its validity. Interestingly, the conjecture also
implies that dual hypergraphs (i.e. that have complementary edges set) do not preserve
the null property.

For example, consider the following 3−hypergraphs, whose edges are arranged as a
matrix.

H =


1 5 6

3 4 6

2 4 5

1 2 3


It is easy to see that H has no null label. However, its dual is a null 3−hypergraph.

The interested reader can utilize the Matlab code provided in the appendix to check the
previous statement.

In [42], the following lemma is proved.

Lemma 1. [42] A graph G is null if and only if every connected component is an Eule-
rian graph with an even number of edges.

21

In particular a consequence of the result is that, when considering a graphG, the Null
Label problem simply reduces to search for an Eulerian Tour in G or a Hamiltonian cycle
in its Line Graph L1

2(G). This lemma also characterizes the graphs with even degrees
and an even number of edges that do not have null labelling: they must be disconnected
graphs such that at least two connected components have an odd number of edges.

However, moving to 3−hypergraphs, the situation becomes more complex. In par-
ticular, in [42] it is shown that the problem of finding null labelling even for the simplest
case of 3-hypergraphs is NP-complete.

Therefore, we are interested in finding suitable subclasses of 3−hypergraphs that are
null. Note that this problem also connects to the previous Conjecture 1.

The first results in this direction used the notion of intersection graph of a 3−hypergraph.
Formally it is defined as L1

3(H) (see Chapter 2). Importantly, this is a first extension of
the idea of line graphs to 3-hypergraphs. In [42] the following result was proved.

Theorem 3. [42] Let H be a connected, even 3-hypergraph, in which every vertex has
degree two. Then H has a null labelling if and only if L1

3(H) is bipartite.

However, the inspection of L1
3(H) does not provide useful hints, in general, to the

existence of null labelling in the related 3−hypergraph as shown in the following exam-
ple.

Example 1. Consider the following 3-hypergraphs H1 and H2 on six vertices whose
edges, arranged in matrix form, are:

H1 =


1 2 3

1 4 5

2 4 6

3 5 6

 H2 =


1 2 5

2 3 5

2 3 4

1 2 4


It is easy to check that the vector of labels l = (1,−1, 1,−1), where l(i) is the

label of the i-th edge of the 3-hypergraph or, equivalently, of the i-th row in the matrix
arrangement of its edges, is a null label for H2. On the other hand, an easy check reveals
that H1 has no null labelling. However, H1 and H2 have the same intersection graph K4,
i.e. the complete graph on four vertices.

3.2 The 2-intersection graph and its connection to the
null label problem

In the previous section, we recalled some simple results about null labelling, highlighting
that L1

3(H) does not provide enough information about the null label of hypergraphs in
general. Relying on this fact, we decide to use graphs in L2

3. In particular, for the sake of

22

simplicity, we call these graphs 2−intersection graphs of 3-hypergraphs. Interestingly,
they reveal to be a valuable tool for a deeper investigation of 3-NLP.
Example 2 and the related Fig. 3.1 shows the 2−intersection graph of a 3−hypergraph.
Note also that the hypergraphs considered in Example 1 have different L2

3(H), contrary
to the case of L1

3(H). We are interested in studying some properties of the 2-intersection
graph that are relevant to obtain information about the existence of null labelling in the
related 3-hypergraph. In particular, we prove that the existence of a Hamiltonian cycle
in L2

3(H) is sufficient for a 3−hypergraph to be null. This idea comes from the fol-
lowing observation: we know that a connected, even graph G is Eulerian and an Euler
tour in G corresponds to a Hamiltonian cycle in its line graph L1

2(G) (and viceversa).
From Lemma 1 we know that it also corresponds to a null labelling of G. Therefore,
Hamiltonian cycles in L1

2(G) can be used to determine null labellings of G.
Since the notion of 2−intersection graph is similar to that of the line graph of a graph,

we suppose that also similar properties hold. It is well known (see [43]) that a line graph
uniquely decomposes into maximal cliques, with at most a vertex in common. A similar
result holds also in L2

3(H), as shown in the next chapters.

Example 2. Consider the following hypergraph H = (V,E) in which V = {1, . . . , 6}
and E = {{3, 4, 5}, {3, 5, 6}, {1, 3, 5}, {3, 4, 6}, {2, 4, 6}, {4, 5, 6}, {1, 2, 6}, {2, 3, 5},
{1, 2, 5}, {1, 2, 4}, {1, 2, 3}, {1, 4, 6}}.

The 2-intersection graph of H is shown in Figure 3.1. One can check that the edges
with the same label form a clique.

A first naive strategy to produce a null labelling of a 3−hypergraph starting from a
Hamiltonian cycle C consists of alternately labelling ±1 the vertices of C to obtain an
initial label of H . Note that this strategy leads to a null label for line graphs of even
graphs.

However, the alternating labelling ofC does not always provide a null labelling ofH ,
as witnessed by the following example. Note that we indicate with vei the node relative
to edge ei.

Example 3. Consider the 3-hypergraphH = (V,E) on six vertices andE = {e1, . . . , e8},
where e1 = {1, 2, 3}, e2 = {1, 2, 4}, e3 = {1, 2, 5}, e4 = {1, 2, 6}, e5 = {1, 3, 4}, e6 =
{1, 3, 5}, e7 = {2, 3, 5}, e8 = {2, 5, 6}.

The related 2-intersection graph L2
3(H) in Fig. 3.2 has the Hamiltonian cycle C1 =

(ve1 , ve3 , ve2 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1)
It is easy to check that alternately labelling ±1 the vertices of C1, starting with +1,

we obtain the null labelling l1 = (1, 1,−1,−1,−1, 1,−1, 1) on the eight edges of H
such that l1(i) is the label of ei, with 1 ≤ i ≤ 8.

However, a second Hamiltonian cycle C2 = (ve1 , ve2 , ve3 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1)
exists such that the alternating labelling l2 = (1,−1, 1,−1,−1, 1,−1, 1) is not null on
H , as d(v4) = −2 and d(v5) = +2.

23

{2,3,5}

{1,3,5}

{1,2,3}

{1,2,5}

{1,2,6}

{1,2,4}

{3,5}

{3,5}

{3,5}

{3,5}

{3,5}

{3,5}

{1,3}

{2,5}

{1,5}

{2,3}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2} {1,4}

{2,6}{1,6}

{2,4}

{4,6}

{4,6}

{4,6}

{4,6}

{4,6}

{4,6}

{3,4}

{5,6}

{3,6}

{4,5}

{3,4,5}

{3,5,6}
{3,4,6}

{4,5,6}

{2,4,6}

{1,4,6}

Figure 3.1: The 2-intersection graph of the 3-hypergraph H in Example 2. The edges
are labelled according to the pairs shared by their vertices.

Let us introduce some notation: suppose that vei and vej are two consecutive vertices
of the Hamiltonian cycle C of L2

3(H), with ei = {u, x, y} and ej = {v, x, y}. We say,
by extension, that vej belongs to node v ∈ H . We see that v ̸∈ ei. There may be several
consecutive vertices of C that contain v. Denote by pv = (vej1 , . . . , vejk) the longest
sub-path of C starting in vej such that every vertex of pv contains v. Let l(pv) denote
the labels of the vertices of pv, σ(l(pv)) denote the sum of the elements of l(pv) and let
|pv| denote the length k − 1 of pv, i.e., its number of edges. If pv contains just a single
vertex, we set |pv| = 0.

In the case presented above, ei = {u, x, y} is clearly the last vertex in the path pu.
We define next(pu) = pv, i.e., given a path pu, next(pu) is the path beginning at the first
vertex following the last vertex of pu. In general, C may contain several different sub-
paths of the form pv, for each vertex v; we indicate them by p1v, . . . , p

n
v . The following

example clarifies the definitions.

Example 4. Consider the 2−intersection graph depicted in Figure 3.3.
Consider the path p5 = {{1, 3, 5}, {1, 2, 5}, {2, 3, 5}}. We have l(p5) = {−,+,−}

and therefore σ(l(p5)) = −. Moreover, |p5| = 3 and next(p5) = p6.
Finally, note that some distinct subpaths are associated with the same node (e.g.

nodes 3 and 5).

Using the subpath notation we are able to characterize null labels from a different

24

ve1

ve5 ve6

ve7

ve8ve4

ve2 ve3

Figure 3.2: The 2-intersection graph of the 3-hypergraph considered in Example 3.

{2,3,5}

{2,4,5}

{1,2,5}

{1,3,5}

{1,3,4}

{1,2,4}

 {2,4,6}

{2,3,6}

{1,3,4} {1,3,5} {2,3,5} {2,3,6} {2,4,6} {2,4,5}{1,2,5} {1,2,4}

+ - + + +- - -

p3 p2

p5 p6

p1

p3 p4

p5

I2(H) :

C:

Figure 3.3: A 2-intersection graphL2
3(H) and one of its Hamiltonian cyclesC are shown.

The sub-paths pv related to the vertices of H are highlighted. Note that in each vertex of
L2
3(H) starts (resp. ends) a sub-path related to two, non-necessarily distinct, vertices of

H . For example, a path p5 that reduces to the single vertex, i.e. starting and ending in
{2, 4, 5} is highlighted in red.

perspective.

Property 1. Consider an alternating labelling±1 on the vertices of a Hamiltonian cycle

25

C of L2
3(H). For each sub-path pv = (vej1 , . . . , vejk), the following holds:

• if pv has odd length, then σ(l(pv)) = 0, so the labels of the edges ej1 , . . . , ejk
containing v sum to zero in H . In this case, the first and the last vertex of pv have
different labels;

• if pv has even length, then σ(l(pv)) ̸= 0 and the sum of the labels of the edges
ej1 , . . . , ejk containing v contribute +1 or −1 to the signed degree of v. In this
case, the extremal vertices of pv have the same label.

The proof of this property is straightforward. Figure 3.3 shows the 2-intersection graph
of a 3-hypergraph on six vertices and eight edges. One of its Hamiltonian cycles and the
sub-paths related to the vertices of H are highlighted. Note that the paths in the figure
circle around the right edge of the diagram back to the left edge.

Let us continue analyzing the properties of the alternating labelling l(C) of a Hamil-
tonian cycle C of L2

3(H). Property 1 assures that, if the labelling l(C) produces a signed
degree dl(v) = d ̸= 0 for vertex v, then there exists at least p1v, . . . , p

|d|
v subpaths with

the same sum of labels (i.e. +1 or −1 depending on the sign of d).
We define the distance d(pu, pv) between two paths pu and pv as the distance along

C between the last point of pu and the first point pv. Note that any two of the previous
|d| subpaths have even distance. The above observations lead to the following lemmas.

Lemma 2. LetH be an even 3-hypergraph andL2
3(H) its 2-intersection graph. IfL2

3(H)
has a Hamiltonian cycle C, an alternating±1 labelling l(C) defines a null label of H if
and only if, for each v ∈ V :

i) each subpath pv has odd length;

OR

ii) the number of subpaths of v having even length is even and the sum of their labels
is zero.

The proof is straightforward. We emphasize that ii) expresses the condition that, for
each vertex v of H , there is the same number of subpaths of pv having label +1 as −1.

We also have the following lemma.

Lemma 3. Let H be a 3-hypergraph and C a Hamiltonian cycle of L2
3(H), and let

ve = {u, x, y} be a vertex of L2
3(H). There are exactly three subpaths containing ve,

namely pu, px and py. One of them begins at ve and one of them ends at ve (possibly the
two paths may collapse into a single one having a vertex only).

26

Proof. Let us assume w.l.o.g. that the next vertex of C intersects ve in two vertices, say
x and y. Suppose w.l.o.g. that e′ = {v, x, y} is the next vertex of C. The previous
vertex, say e′′, also intersects ve in two vertices, wlog, either x, y or u, x. Then either
e′′ = {w, x, y} or e′′ = {u, x, w}, for some w. In the first case, we have pu begins and
ends at ve. In the second case, we have pu ends at ve and py begins.

In the sequel, we describe an algorithm that modifies an alternating ±1 labelling of
a Hamiltonian cycle C not satisfying the conditions of Lemma 2 in order to obtain a null
labelling of H . This algorithm relies on the Switch operator defined as follows.

Definition 6. Given two sub-paths pu = (vei1 , . . . , veik) and pv = (vej1 , . . . , vejk′
),

where pv = next(pu), and eik ̸= ej1 , the operator Switch(pu, pv) produces a new labelling
l′(C) by changing the signs of eik and ej1: l′(eik) = −l(eik) and l′(ej1) = −l(ej1); at the
same time, it keeps the remaining labels of l(C) unchanged.

Figure 3.4 shows an example of the action of Switch(p2, p5).

{1,2,3} {2,3,4} {3,4,5} {3,5,6}

+ - + -+ -

p2 p5

Figure 3.4: Example of Switch(p2, p5) between the two consecutive paths p2 and p5,
i.e., such that p5 =next(p2). The switch operator changes l({2, 3, 4}) from − to + and
l({3, 4, 5}) from + to −.

We will start with an alternating labelling l(C), and gradually change it using Switch()
to produce a null labelling of H .

Property 2. Let H be a 3-hypergraph, C a Hamiltonian cycle of L2
3(H), and l a ±1

labelling of C. Consider a sub-path pu of C whose last element vei with label +1,
and the sub-path pv = next(pu) whose first element vej with label −1. The operator
Switch(pu, pv) updates l into l′ so that dl′(u) = dl(u)− 2, dl′(v) = dl(v) + 2 and all the
remaining signed degrees are left unchanged.

Proof. W.l.o.g., assume that ei = {u, x, y} and ej = {v, x, y}. It is immediate to realize
that the change of the opposite labels of ei and ej preserves the signed degrees of x and
y, while it subtracts 2 from u and adds 2 to v. As the starting labels of ei and ej are
opposite, a symmetric result holds.

27

The algorithm Balance() defined below modifies a labelling l(C) of a Hamiltonian
cycle C of L2

3(H) in order to change, after a sequence of successive applications of the
Switch() operator, the signed degree of two input vertices u and v of H , if possible,
otherwise it gives failure.

Algorithm 1 Balance(u, v, l(C))
Input: the label l(C) of a Hamiltonian cycle C, and two vertices u and v of H with
signed degrees dl(u) > 0 and dl(v) < 0.
Output: The label l′(C) such that dl′(u) = dl(u)− 2 and dl′(v) = dl(v) + 2.

pi = pu such that |pu| is even and σ(l(pu)) = +1

while true do
pj = next(pi)

Switch(pi, pj)

if |pj| is odd then
pi = pj;

else if a non already considered p′j exists such that |p′j| is even and p′j starts with +1

label then
pi = p′j

else
FAILURE;

end if
end while
return the final l′(C) as OUTPUT.

First, we prove that the algorithm Balance() computes a null labelling starting from
the alternating labelling l(C) in the easiest case of having only two signed degrees u and
v different from zero, in particular +2 and −2, respectively.

Lemma 4. Let H be a 3-hypergraph, C a Hamiltonian cycle of L2
3(H), and l an alter-

nating labelling of C. If u and v are the only nodes of H with signed degree different
from zero, in particular dl(u) = +2 and dl(v) = −2, then Balance(u, v, l(C)) returns
a null labelling l′(C) of H .

Proof. Since dl(u) = 2, there exists at least one subpath pu such that |pu| is even and
σ(l(pu)) = +1, i.e. it starts and ends with two elements labelled with +1.

The While cycle in Balance(u, v, l(C)) starts by performing the switch between
pu and pj = next(pu) and l is updated to l′. Since l is an alternating labelling, the first
element of pj has label−1, so after Switch(pu, pj), we have dl′(u) = 0, dl′(j) = dl(j)+2,

28

and by Property 2, the other signed degrees do not change. Now, if |pj| is even and j = v,
then dl′(pv) = 0 and l′ is the desired null labelling.

On the other hand, if |pj| is odd, then it ends with a+1 label and its successor next(pj)
starts with a −1. So, after updating pi = pj and pj = next(pi), Switch(pi, pj) is again
performed and the new l′ changes back the signed degree of i to zero, while +2 is added
to the signed degree of the new j. Note that in this case, even if j = v, the algorithm
continues applying Switch until reaching a |pv| of even length and such that σ(l′(pv)) =
−1.

If the last case |pj| is even and j ̸= v occurs, then we move to another new even p′j
such that σ(l(p′j)) = +1. Such a p′j always exists since dl(j) = 0, and consequently the
number of even sub-paths containing j whose labels sum up to +1 equals those whose
labels sum up to −1. So, FAILURE never occurs starting from an alternating labelling
l.

Finally, the result is obtained by observing that Balance(u, v, l(C)) does not loop
since the number of subpaths of C is finite and each of them is involved in the while
cycle at most once since the procedure always switches a sub-path that ends with a +1
with a sub-path that ends with −1.

Lemma 5. Let H = (V,E) be a 3-hypergraph, C a Hamiltonian cycle of L2
3(H) and l

an alternating labelling of C. If v1 and v2 are the only nodes of H with signed degree
different from zero with respect to l, say dl(u) = +2k and dl(v) = −2k, where k ≥ 1,
then H admits a null labelling.

Proof. This is obtained by k successive runs of Balance(u, v, li(C)), with 0 ≤ i < k,
where li+1(C) is the labelling obtained as output of Balance(u, v, li(C)). We set l0 = l;
the output lk of Balance(u, v, lk−1(C)) provides a null labelling of H .

We emphasize that from the second run of Balance() until the last one, i.e., the k-th
run, the choice of a new starting sub-path pu is always possible. In fact, from dl(u) =
+2k it follows that in l(C) the number of sub-paths of u whose labels sum up to +1
exceeds exactly by k those whose labels sum up to −1. A last remark is required: since
two different runs of Balance() start from different sub-paths pu, their computations do
not involve the same sub-path twice. So, each call of Switch() in the k runs of Balance()
always modifies two elements of C whose labels are alternate, as set by l(C).

This same reasoning can be generalized when more than two vertices of H have
non-null signed degrees leading to our main result

Theorem 4. LetH be a 3-hypergraph. If the 2-intersection graphL2
3(H) is Hamiltonian,

then H admits a null labelling.

The proof of this theorem and the related computation of the null label of H directly
follow from the proofs of Lemmas 4 and 5, after observing that we can iterate the calls

29

of Balance(u, v, l(C)) varying u among all the vertices with signed degree greater than
zero until reaching the first vertex v among those having signed degree less than zero.

Note that this result provides evidence of Conjecture 1. In fact, it is easy to see that
the 2−intersection graph of 3−hypergraphs having a large number of edges tend to be
complete graphs. In this case, we can obviously apply Theorem 4. Therefore, from a
certain threshold, it is true that all the 3−hypergraphs are null. Further studies could
provide a closed form to this threshold and study its asymptotic properties. To help the
reader in the visualization of this property, we provide some Matlab code in the appendix
to compute and show the 2−intersection graph of a given 3−hypergraph.

We conclude with an example that shows the computation of a null labelling with a
sequence of applications of Balance, in accord with Theorem 4.

Example 5. Consider the following 3−hypergraph H = (V,E) with V = {1, . . . , 8}
and E = {{2,3,5}, {2,5,8}, {2,4,8}, {1,4,8}, {1,4,7}, {1,6,7}, {1,4,6}, {1,5,6}, {5,6,7},
{1,5,7}, {1,2,7}, {1,2,3}, {2,3,6}, {3,6,8}, {3,7,8}, {3,5,8}}

Figure 3.5 shows a Hamiltonian cycle C of L2
3(H), and one of its alternating la-

bellings l(C).

{2,3,5} {2,5,8} {2,4,8} {1,4,8} {1,4,7} {1,6,7} {1,4,6} {1,5,6}

{5,6,7} {1,5,7} {1,2,7} {1,2,3} {2,3,6} {3,6,8} {3,7,8} {3,5,8}

+ - + - + +

+ + + +

- -

- - - -

p2 p1

p4p7p8

p4 p6

p7 p3

p2p2p2

p1 p6 p7

p5

Figure 3.5: A Hamiltonian cycle of L2
3(H) and its labelling.

The chosen labelling is not a null labelling of H . The vector of the signed degrees
of the vertices of H is

d = (−2, 2, 0, 2,−2, 0, 2,−2).
Let us perform a sequence of runs ofBalance() to compute a null labelling ofH starting
from l(C).

30

Let us start, as an example, the run Balance(2, v, l(C)) in the p2 sub-path having
{2, 3, 5} as first element. It is performed the call Switch(p2, p1), with p1 = next(p2)
and |p1| even. Since dl(1) = −2, we perform the choice v = 1, and the switchings
of {2, 4, 8} and {1, 4, 8} leading to the labelling l1(C) such that dl1(1) = dl1(2) = 0,
leaving the remaining labels unchanged.

Let us now arbitrarily choose the vertex 7 such that dl1(7) = +2 and runBalance(7, v, l1(C))
with the starting p7 sub-path whose first element is {5, 6, 7}. The sub-path p3 = next(p7)
has odd length so the labels of {1, 2, 7} and {1, 2, 3} are switched and we obtain d(7) = 0
and d(3) = +2. Now p8 = next(p3) and the labels of {2, 3, 5} and {2, 5, 8} are switched
obtaining d(3) = d(8) = 0. Since |p8| is even, the run Balance(7, v, l1(C)) ends setting
v = 8. A new labelling l2(C) is returned as output.

Two more vertices with signed degrees different from zero are left, i.e., the vertices 4
and 5. A last run ofBalance(4, 5, l2(C)) is performed. Taking the p4 subpath containing
only {1, 4, 6}, we have p5 = next(p4) with |p5| even. Therefore, switching the sign of
{1, 4, 6} and {1, 5, 6} we obtain a new labelling l3 such that dl3(4) = dl3(5) = 0 and
Balance(4, 5, l2(C)) ends. Therefore, the labelling

l3 = (−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1)

is a null labelling of H . Note that the order of the calls of Balance() is not relevant in
order to obtain a null labelling of H .

Some further results can be obtained. In particular, note that provided an even graph
G with n connected components and such that each component has an even number of
edges, we can find a null labelling of G by considering, for each component, an Eulerian
cycle and assigning alternatively ±1 to its edges. This means that the line graph L(G)
has n components, each having a Hamiltonian cycle, where we can alternately assign±1
to the vertices of each Hamiltonian cycle to obtain a null labelling in the same fashion.
It is easy to realize that a similar result holds also for 3−hypergraphs.

Proposition 2. Let H be a 3-hypergraph whose 2-intersection graph G = L2
3 has n

connected components G1, . . . , Gn. If each connected component Gi, with 1 ≤ i ≤ n,
is Hamiltonian, and the sub-3−hypergraph Hi ⊂ H such that Gi = L2

3(Hi) is even, then
H admits a null labelling.

Proof. Since each Gi is Hamiltonian and it is the 2-intersection graph of an even sub-
3-hypergraph Hi, then we can apply Theorem 4 to it, obtaining a null labelling for Hi.
The null labelling of H is obtained by the union of the null labellings of these sub-
hypergraphs.

Note that H may also be a connected 3−hypergraph, but the requirement of the pre-
vious theorem asks that L2

3(H) has to be disconnected. Furthermore, each of its compo-
nents comes from an even sub−3−hypergraph of H .

31

To conclude this chapter, we also provide a simple generalization of Theorem 4 to
k−hypergraphs. With similar arguments, it is possible to prove the following theorem.

Theorem 5. Let H = (V,E) be a k−hypergraph such that its Lk−1
k (H) is Hamiltonian.

Then, H admits a null labelling.

Chapter 4

Reconstruction of the 2-intersection
graphs

Due to the connections with the null labelling problem, our main focus in this chap-
ter is to continue the study of the structural properties of graphs in L2

3. In particular,
we prove that given a graph G = (V,E) it is NP-complete to decide the existence of
a 3−hypergraph such that G = L2

3(H). On the other hand, we prove the polynomi-
ality of the reconstruction when restricting to triangulated claw-free graphs, while the
NP−completeness is preserved when considering general claw-free graphs. We high-
light that part of the results of this chapter have been published in [44].

4.1 Properties of graphs in L2
3

In this section we provide some structural properties of 2-intersection graphs that are
related to 3-hypergraphs, with the aim of characterizing them and determining the com-
putational complexity of their reconstruction starting from a graph G. If G ∈ L2

3 we
say that G has the 2−intersection property or it is reconstructible. In particular, for
G = Ll

k(H) we define a λl
k-labelling as a labelling of its vertices such that the label of a

vertex e ∈ V (G) is a set of k elements, representing the nodes v ∈ V (H) contained in
e.

Maximal cliques are relevant substructures when we deal with hypergraph recon-
struction issues.

Property 3. The edges of a 3-hypergraph H sharing the same pair of vertices determine
a clique in the 2-intersection graph L2

3(H).

However, we observe that Property 3 does not characterize the cliques of L2
3(H). In

fact, there may exist K3 subgraphs in it whose edges do not share a common label.

32

33

Let T be a K3 clique in G = L2
3(H) with vertices a, b, c. Two different labels are

allowed: either a = {1, 2, x}, b = {1, 2, y}, c = {1, 2, z}, with x ̸= y ̸= z or a =
{1, 2, 3}, b = {1, 2, 4}, c = {1, 3, 4}. The first case is indicated as K−triangle and the
second as T−triangle.

Figure 4.1 (a), shows a configuration of a 2-intersection graph where a T -triangle
and a K-triangle live together and share an edge. The T -triangle is shaded in grey.

1

2

3 4

5 1 2

3 4

(b)(a)

{1,4,5}

{2,4,5}

{2,3,4}

{3,4,5}

{2,3,4}

{2,3}

{3,4}

{1,3,4}{1,2,3}

{1,2,4}

{4,5}

Figure 4.1: (a) example of a T and a K sharing 2 vertices. (b) example of S.

A similar situation occurs with K4 cliques, say square, in G. In fact, if we consider a
clique with four vertices a, b, c, d, then again two cases appear: either a = {1, 2, x}, b =
{1, 2, y}, c = {1, 2, z}, d = {1, 2, t}, x ̸= y ̸= z ̸= t or a = {1, 2, 3}, b = {1, 2, 4}, c =
{1, 3, 4}, d = {2, 3, 4}. Similarly, we denote the first case as K−square and the second
as S−square. Figure 4.1 (b) shows the latter.

No similar ambiguities arise for bigger cliques. Let Kp, p ≥ 5, the clique with p
vertices a1, . . . , ap. Then it is trivial that, w.l.o.g. ai = {1, 2, xi}, 1 ≤ i ≤ p must hold.
Any other configuration in which a couple is not shared by all the nodes will not lead to
a Kp. In the sequel we will refer to positive cliques whenever their labels share a couple
of vertices, negative otherwise. Therefore, all the cliques bigger than 4 are positive.

To set the notation, when a clique K is positive (resp. negative) we denote it by K+

(resp. K−). For convenience the clique of two vertices K2 is both positive and negative.

Proposition 3. If Ki, Kj are two cliques such that |Ki ∩Kj| = 2 then we have K+
i and

K−
j (or vice versa).

34

Proof. W.l.g. let us consider Ki ∩ Kj = {u, v} with u = {1, 2, 3}, v = {1, 2, 4} and
s ∈ Ki\Kj, t ∈ Kj \Ki be such that st ̸∈ E. By contradiction, we assume that K+

i , K
+
j

orK−
i , K

−
j . Two cases arises: ifK+

i , K
+
j , then it holds s = {1, 2, 5}, t = {1, 2, 6} that is

not possible. Lastly, if K−
i , K

−
j , then w.l.g., it holds s = {1, 3, 4}, again a contradiction

when labelling t.
A simple consequence of the previous proposition is the following.

Corollary 1. Let e be an edge of G ∈ L2
3. Then e is shared by two cliques at most.

With the previous definitions, the first obvious necessary condition for a graph to be
reconstructible in L2

3 is described in the following lemma.

Lemma 6. If G ∈ L2
3, then every vertex of G must belong to at most three positive

maximal cliques. Furthermore, these maximal cliques can be joined by at most two non-
adjacent T -triangles as shown in Figure 4.2.

Proof. A clique in L2
3(H) can be obtained from hyperedges sharing the same couple of

vertices or it can be a triangle (in which two pairs are used). In all cases, since a vertex
of L2

3(H) has only three pairs, it cannot belong to more than three cliques. However,
note that the configuration in which a point is shared by four triangles is reconstructible
(see Figure 4.2).

{1,2,3}

{1,2,4}

{2,4,5}

{2,5,6}

{1,5,6}

{1,2,5}

K

T K

T

{1,5,7}

K

Figure 4.2: Reconstruction of the configuration in which a point belongs to 5 triangles.

The reason is simple: the edges of the T triangles shared with the K triangles count
as a unique pair containing the central point. Therefore, it shares exactly three pairs, as
desired. Note that the configuration is reconstructible even if theK triangles are replaced
by any clique of order at least four.

The following property partially characterizes the possible configuration of the cliques
in L2

3(H).

Property 4. Let C1 and C2 be two cliques of L2
3(H). If |C1 ∩ C2 |≥ 3 then C1 = C2.

35

Proof. Let C = {v1, v2, v3} ⊆ C1 ∩ C2. We proceed by contradiction assuming that
there exist two non-adjacent vertices x ∈ C1 and y ∈ C2 such that C ′

1 = C ∪ x and
C ′

2 = C ∪ y are two different cliques. The following two cases arise (see cases (a) and
(b) in Figure 4.1).

• C is a T -triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 =
{1, 3, 4}. Since C ′

1 is a clique, then x = {2, 3, 4} is the only possibility for x. The
same reasoning holds for y, so it follows x = y, against the hypothesis.

• C is a K-triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 =
{1, 2, 5}. Both x and y have to contain the pair {1, 2}, shared by all the elements
of C, so there exists an edge joining them, against the hypothesis.

In the proof of Property 4, we note that if C is a K-triangle, then only two of its
elements are enough to determine the common pair {1, 2}. The following corollaries
hold.

Corollary 2. Let C1 and C2 be two cliques of L2
3(H) not containing any T -triangle. If

| C1 ∩ C2 |≥ 2 then C1 = C2.

Corollary 3. Let C1 and C2 be two (maximal) cliques of L2
3(H). If |C1 ∩ C2 |= 2, then

either C1 or C2, but not both, are T -triangles.

We emphasize that if both C1 and C2 are T -triangles such that |C1 ∩ C2 |= 2, then
they are not maximal, i.e., they form an S-square as in Figure 4.1, (b).

The following example shows that S is the biggest clique that does not admit a com-
mon pair in all of its edges.

Example 6. Consider a clique K5 of a 2-intersection graph. It is not possible to label its
vertices without a common pair. In fact, w.l.o.g. let us start by labelling a vertex with
{1, 2, 3} (see Figure 4.3) and one of its neighbours with {1, 2, 4}. Suppose that we label
a third vertex with a pair different from {1, 2}, say {1, 3, 4}. Then we have only one label
possible for the fourth vertex, namely {2, 3, 4}. We observe that there does not exist any
label for the fifth vertex, since all possible pairs have been already used. So a labelling
of the vertices of K5 without a common pair is not possible.

The same argument can be used to prove that any clique of order greater than four
has edges labelled with the same pair of indices.

Theorem 6. Let G be a graph containing two distinct cliques only of order n and m and
intersecting in 2 ≤ i ≤ min(m,n)− 1 vertices. Moreover, assume that the condition of
Lemma 6 holds. Then the following statements hold:

(i) if n = 3 and m ≥ 3, then G ∈ L2
3;

36

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

?

Figure 4.3: The labelling of the clique K5 used in Example 6.

(ii) let n = 4 and m ≥ 4, then G ∈ L2
3 if and only if i = 2;

(iii) if n > 4 and m > 5, then G ̸∈ L2
3.

Proof. (i): by hypothesis, i = 2, so the two cliques must intersect in two vertices. From
Property 4 and the corollaries, a clique Km, with m ≥ 3 shares a common edge, say
with label {x, y}, with a T -triangle. We proceed in labelling the three vertices of T by
{x, y, z1}, {x, y, z2}, {x, z1, z2}. Finally, we assign the labels {x, y, z3}, {x, y, z4}, . . . , {x, y, zm}
to the remaining vertices of Km. The labels turn out to be the hyperedges of a 3-
hypergraph H on {x, y, z1, . . . , zm} vertices such that L2

3(H) = G, as desired.

(ii): from Property 4 and corollaries, if i = 2, then the edge shared by the two cliques
must intersect a triangle T . Let T be contained in the first clique whose configuration
turns out to be S. The other clique is forced to have a common label of the edges since
it can not contain a second T -triangle. So, a labelling similar to that defined in (i) is
allowed, providing a 3-hypergraph whose 2-intersection graph is G.

Finally, the case i = 3 causes the collapse of the two cliques into one single clique.

(iii): consider two cliques of order greater than four. Property 4 states that if they
share two or more vertices, then they are the same clique, so G is not a 2-intersection
graph.

The above result can be naturally extended to graphs having more than two cliques,
by inspecting the intersections between pairs of them. A labelling of the edges and the
determination of a 3-hypergraph compatible with them can be performed.

We now provide an example of a class of graphs contained in L2
3.

Cycle graphs: first, we observe that a cycle of length k admits labelling involving k in-
teger indices at most. In fact, we start by labelling a randomly chosen vertex v1 with
{1, 2, 3}, then we visit the remaining vertices v2, . . . , vk of the cycle according to a cho-
sen direction and we label the ith one, where 1 < i < k − 1, with {i, i + 1, i + 2}, so
that {i, i + 1} is the pair shared by vi−1 and vi, i.e., the label of the edge joining them.

37

Finally, vertices vk−1 and vk are labelled with {1, k, k + 1} and {1, 2, k}, respectively.
An example is shown in Figure 4.4.

Note that the labelling of the first k − 1 vertices of the cycle defined above can be
used to label a path of length k − 1 involving k integer indices.

{1,2,3} {2,3,4}

{3,4,5}

{4,5,6}{1,5,6}

{1,2,6}

Figure 4.4: The labelling of a cycle of length 6.

4.2 Computational complexity of 2-intersection property
After having shown some structural properties of L2

3(H), here we are ready to prove that
is NP−complete to determine whether an arbitrary graph G is the 2-intersection graph
of a 3-hypergraph. We refer to this problem as the 2INT problem. Note that is clear
that 2INT is in NP. We reduce from the following variant of the 3-SAT problem (L02
in [45])

MAX-3-SAT:

Instance: a set U of variables and a set C of clauses over U such that each clause
c ∈ C has |c |= 3 literals, where a literal corresponding to a variable x is either x
or x. Each variable, as represented by a literal, appears at most three times in the
clauses. Furthermore, no three occurrences of a variable are the same literal.

Question: Is there a satisfying truth assignment for C?

First of all, we prove that this problem is NP−complete.

Lemma 7. MAX-3-SAT is NP-complete.

Proof. We reduce 3-SAT to MAX-3-SAT. Consider an instance of 3-SAT, in which a
variable x appears k times, either as x or x. Replace the first instance with x1, the
second with x2 and so on up to xk (possibly the complements). Then add (x1 ∨ x2) ∧

38

(x2 ∨ x3) . . . (xk ∨ x1). This ensures that either all xi are true, or all are false. Note that
each xi has two literals occurring in this expression, and one more literal occurring in
the clauses of 3-SAT, providing a total of three occurrences.

Acting similarly for the remaining literals, when needed, we obtain an instance of
3−SAT, where each variable appears at most three times, all of them not the same literal.

Given an instance C of MAX-3-SAT, we construct a graph GC so that there is a
solution of the MAX-3-SAT instance if and only if GC is a 2-intersection graph. This
will imply that 2INT is NP-complete. We remark that each solution ofC will be achieved
by one of the possible labellings of GC that determines a 3-hypergraph H such that
G = L2

3(H).
To achieve the thesis, we need to define some graph configurations that have the 2-

intersection property and that are useful to model variables and clauses of 3-SAT. Each
vertex of a 2-intersection graph G corresponds to a hyperedge of its related hypergraph
H . So each vertex v of G contains three vertices of H . In order to avoid confusion with
the use of the word vertex, we will use the term indices for the vertices of H contained
in a vertex of G. In the following properties, we consider subgraphs of G determined by
triangles and show that when G is a 2-intersection graph, the labels of G have to satisfy
certain requirements, i.e., local properties of G extend to properties of H .

We will call two triangles sharing one vertex, with no edges between them, a ribbon
configuration. Figure 4.5 shows the labels of two one-vertex intersecting triangles when
at least one of them is a K-triangle.

{1,2,3}

{1,2,4}

{1,2,5}

{1,5,6}

{1,5,7}

(a) (b)

{1,2,3}

{1,2,4}

{2,3,4}

T

{3,4,5}

{3,4,6}

K3 K3 K3

Figure 4.5: Two possible labels of a ribbon configuration. In each of them at most one
triangle is a T -triangle.

The following result holds.

Property 5. A ribbon configuration belongs to L2
3 if and only the two triangles are not

T−triangles both.

Proof. Observe that the three vertices of a T -triangle use just four different indices from
H . If the two triangles are T -triangles, then the common vertex has to share four different

39

pairs of indices with the four adjacent vertices, and this is not possible (see Figure 4.5).

Property 6. Let T1 and T2 be two triangular cliques. Suppose there are just two edges
joining a vertex of T1 to a vertex of T2, without common endpoints. Then the obtained
configuration has the 2-intersection property. Furthermore, T1 and T2 cannot both be
T -triangles.

Proof. Let x1 and y1 be the vertices of T1 adjacent to the vertices x2, and y2 of T2 by the
edges ex and ey, respectively. We first show that T1 and T2 cannot be both T -triangles.
Suppose, w.l.g., that T1 is a T -triangle whose vertices have labels x1 = {1, 2, 3}, y1 =
{2, 3, 4}, and z1 = {1, 2, 4} (see Figure 4.6). Since x2 is adjacent to only x1 in T1, then
the label of ex must be {1, 3}. With the same argument, the label of ey is {3, 4}. Since
x2 and y2 belong to T2, they have a common pair of labels, say {3, 5}. So their labels
must be x2 = {1, 3, 5} and y2 = {3, 4, 5}. If we assume T2 to be a T -triangle, then
z2 = {1, 4, 5}. This leads to a contradiction since z2 is not adjacent to z1 = {1, 2, 4}.
Therefore the only possible label is z2 = {3, 5, 6}, showing that T2 is a K-triangle.

To show that T1 and T2 can both be K-triangles, we set x2 = {1, 3, 5} and y2 =
{3, 4, 5} and z2 = {3, 5, 6} in T2 (see Figure 4.6). We can then take x1 = {1, 2, 3},
y1 = {2, 3, 4} and z1 = {2, 3, 7} in T1.

x1 = {1, 2, 3} x2 = {1, 3, 5}

z1 = {1, 2, 4} y1 = {2, 3, 4} y2 = {3, 4, 5} z2 = {3, 5, 6}

T1 T2

Figure 4.6: The configuration obtained by two triangles with joined by two edges. One
possible labelling is shown.

Representing the variables of U

Define a variable gadget, denoted Gx, to represent a variable x in U . The gadget is a
2-intersection graph obtained by the union of different configurations and its definition
can be checked in Figure 4.7.

The graph Gx consists of two gadgets G1
x and G2

x that grow around two K5 cliques
C1 and C2 that are connected by a ribbon configuration, say R.

The gadget G1
x includes the clique C1 whose vertices are in common with five differ-

ent K3 triangular cliques, counter-clockwise denoted by T 1
i , with 1 ≤ i ≤ 5, and starting

from the triangle facing the ribbon that joins the two gadgets. These triangles are then

40

connected in pairs by their two remaining free vertices, forming a 10-cycle, as shown in
Figure 4.7.

The triangles T 1
2 and T 1

5 will be associated with the two (at most) occurrences of the
variable x, while T 2

3 will be associated with the single occurrence of the variable x.
We show that the graph Gx has the 2-intersection property. Furthermore, it allows

very few possibilities when setting the triangles as K or T .

Figure 4.7: The graph Gx. It is used to model the occurrences of the literals x and x

in the clauses of an instance of MAX-3-SAT. The two parts G1
x and G2

x are indicated
together with their connection through a ribbon configuration.

Property 7. The variable gadget Gx is a 2-intersection graph.

In Figures 4.8 and 4.9 we provide samples of labellings of Gx.

Corollary 4. A labelling of the vertices of the graph Gx only produces the following
possible types (K or T) of the triangles T 1

2 , T 1
5 and T 2

3 :

i) if T 2
3 = T then T 1

2 = T 1
5 = K;

ii) if T 1
5 = T (resp. T 1

2 = T) then T 2
3 = K.

Proof. i) let us assume T 2
3 = T . Property 4.2 assures that triangle T 2

1 is a K-triangle.
So, by Corollary 3, the triangle adjacent to T 2

1 is a T -triangle, and the triangle adjacent
to T 1

1 is a K-triangle by Property 5. Continuing with the configurations, we get T 1
1 = T ,

and, again by Property 4.2, we obtain that both T 1
2 and T 1

5 are K-triangles as desired (see
a possible labelling in Figure 4.8).

ii) let us assume T 1
5 = T (resp. T 1

2 = T). Property 4.2 assures that T 1
1 = K. So, by

Corollary 3, the triangle adjacent to T 1
1 is a T -triangle, and the triangle adjacent to T 1

1 is

41

a K-triangle by Property 5, and finally T 2
1 = T . Again Property 4.2 assures that T 2

3 is a
K-triangle as desired (see a possible labelling in Figure 4.9).

Figure 4.8: One of the labellings of Gx related to case i) of Corollary 4. The starting
triangle T 2

3 = T is shaded. The type (T or K) of each triangle is also shown.

K

T

C1 C2

G1
x G2

x

{1, 2, 3}

{1,2,4}

{1,2,5}

{1,2,7}

{1,5,11}

{1,2,6}

{2,3,10}

{11,14,23}

{8,11,13}

{8,10,12}

{2,4,10}

{15,17,22}

{11,15,17}

{15,17,20}

{11,12,15}

{2,5,11}

{15,17,21}{1,6,8} {1,7,8}

{11,14,17}

{11,14,25}

{2,4,11}

{2,7,8}

{8,10,11}

{12,16,18} {12,15,17}

{3,8,10}

{11,13,25}

{11,12,13}

{11,12,16}

{8,12,16}

{11,12,14}

{12,16,19}
{12,16,17}

{10,11,12}

{1,6,11}

{11,14,24}

{2,3,8}

TTK

K
T

T
K

K

Figure 4.9: One of the labellings of Gx related to case ii) of Corollary 4. The starting
triangle T 2

3 = T is shaded. The type (T or K) of each triangle is also shown

Comment 1. We point out that in case ii) of Corollary 4 no assumption involves the
type of T 1

2 , that can be either T or K, when T 1
5 = T and vice versa. Figure 4.9 shows an

example of a labelling where T 2
1 = K. An easy check reveals that exchanging the types

K and T between T 3
1 and T 2

1 produces a new admissible labelling.

42

Representing the clauses of U
The clause gadget Gc, represents a single clause c ∈ C. It consists of a central clique

K6 whose vertices also belong to six different K3 cliques, called boundary triangles, as
shown in Figure 4.10. The boundary triangles are then connected in pairs via the two
remaining free vertices, as shown in Figure 4.12, forming a 12-cycle. In order to have
the 2-intersection property, the clause gadget admits a maximum number of T -triangles
among the six boundary ones, as stated in the following

T2
T1

T6

T5T4

T3

x1

x2

x3

x4

x5

x6

y6

z6

z6

y1y2

z2

z3

y3

y4

z4 z5

y5

Figure 4.10: The clause gadget Gc with its triangles. By Property 4.2 no more than three
T -triangles are allowed in the boundary.

Lemma 8. A clause gadget Gc is a 2-intersection graph if and only if the boundary
triangles do not contain either exactly three or exactly one T -triangles.

Proof. W.l.g. let T1, . . . , T6 be the boundary triangles (labelled counter-clockwise) of a
clause gadget. Without loss of generality, let Ti have vertices {xi, yi, zi}, such that xi

is in common with the central clique K6, while yi and zi connect Ti with the neighbour
triangles Ti−1 and Ti+1. Note that the indices i − 1 and i + 1 are reduced to the range
1 . . . 6. We first show that there is no labelling when three (non-consecutive, according
with Property 4.2) boundary triangles are T -triangles. Let T1, T3 and T5 be T -triangles
that alternate with three K-triangles T2, T4 and T6. We show that such a configuration
does not have the 2-intersection property, i.e., it does not allow any labelling. Assume
that the edges of the central clique K6 have the common label {1, 2}. Therefore, label
every vertex {x1, . . . , x6} of K6 with {1, 2, i}, with 3 ≤ i ≤ 8, respectively, and let x1

belong to a T -triangle.
W.l.g, its two remaining vertices have labels y1 = {1, 3, 9} and z1 = {2, 3, 9}. Sup-

pose T1 is connected by the edges (y1, y2) and (z1, z6) with the triangles T2 and T6, re-
spectively. So, the edge {y1, y2} has label {1, 9}, and the edge {z1, z6} has label {2, 9}
(check the labelling in Figure4.11, left graph).

43

So, the labels y2 = {1, 8, 9} and z6 = {2, 4, 9} are determined. Since T2 is a K-
triangle, the label of z2 requires the introduction of a new index, i.e., z2 = {1, 8, 10}.
The same holds in T6, where the label y6 = {2, 4, 11} can be assumed.

Continuing labelling the boundary triangles, we observe that the edge {z2, z3} has
two possible labels remaining, i.e., either {1, 10} or {8, 10}. Since T3 is a T -triangle,
then z3 has either label {1, 7, 10} or {2, 7, 10}; the first one only being compatible with
one of the possible labels of the edge {z2, z3}. As a consequence, y3 = {2, 7, 10}.

Acting similarly on the T -triangle T5, we get y5 = {2, 5, 11} and z5 = {1, 5, 11}.
Finally, a problem occurs in the labelling of the K-triangle T4: the edges {z3, z4}

and {y4, y5} have labels {2, 10} and {1, 11}, respectively, preventing any connection
between the vertices y5 and z5.

Similar reasoning reveals that the presence of exactly one boundary T -triangle does
not allow labelling of the clause gadget. The failure of labelling, in this case, is shown
in Figure 4.11, right (T1 is the T -triangle).

{1,8,10}

{1,8,9} {1,3,9}

{2,3,9}

{2,4,9}

{2,4,11}

{2,5,11}

{1,5,11}

{2,7,10}

{1,7,10}

{1,2,7}

{1,2,6}

{1,2,5}

{1,2,4}

{1,2,3}

{1,2,8}

?

{1,8,10}

{1,8,9} {1,3,9}

{2,3,9}

{2,4,9}

{2,4,10}

{2,5,10}

{2,5,11}

{1,7,11}

{1,7,10}

{1,2,7}

{1,2,6}

{1,2,5}

{1,2,4}

{1,2,3}

{1,2,8}

T1T2

T3

T4 T5

T6

T1T2

T3

T4 T5

T6

Figure 4.11: An attempt to define a labelling of a clause gadget with three (on the left)
or one (on the right) boundary T -triangles. Both configurations prevent any labelling of
the K-triangle T4.

Finally, Figure 4.12 shows the possible labellings when either two or no T -triangles
are present as boundary triangles.

The final NP-completeness reduction.

Let us consider the instance C = {c1, . . . , cn} of MAX-3-SAT involving the vari-
ables in the set U = {x1, . . . xm}. Based on the gadgets already defined, we construct
a graph GC whose labels determine its 2-intersection property and express the desired
valuations of C. The reader can follow an example of the construction of GC in the case
C = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) in Figure 3.5.

44

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,6,11}

{1,6,12} {1,5,12}

{1,5,13}

{1,3,14}

{1,3,9}{1,8,9}

{1,8,10}

{1,7,10}

{1,7,11} {1,4,13}

{1,4,14}

T

T

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,7,10}

{2,7,10}

{2,6,10}

{2,6,11} {2,5,11}

{2,5,12}

{2,4,12}

{2,4,9}

{2,3,9}

{1,3,9}{1,8,9}

{1,8,10}

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,7,10}

{1,7,12}

{1,6,12}

{2,6,12} {2,5,12}

{2,5,11}

{2,4,11}

{2,4,9}

{2,3,9}

{1,3,9}{1,8,9}

{1,8,10}
T

T

K K

K

KK

K

K

K

KK

K

K

K

K

Figure 4.12: Reconstruction in the case of zero or two T -triangles.

First, from Lemma 7, we can suppose that each variable must appear at most three
times: one in a form and two in the opposite form. For each variable xi ∈ U , we define a
variable gadget Gxi

, and associate the triangle T 2
3 with the single occurrences of a literal

xi. The at-most-two remaining occurrences of the opposite literal are associated with
the triangles T 1

2 and T 1
5 .

For each clause cj ∈ C, we construct a clause gadget Gcj and label its boundary
triangles T1 . . . T6 as in Lemma 8.

Finally, we connect variable gadgets and clause gadgets together as follows: for each
clause cj , with 1 ≤ j ≤ n, we use a ribbon to the triangle T2i−1 of the clause gadget Gc,
to the corresponding triangle associated with the ith literal of c in the Gx gadget of its
variable, as in Figure 4.13.

Now, we prove the main theorem of this section.

Lemma 9. Given an instance C of MAX-3-SAT, the graph GC has the 2-intersection
property if and only if the instance C has a solution.

Proof. Let us assume that there exists a valuation for the MAX-3-SAT instanceC. Given

45

a variable x ∈ U , for each literal with value true associated with x, we assign the tri-
angles associated with it to be T -triangles, and we assign the triangles associated with
its negation to be K-triangles. Corollary 4 assures that the variable gadget Gx has a
labelling. Then, for each clause cj ∈ C, in its clause gadget Gcj , we assign the triangles
associated with the literals having valuation true to be K-triangles, but T -triangles for
the literals having valuation false. Since three or more T -triangles are not allowed in
Gcj by Lemma 8, then also the clause gadget has a labelling. The labelling of the con-
necting ribbons is straightforward. The reader can benefit from an example of such a
construction in Figure 4.13.

On the other hand, suppose GC has the 2-intersection property, i.e., there is a la-
belling of GC that determines a 3-hypergraph H such that L2

3(H) = GC . For each
clause gadget Gcj , with cj ∈ C, there exists at least one triangle among T1, T3 and T5,
say T ′ of type K, by Lemma 8. Property 5 assures that T ′ having type K leads to a
T -triangle in the variable gadget Gx to which a literal, say l, is associated (note that the
opposite does not hold, as shown by the red triangle in Figure 4.13). We assign such a
literal the truth value true. The opposite literal l is then associated with false. Due to
Corollary 4 the triangles (one or two) in Gx associated with l are of type K.

We emphasize the following situation: it may happen that there exists a Gx labelling
where all three triangles associated with the literals are of type K. In such a case, the
value assigned to the variable does not affect the truth value of the clauses of C, so it can
be arbitrarily assigned.

So, the valuation defined is a solution of the MAX-3-SAT instance C: each clause
gadget Gcj has at most one triangle among T1, T3 and T5 of type K, so at least one literal
in the clause has value true. Furthermore, in each variable gadget, if one literal is set to
true, i.e. at least one of the corresponding triangles is of type T , then the opposite literal
has the logical value false.

Theorem 7. The 2INT Problem is NP-complete.

The proof directly follows from Lemma 4.2, after checking that the construction of
the graph GC associated with the instance C can be performed in polynomial time.

Comment 2. In Figure 4.13, the two highlighted triangles in different colors indicate
the following situation:

• the red triangle in the ribbon connecting T1 of Gc1 to T 1
2 of Gx3 shows that the

T -triangle related to the value false in a clause may produce the truth value true
in the associated literal. This is not a contradiction: it simply means that in the
clause, here c1, there exists at least a second triangle of type K, i.e. the clause is
already satisfied by at least one different literal;

• the blue triangle T 5
1 in Gx2 is of type K which is different from the T -triangle T 1

2

although they are associated with the same literal l. This means that l may have a

46

value false in a second clause in which it is possibly present. As a consequence, a
different literal having truth value true is present in that clause. What is relevant
in Gx2 is that the triangle associated with l, i.e. T 2

3 , has to be of type K, assuring
that l has truth value false in all its occurrences.

Example 7. Consider the formula F = (x1 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Figure 4.13
shows the construction of its corresponding gadget. The labelling shown in the same
figure corresponds to the valuation x1 = false, x3 = false. The value of x2 doesn’t
matter since, in any case, the assignment is a solution for F .

Figure 4.13: Example of the construction of the gadget for C = {c1, c2}, c1 =

(x3, x1, x1), c2 = (x1, x3, x2). One of the valuations obtained by the labelling of the
corresponding GC graph is x1 = true, x2 = true and x3 = true. The valuation can be
obtained by the position of (at least one of) the T configurations in the triangles T 1

2 , T 1
5

and T 2
3 of the variable gadget.

4.3 Reconstruction of Claw-Free Graphs
After having shown that decide if G ∈ L2

3 is NP−complete in general, we consider
some subclasses of interest. In particular, since graph in L2

3 are K1,4−free, we decide
to focus on K1,3−free graphs, known also as claw-free graphs. First, we provide some
examples of claw-free graphs in L2

3 and then we discuss some necessary conditions to
belong to the class.

47

We prove that, in general, determining if a claw-free graph belongs to L2
3 is NP -

complete but it is polynomial for triangulated claw-free graphs. In the sequel we will
indicate with small, medium and big a clique according to its cardinality |K|, i.e, |K| ≤
2, 3 ≤ |K| ≤ 4, |K| ≥ 5, respectively.

4.3.1 Claw-free graphs in L2
3

In this section we will show some examples of claw-free graphs belonging in L2
3. We

will use these graphs in subsequent proofs.
First of all, Figure 4.14(a) shows a claw-free graph belonging to L2

3. This is not
always the case, as witnessed by Figure 4.14(b). In fact, using Proposition 11 it directly
follows that the graph K5 − e has no realization.

123 124

125 126

134

135 146

156

123 124

125

134

(a) (b) (c)

Figure 4.14: (a)A claw free graph inL2
3. (b)K5−e has no realization. (c). A realization

of the diamond.

Corollary 5. If G ∈ L2
3 contains, as an induced subgraph, a diamond D consisting of

the two triangles T1, T2 then we have either T−
1 , T+

2 or T+
1 , T−

2 (see Figure 4.14)(c).

Corollary 6. If G ∈ L2
3 contains, as an induced subgraph, a 4-wheel W4 consisting of

the four triangles T1 = {a, b, c}, T2 = {a, c, d}, T3 = {a, d, e}, T4 = {a, b, e} then we
have either T−

1 , T+
2 , T−

3 , T+
4 or T+

1 , T−
2 , T+

3 , T−
4 (see Figure 4.15).

Corollary 7. If G ∈ L2
3 then it cannot contain the 5-wheel W5 as an induced subgraph

(see Figure 4.15 (a)).

The prism P consists of two vertex disjoint triangles T1 = {a, b, c}, T2 = {d, e, f}
plus the three edges ad, be, cf .

48

123

124

125

134

135

(a) (b)

Figure 4.15: (a) A realization of the 4-wheel W4. (b) the 5-wheel W5

123

124

125

236

246

256

123

124

134

236

246

346

Figure 4.16: Two realizations of the prism.

Fact 1. If G ∈ L2
3 contains, as an induced subgraph, a prism P then we have T+

1 , T+
2 or

T−
1 , T−

2 (see Figure 4.16(b)).

Proof. By contradiction, assume that T+
1 , T−

2 . Let a = {1, 2, 3}, b = {1, 2, 4}, c =
{1, 2, 5}. Without loss of generality d = {1, 3, 6}. Then we have e = {1, 6, 4}. It
follows that f = {1, 5, 6}, so T2 is positive, a contradiction.

123 124

125

134137 146

Figure 4.17: A realization of the sun S3.

Fact 2. If G ∈ L2
3 contains, as an induced subgraph, a sun S3 consisting of the four

triangles T1 = {a, b, c}, T2 = {a, b, d}, T3 = {a, c, e}, T4 = {b, c, f} then we have

49

T−
1 , T+

2 , T+
3 , T+

4 with a = {1, 2, 3}, b = {1, 2, 4}, c = {1, 3, 4}, d = {1, 2, 5}, e =
{1, 3, 6}, f = {1, 4, 7} (see Figure 4.17).

Proof. From Corollary 1 we have either T−
1 , T+

2 , T+
3 , T+

4 or T+
1 , T−

2 , T−
3 , T−

4 . The figure
4.17 shows a realization with T−

1 , T+
2 , T+

3 , T+
4 . Now we assume that T+

1 , T−
2 , T−

3 , T−
4

with a = {1, 2, 3}, b = {1, 2, 4}, c = {1, 2, 5}. Then, w.l.o.g., d = {1, 3, 4}. It follows
that e = {2, 4, 5} but f cannot be labelled.

Fact 3. If G ∈ L2
3 contains, as an induced subgraph, a path on three vertices uvw with

u = {a, b, c}, w = {d, e, f} then {a, b, c} ∩ {d, e, f} ≠ ∅.
As mentioned before, we denote withK4+v is the graph with five vertices {a, b, c, d, e}

where {a, b, c, d} is complete and e is connected to exactly one vertex, say a.

Fact 4. If G ∈ L2
3 contains K4+v, as an induced subgraph, then the clique K4 of K4+v

is positive.

Proof. By contradiction, assume that the clique on four vertices G[{a, b, c, d}] is neg-
ative: a = {1, 2, 3}, b = {1, 2, 4}, c = {1, 3, 4}, d = {2, 3, 4}. Then, without loss of
generality, e = {1, 2, 5}. So be ∈ E, a contradiction.

As previously underlined, all the graphs considered in this section are claw-free.

4.3.2 Complexity of recognizing claw free graphs in L2
3

In Section 4.2 we show that reconstructing a graph in L2
3 is NP−complete. Since a

graph in L2
3 is K1,4-free we are concerned with the subclass of claw-free graphs (K1,3-

free graphs).
We will prove that the problem of deciding if G ∈ L2

3 is NP -complete. To reach our
goal we need an intermediate problem that is defined and proved NP -complete below.

The 2-labelling intersection (2LI) problem

Let us consider a simple graph G = (V,E) and a partition of its edge-set E into two
subsets Ew and Es, i.e. E = Ew ∪ Es and Ew ∩ Es = ∅. We call weak edges the edges
in Ew and strong edges those in Es.

We define a function φ, say a 2-labelling, that associates to each vertex v ∈ V a pair
of labels {av, bv} such that:

i) if v1 ̸= v2, then φ(v1) ̸= φ(v2);

ii) if v1v2 ∈ Ew, then φ(v1) ∩ φ(v2) = ∅;

iii) if v1v2 ∈ Es, then |φ(v1) ∩ φ(v2)| = 1.

50

See Fig.4.18 for an example.

ab

ac

bd

deae

Figure 4.18: A graph with a 2-labelling φ. Weak and strong edges are represented by
dotted and straight lines, respectively, while the nodes show the pair of elements associ-
ated by φ.

The 2LI problem, provided in its decision form, follows

2-Labelling Intersection (2LI):

Instance: a simple graph G = (V,E) and a partition of its edges into Ew and Es.

Question: does G admit φ a 2-labelling of its vertices?

We show the NP-completeness of 2LI by a reduction that involves the problem 3−
SAT (LO2 in [45]).

3-SAT:

Instance: a set U of variables, a collection C of clauses over U such that each clause
c ∈ C has |c| = 3.

Question: Is there a satisfying truth assignment for C?

Given an instance A of 3 − Sat, we construct a graph GA = (VA, EA) and a par-
tition of its edges into weak and strong edges EA,w and EA,s such that the 3 − Sat
instance admits a solution if and only if GA admits a 2-labelling. This will imply the
NP-completeness of 2LI .

Hence, we start by providing two graphs’ prototypes to model variables and clauses
of the 3-Sat instance A, then we show how to use them to reach the graph GA.

Representing the variables and the clauses of A

Let us define the graph Gx = (Vx, Ex) that will be used to represent each variable
x ∈ U . The set Vx consists of three vertices vx1 , vx2 , and vx3 , while Ex is partitioned into
the weak edges Ex,w = {vx2vx3} and the strong edges Ex,s = {vx1vx2 , vx1vx2} (see Fig.4.19,
(a)).

51

Figure 4.19: (a) the graph defined for a variable x ∈ U ; (b) the graph defined for a clause
c ∈ C. In (a) the nodes show the pair of elements associated by φ.

Lemma 10. Let Gx be the graph related to variable x and φ(vx1) = {a, b}. It holds,
w.l.o.g., that a ∈ φ(vx2) and b ∈ φ(vx3).

The proof is immediate by definition of weak and strong edges.

The gadget Gx will also be used to represent the dichotomy of the truth values in the
final graph. In particular, from now on, we consider the truth values labels T and F . We
define GTF similarly to Gx with the further assumption that a = T and b = F .

On the other hand, we associate to each clause c ∈ C a graph Gc = (Vc, Ec) having
five vertices Vc = {v1c , v2c , v3c , v4c , v5c} and four strong connections, i.e., Ec = Ec,s =
{v1cv4c , v2cv4c , v3cv5c , v4cv5c} (see Fig.4.19, (b)).

Putting things together

So, starting from an instance A of 3−SAT , we proceed in defining the graph GA =
(VA, EA). The reader can follow the construction in Fig.4.20. We include in GA n = |U |
graphs Gx1 , . . . , Gxn representing the variables of U , m = |C| graphs Gc1 , . . . , Gcm

representing the clauses of C, and the graph GTF .
The connections between these graphs in GA are set according to the following rules:

(1) the variables are connected by all the possible weak edges between the vertices v1x,
i.e., for each couple of variable x and y in U , we set the weak edge v1xv1y ∈ EA,w;

(2) let x be the i-th variable involved in the clause c, with 1 ≤ i ≤ 3. We set the weak
edge v1xv

i
c ∈ EA,w, and the strong edge v3xv

i
c ∈ EA,s if x is negated, v2xvic ∈ EA,s

otherwise;

(3) for each variable x, we set the strong edges v2xv
1
TF , v

3
xv

1
TF ∈ EA,s to connect the

variable to the truth values in GTF . Furthermore, we set three more strong edges

52

v4cv
1
TF , v

5
cv

1
TF , v

5
cv

2
TF ∈ EA,s to connect also each clause c to the truth values in

GTF .

Figure 4.20: The graph GA for a clause C = x̄ ∨ y ∨ z

Theorem 8. Given an instance A of 3-Sat, the graph GA admits a 2-labelling if and only
if the instance A has a solution.

Proof. Suppose that a 2-labelling φ exists. Let {ai, bi} be the label associated to the
node v1xi

of Gxi
. The connections in (1) assure that the labels {ai, bi}, 1 ≤ i ≤ n, have

no common elements.
By the edges in (2), for each variable x, one among v1x and v2x contains T , while

F belongs to the other since their labels can not intersect by definition of Gx. Let us
consider a clause c involving literals of the (distinct) variables x, y and z. φ(v1c) contains,
by the edges in (2), the truth value either inφ(v2x) or inφ(v3x) ofGx to whom it is strongly
connected. Note that φ(v1c) and φ(v1x) does not intersect since a weak edge is set between
them in (2).

Now, consider the node v4c : it is strongly connected both with v1TF , v1c , and v2c , so its
label contains T or F according to the values of φ(v1c) and φ(v2c). More precisely, the
following three cases arise:

- T ∈ φ(v1c) and T ∈ φ(v2c): it follows that T ∈ φ(v4c);

- T ∈ φ(v1c) and F ∈ φ(v2c), or conversely: it follows that one among T or F , but not
both, belongs to φ(v4c);

53

- F ∈ φ(v1c) and F ∈ φ(v2c): it follows that F ∈ φ(v4c).

Finally, consider the node v5c : since it is strongly connected to v1TF and v2TF , its label
contains, w.l.o.g. T . By the three cases above, if T ∈ φ(v5c), then it holds T ∈ φ(v3c) or
T ∈ φ(v4c). So, F ∈ φ(v1c), F ∈ φ(v2c), and F ∈ φ(v3c) if and only if Gc does not admit
a 2-labelling, and the same holds for GA. Since the three truth values in φ(v1c), φ(v2c),
and φ(v3c) are the truth values of the literals in c, then a truth assignment for c exists if
and only if a 2-labelling for Gc does.

It is clear that the converse holds, as the construction is reversible.

Theorem 9. Let G = (V,E) be a claw-free graph. Deciding whether there exists a
3-uniform hypergraph H such that G = L2

3(H) is NP -complete.

Proof. The proof has two parts. Firstly, we define C a subclass of claw-free graphs we
are interested here. Then we show that the problem of deciding whether G ∈ C is such
that G ∈ L2

3 is equivalent to the problem 2LI which is NP -complete from Theorem 8.
First: the definition of C. A graph G ∈ C consists of components C1, . . . , Ck each

of the Ci’s being a clique of size at least five, the Ci’s form a partition of the vertex set
of G. When two components Ci, Cj are linked they are connected by either a strong link
or a weak link. A strong link consists of a C4 of G with its two non-adjacent vertices
i1, i2 ∈ Ci and the two other non-adjacent vertices j1, j2 ∈ Cj . A weak link consists of
a K4 of G with two vertices i1, i2 ∈ Ci and the two other vertices j1, j2 ∈ Cj . The links,
weak or strong, have no common vertices. It follows thatG is claw-free. Moreover, since
|Ci| ≥ 5, Ci ∪ Cj the union of two distinct components cannot be a clique.

When G ∈ L2
3 the components satisfy the following: Since each component Ci =

{vi1, vi2, . . . , vip} has at least five vertices, we necessarily have vi1 = {i, i′, 1}, vi2 =
{i, i′, 2}, . . . , vip = {i, i′, p} and Ci is associated with its pair of common labels {i, i′}.
For two distinct components Ci, Cj we have |{i, i′}∩{j, j′}| ≤ 1. When Ci, Cj are con-
nected with a strong link then we have |{i, i′}∩{j, j′}| = 1. When Ci, Cj are connected
with a weak link then we have {i, i′} ∩ {j, j′} = ∅.

Second: equivalence with the problem 2LI . Given G ∈ C we define the graph G′ as
follows: to the vertices vi of G′ correspond the components Ci of G, and vice versa; to
a strong (resp. weak) link of G corresponds a strong (resp. weak) edge of G′, and vice
versa.

We assume that there exists a 3-uniform hypergraph H such that G = L2
3(H). Since

|Ci| ≥ 5 the intersection of the labels of the pairs of vertices in the same component
Ci is the same two labels says {i, i′}. Now, for two distinct Ci, Cj , since Ci ∪ Cj is
not a clique we have that |{i, i′} ∩ {j, j′}| ≤ 1. When Ci, Cj are strongly connected
then |{i, i′} ∩ {j, j′}| = 1, when they are weakly connected then |{i, i′} ∩ {j, j′}| = 0.
Thus for each vertex vi of G′ when assigning the two labels i, i to vi we obtain a positive
answer for the problem 2LI .

54

Now, we assume that the problem 2LI has a positive answer. Let i, i′ be the two
labels assigned to vi in G′. We assign {i, i′} to the component Ci of G. Let vi, vj be two
vertices linked with a strong edge. Then the labels associated to Ci, Cj are {i, i′}, {i, j},
respectively. Let wi

1, w
i
2 and wj

1, w
j
2 be respectively the two vertices of the strong link

between Ci and Cj . Then wi
1 = {i, i′, a}, wi

2 = {i, i′, b}, wj
1 = {i, j, a}, wj

2 = {i, j, b}.
Let vi, vj be two vertices linked with a weak edge. Then the labels associated toCi, Cj are
{i, i′}, {j, j′}, respectively. Let wi

1, w
i
2 and wj

1, w
j
2 be respectively the two vertices of the

weak link betweenCi andCj . Thenwi
1 = {i, i′, j}, wi

2 = {i, i′, j′}, wj
1 = {j, j′, i}, wj

2 =
{j, j′, i′}. Thereafter, when a vertex wi

k ∈ Ci is not contained in a link, weak or strong,
we take wi

k = {i, i′, k}. Thus there exists H a 3-uniform hypergraph H such that G =
L2
3(H).

4.3.3 Complexity of recognition for triangulated claw-free graphs in
L2
3

Recall that a graph G is triangulated (or chordal) if it is Ck-free, k ≥ 4.
It is known that to each triangulated graph G = (V,E), we can associate, in linear

time [46], a maximal clique tree T = (C, S) where each maximal clique of G corre-
sponds to a vertex c ∈ C and cc′ ∈ S if c ∩ c′ ̸= ∅ and c ∩ c′ is a minimal separator of
G which is a clique. An example is shown in Figure 4.21

r

r

c5

c5

c9

c9

c1

c1

c4

c3 c2

c6

c7

c8
c3

c4

c2

c6

c7

c8

Figure 4.21: Example of a claw-free triangulated graph and its associated directed tree.
We consider the clique r as the root of the tree. The three leaves are highlighted.

55

From Property 4 if G ∈ L2
3, then an edge cc′ ∈ S corresponds either to a strong

intersection when |c ∩ c′| = 2 or to a weak intersection when |c ∩ c′| = 1. Moreover,
when cc′ ∈ S, |c|, |c′| ≥ 3 we can easily obtain the following:

• c and c′ weakly intersect: let c ∩ c′ = {a}; there exists {u, v} ∈ c, {u′, v′} ∈ c′

such that G[{a, u, v, u′, v′}] is a ribbon, otherwise a cannot be a separator of G;

• c and c′ strongly intersect: let c ∩ c′ = {a, b}; there exists u ∈ c, u′,∈ c′ such that
G[{a, b, u, v}] is a diamond, otherwise {a, b} cannot be a separator of G.

The following lemma holds.

Lemma 11. Let G = (V,E) be a triangulated claw-free graph and Kt be a clique of
G such that t ≥ 4. If Ki, Kj are two (distinct) cliques that strongly intersect Kt then
Ki ∩Kj ∩Kt = ∅.

Proof. By contradiction, we assume v ∈ Ki∩Kj∩Kt. LetKi∩Kt = {v, vi}, Kj∩Kt =
{v, vj}, vi ̸= vj . Since t ≥ 4 there exists k ∈ Kt \ {v, vi, vj}. Let wi ∈ Ki \ {Kj ∪Kt}
and wj ∈ Kj \ {Ki ∪ Kt}. We have wiwj ∈ E, otherwise G[{v, k, wi, wj}] is a claw.
We also have vivj ∈ E for a similar reason. But then G[{vi, wi, wj, vj}] = C4 which is
not possible since G is triangulated.

Figure 4.22 shows the situation described in Lemma 11. The following theorem states
the polynomiality of the reconstruction of a 3-uniform hypergraph H from a triangulated
claw-free graphs G such that G = L2

3(H). To help the reader, the proof is divided into
small steps that lead to the final result.

vi vj

wjwi

v

k

Ki Kj

K

Figure 4.22: Visual example of the proof of Fact 11. Curves represent the set of nodes
inside the same clique. Dashed edges are forced by claw-free property.

56

Theorem 10. Let G = (V,E) be a triangulated claw-free graph. Deciding whether a
3-uniform hypergraph H exists such that G = L2

3(H) and reconstructing one of them,
when possible, can be performed in polynomial time.

Proof. Let G = (V,E) be a triangulated claw-free graph. We can assume that G is
connected and |V | ≥ 3. We first consider two cases.

G has an edge cut
Let e = v1v2 ∈ E be an edge-cut of G. We call G̃1, G̃2 the two components of

G̃ = G− e, with v1 ∈ G̃1, v2 ∈ G̃2.
We will denote G1 = G̃1 + v2 and G2 = G̃2 + v1.
Since G is claw-free, v1 is a vertex of at most two cliques: the clique G[{v1, v2}] and

one clique K1
n of G̃1. The same holds for v2, which can belong respectively to one clique

K2
m of G̃2 or to G[{v1, v2}].

First, we suppose that v1 is a leaf of G (i.e. degG(v1) = 1). In such a case, obviously
G = G2.

Fact 5. G has a realization if and only if G̃2 has a realization such that K2
m is positive

when m = 4.

Proof. From Fact 4 if G has a realization then K2
m is positive when m = 4.

Conversely, assume that G̃2 such that K2
m is positive when m = 4. The following

cases arise:

• ifm = 4 suppose thatK2
m = {v2, v3, v4, v5}with v2 = {1, 2, 3}, v3 = {1, 2, 4}, v4 =

{1, 2, 5}, v5 = {1, 2, 6}. Then we can take v1 = {1, 3, 0};

• if m ≥ 5 then K2
m is positive and we do as before.

• if m = 3 we have two further cases.
If K2

m is positive, we proceed as above. On the other hand, if it is negative, let
K2

m = {v2, v3, v4} with v2 = {1, 2, 3}, v3 = {1, 2, 4}, v4 = {1, 3, 4}. Then we
take v1 = {2, 3, 0};

• Finally K2
m = {v2, v3}with v2 = {1, 2, 3}, v3 = {1, 2, 4}. We take v1 = {1, 3, 0}.

We now suppose both v1 and v2 are not leaves.

Fact 6. G has a realization if and only if G1 and G2 have a realization.

Proof. Obviously, if G has a realization also G1 and G2 have it. Therefore we focus on
sufficiency.

The following cases arise:

57

• suppose that K1
n and K2

m are positive and that the vertices of K1
n have the labels

{1, 2, ak}, 1 ≤ k ≤ n with v1 = {1, 2, a1}, while the vertices of K2
m have the

labels {2, 3, bk}, 1 ≤ k ≤ m with v2 = {2, 3, b1}. Taking a1 = b1 and ai ̸= bj
with 1 < i ≤ n and 1 < j ≤ m, we obtain a realization for G;

• suppose K1
n is positive and K2

m is negative. Suppose also that K1
n vertices have

labels {1, 2, ak}, 1 ≤ k ≤ n with v1 = {1, 2, a1}.
From Fact 4 we havem = 3. W.l.o.g., the vertices ofK2

m have the labels {2, 3, 4}, {2, 3, 5}, {3, 4, 5}
with v2 = {2, 3, 4}. Taking a1 = 4 we obtain a realization for G;

• suppose K1
n is positive and m = 2. Suppose also that the vertices of K1

n have
labels {1, 2, ak}, 1 ≤ k ≤ n with v1 = {1, 2, 3}. W.l.o.g., for the realization of
G1 we have v2 = {1, 3, 4}, then up to a renaming of the labels for the realization
of G′

2 we have a realization for G;

• suppose K1
n and K2

m are negative. From Fact 4 we have n = m = 3. For the
realization of G1 let v1 = {1, 2, 3}, v2 = {2, 3, 5} and let {1, 2, 4}, {1, 3, 4} be
the labels of the two other vertices of K1

n. Then up to a renaming of the labels for
the realization of G′

2 with {3, 5, 6}, {2, 5, 6} the labels of the two other vertices of
K2

m, we have a realization for G;

• Suppose n = m = 2. For the realization of G1 let v1 = {1, 2, 3}, v2 = {1, 3, 5}
and let {1, 2, 4} be the label of the other vertex of K1

n. Up to a renaming of the
labels for the realization of G′

2 we have a realization for G.

G has no edge-cut:
If G has no edge cut, then the following fact is readily obtained.

Fact 7. G has no small cliques.

Proof. By contradiction we assume that K = G[{vivj}] is a clique with vi ∈ Ki, vj ∈
Kj , where Ki ̸= K,Kj ̸= K, are two distinct cliques. Since vivj is not a cut-edge, then
there exists a path vi− vk−· · ·− vj where vk ̸= vj . Assume that it is one of the shortest
paths. Then vi − vk − · · · − vj − vi is an induced cycle of length greater than three, a
contradiction.

Therefore, we suppose without loss of generality that G contains only medium or big
cliques.

Using the algorithm given in [46], we obtain a maximal clique tree T = (C, S), a
maximal clique tree of G in time O(n) where a vertex c ∈ C corresponds to a big or a
medium clique of G. We show how to define a labelling.

First, we need the following fact.

58

Fact 8. Let c ∈ C with |c| = 3. Then, c has at most 3 neighbours in T .

Proof. Suppose that c has more than 3 neighbours. Then, considering the previous facts,
only two cases are possible: at least two cliques weakly intersect c in the same node v or
one strongly intersects c in {v, w} and, as last case, the other weakly intersects c, without
loss of generality, in {v}. We consider these cases separately:

• assume that c has two neighbors c1, c2 that weakly intersect it in v ∈ c. Let
w ∈ c, w ̸= v. Since the cliques are distinct and of size greater than one, there
must exist vi ∈ ci, vi ̸= v, i ∈ {1, 2}. Remember that, if c1, c2 are neighbours
of c, it means that {v} is a separator in G. Therefore, wv1, wv2, v1v2 ̸∈ E, but
G[{v, w, v1, v2}] = K1,3, a contradiction;

• we assume that c has two neighbors c1, c2 such that c1 ∩ c = {v, v′} and c2 ∩
c = {v}. Let w ∈ c, w ̸= v, v′. Since {v, v′} and {v} are two separators
wv1, wv2, v1v2 ̸∈ E, but G[{v, w, v1, v2}] = K1,3, a contradiction.

Thus c has at most three neighbours.

Note that for the case where c has three neighbours, either c is the central triangle of
a sun or it weakly intersects three cliques c1, c2, c3 in each of their vertices.

Going back to the main problem, we will associate a label, λ(c) ∈ {+,−} to each
vertex c of T . The idea is that the label associated with a clique represents its negativity
or positivity.

In a first stage, Algorithm 2 performs a partial labelling. In this step only the local
forcings based on big cliques, Facts 4 and 2 are taken into account. The last if sentence
of the algorithm consists of checking that no two negative cliques are adjacent in T.

Then, in the second stage, Algorithm 3 propagates, from the bottom to the top, the
labelling from neighbour to neighbour of the cliques already labelled.

In particular, for the vertices not yet labelled (corresponding to some of the medium
cliques) the algorithm proceeds as follows:

1. choose arbitrarily cr ∈ C as the root of the directed tree Tr. For each c ̸= cr we
orient the edges of the unique path cr − · · · − c so that it becomes a directed path
starting from cr). Then we proceed from the leaves to the root of Tr, using the
already given labels;

2. let c be a non labelled leaf and c′ be its predecessor in Tr. Suppose c and c′ strongly
intersect. Using Proposition 3 we have that if λ(c′) = (+) (resp. λ(c′) = (−))
then λ(c) = (−) (resp. λ(c′) = (+)). Suppose now that c and c′ weakly intersect.
From Property 5 we have that if λ(c′) = (−) then λ(c) = (+). Note that in this
case |c′| = 3 must hold;

59

Algorithm 2 Preprocessing Labelling
Require: Maximal Clique Tree T = (C, S)

Ensure: A partial labelling of T
for all c ∈ T do

if |c| ≥ 5 then
λ(c) = + {a big clique is positive}

end if
if |c| = 4 and there exists c′ that weakly intersects c then
λ(c) = + {by Fact 4}

end if
if |c| = 3 and there are c1, c2, c3 such that |c1| = |c2| = |c3| = 3 and c1, c2, c3
strongly intersects c in different edges then
λ(c) = + {by Fact 2 noticing that c, c1, c2, c3 induce a sun}
for i=1 to 3 do
λ(ci) = −

end for
end if

end for
for all cc′ ∈ S do

if λ(c) = λ(c′) = − then
return G ̸∈ L2

3

end if
end for

60

Algorithm 3 Labelling
Require: A partially labelled tree T = (C, S)

Ensure: A labelling of T
Let cr ∈ C as the root of the directed tree Tr

for all c ∈ Tr and λ(c) = ∅, from the leaves to cr do
Let c′ be the predecessor of c in Tr

if c is a leaf then
if c and c′ strongly intersect then

if λ(c′) = + then
λ(c) = −

end if
if λ(c′) = − then
λ(c) = +

end if
end if
if c and c′ weakly intersect then

if λ(c′) = − then
λ(c) = +{in this case |c′| = 3 must hold}

end if
if λ(c′) = + then
λ(c) = −

end if
end if

end if
if c is not a leaf then

if (c has two successors c1, c2 that are strongly connected with c and λ(c1) ̸=
λ(c2)) or (c has a successor c1 that is strongly connected with c, λ(c1) = + and
c has a successor c2 that is weakly connected with c, λ(c2) = −) then

return G ̸∈ L2
3

end if
if c has a successor c1 strongly connected with c then

if λ(c1) = + then
λ(c) = −

end if
if λ(c1) = − then
λ(c) = +

end if
end if
if c has a successor c1 weakly connected with c and λ(c1) = − then
λ(c) = +

end if
if λ(c) = λ(c′) = − then

return G ̸∈ L2
3

end if
end if

end for

61

3. then, the cases in which c is not a leaf are considered. In the first if we are checking
the cases in which a label is not compatible with the graph. If those conditions do
not apply, we continue with the standard rules to label the other cliques (they rely
on Proposition 3 and Property 5). Finally, the case in which two negative cliques
are adjacent is checked. If this is the case, it means that G /∈ L2

3.

The correctness of the algorithm simply follows from the fact that triangulated graphs
allow considering a tree of cliques and Algorithm 3 checks the cases in which a graph
does not belong to L2

3. If this is not the case, the labelling is admissible.
Note also that, at the end of Algorithm 3 it is possible to have cliques that do not have

a label. Since they were not considered before, if some vertices are not labelled we can
fix their labels to either + or− in such a way that the labels alternate for the cliques c, c′
that strongly intersect. Finally, we find a 3-uniform hypergraph H such that G = L2

3(H).

Construction of the 3-uniform hypergraph

Fact 9. Consider the labelled tree T of a claw-free triangulated hypergraph. Then there
exists H such that G = L2

3(H).

Proof. Given T with the labelling of its vertices, we construct a labelling of the vertices
of G from the root cr to the leaves of Tr. We assume w.l.o.g. that λ(cr) = +. We label
the vertices of cr as follows: since λ(cr) = +, cr it is labelled positively with the labels
(1, 2, 3), (1, 2, 4),. . .,(1, 2, kr). Let c ∈ C, c ̸= cr. We assume that the vertices of its
predecessor c′ in Tr are labelled.

Since T is a tree, up to a permutation of the labels, we assume that the labels of c′
are taken into {1, 2, . . . , k}. Consider the following two cases:

• Suppose that c′ is labelled positively with (1, 2, 3), (1, 2, 4), . . . , (1, 2, k) . If c
strongly intersect c′ then λ(c) = −. We set (1, 2, 3), (1, 2, 4) the labels of c∩ c′. If
c contains three vertices, it is labelled as (1, 3, 4). If it contains four vertices, the
last node is labelled as (2, 3, 4).

If c weakly intersect c′ from Fact 4 we have |c| = 3. Let (1, 2, 3) be the label
of c ∩ c′. If λ(c) = − then the other labels of c are (1, 3, k), (2, 3, k), with k
different from any value in c and c′. If λ(c) = + then the other labels of c are
(1, 3, k), (1, 3, t), with k, t different from any value in c and c′. In any case, we
obtain a valid label for the two cliques;

• Suppose that c′ is labelled negatively. Let’s consider the case in which |c′| = 4
and their vertices are (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4): from Fact 4 c strongly
intersect c′ and λ(c) = + must hold. Let (1, 2, 3), (1, 2, 4) be the labels of c ∩ c′.
The other labels of c are (1, 2, 5), . . . , (1, 2, k).

62

-
+

+

+

+
-

+

+

-

-

+
+

+

-

+

+

-

+

-

-

Figure 4.23: Labelling of the graph G and its associated tree.

Consider now the case in which |c′| = 3 and their vertices are (1, 2, 3), (1, 2, 4), (1, 3, 4).
If c strongly intersect c′, let (1, 2, 3), (1, 2, 4) be the labels of c∩c′. The other labels
of c are (1, 2, 5), . . . , (1, 2, k).
On the other hand, if c weakly intersects c′, let (1, 2, 3) be the label of c ∩ c′. The
other labels of c are (2, 3, 5), . . . , (2, 3, k).
In case c′ has a second successor c′′, such that the label of c ∩ c′′ is (1, 2, 4), then
the other labels of c′′ are (2, 4, k + 1), . . . , (2, 4, k + l). Recall that c′ ̸= cr so c′

has at most two successors in Tr.

The proof is complete.

As an example, consider the graph depicted G in Figure 4.21 and its associated tree
cliques. Using the rules listed in the proof, we obtain the labelling shown in Figure 4.23.
From that, it’s easy to find an actual label of the vertices and conclude that G ∈ L2

3(H).

4.4 Further results
In this section, we prove some further results regarding graphs belonging to Ll

k classes,
starting with a property valid for general graphs belonging to that class.

Fact 10. If G ∈ Ll
k then G is K1,p+1-free, where p =

(
k
l

)
.

Proof. Suppose G = Ll
k(H) and let e ∈ V (G) a node, relative to an edge of H . Since H

is a k−uniform hypergraph, it means e can be connected at most to
(
k
l

)
other edges.

63

4.4.1 NP-complete problems in the class L1
k

Given a linear k-uniform hypergraphH = (V,E) one can define a linear (k+1)-uniform
hypergraph H ′ = (V ′, E ′) as follows. First of all, we set V ′ = V ∪1≤i≤m {ai}. Then,
for each hyperedge ei ∈ E, 1 ≤ i ≤ m, we create the hyperedge e′i ∈ E ′, e′i = ei ∪ {ai}.

In [47] it is proved that recognizing whether a graphG ∈ L1
3 isNP -complete. Hence,

using the previous construction, we obtain the following proposition.

Proposition 4. For any fixed k ≥ 3, deciding whether a graph G ∈ L1
k is NP-complete.

Moreover, other works show the veracity of the following proposition.

Proposition 5. The problems Hamiltonian cycle [48], 3-coloring [49], Minimum dom-
ination [50] are NP-complete in L1

2.

Using the previous construction it’s easy to check that the following proposition is
true.

Proposition 6. For any fixed k ≥ 2, the problems Hamiltonian cycle, 3-coloring, and
minimum domination are NP-complete in L1

k.

4.4.2 Hamiltonian cycle detection in L2
3

In the previous chapter we study the null label problem and prove a sufficient condition
for a 3−hypergraph to be null. In particular, the result uses Hamiltonian graphs in L2

3.
Here, we show that deciding if G ∈ L2

3 is Hamiltonian is NP -complete, limiting the
possible application of the result.

Theorem 11. The Hamiltonian cycle problem is NP -complete in L2
3 even for graphs

G = L2
3(H) where m(H) = 3.

Proof. We give a polynomial transformation from the Hamiltonian cycle problem in
cubic graphs which is NP -complete [45]. From a cubic graph G′ = (V ′, E ′), we define
G ∈ L2

3 as follows: to each vertex v ∈ V ′ with neighbours u, w, and t corresponds Kv,
i.e., the complete graph with the three vertices (v, v, u), (v, v, w), (v, v, t). For each edge
uv ∈ E ′, we add the edge (v, v, u)(u, u, v). It is straightforward to verify that G ∈ L2

3,
and that H , the hypergraph such that G = L2

3(H), satisfies m(H) = 3. Moreover, G′

has a Hamiltonian cycle if and only if G has one.

Remark 1. In [51] is proved that the Hamiltonian cycle problem remains NP -complete
for cubic planar graphs. Since K3, the subgraph replacing each vertex in our reduction
is planar, it is straightforward, using the same transformation, that the Hamiltonian cycle
problem is NP -complete in L2

3 even for planar graphs.

64

4.4.3 Recognition problem for trees
We are interested in the recognition problem for trees in L2

3. We denote with ∆(T) the
maximum degree among all the vertices in the graph.

Proposition 7. Let T be a tree. T ∈ L2
3 if and only if ∆(T) ≤ 3.

Proof. Let T be a tree. If ∆(T) ≥ 4 then T contains K1,4 as an induced subgraph and so
T ̸∈ L2

3. Now ∆(T) ≤ 3. We use induction on n, the number of vertices of T . The cases
n = 1 and n = 2 are trivial. Let v be a leaf of T . By our induction hypothesis, T − v
has a λ2

3-labelling. Let w be the neighbour of v in T . In T − v, w has degree at most
two. Without loss of generality, let w = {1, 2, 3} and w′ = {1, 2, 4} be the labelling of a
neighbor w′ of w in T −e. When w′ is the unique neighbor of w in Te then v = {2, 3, 5}.
Else w′′ is the second neighbour of w in Te. Let w′′ = {1, 3, 5}. Then v = {2, 3, 6}.

Chapter 5

Minimum Surgical Probing

In this chapter we consider a general class of problems that concern retrieving informa-
tion and, at its best, reconstructing a physical discrete object from aggregate measure-
ments on its points. In particular, we assume that each point of the unknown object has
an assigned value and our aim is to determine these values. Such a framework models
several situations where it is not easy or even not possible to obtain them through a pre-
cise inspection (called surgical probe), since it may damage the structure or may alter
these values. A common alternative proposes the use of aggregate measuring techniques,
whereby measurements are taken over a larger area or discrete lines and the values at each
point are subsequently extracted by computational methods.

This problem is often referred to as the Discrete Tomography Reconstruction problem
(DTR) (for a survey on the topic and the related problems see [21, 22]). The Microscopic
Image Reconstruction problem (MIR) has been introduced in [34, 52] as a natural exten-
sion of DTR. In both problems, the object is represented by a subset U ⊆ Z× Z whose
points have assigned non-negative integer values that can be thought as their weights. In
the DTR problem, the projections are taken using an entire row or column. In contrast,
in the MIR problem it is assumed that the microscope’s scanning window is a subset of
the plane (see [34, 53] for some examples). In [25] the authors extend this framework
considering a generalized setting where the inspected object is represented by an undi-
rected unweighted connected graph G = (V,E). In this case, the vector ℓ ∈ Rn is an
assignment of values ℓv to each one of the n nodes in V . Moreover, in this context, a
probe centred in v captures the sum of its neighbours’ labels. Since in general there may
exist several values assignments that satisfy the same vector ℓ, the authors of [25] studied
the so-called Minimum Surgical Probing problem (MSP) in which we ask to find the
minimum number of surgical probes (i.e. exact known values) that allows reconstruct-
ing ℓ uniquely. In the same paper the authors show that the problem can be solved in
polynomial time using linear algebra tools. Also, a generalization for weighted graphs
has been studied [54].

65

66

Moving from these studies, in the first section we recall MSP and some basic re-
sults about it. Then, in the second section, we study MSP on hypergraphs, proving
the equivalence with the same problem on weighted graphs. We also consider some
classes of hypergraphs whose 2−intersection graphs have a specific form investigating
the MSP problem of the related hypergraphs. We prove that the values assigned to the
hypergraphs’ nodes can be retrieved (in polynomial time) by using zero or one surgical
probes, and we show how to detect them.

In the third section we step back to graphs, searching for convex solutions to the
problem. In particular, although the problem is NP−hard in general, we provide some
subclasses of graphs for which it is possible to obtain simple and elegant algorithms to
reconstruct their labels and find the minimum number of surgical probes needed to do
that.

Part of the results presented in this chapter are published in [55] and [56].

5.1 Definition of MSP and previous results
Consider a hypergraph H = (V,E) such that |V | = n. For each v ∈ V we assign to it a
label ℓv ∈ R. We denote ℓ = (ℓ1, . . . , ℓn) as label vector of the nodes. For a node v we
define its probe as

Pv =
∑
w∈V

F (v, w)ℓw (5.1)

where F (v, w) is the number of hyperedges that contain both v and w. The value
of F (v, v) (either 0 or different) determines if we are considering exclusive or inclusive
probes, i.e. if we are considering the node itself inside the probe. Suppose to collect the
probes in a vector P . We stress that the probe of a node v considers each neighbour’s
label with a coefficient counting its occurrences in different hyperedges (provided by
F (·, ·)). On the other hand, the choice of computing the probes of v without such co-
efficients allows the MSP problem to go back to the graph case. In fact, for a generic
unweighted graph G, F (v, w) = Av,w where A is the adjacency matrix of G.

We define the neighbourhood matrix F of a hypergraph as the matrix whose generic
entry fi,j equals F (i, j). The first question that comes from the previous definition is the
following.

Question 1. Is it possible to compute vector ℓ from the knowledge of P?

Since in general there may exist several vectors ℓ that would yield the same probe P
(see [25] for an example), we study a generalization of the problem described in [25].
Let us define surgical probe at node v to be the knowledge of its label lv:

67

Question 2. What is the minimal number of surgical probes needed for a unique recon-
struction of the label vector ℓ from the knowledge of P?

We call this problem Minimum Surgical Probing problem (MSP). Given a hyper-
graph H and a vector P , we aim at finding the minimum number of surgical probes
needed to reconstruct the vector ℓ uniquely.

In [25], the authors prove that the MSP problem on graphs can be solved in poly-
nomial time and present an efficient algorithm to perform the task.

In particular, solving Question 2 concerns the study of the solutions of the linear
system:

Fℓ = P . (5.2)

In the following, we denote with rank(A) its rank and with ϕλ(A) the geometric multi-
plicity of each λ ∈ Λ(A), where Λ(A) is the set of the eigenvalues of A.

We note that F is a non-negative n × n symmetric matrix, and therefore ϕ0(F) =
n− rank(F) is the kernel dimension of F .

Theorem 12. Let us consider a hypergraph H and let P be its probes vector and F be
its neighbourhood matrix. It holds that

1. if F has full rank, then ℓ can be found in polynomial time without surgical probes;

2. otherwise the minimum number of surgical probes needed to compute ℓ is s =
n− rank(F) = ϕ0(F).

The proof of Theorem 12 can be easily obtained from Theorem 2.2 in [25]. We stress
that its proof only relies on the symmetry of the matrix, without imposing any constraint
on its coefficients.

Observation 1. The minimum number of probes pointed out in Theorem 12 holds for a
generic vector of labels ℓ, while it can be considered as a lower bound in case we require
ℓ to be an integer vector.

Observation 2. In the framework we are setting up, we implicitly assume that the probe
vectorP is obtained by the machinery scanning of a real object. This implies that system
(5.2) has always at least one solution. However, from a mathematical point of view, it
may happen that rank(F) < |V |, preventing the problem from having a solution.

5.2 The MSP problem on classes of hypergraphs
In this section we suppose F (v, v) = 0 for each v ∈ V , i.e. the node itself is not included
in the probe. Consider the following notion.

68

Definition 7. Let H = (V,E) be a hypergraph, we define the graph GH = (VH , EH)
such that VH = V and EH = {{v, w} : exists e ∈ E such that {v, w} ⊆ e}.
Furthermore, we define a weight function WH on EH such that WH(v, w) = F (v, w),
being F the neighborhood matrix of H . GH is called weighted 2−section of H .

In words, starting from H we compute the graph GH by replacing each hyperedge
e ∈ E with a complete graph on the same set of nodes of e. The weight function W (·, ·)
indicates, for each edge (v, w) of GH , the number of hyperedges of H including the two
nodes v and w (see Figure 5.1).

This notion has been introduced in [57] and later studied in [58], where the au-
thors consider the reconstruction problem of a hypergraph starting from its weighted
2−section.

It is worthwhile noting that theMSP problem on hypergraphsH can be equivalently
shifted to the same problem on the weighted graph GH , where the probes are computed
using the edges’ weights so that F turns out to be the weighted adjacency matrix of GH .

Example 8. Consider the hypergraphH in Figure 5.1 (a), whose hyperedges are {{1, 2, 3}{2, 3, 4}}.
Its probes are P1 = l2 + l3, P2 = l1 + 2l3 + l4, P3 = l1 + 2l2 + l4, and P4 = l2 + l3.

(a) (b)

l1 l2

l3 l4

l1 l2

l3 l4

1

1

1

1 2

Figure 5.1: The hypergraph H = {{1, 2, 3}{2, 3, 4}} is shown in (a). (b) represents the
related GH weighted graph.

Consider the 2−section graph GH depicted in Figure 5.1, (b). An easy check reveals
that GH satisfies the same probes P1 . . . P4 as H .

So far the intersection graph has been a valuable tool to inspect structural properties
of uniform hypergraphs, such as the existence of null labellings. Therefore, in what
follows, we use the intersection graph to solve the MSP problem for some relevant
classes of hypergraphs.

Observation 3. Let H be a hypergraph. If its 2-intersection graph L2
3(H) has no edges,

then no two hyperedges of H share two nodes. So, it holds that the edges’ weights of
GH have the same value 1, and the solution of the related MSP problem (on unweighted
graph) has already been studied in [25].

69

Here, we focus on three classes of 3−hypergraphs whose 2−intersection graphs have
specific, non-trivial, properties of regularity.

5.2.1 3-hypergraphs whose 2-intersection graph is a line
Let us consider a 3-hypergraph H whose L2

3(H) intersection graph is a line. Among
them, we distinguish two types of hypergraphs: the cluster hypergraphs and the path
hypergraphs. We begin our study from the former.

The MSP problem on cluster hypergraphs

Definition 8. A k−cluster hypergraph is a 3−hypergraph such that |V | = k+2, |E| = k
and its hyperedges are defined, up to isomorphism, as{

e1 = {1, 2, 3}
ei = {1, i+ 1, i+ 2} i = 2 . . . k.

(5.3)

An easy check reveals that the 2−intersection graph of a k−cluster is a line of length
k. Figure 5.2 depicts a 4−cluster hypergraph (left), and its four-length line 2−intersection
graph (right).

{v1, v2, v3}

v1

e1

e2

e3

e4

{v1, v3, v4}

{v1, v4, v5}

{v1, v5, v6}

v2

v3

v4

v5

v6

Figure 5.2: A 4-cluster hypergraph (left) and its 2-intersection (right)

Denote by Fk the neighborhood matrix of a k−cluster. Note that if |E| = k, then
|V | = k + 2.

In Table 5.1, we explicitly compute the neighborhood matrices of the 2−cluster and
3−cluster hypergraphsH2 = {{1, 2, 3}, {1, 3, 4}} andH3 = {{1, 2, 3}, {1, 3, 4}{1, 4, 5}}.

The elements that are in common are in boldface, according to the successive Lemma 5.4
that highlights the relation between the generic matrices Fn−1 and Fn.

Lemma 12. Let Fn−1 and Fn be two neighborhood matrices of the (n− 1)-cluster and
n-cluster, respectively. The following recursive equations define Fn+1

70

F2 =


0 1 2 1

1 0 1 0

2 1 0 1

1 0 1 0

 F3 =


0 1 2 2 1

1 0 1 0 0

2 1 0 1 0

2 0 1 0 1

1 0 0 1 0


Table 5.1: the neighborhood matrices associated to the clusters of dimensions 2 and 3.

Fn+1(i, j) = Fn(i, j) if 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n+ 1 (5.4)

Fn+1(i, n+ 2) = Fn+1(n+ 2, i) =


2 if i = 1

1 if i = n+ 1

0 otherwise

(5.5)

Fn+1(i, n+ 3) = Fn+1(n+ 3, i) =

{
1 if i = 1 or i = n+ 2

0 otherwise.
(5.6)

Proof. Equation (5.4) states that the multiplicity of the edges {i, j} of Fn is not affected
by the addition of the new node.

Equation (5.5) states that adding node n + 3 implies, by definition, the inclusion
of the hyperedge {1, n + 2, n + 3}. Therefore, {1, n + 2} shares two hyperedges and
{n+ 2, n+ 1} shares one hyperedge.

Equation (5.6) set the values of the row and the column of the new node n+3. Since
the new hyperedge is {1, n+ 2, n+ 3} the equation holds.

From Theorem 12, it follows that the MSP problem on cluster hypergraphs can be
solved by studying the rank of the associated Fn matrices.

Theorem 13. Let n ≥ 4 and consider n−cluster hypergraph. If n is even, then theMSP
problem can be solved with one surgical probes while, if n is odd, then no surgical probes
are needed.

Proof. Let us study rank(Fn−2) by inspecting its associated homogeneous system:
x2 + 2x3 + . . .+ 2xn−1 + xn = 0

x1 + x3 = 0

2x1 + xi−1 + xi+1 = 0 if i = 3 . . . n− 1

x1 + xn−1 = 0.

71

From the second equation we get x3 = −x1, and from the last one, xn−1 = −x1. By
substituting the computed variables in the third equation, with i ranging from 3 to n−1,
we obtain, for i = 4, the equation x5 = −x1 and, in general, the equation xi = −x1,
with i odd. On the other hand, xn−1 = −x1 implies xn−3 = −x1 when i = n − 2 and,
in general x(n−1−2k) = −x1. We have two cases:

1. if n is odd we obtain each xi = −x1. Since the first equation is a sum of all the
variables except x1, we obtain x1 = 0 and therefore xi = 0. SoFn−2 has maximum
rank;

2. if n is even we obtain xi = −x1, with i odd, and then we have an additional
equation that gives 0 = 0 (i.e., x1 is a free variable). Note that other equations
involving even index i are of the form

xi−2 + xi = −x1

Therefore, assuming i = 2k, we obtain x2k in terms of x1 and x2, so

x2k = −x1 − x2k−2 =

{
x2 if k ≡2 0

−x1 − x2 if k ≡2 1
(5.7)

Since the first equation is only a sum of all the other variables except x1, rank(Fn−2) =
n− 1. Therefore, from Theorem 12, we need one surgical probe to determine ℓ.

The MSP problem on path hypergraphs

Definition 9. A n−path hypergraph Cn, with n ≥ 1, is a 3−hypergraph H in which
|V | = n+ 2, |E| = n and whose hyperedges are{

e1 = {1, 2, 3}
ei = {i, i+ 1, i+ 2} i = 2, . . . n

(5.8)

Also in this case, w.l.g. we suppose that v1 is the starting node. See Figure 5.3 for
an example.

Call Fn the neighbourhood matrix of a n−path. The following lemma holds.

Lemma 13. Let H be Cn hypergraph. Then Fn is a symmetric pentadiagonal matrix of
dimension (n+ 2)× (n+ 2) such that:

diag(Fn) = (0, . . . , 0) ∈ Rn+2

diag±1(Fn) = (1, 2, 2, . . . , 2, 2, 1) ∈ Rn+1

diag±2(Fn) = (1, . . . , 1) ∈ Rn

(5.9)

where diag±k(Fn) indicates the k-th diagonals ofFn above and below the main diagonal.

72

e1

e2

e3

e4

v1

v2

v3

v4

v5

v6

{v2, v3, v4} {v4, v5, v6}
{v3, v4, v5}{v1, v2, v3}

Figure 5.3: (a) a 4−path hypergraph and in (b) its 2−intersection graph.

F2 =


0 1 1 0

1 0 2 1

1 2 0 1

0 1 1 0

 F3 =


0 1 1 0 0

1 0 2 1 0

1 2 0 2 1

0 1 2 0 1

0 0 1 1 0


Table 5.2: the neighborhood matrices associated to the paths of dimensions 4 and 5.

Proof. The first equation immediately follows by definition of neighborhood matrix.
Then, we note that each node i different from 1 and n+ 2 is connected twice with i+ 1
and i−1. Moreover, nodes 1 and n+2 are connected once with node 2 by the hyperedge
{1, 2, 3}, and with n+2 by the hyperedge {n, n+1, n+2}. Therefore the second equa-
tion holds. Finally, each node i is connected only once with i + 2 and i − 2, obtaining
the third equation.

In Table 5.2, we explicitly compute the neighborhood matrices F4 and F5 of the
4−path and 5−path hypergraphs, respectively. Again the sub-matrices with equal ele-
ments are in boldface.

The following result holds.

Theorem 14. Consider a n−path. The MSP problem can be solved without surgical
probes if and only if n ≥ 3. In particular, if n = 2, a surgical probe is needed.

Proof. The case n = 2 is obtained after noticing that rank(F2) = 3, so one surgical
probe is needed to recover l. Consider a generic Fn matrix, with n ≥ 3. By Theorem
12 the statement is proved if rank(Fn) = n + 2. Following the same strategy as in the
proof of Theorem 5.2.1, let us inspect the homogeneous linear system associated with
Fn−2:

73



x2 + x3 = 0

x1 + 2x3 + x4 = 0

xi−2 + 2xi−1 + 2xi+1 + xi+2 = 0 i = 3 . . . n− 2

xn−3 + 2xn−2 + xn = 0

xn−2 + xn−1 = 0

(5.10)

It follows: 

x3 = −x2

x4 = −x1 + 2x2

xi+2 = −xi−2 − 2xi−1 − 2xi+1 i = 3, . . . n− 2

xn = −xn−3 − 2xn−2

xn−2 = −xn−1

(5.11)

The previous equations show that any variable can be expressed by a linear combi-
nation of x1 and x2. In the equation defining xi, we indicate αi the coefficient of x1 and
βi the coefficient of x2.

Furthermore, the following initial conditions hold:
α1 = 1

α2 = 0

α3 = 0

α4 = −1


β1 = 0

β2 = 1

β3 = −1
β4 = 2

(5.12)

The next equations provide the recursive description of αi and βi for a generic index
i: (

αi

βi

)
=

(−αi−4 − 2αi−3 − 2αi−1

−βi−4 − 2βi−3 − 2βi−1

)
. (5.13)

Note that the two coefficients follow the same equation with different initial condi-
tions. Let us consider αn (we can act similarly when considering βn); using basic tools
of finite differences equations’ theory we obtain that (5.13) has the following general
solution:

αn =
4∑

k=1

ckz
n−1
k , n = 1, 2, . . . (5.14)

where ck is a constant determined by the initial conditions and zk is a root of the charac-
teristic polynomial z4 + 2z3 + 2z + 1 = 0. Moreover, the solutions {znk}4i=1 are linearly

74

independent. In particular, we have

z1 =
1

2
(−1−

√
2

4
√
3−
√
3), z2 =

1

2
(−1 +

√
2

4
√
3−
√
3),

z3 = −
1

2
− i 4
√
3√
2
+

√
3

2
, z4 = −

1

2
+

i 4
√
3√
2
+

√
3

2
.

Note that |z3| = |z4| = 1, |z2| > 1 and |z1| < 1. So, (5.14) is the general expression of
the αi succession values and we use it in (5.11). In particular, from its last two equations,
we obtain:

{
0 = xn−2 + xn−1 = x1(αn−2 + αn−1) + x2(βn−2 + βn−1)

0 = xn−3 + 2xn−2 + xn = x1(αn−3 + 4αn−1 + αn−4) + x2(βn−3 + 4βn−1 + βn−4)
(5.15)

These equations have a unique solution x1 = x2 = 0 sinceαn−2+αn−1 =
∑4

i=1 ci(1+
zi)z

n−3
i , i.e. it is a linear combination of the solutions {zi}i=1...4. Since they are linearly

independent, then it holdsαn−2+αn−1 ̸= 0, with n ≥ 5. The same holds for βn−1+βn−2.
Therefore, from the first equation of (5.15) we obtain x2 = x1

(αn−2+αn−1)
(βn−2+βn−1)

. Substi-
tuting the value of x2 in the second equation of (5.15), we finally obtain

x1

(
αn + 2αn−2 + αn−3 +

αn−1 + αn−2

βn−1 + βn−2

(βn + 2βn−2 + βn−3)

)
︸ ︷︷ ︸

=cn

= 0 (5.16)

The proof ends if cn ̸= 0. Since |z2| is the only root greater than 1, then its exponential
behaviour overwhelms the other terms. In particular, the computation of the values of cn
that we provide up to n = 100, shows that the condition is verified. As a consequence,
the only solution of (5.16) is x = 0 obtaining that rank(Fn) = n+ 2.

As previously observed, both for cluster and path hypergraphs the 2−intersection
graph is a line. Conversely, a hypergraph that has a line 2−intersection graph can contain
both clusters and paths at the same time. In such cases, it becomes quite hard to find a
general expression of the related neighborhood matrices.

5.2.2 3-hypergraphs whose 2-intersection graph is a tree
Consider a 3−hypergraph Ts whose 2−intersection graph L2

3(Ts) is a perfectly height-
balanced tree of height s and each node, but for the leaves, has degree 3. We indicate it
as s-tree. Suppose that the edge e of Ts appears (as node) in L2

3(Ts) at level r. Then we

75

say that e has level p(e) = r; if e is a leaf, then we call it leaf hyperedge, and it holds
p(e) = s. The set of all leaf hyperedges is indicated with L.

Consider an internal node e = {x, y, z} inL2
3(Ts); its children are {x, z, k1}, {y, z, k2}.

Up to renaming of the nodes of Ts, we suppose that k1 and k2 appear only in the hyper-
edges that are nodes of the subtree of L2

3(Ts) having root e. So, at each level of L2
3(Ts),

we have a sequence of nodes related to hyperedges of Ts of the form

{x1, z1, k1}, {y1, z1, k2}, . . . , {xn, zn, k2n−1}, {yn, zn, k2n}.

An order can be set on them according to the k1, . . . , k2n numbering. Furthermore, at
level s of the s-tree, the new nodes k1, . . . k2n of the leaf hyperedges are indicated as leaf
nodes.

Observation 4. Since each internal node e = {x, y, z} of L2
3(Ts) has degree 3 and Ts is

a perfectly height-balanced tree, e uses all the three couples {x, y}, {y, z}, {x, z} to be
connected to its neighbourhoods nodes. On the other hand, if e is a leaf node, then it is
connected with one only couple to its neighbours.

We assume w.l.g. that the root of L2
3(Ts) is the hyperedge {1, 2, 3} of Ts. So, by

definition, it follows that there exists a unique s−tree hypergraph for each s ∈ N (up to
isomorphism). Figure 5.4 shows the s-tree T2.

Lemma 14. Let s ≥ 2. The following statements hold:

1. given a s−tree hypergraph Ts, the corresponding L2
3(Ts) has m = 3 · 2s−2 leaves;

2. for each node k of Ts, if k is not a leaf node, then there exist exactly two paths
in L2

3(Ts) that connect the first occurrence of k in a node to two corresponding
leaves. Furthermore, all the nodes in these two paths contain the node k;

3. an s−tree hypergraph Ts has 6 · 2s−2 nodes.

Proof. 1. Let s = 2 and consider T2. Without loss of generality, we have

T2 = {{1, 2, 3}, {1, 2, 4}, {2, 3, 5}, {1, 3, 6}}

(see Figure 5.4). Note that it has 3 = 3 · 22−2 leaves. Consider a general Ts+1 and
suppose the thesis is true for Ts. Since every leaf of Ts generates two new leaves,
Ts+1 has 2(3 · 2s−2) = 3 · 2s−1 leaves.

2. let z be a node of Ts and e = {x, y, z} (one of its hyperedges), the first internal
node of L2

3(Ts) in which z appears. By definition of s-tree its two children are
{x, z, k1} and {y, z, k2}. Note that only one child of each successive node will
contain z in its relative edge until reaching the leaves.

76

3. We proceed by a simple induction. Basis: the T2 hypergraph has 6 · 22−2 = 6
nodes. Suppose that the thesis holds for Ts and let us compute the number of
nodes of the successive s-tree Ts+1. When we add a new level, each leaf of the
s−tree hypergraph generates two children and therefore two new nodes. Therefore
it holds that the nodes of Ts+1 double those of Ts, so 2(6 · 2s−2) = 6 · 2s−1.

Example 9. The T2 s-tree of Figure 5.4 has {1, 2, 4}, {2, 3, 5}, {1, 3, 6} leaf hyperedges,
and 4, 5, and 6 are the leaf nodes.

{1,2,3}

{1,2,4} {2,3,5} {1,3,6}

Figure 5.4: The figure shows L2
3(T2) hypergraph. We have L =

{{1, 2, 4}, {2, 3, 5}, {1, 3, 6}}. Moreover, nodes 4,5,6 are leaf nodes.

Moreover, the neighborhood matrix of T2 is F2, i.e., the following 6×6 square matrix

F2 =



0 2 2 1 0 1

2 0 2 1 1 0

2 2 0 0 1 1

1 1 0 0 0 0

0 1 1 0 0 0

1 0 1 0 0 0


=

(
A2 Bt

B 0

)
(5.17)

Note that the neighbourhood matrix F2 of Example 5.2.2 can be decomposed into
four matrices of dimension 3×3. An easy check reveals that the boldface entries refer to
the matrix A2 that contains the values of the internal nodes’ links of L2

3(T2). The italic
entries refer to the matrices B and Bt that contain the connections between the internal
nodes and the leaves of T2. The fourth matrix is the zero matrix 0.

Let us consider the linear system associated to F2. From the last three rows related
to the matrix B we get 

x1 = −x2

x1 = x3

2x1 = 0.

(5.18)

77

Therefore we obtain x1 = x2 = x3 = 0 and rank(B) = 3. Since rank(Bt) =
rank(B) = 3 we obtain also x4 = x5 = x6 = 0. Therefore F2 has maximum rank and
the MSP problem on T2 can be solved without surgical probes.

The previous example shows a general property of the neighbourhood matrix of a
Ts hypergraph. We underline that an immediate consequence of Lemma 14 is that the
dimensions of Fs, for a generic t-tree hypergraph Ts, is always even.

Lemma 15. Let Ts be a s-tree hypergraph with s ≥ 3 and let n = 6 · 2s−2. Then Fs can
be decomposed into four n

2
× n

2
square matrices:

Fs =

(
As Bt

B 0

)
(5.19)

Moreover, the entries of As can be characterized as follows:

As(i, j) =

{
2 if Fs−1(i, j) ̸= 0

0 otherwise.

The matrix B (and its transpose Bt) contains exactly two non-zero elements in each row
and in each column. In particular

Bij = 1 if and only if there exists k >
n

2
such that (i, j, k) is an edge of Ts.

Finally, 0 is the null matrix.

Proof. Let us focus on the matrix As: we note that Lemma 14 assures that As has the
same dimension of Fs−1. By Observation 5.2.2, and since As contains the connections
between the first n

2
(i.e. non-leaf) nodes, then it has the same non-zero elements of Fs−1.

Furthermore, since L2
3(Ts) has one layer more than L2

3(Ts−1), i.e., the last one, then each
1 entry of Fs−1 changes into a 2 entry of As in the same position.

Concerning matrix B, its characterization follows from the definition of neighbour-
hood matrix. Note that B represents the last n

2
(i.e. leaf) nodes of Ts. By Observation

5.2.2, every row of B has exactly two 1 entries and no two rows can be equal.
Moreover, Lemma 14 states that every non-leaf node appears in exactly two leaf hy-

peredges, therefore every column contains exactly two 1 entries and again all the columns
are different.

Finally, the leaf nodes are not connected so the bottom-right part of matrix Fs is null.

Lemma 16. Let us consider the 2 × n
2

matrix πB whose generic elements in positions
(1, i) and (2, i), with 1 ≤ i ≤ n

2
, are the row indexes of the two only first and second

non-zero entries in column i of B (as defined in Lemma 15). It holds that matrix πB is a
permutation forming one single cycle of maximal length n

2
.

78

The proof is a direct consequence of Point 2 in Lemma 14 and Lemma 15.

Theorem 15. Let s ≥ 3. The MSP problem on Ts can be solved with one surgical
probe.

Proof. Let Fs be the neighbourhood matrix associated with Ts and decomposed accord-
ing to Lemma 15. The linear system associate to the matrix B, considering the property
states in Lemma 16, turns out to be, for each j = 1 . . . n

2
:{

xj = −x1 if j is a leaf node of Ts−1

xj = x1 otherwise.
(5.20)

By Lemma 14, B has an even number of rows when s ≥ 3, so the last equation of this
system is the identity 0 = 0, leading to rank(B) = n

2
− 1. So, each variable x2, . . . , xj

is expressed in terms of x1 and it can be substituted in the variables of As obtaining vx1,
with v being the integer column vector of length n

2
of the x1 coefficients in As. The

variable column v x1 is then concatenated with the part of the linear system related to
Bt obtaining: (

v Bt
)

x = 0. (5.21)

Note that, since As has the same form of Fs−1, we have v ̸= 0 (the rows of the leaf
nodes of Ts−1 do not sum to 0 since all the associated variables are equal to −x1). With
a similar procedure, we obtain that rank(Fs) = n − 1. So, by Theorem 12 it follows
that one only surgical probe is required to solve the MSP related problem.

5.3 Convex Minimum Surgical Probing
In this section, we take a step back to graphs and consider, on them, a binary label vector
ℓ and MSP with convexity constraints.

The probe vector P is determined by Equation (5.1) adapted to graph case, i.e.

Pi =
∑

j∈N [j]

Aijℓj, (5.22)

where A is the adjacency matrix of G. In particular, we consider close neighbour-
hood, i.e. i ∈ N [i]. We define the support of vector ℓ as the number of its non-zero
elements. Obviously, we always assume that ℓ has support at least 1.

In the sequel, we will use the terms convex, shorthand, for g-convex, m-convex, or t-
convex (see the definitions in Chapter 1). Moreover, if ℓv = 1 we say that v is a 1−vertex
and a 0−vertex otherwise.

So, we say that a label vector ℓ is convex if

79

1ℓ
G := {i ∈ V | ℓi = 1}

is a convex subset of V in G, according to one of the above definitions. We consider the
following definition of the problem.

Definition 10 (Convex Minimum Surgical Probing (CMSP)). Given a connected
graph G and a probe vector P , determine the minimum number of surgical probes re-
quired to uniquely uncover a label vector ℓ that is convex on G.

If a graph is not connected, we consider its components as independent instances of
CMSP. Our first observation shows that the labels of some vertices can be uncovered
readily. It also holds for non-convex label vectors.

Observation 5. If Pv = 0, then ℓu = 0, for all u ∈ N [v].

Path convexities imply that each 1-vertex necessarily has another 1-vertex in its neigh-
bourhood (if the label vector has support 2 or more). This observation may identify
additional 0-vertices. We formalize it in the following lemma.

Lemma 17. Let G = (V,E) be a connected graph with a convex label vector ℓ of
support at least 2, and let P be the corresponding probe vector. For v ∈ V , we have that
if Pv ≤ 1, then ℓv = 0

Proof. Let G, ℓ, and P be as in the lemma. Let v ∈ V such that Pv ≤ 1. Towards a
contradiction, suppose that ℓv = 1.

Since ℓ has support at least 2, there is another vertex u ∈ V such that ℓu = 1. If
v and u are adjacent, it follows that Pv ≥ 2. Otherwise, v and u are not adjacent, and
since G is connected, there is a vertex w ∈ Ig(u, v) (resp. Im(u, v) and It(u, v)) that is
adjacent to v and ℓw = 1. It follows that Pv ≥ 2. We reach the desired contradiction,
and ℓv = 0 holds.

We treat label vectors with support 1 as a special case since the notion of convexity
is trivial in this case. We show that they can be recognized efficiently.

To close this section, we define the core CG =
⋂

i∈V NG[i], being G a graph, as the
subset of vertices that are adjacent to all vertices. Obviously CG is a clique in G.

Lemma 18. Let G = (V,E) be a k-connected graph with a convex label vector ℓ of
support at least k + 1, and let P be the corresponding probe vector. For v ∈ V , if
ℓv = 1, then Pv ≥ k + 1.

80

Algorithm 4 Reduce(G,P , ℓi, i)
P ′ ← P \ Pi

G′ ← G \ i
for j ∈ NG(i) do
P ′

j ← P ′
j − ℓi

end for
return G′,P ′

5.3.1 Reduction Algorithm
In this section, we describe Algorithm 4 which removes vertices with known labels from
graph G and updates a consistent probe vector P .

Assume that ℓi is known, for i ∈ V . LetG′ andP ′ be the result of runningReduce(G,P , ℓ, i).
We denote the result of removing ℓi from ℓ by ℓ−i. The next observation follows readily.

Observation 6. Probe vector P is consistent with G and ℓ if and only if P ′ is consistent
with G′ and ℓ−i.

One needs to be careful when applying Algorithm 4 as it does not preserve convexity,
and G′ may not be connected. For example, consider the cycle graph of order n, for
n ≥ 7, with a g-convex label vector ℓ of support 3. The three 1-vertices are consecutive
along the cycle. If the reduction algorithm is applied to the central 1-vertex, the resulting
graph is a path where only the two vertices at the ends (having degree one) are 1-vertices.
Clearly, the labels are not g-convex (see Figure 5.5).

G G′

Figure 5.5: Left, a graph G with a g−convex label in which the 1−nodes are the yellow
ones. G′ is the result of Reduce in which the central 1−node is removed. The label of
G′ is not g− convex anymore.

On the positive side, Algorithm 4 does preserve g-convexity if 0-vertices are removed
as shown by the next lemma.

81

Lemma 19. Let G = (V,E) be a graph and ℓ a g-convex label where ℓi = 0 for i ∈ V .
Then, ℓ−i is a g-convex label on the components of G′ = G \ i.

Proof. Let G,G′, and i be as in the lemma. Towards a contradiction, suppose that ℓ−i

is not g-convex on a connected component of G′. Hence, there are vertices u, v ∈ V ′

such that ℓv = ℓu = 1, and a vertex w ∈ IG
′

g (u, v) such that ℓw = 0. Since ℓ is g-convex
on G, we have that w /∈ IGg (u, v). It follows that vertices u, v are connected on a path
via vertex i that is shorter than the path via vertex w. Consequently, i ∈ IGg (u, v), and
ℓi = 1. We reach the desired contradiction, and the claim follows.

Since adding a vertex to a graph and connecting it arbitrarily to existing vertices
cannot add a chord to a path and only increase the number of vertices in Im(u, v), we
have that the claim of Lemma 19 applies also to 1-vertices if ℓ is m-convex.

Observation 7. For any v, u ∈ V ′, we have that IG′
m (u, v) ⊆ IGm(u, v).

Lemma 20. Let G = (V,E) be a graph, i ∈ V , and ℓ a m-convex label. Then, ℓ−i is a
m-convex label vector on the components of G′ = G \ i.

Proof. Let G,G′, and i be as in the lemma. Suppose that ℓ−i is not m-convex on a
component of G′. Hence, there are vertices u, v ∈ V ′ such that ℓv = ℓu = 1, and a
vertex w ∈ IG

′
m (u, v) such that ℓw = 0. With Observation 7 it follows that w ∈ IGm(u, v).

We reach a contradiction since ℓ is m-convex on G.

5.3.2 Label Vectors with Support 1
By definition, all label vectors with support equal to 1 are convex. They are a side case
in our study, and we deal with them before the main sections.

Let G be a graph with convex labels ℓ and let P be a consistent probe vector. Our
first observation implies that label vectors with support 1 can be recognized efficiently.

Observation 8. A convex label vector ℓ has support 1 if and only ifPi ≤ 1, for all i ∈ V .

The proof of the observation is trivial.
In the following, we assume that ℓ has support 1. Based on Observation 5, we identify

0-vertices w ∈ V such that there is a neighbor u ∈ N [w] where Pu = 0. Note that the
property can be checked easily. We apply Algorithm 4 Reduce(G,P , 0, w) in parallel,
for all such vertices w, and let G′ and P ′ be the resulting graph and probe vector. It’s
easy to verify that P ′

i = 1, for all i ∈ V ′.
The core CG′ of the reduced graph allows us to determine the number of required

surgical probes to uncover ℓ.

Theorem 16. Let G be a graph with a convex label vector ℓ of support 1, and let P be
a consistent probe vector. Also, let G′,P ′ be the output of Reduce(G,P , 0, w). Then,
|CG′ | − 1 surgical probes are sufficient to uncover ℓ.

82

Proof. Let G′,P ′, and ℓ be be the output of Reduce(G,P , 0, w).
Assume that ℓv = 1, for v ∈ V ′. Vertex v is adjacent to all vertices v ∈ V ′ since

otherwise P ′
u = 0.

We conclude that vertices non-adjacent to each other vertex inG′ cannot be the single
1-vertex. It follows that v ∈ CG′ , and that for all i ∈ V ′ \ CG′ , ℓi = 0 holds.

For each i ∈ CG′ , let ℓi be the label vector where ℓik = 1 if and only if k = i. Since
CG′ is a clique, each label vector ℓi, for i ∈ CG′ , is consistent with P ′. It follows that
|CG′ | − 1 surgical probes are sufficient to distinguish between them.

Interestingly, we show that short chords simplify CMSP dramatically. Namely, we
prove that the converse of Lemma 17 is true if the label vector is t-convex.

Theorem 17. Let G = (V,E) be a connected graph with t-convex label vector ℓ of
support at least 2, and let P be the corresponding probe vector. Then, the labels ℓ can
be uncovered without surgical probes. Moreover, 1ℓ

G = {i ∈ V | Pi ≥ 2}

Proof. Let G, ℓ, and P be as in the theorem. We show that ℓv = 1 if and only if Pv ≥ 2,
for v ∈ V . Sufficiency follows from Lemma 17.

To show necessity, assume that Pv ≥ 2, for v ∈ V . Either ℓv = 1 or v has two
neighbors u,w ∈ N(v) such that ℓu = ℓw = 1. In the latter case, it’s easy to see that
v ∈ It(u,w). Since ℓ is t-convex, ℓv = 1, and the claim follows.

5.3.3 Graphs with Small Maximum Cliques
In this section, we analyze CMSP for graphs where the size of a clique is bounded. To
do that, we use the concept of H-free graphs.

As most of the results hold for m-convex and g-convex label vectors, we say convex,
shorthand, for g-convex or m-convex.

K3-free Graphs

Triangle-free or K3-free graphs essentially do not have cliques (except two adjacent ver-
tices). This allows us to show another situation where Lemma 17 holds in the opposite
way.

Lemma 21. Let G = (V,E) be a connected and K3-free graph with a convex label
vector ℓ of support at least 2, and let P be a consistent probe vector. For v ∈ V , we have
that ℓv = 1 if and only if Pv ≥ 2.

Proof. Let G = (V,E), ℓ, and P be as in the hypothesis and let v ∈ V . Necessity
follows from Lemma 17.

To show sufficiency, we assume that Pv ≥ 2. Towards a contradiction, suppose
ℓv = 0. It follows that there are two neighbors x, y ∈ N(v) such that ℓx = ℓy = 1. Note

83

that (x, y) ̸∈ E, otherwise the vertices v, x, y induce K3 in G, which contradicts that G
is K3-free.

It follows that the path (x, v, y) is a shortest and chordless path between x and y.
Since ℓ is convex, we have that ℓv = 1. We reach the desired contradiction, and the
claim follows.

Lemma 21 allows us to determine ℓ without using surgical probes if ℓ has support
at least 2. Also, it is easy to check that K2 requires one surgical probe to compute ℓ if
(and only if) it has support 1. As it turns out, this is the only exception when considering
K3-free graphs.

Theorem 18. Let G be a connected and K3-free graph with a convex label vector ℓ, and
let P be a consistent probe vector. Then, the labels ℓ can be computed without using
surgical probes and 1ℓ

G = {v ∈ V | Pv ≥ 2}, except if G = K2 and ℓ has support 1. In
this case, one surgical probe is necessary and sufficient to uncover ℓ.

Proof. Let G = (V,E), ℓ, and P be as in the theorem. By Observation 8 we check if
the support of ℓ is 1 or at least 2. In the latter case, the claim follows with Lemma 21.

To complete the proof, we assume that ℓ has support 1. Let W̄ = {v ∈ V | Pv = 1},
and let G′ = G[W̄] be the subgraph induced by W̄ .

Let x ∈ V (G′) such that ℓx = 1. It follows that NG[x] = V (G′), and that the core
CG′ contains x. Moreover, two neighbors u, v ∈ N(x) cannot be adjacent since G is
K3-free.

We split the analysis into two cases according to |NG′(x)| without including the triv-
ial case |NG′(x)| = 0 which lead to G = K1.

Case 1: |NG′(x)| ≥ 2. It follows that CG′ = {x}, and we identify x without any
surgical probes. Moreover, |V | ≥ |V ′| ≥ 3 and G ̸= K2.

Case 2: |NG′(x)| = 1, and let NG′(x) = {u}. Note that G′ = K2. It follows that
NG(x) = {u}. If NG(u) = {x}, then G = K2 and one surgical probe is sufficient and
necessary to uncover ℓ.

Otherwise u has another neighbor w ∈ NG(u) (implying that G ̸= K2). Note that w
and x are not adjacent, and hence, Pw = 0. In this case, ℓu = 0 due to Observation 5,
and we identify x without using surgical probes.

K4-free Graphs

In this section, we study K4-free graphs. The argument of Lemma 21 applies also to
K4-free graphs but in a weaker way. The proof of the next lemma is analogous to that of
Lemma 21.

Lemma 22. Let G = (V,E) be a connected K4-free graph with a convex label vector ℓ,
and let P be a consistent probe vector. If Pv ≥ 3, then ℓv = 1, for each v ∈ V .

84

Proof. Let G = (V,E), ℓ, and P be as in the lemma. Moreover, let v ∈ V such that
Pv ≥ 3. Towards a contradiction, suppose that ℓv = 0. It follows that there are three
neighbors x, y, z ∈ N(v) such that ℓx = ℓy = ℓz = 1.

Verify that one of the edges (x, y), (x, z), or (y, z) is not contained in E, otherwise
the vertices v, x, y, z induce K4 in G, which contradicts that G is K4-free.

Without loss of generality, let (x, y) ̸∈ E. It follows that the path (x, v, y) is a shortest
and chordless path between x and y. Since ℓ is convex, we have that ℓv = 1. We reach
the desired contradiction, and the claim follows.

Lemmas 22 and 17 together allow us to determine the labels of the vertices whose
probe is not equal to 2. However, we cannot fill the gap and compute all labels without
using surgical probes. The following example shows that there are K4-free graphs and
probe vectors such that computing a convex label vector requires ⌊n/2⌋ surgical probes.

Example 10. For an even integer h ≥ 1, consider the K4-free graph Gh = (V,E)

such that V =
⋃h

i=1 vi ∪ x, and E =
⋃h

i=1(x, vi) ∪
⋃h/2

i=1(v2i−1, v2i). To complete the
CMSP instance, we define probe vector P as follows: Px = 1 + h/2, and Pvi = 2 for
i = 1, . . . , h. The graph G4 with probes is depicted in Figure 5.6.

The label of the central vertex x can be uncovered by Lemma 22 (if h ≥ 2). The
remaining vertices with unknown labels form adjacent pairs, e.g., v1 and v2. Observe
that, for each pair, there are two convex label vectors (0, 1) and (1, 0) that are consistent
with the probe vector. To distinguish between them, we need to use 1 surgical probe. It
follows that h/2 surgical probes are required to uncover all labels.

3

2

22

2

Figure 5.6: AK4-free graph with g-convex labels indicated by the vertices’ color (yellow
vertices have label 1). Numeral values inside the nodes express the related probes. To
uncover the labels 2 surgical probes are necessary.

The use of Lemma 22 is related to the cardinality (at least 3) of the label vector
support. Otherwise, there is no vertex v such that Pv ≥ 3. We treat label vectors with
support 2 as a special case, so in the following, we assume that label vectors have support
3 or more.

The main result of this section relates the number of necessary and sufficient surgical
probes to the number of true twins in G. Recall that a pair of vertices u, v are true twins
if N [u] = N [v], i.e., u and v are adjacent and have the same open neighbourhood.
For a graph G = (V,E) and probe vector P , we define the set TT(G,P) ⊆ E where
(u, v) ∈ TT(G,P) if

85

(i) N [u] = N [v],

(ii) Pv = Pu = 2,

(iii) there is w ∈ N [v] such that Pw ≥ 3, and

(iv) for x ∈ N [v] \ {u, v, w}, we have that Px = 1.

We note that TT(G,P) can be computed in polynomial time. First, we show that
|TT(G,P)| surgical probes are necessary. This lower bound holds for g-convex and m-
convex label vectors.

Lemma 23. Let G be a connected K4-free graph with a convex label vector ℓ of support
3 or more, and let P be a consistent probe vector. Then, |TT(G,P)| surgical probes are
necessary to uncover ℓ.

Proof. Let G = (V,E), P , and ℓ be as in the lemma. Also, let (u, v) ∈ TT(G,P), and let
w ∈ N [v] such that Pw ≥ 3.

By Lemma 22, ℓw = 1. If there is a vertex x ∈ N [v] \ {u, v, w}, then Px = 1 by
definition of TT(G,P). By Lemma 17, it follows that ℓx = 0.

Consequently, either ℓv = 1 or ℓu = 1, i.e., for u and v, only the two label vectors
(0, 1) and (1, 0) are consistent with P . Vertices that are adjacent to v are adjacent to u
(and vice versa), and cannot help to distinguish between the two label vectors. It follows
that one surgical probe is necessary to uncover ℓu and ℓv.

In total, |TT(G,P)| surgical probes are necessary to uncover ℓ, and the claim is shown.

We underline that the converse holds only for m-convex label vectors. To hit the
result, we first define Algorithm 5 which uncovers 1-vertices based on Lemma 22 and
removes them by calling Algorithm 4. Its correctness follows readily for m-convex label
vectors.

Algorithm 5 ReduceAll-K4(G,P)
1: for all v ∈ V such that Pv ≥ 3 do
2: mark vertex v {based on Lemma 22}
3: end for
4: for all marked vertices v do
5: G,P ← Reduce(G,P , 1, v)
6: end for
7:
8: return G,P

We are ready to provide our main result of the section.

86

Theorem 19. Let G be a connected K4-free graph with a m-convex label vector ℓ of
support 3 or more, and let P be a consistent probe vector. Then, |TT(G,P)| surgical
probes are necessary and sufficient to uncover ℓ.

Proof. Let G = (V,E), P , and ℓ be as in the lemma’s hypotesis. Also, let H,P ′ be
the output after applying Algorithm 5 to G,P . As graph H may not be connected, let
H1, H2, . . . , Ht be the subgraphs induced by the connected components of H .

In the following, we analyze the structure of a component Hi, for i ∈ 1, . . . , t. We
show that either u, v ∈ V (Hi) and (u, v) ∈ TT(G,P), or that the labels of vertices in
V (Hi) can be uncovered without using surgical probes.

Algorithm 5 uses Algorithm 4 to remove vertices from G and update P correctly.
Note that, for v ∈ V (Hi), we have P ′

v ≤ 2. Let ℓ′ be the ℓ restricted to V (Hi). Due to
Lemma 20, ℓ′ is m-convex on V (Hi).

We assume that there is a vertex x ∈ V (Hi) such that ℓx = 1. Otherwise, for all v ∈
V (Hi),Pv = 0 and the labels of vertices can be uncovered without using surgical probes.
With Lemma 17 it follows that Px = 2. Moreover, define Ū = {v ∈ V (Hi) | Pv = 2}.
Claim 1. If |Ū | = 1, then the labels of the vertices in V (Hi) can be uncovered without
using a surgical probe.

Proof. If |Ū | = 1, then Ū = {x}, and vertex x is idetified without using surgical probes.
With Lemma 17, we have ℓv = 0, for v ∈ V (Hi) \ Ū .

In the following, we assume that |Ū | ≥ 2. Next, define V̄ = {v ∈ V | Pv ≥ 3}, and
verify that V̄ is non-empty since ℓ has support at least 3.

Claim 2. There is a vertex z ∈ V̄ such that (x, z) ∈ E.

Proof. As V̄ is not empty, let y ∈ V̄ and note that ℓy = 1. If (x, y) ∈ E, the claim
follows immediately.

Assume that (x, y) ̸∈ E. SinceG is connected, there is a chordless path (x, v1, v2, . . . , vs, y)
connecting x and y in G where s ≥ 1. Since ℓ is m-convex, it follows that ℓvj = 1, for
j ∈ [s].

Then, Pv1 ≥ 3, and consequently, v1 ∈ V̄ . Vertex v1 = z has the desired properties,
and the claim follows.

Since Px = 2 and ℓx = 1, vertex z is the only neighbor of x in V̄ . It follows that
P ′

x = 1.

Claim 3. For all v ∈ V (Hi) \ {x}, we have that ℓv = 0.

Proof. Let y ∈ V (Hi)\{x}. Towards a contradiction suppose that ℓy = 1 which implies
that y ∈ Ū . As vertex x is adjacent to z and Px = 2, x cannot be adjacent to y.

Since Hi is connected there is a chordless path (x, v1, v2, . . . , vs, y) connecting x and
y where vj ∈ V (Hi), for j ∈ [s] and s ≥ 1. Since ℓ is m-convex, we have ℓvj = 1, for

87

j ∈ [s]. It follows that x is adjacent to z and v1 implying that Px ≥ 3. We reach the
desired contradiction, and the claim follows.

The previous claim shows that ℓ′ has support 1 on Hi. It follows that, for all v ∈
V (Hi) \ {x}, we have that P ′

v ≤ 1 and that (v, x) ∈ E if and only if P ′
v = 1. We

conclude that x is contained in the core CW̄ where W̄ = {v ∈ V (Hi) | P ′
v = 1}. Note

that Ū ⊆ W̄ and that x ∈ Ū ∩ CW̄ .
Next, we use that G is K4-free to restrict the size of CW̄ . Consider a vertex v ∈ Ū .

Either P ′
v = 0 and v is adjacent to two vertices in V̄ , or P ′

v = 1 and v is adjacent to x
and to one vertex in V̄ in G.

Claim 4. If vertex v ∈ Ū ∩ W̄ , then (v, z) ∈ E.

Proof. Let y ∈ Ū ∩ W̄ . Towards a contradiction suppose that (y, z) ̸∈ E. Then, there
is a vertex u ∈ V̄ such that (y, u) ∈ E as Py = 2 and P ′

y = 1.
Since (x, y) ∈ E, the path P = (x, y, u) connects x and u in G. Recall that vertex z

is the only neighbor of x in V̄ . It follows that (x, u) ̸∈ E, and that P is a chordless path.
Since ℓ is m-convex, we have ℓy = 1. But x is the only 1-vertex in V (Hi), and we

reach the desired contradiction.

The previous claim is essential to show the next.

Claim 5. If |Ū | ≥ 3, then |CW̄ | = 1 and the labels of vertices in V (Hi) can be uncovered
without using surgical probes.

Proof. Assume that |Ū | ≥ 3, and let u, v ∈ Ū \ {x}. Verify that if (u, v) ∈ E, then
{x, u, v, z} induce K4 as a subgraph in G. Since G is K4-free, (u, v) ̸∈ E.

It follows that x is the only vertex that is adjacent to every vertex in Ū . As Ū ⊆ W̄ ,
we have CW̄ = {x}, and vertex x can be identified without using surgical probes. For
vertices i ∈ V (Hi), we have ℓi = 0.

In the following, we assume that Ū = {x, u}. To finish the proof, we argue that
(u, x) ∈ TT(G,P). By definition, Px = Pu = 2, and we showed that z ∈ N(x) where
Pz ≥ 3.

Next, we show that either N [x] = N [u], or that ℓ′ can be uncovered without using
surgical probes.

Claim 6. If N [x] \ N [u] is non-empty, the label of x can be uncovered without using
surgical probes.

Proof. Assume there is a vertex v ∈ N [x] \N [u]. Note that v ∈ V (Hi) as z is the only
neighbor of x in V̄ .

Since (x, v) ∈ E, we have P ′
v = 1, and that v ∈ W̄ . By definition (v, u) ̸∈ E. It

follows that CW̄ = {x}, and we identify x without using surgical probes.

88

Claim 7. If N [u] \ N [v] is non-empty, the label of x can be uncovered without using
surgical probes.

Proof. Assume there is a vertex v ∈ N [u] \ N [u]. Since (v, x) ̸∈ E, we have Pv = 0.
Due to Observation 5, we uncover ℓu = 0. It follows that we identify x without using
surgical probes.

Now, only the case where N [x] = N [u] remains. Note that N [x] may contain more
vertices than x, u, z. Verify that if v ∈ N [x] \ {x, u, z}, then Pv = 1. It follows that
(u, x) ∈ TT(G,P) and the theorem follows.

An important family of K4-free graphs are outerplanar graphs. Recall that an out-
erplanar graph can be embedded in the plane such that edges do not intersect and all
vertices lie on the outer face [43].

For maximal outerplanar graphs, each vertex appears exactly once on the outer face.
Consider a pair of true twins (u, v) ∈ TT(G,P). If N [v] = {u, v, w}, then w appears
twice on the outer face. In case |N [v]| ≥ 4, let x ∈ N [v] such that Px = 1. It’s easy to
check that if there is a path connecting x and w, then {u, v, w, x} induce a K4-subgraph,
and G cannot be outerplanar. Without such a path, w appears twice on the outer face.
In both cases, it follows that G cannot be maximal outerplanar. We conclude that if G is
maximal outerplanar, then TT(G,P) is empty and that ℓ can be uncovered without using
surgical probes if its support is at least 3.

Finally, we observe that Lemma 22 generalizes to Kh-free graphs, for a fixed integer
h. The proof is analogue to that of Lemma 22.

Theorem 20. Let G = (V,E) be a connected Kh-free graph with a convex label vector
ℓ, and let P be a consistent probe vector. If Pv ≥ h, then ℓv = 1, for v ∈ V .

5.3.4 Grid Graphs
Let G be a grid graph of dimension n1 × n2 with g-convex label vector ℓ. We associate
the vertices with coordinates (i, j), for i = 1, . . . , n1 and j = 1, . . . n2. By the definition
of g-convexity, it follows that the 1-vertices form a sub-grid, i.e., a rectangle. We assume
that the 1-vertices extend in both dimensions implying that |1ℓ

G| ≥ 4.
The convex sub-grid induced by 1ℓ

G has four vertices C = {(xk, yh) | k, h = 1, 2},
for 1 ≤ x1 < x2 ≤ n1 and 1 ≤ y1 < y2 ≤ n2, that are located at its corners (see
Figure 5.7). It follows that P(i,j) = 3 if and only if (i, j) ∈ C, and that 1ℓ

G = {(x, y) ∈
V | x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2}.

Theorem 21. Let G be a grid graph with g-convex label vector ℓ, and let P be a consis-
tent probe vector. The labels ℓ can be uncovered without using surgical probes.

89

4 4 40 0 0 01 3 3 1

4 4 40 0 0 01 3 3 1

5 5 50 0 0 01 4 4 1

0 0 0 0 0 01 1 1 1 1

0 0 0 0 0 01 1 1 1 1

Figure 5.7: Grid graph with a convex set of 1-vertices in yellow and corresponding probe
vector.

5.3.5 King’s Graphs
The King’s graph, named after the moves of the homonymous chess piece, is a grid
graph with additional diagonal edges (see Figure 5.8). We assume that label vectors are
g-convex in this section as m-convex label vectors are less interesting for applications1.

Note that a King’s graph is not K4-free but K5-free. It follows that if Pv ≥ 5, then
ℓv = 1 based on the results of the previous section. Our first goal is to show that if
Pv ≥ 4, then ℓv = 1. To prove our results, we use the geometric topology of King’s
graph.

Let G = (V,E) be a King’s graph of dimension n1 × n2 with g-convex label vector
ℓ. We associate the vertices with coordinates, i.e., V = {(i, j) | i ∈ [n1], j ∈ [n2]}.
The closed neighborhood of vertex (i, j) is N [i, j] = {(h, k) | 1 ≤ h ≤ n1, 1 ≤
k ≤ n2, for h ∈ {i, i ± 1}, k ∈ {j, j ± 1}}. We call D(i,j) = {(h, k) | 1 ≤ h ≤
n1, 1 ≤ k ≤ n2, for h ∈ {i ± 1}, k ∈ {j ± 1}} the diagonal-neighbors, and C(i,j) =
N [i, j] \ D(i,j) ∪ (i, j) the cross-neighbors. Moreover, we say two cross- (diagonal-)
neighbors are opposite if they have one (no) common coordinate, i.e., a straight line
connecting them crosses (i, j).

Figure 5.8: A King’s graph and g-convex subset indicated by the yellow vertices.

Next, we consider the shape of g-convex subsets of V in G. Compared to the grid
1Consider, for example, two 1-vertices in the same row with distance two or more. Then, almost all

vertices in all columns between them must also be 1-vertices.

90

graph (see Section 5.3.4), convex sets are not only rectangles. The diagonal edges allow
for diagonal borders of the convex regions. Our first observation shows that diagonal
borders have step size at most one, resembling the Eucledian meaning.

Observation 9. Let (i, j), (i + 2, j + 1) ∈ V such that ℓ(i,j) = ℓ(i+2,j+1) = 1. If ℓ is
g-convex, then ℓ(i+1,j+1) = 1.

The observation follows readily since there is a shortest path between (i, j) and (i+
2, j + 1) through (i + 1, j + 1). We remark that g-convex label vectors on the King’s
graph do not correspond to hv-convexity on binary matrices. This important case will
be studied in Chapter 6.

Observation 9 helps to prove the next lemma.

Lemma 24. Let G = (V,E) be a King’s graph with a g-convex label vector ℓ, and let P
be a consistent probe vector. If Pv ≥ 4, then ℓv = 1, for v ∈ V .

Proof. Let G = (V,E), ℓ, and P be as in the lemma. Moreover, let v ∈ V such that
Pv ≥ 4.

Towards a contradiction, suppose that ℓv = 0. It follows that there are four 1-
vertices X = {x1, x2, x3, x4} ⊆ N(v). Verify that X contains at most two non-opposite
diagonal- and cross- neighbors, respectively. Otherwise ℓv = 1 is implied since ℓ is
g-convex.

We conclude thatX contains exactly two non-opposite diagonal- and cross-neighbors,
respectively. Assume that v = (i, j). Without loss of generality let x1 = (i, j − 1) and
x2 = (i − 1, j) be two non-opposite cross-neighbors of (i, j). There are four config-
urations for the two non-opposite diagonal-neighbors x3, x4, e.g., x3 = (i − 1, j − 1)
and x4 = (i − 1, j + 1). It is easy to check that for each configuration, Observation 9
leads to the conclusion that ℓv = 1. We reach the desired contradiction, and the lemma
follows.

We note that Lemma 24 describe the best situation in the sense that there are vertices
v where Pv = 3 and ℓv = 0 hold.

Observation 9 implies an even stronger result for vertices that are not on the border.
The border of G is BG = {(i, j) ∈ V | i = 1, n1 or j = 1, n2}. Note that non-border
vertices, i.e., V \ BG, are exactly the vertices with 8 neighbors. The next lemma shows
that the converse of Observation 5 is true for non-border vertices in a King’s graph.

Lemma 25. Let G = (V,E) be a King’s graph with a g-convex label vector ℓ, and let
P be a consistent probe vector. For v ∈ V \ BG, we have ℓv = 0 if and only if there is
u ∈ N(v) such that Pu = 0.

Proof. Let G = (V,E), ℓ, and P be as in the lemma. Necessity follows with Observa-
tion 5.

To show sufficiency, let v ∈ V \ BG such that ℓv = 0 and v = (i, j). Lemma 24
assures we have that Pv ≤ 3. Hence, let X = {x1, x2, x3} ⊆ N(v) contain three

91

neighbors of v where ℓx1 = ℓx2 = ℓx3 = 1. Then, since ℓ is g-convex and ℓv = 0, there
are two possible configurations (up to symmetry): either X contains two non-opposite
diagonal neighbors or cross-neighbors, respectively.

In the first case, assume that, without loss of generality, x1 = (i − 1, j + 1), x2 =
(i − 1, j), and x3 = (i − 1, j − 1). Consider the vertex u = (i, j + 1), and towards a
contradiction suppose that Pu ≥ 1. It follows that there is a vertex w ∈ N(u) such that
ℓw = 1. Verify that any such vertex w implies, together with Observation 9, that ℓv = 1
since ℓ is g-convex. Consequently, we have Pu = 0, and the claim follows.

In the second case, assume that, without loss of generality, x1 = (i, j − 1), x2 =
(i− 1, j − 1), and x3 = (i− 1, j). Consider the vertex u = (i+ 1, j + 1), and suppose
that Pu ≥ 1. Analogous to the first case, we derive a contradiction. Consequently,
Pu = 0, and the claim follows.

Lemma 25 allows us to uncover the labels of vertices in V \ BG, while Lemmas 17
and 24 detect the label of vertices v ∈ BG where Pv ≤ 1 or Pv ≥ 4. We complete
the analysis by showing a few special cases, showing that a g-convex label vector can be
uncovered without using surgical probes on a King’s graph.

In many applications, 1ℓ
G presents a set whose exact location and boundaries must

be determined. Here, it is reasonable to assume that the object is contained entirely in a
(large enough) grid, i.e., does not intersect with the borders. We say that the label vector
ℓ is zero-border on G if ℓv = 0, for all v ∈ BG.

Theorem 22. Let G be a King’s graph with g-convex label vector ℓ, and let P be a
consistent probe vector. If ℓ is zero-border, ℓ can be uncovered without using surgical
probes.

Theorem 22 follows readily from Lemma 25.

Chapter 6

Reconstruction of convex polyominoes
and related problems

In this chapter we consider the problem of reconstructing convex polyominoes from two
different notions of projections and convexity.

In the first section we consider the reconstruction of full convex polyominoes starting
from horizontal and vertical projections. In particular, the computational complexity of
this problem is not yet known and only partial results are present in the literature.

In the second section, we study a variant of the MSP problem (introduced in Chap-
ter 5) that considers binary matrices and projections collected using two types of scan-
ning windows over it. We solve the problem by providing algorithms that reconstruct a
binary matrix in polynomial time. We refer to Chapter 2 for the definitions.

We highlight that part of the results presented in this chapter are published in [59]

6.1 Reconstruction of Convex Polyominoes

In this section we study the reconstruction of (full) convex polyominoes, considered as
connected sets of cells on a square surface, using their horizontal and vertical projections.
We initially start by describing the algorithm used for the reconstruction of hv−convex
polyominoes. Then, we show a possible approach to the reconstruction of full convex
polyominoes relying on this algorithm. Since the generalization is far from trivial, we
present some attempts found in the literature that lead to the definition of subclasses of
convex polyominoes that can be reconstructed in polynomial time. Finally, we provide
new results regarding the SAT formulas appearing in the reconstruction phase of the
algorithm. Although the complexity problem remains open, the properties presented in
this section may help in its determination.

92

93

6.1.1 The reconstruction of hv-convex polyominoes from horizontal
and vertical projections

In [30] the authors defined the algorithm HV Rec that reconstructs (in polynomial time
w.r.t. its projections’ dimensions) a hv-convex polyomino compatible with an input cou-
ple of horizontal and vertical projections H and V , if it exists. In [60], it has been proved
that imposing hv-convexity does not guarantee the uniqueness of the reconstruction of
a polyomino from a couple of projections. This is due to the presence of specific con-
figurations of points called switching components (see [21] for a survey on the topic and
[61, 62, 33] for the characterization and related results). The cells of these configura-
tions can be divided into two disjoint subsets having the same projections (proving the
non-unicity of the set in which they belong). In the following, each of these sets will be
labelled with a boolean variable or its negation, to underlie their complementarity. The
strategy of the reconstruction concerns the iterative detection of two subsets of cells: the
kernel whose cells belong to all the solutions compatible with H and V , if any, and the
shell whose cells are outside all solutions. Finally, the cells not yet assigned are proved
to belong to the switching components of the final solutions and their belonging to a
hv−covnex solution is evaluated according to a defined 2−SAT formula.

In more details, HV Rec gets as input two vectors H and V and performs the two
following steps:

Step 1 (kernel and shell computation): according to each possible position of thehv−convex
feet, it detects the cells that are common to all the hv−convex polyominoes having
H and V as horizontal and vertical projections, say the kernel. At the same time,
it also detects the cells that are external to the polyomino and that constitute the
shell of the polyomino. Both the detection tasks are iteratively performed by us-
ing a sequence of filling operations that take advantage of the convexity constraints
and from the knowledge of the vectors H and V . In particular, some filling oper-
ations preserve the convexity, i.e. cells comprised between kernel cells belong to
kernel and, similarly, cells between a shell cell and the border belong to the shell.
Other filling operations take into account the horizontal and vertical projections
to decide to which set points belong, see [30] for a complete description of them.

So, HV Rec converges to the final kernel by approximating it both from inside
and from outside. The process ends when the filling operations either fail, meaning
that no solution exists for the chosen feet positions or leave the kernel and the shell
unchanged. In the latter case, the cells that remain unidentified, so not belonging
to the kernel or to the shell, are grouped in an ambiguous set X = {X1, . . . ,Xs},
where each Xi is a switching component. If X = ∅, then the polyomino has been
successfully reconstructed. Otherwise, Step 2 is required;

Step 2 (2-SAT formula definition and valuation): each switching component in X is

94

detected and its cells alternatively labelled with a new boolean variable x or x.
Recall that x stands for not x. Finally, a 2 − SAT formula involving all the vari-
ables is defined. It imposes on the cells of X both the hv-convexity of the kernel
and the shell, preserving the coherence with the vectors H and V . A valuation of
the 2-SAT formula (obtained in polynomial time) leads to a solution of the recon-
struction problem in the sense that a cell ofX belongs to the polyomino if and only
it is labelled with a variable whose valuation is true. The computed polyomino is
then provided as output.

To further grab the concept and the importance of switching components, consider
the following definition (defined in [33]).

Definition 11. Consider the points belonging to X after Step 1. Given the four areas
NW,NE, SW, SE (see Figure 6.1) we have that:

• the vertical correspondent of point p = (i, j) belonging to SE ∪ SW is the point
p̄ = (i, j + vj);

• the vertical correspondent of a point p = (i, j) belonging to NE ∪ NW is the
point p̄ = (i, j − vj);

Similar definitions hold for horizontal correspondents.

The importance of the previous definition relies on the fact that if p and p′ are corre-
spondents, then p ∈ kernel if and only if p′ /∈ kernel is not. Moreover, correspondences
between points define (necessary close) paths, the previously mentioned switching com-
ponents. An example of corresponding points is shown in Figure 6.1

We formally define a switching component as follows:

Definition 12. A Switching Component Xi is a closed path of corresponding points
pr, r ∈ Z2l such that p2k and p2k+1 are vertical correspondents, while p2k−1 and p2k
are horizontal correspondents. Xi[0] denote the set of vertices with even indices and
Xi[1] the set of vertices with odd indices.

For example, Figure 6.2 shows a polyomino with a single switching component.
Since each point in Xi[0] and Xi[1] has a unique horizontal and vertical correspondent
in the other set, they have the same horizontal and vertical projections.

Therefore, any solution must fall in one of the following cases:

1. either Xi[0] ⊆ S and Xi[1] ∩ S = ∅;

2. or Xi[1] ⊆ S and Xi[0] ∩ S = ∅.

95

kernel

shell
NW NE

SESW

p1 p2

p3p4

q1 q2

q3q4

Figure 6.1: Example of a polyomino after running Step 1 of HV Rec. The kernel and
the shell are highlighted. The couples of points (p1, p4), (p2, p3), (q1, q4), (q2, q3) are
vertical correspondents. Similarly, the couple of points (p1, p2), (p3, p4), (q1, q2), (q3, q4)
are horizontal correspondents. Note that the paths p1p2p3p4 and q1q2q3q4 define two
different switching components. The four zones outside the kernel are highlighted.

96

As previously underlied, the two possible states of the cells belonging to a switching
component can be encoded by a boolean variable. The search for an assignment of the
Boolean variables is done by expressing the constraints issued from hv−convexity on
the Boolean variables associated with each switching component.

Example 11. Suppose that Figure 6.5, (a) depicts a part of the NW path of a poly-
omino reconstructed after performing Step 1 of HV Rec. Assume that the cells labelled
x1, . . . , x7 belong to the set X . Step 2 requires defining a sequence of 2-SAT formu-
las coding the hv-constraint on them both related to the kernel and to the shell. More
precisely, the h-convexity of the kernel imposes the formulas x2 → x3, and x6 → x7,
while the v-convexity imposes x6 → x5. Note that the h-convexity of the shell imposes
their equivalent clauses. These clauses (by abuse of notation we indicate the implication
(x → y) as a clause due to its logical equivalence to the clause (¬x ∧ y)) guarantee a
valuation that preserves the hv-convex of the final solution, as desired.

To conclude this section, we note that for several years it has been observed that
the second step of HV Rec always provides a solution. This observation leads to the
empirical conjecture that states the 2−SAT formulas expressing the hv−convexity are
always feasible.

However, in [63] an example is provided in which this is not the case. The authors
called it the bad guy. We show this counter-example in Figure 6.2.

6.1.2 An approach to reconstruct convex polyominoes from horizon-
tal and vertical projections

The authors of [32, 33], underline that there is no natural generalization of HVRec when
hv-convexity constraint changes into full convexity. In particular it is proved that the
2-SAT formula imposing the hv-convexity defined in Step 2 may change into a k-SAT
formula, with k ≥ 2.

Relying on HVRec, we approach a reconstruction strategy, say CRec (Convex Re-
construction), by defining a slightly modified version of HV Rec. In particular, it is
modified as follows:

StepConv 1: apply Step 1 and include in the kernel the cells of its convex hull after each
iteration of the filling operations. The computation of the shell is left unchanged;

StepConv 2: each switching component in X is detected as in Step 2. However, in
general, a SAT formula ϕConv is defined to impose convexity on X ⋃

kernel. In
particular, φConv includes both those clauses φhv of Step 2 and, for each point
x ∈ X , the clauses φx = (x → x1) ∧ · · · ∧ (x → xn), with x1, . . . , xn being the
points belonging to the convex hull Hx computed after the inclusion of x in the
kernel.

97

kernel

shell

x x

x

x x

x

x x

x

x

x̄ x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

Figure 6.2: The bad-guy. In this example the hv−convexity constraints lead to incon-
sistent 2−clasuses, providing a counter-example to the conjecture that the 2 − SAT

formulas arising in HV Rec always have a solution. The red and green circles highlight
where we obtain incompatible constraints. In fact, we have both x→ x̄ and x̄→ x.

98

Some properties of the clauses that can arise in StepConv 2 are hereafter provided,
leaving open the computational complexity of their valuation. As an example, a similar
way forward is used in [64] where the reconstruction of a sub-class of hv-convex poly-
ominoes is performed by means 3-SAT Horn clauses whose valuation requires polyno-
mial time.

So, let us consider the points of X that lie above the WN -path of the convex kernel
identified in StepConv 1 (for the points related to the three remaining NE, ES and
SW convex paths we proceed analogously). We recall that the membership of these
points to one of the convex polyominoes consistent with the input horizontal and vertical
projections H and V , if any, has to be determined.

The clauses of the formula we are going to define in StepConv 2 consider how the
inclusion of each point in X reflects on the others, in order to preserve the convexity of
the structure.

We provide a detailed implementation of CRec in Matlab in the Appendix.

6.1.3 Previous results
Previous works have studied the problem in some subclasses. In particular, consider the
following definitions.

Definition 13. A switching component is regular if the turning angle at each vertex has
a constant orientation (i.e. it always turns clockwise or always counterclockwise). All
the other switching components are called irregular.

For example, Figure 6.3 shows an example with both regular and irregular switching
components.

Definition 14. Two switching components Xi and Xj are adjacent if they contain re-
spectively a point pi and a point pj which are 4−adjacent.

In [33] the following result is shown.

Lemma 26. Consider an instance of HV Rec or CRec. Then the Boolean variables of
any pair of adjacent regular switching components are equal.

The proof relies on the study of the relative position that switching components must
have, employing a directed graph that describes all the possible configurations that arise
starting from one of the four regions NW,NE, SW, SE.

Interestingly, the previous lemma allows us to prove the following general results.

Theorem 23. Consider an instance of HV Rec or CRec. If all the switch components
are regular, then any pair of them is either equivalent or independent.

99

kernel

shell

Figure 6.3: A configuration in which are present both regular and irregular switching
components. In particular, the red one is a regular switching component, while the blue
one is irregular.

Theorem 23 states that we can have either equivalent or independent regular switch-
ing components. Therefore, the notion of extended switching component can be intro-
duced.

Definition 15. An extended switching component X̃i is the union of all the switching
components whose Boolean variables can be evaluated together, i.e., showing only two
possible admissible patterns for all of them together.

The main difference between the previous notion and the standard switching compo-
nents is that, for the former, it is possible to define an order.

Formally, we introduce an order relation between points in X . For a pair of points
p(x, y) and p′(x′, y′) we denote p < p′ if x < x′ or if x = x′ and y < y′ for the points
of West areas. On the other hand, we say that p < p′ if x > x′ or if x = x′ and y < y′

for the East areas. This order relation is defined on arbitrary set of points and induced
an order relation A < B between two sets if, for any pair of a ∈ A and b ∈ B, we have
a < b. Interestingly we have the following result holds.

Proposition 8. If all switching components are regular, the extended switching compo-
nents can be ordered.

This result confirms that extended switching components have a simple structure
along the boundary of the kernel, since they are independent and well-ordered.

100

Recent results [63] used the previous tools. In particular, it has been proved recently
that a subclass of the convex polyominoes can be reconstructed in polynomial time.

In more detail, consider the following definition.

Definition 16. Consider a set S ⊆ Z2. S is thin if there exists a point p = (X, Y) ∈ Z2

such that the feet of S are strictly located in diagonally opposite quadrants of (X, Y),
i.e. it must holds:

• x(South(S)) < X < North(S)) and y(West(S)) < Y < y(East(S)) or

• x(South(S)) > X > x(North(S)) and y(West(S)) > Y > y(East(S)).

If S is not thin, it is fat

Figure 6.4 shows examples of thin and fat hv−convex configurations.

(X, Y)

Thin configuration Fat configuration

Figure 6.4: Examples of thin and fat hv−convex polyominoes. This property depends
on the relative position of the set’s feet.

In [63] the author proves the following theorem.

Theorem 24. The class of fat convex polyominoes can be reconstructed in polynomial
time.

101

6.1.4 Convexity preserved by k-SAT clauses
Coming to the original results, we code the boundary of the considered polyomino using
its boundary word [38]. For all the notions used here, we refer to Chapter 2.

First of all, we show that a switching component’s cell inclusion in the kernel can be
performed if the point is minimal w.r.t. the Christoffel word where it lies on.

In particular, from [40], Theorem 1 and its corollaries, it follows

Proposition 9. Let w be the Christoffel word of slope a
b

and denote by w(i : j) the
substring of w between indices i and j. Then, it exists only one index 1 < i < a + b in
which w(i, i+ 1) = 01, such that w1 = w(1 : i− 1) 1 and w2 = 0 w(i+ 2 : a+ b) (we
consider the substring w(i+2 : a+ b) = w(a+ b) if i = a+ b− 1) are both Christoffel
words. Furthermore, it holds that i = min(w).

Relying on Proposition 9, we obtain the following result stating that the inclusion
in a NW Christoffel word w of a point different from min(w) does not preserve the
convexity of w and so of the whole NW path.

Proposition 10. Let w be the Christoffel word of slope a
b

and min(w) < i < a + b.
The Christoffel path of slope |w(1:i−1)|1+1

|w(1:i−1)|0 includes the point c(w̃). On the other hand,
if 1 < i < min(w), then the Christoffel path of slope |w(i+1:a+b)|1

|w(i+1:a+b)|0+1
includes the point

c(w̃).

Proof. Recall that the two indexes c(w̃) and min(w) are equal in the upper and lower
Christoffel paths, respectively. Let us proceed by contradiction assuming that the Christof-
fel path of slope |w(1:i−1)|1+1

|w(1:i−1)|0 does not include the point c(w̃), when min(w) < i < a+b.
We consider the integer points O = (0, 0), B = (b, a) and C = (|w(1 : i − 1)|0, |w(1 :
i− 1)|1 + 1). By the proof of Theorem 3.3 in [65], it holds that the triangle OCB con-
tains at least one integer point. Let D be the point of OBC closest to the line segment
of slope a

b
. It follows that the triangle ODB contains no integer points and furthermore,

by assumption, D is different from c(w̃), reaching a contradiction. A similar argument
holds if 0 < i < min(w).
We can rephrase this proposition in a more algorithmic fashion.

Corollary 8. Let w be a Christoffel word in the WN -path of the kernel obtained after
StepConv 1. If the point c(w̃) belongs to the shell, then all the points of X that lie on w
also belong to the shell.

Corollary 9. Let w be a Christoffel word in the WN -path of the kernel obtained after
StepConv 1. If we include in the final convex solution a point of X lying above its WN -
path, then also the point c(w̃) has to be included in order to preserve the convexity.

Example 12. Let us assume that StepConv 1 provided the WN -path depicted Figure 6.5
and that the cells x1, . . . x7 belong to X . The WN−path is the Christoffel word of slope

102

m = 6
11

, w = 0010010010010 01 01, where the boldface entries indicate its minimal
point. If we require to add the point x3, then the computation of the related convex hull
(straight line in Figure 6.5, (b)) imposes the inclusion of the points x4 and x5. So the two
new clauses x3 → x4 and x3 → x5 have to be added to the clauses already defined in
Example 11. Note that x5 is c(w̃) as expected by Proposition 10. Note that the inclusion
of the points x3, x4 and x5 in the kernel produces the Christoffel words w1 = 00100101
and w2 = (001)3 (that is not primitive) whose slopes preserve the decreasing order.

(a) (b)

x1

x2 x3

x4

x5

x6 x7

kernel

shell

x1

x2 x3

x4

x5

x6 x7

kernel

shell

Figure 6.5: The WN -path of the kernel computed by StepConv 1 and the points be-
longing to X . In (a) the situation is depicted, while in (b) it is shown the convex hull
computed after the inclusion in the kernel of x3. To preserve convexity, it is also required
the inclusion of x4 and x5.

Furthermore, we underline that, if the wordw of Example 12 is followed by a Christof-
fel word of slope m, with 1

2
< m < 6

11
, then the slope of the WN -path is not preserved

after the splitting, and some more points may need to be included. This situation may
also arise if we include in the WN -path of the kernel in Figure 6.5 the point c(w̃) = x5

only. The following example shows the situation for a different WN -path.

Example 13. Let w1 and w2 be two Christoffel words of a WN -path of a convex ker-
nel, with ρ(w1) = 3

5
> ρ(w2) = 11

20
as in Fig. 6.6. Including in the kernel the point

x = c(w̃1) changes w1 into two new Christoffel words u1v1, with ρ(u1) = 2
3

and
ρ(v1) = 1

2
. Now, the sequence of slopes ρ(u1), ρ(v1) and ρ(w2) is not decreasing.

Furthermore, (v1 w2) = 001 0010010010010010100100100100101 is not a Christof-
fel word, so the corresponding path is not WN−convex. To get back convexity, we
need to include a second point in the polyomino, i.e., the point y = c(w̃2) that be-
longs to the convex hull Hx depicted in Fig.6.6, on the right, obtaining the word w3 =
001001001001001010 0100100100100101, where the included point is in boldface (see
Fig. 6.6 for a visual representation).

The WN−convexity is so imposed by the clause x→ y that, in terms of Christoffel
words, produces v1 w2 changes into w3.

In [32], the authors consider all possible cases that arise when a single point is in-
cluded in aWN -path, and determine when further points need to be included to preserve

103

2

1

��
��
��
��

��

w

1v
u

�
�
�
�

u
w

1

3

Figure 6.6: The inclusion of one single point (on the left) prevents the WN -convexity
of the path. A second point (on the right) has to be added to keep it back.

global convexity. In the sequel, we characterize these situations through logical impli-
cations.

We underline that, if the convex hull Hx related to a point x ∈ X includes points of
the shell, since their values can be considered 0, then the same value is transferred to x
by the implication x→ 0.

Example 14. Consider the Christoffel word w = 00101001010010101 of slope ρ = 7
10

that is in the NW−path of a kernel. Let x1, . . . x6 be points of X (see Figure 6.7 (a)).
Let us include x2 to the kernel, i.e. x2 = 1. Then, we must also include x1, x3 and x5

obtaining φx2 = (x2 → x1)∧ (x2 → x3)∧ (x2 → x5) (see Figure 6.7 (b)). On the other
hand, if x6 is included, then x3 and x5 must be also included in the kernel obtaining
φx6 = (x6 → x3) ∧ (x6 → x5) (see Figure 6.7 (c)). Finally, if we include both x2 and
x6 and we compute again the convex hull, then we realize that that also the points x1, x3,
x4, and x5 have to be included, with x4 being a new one (see Figure 6.7 (d)). So, a new
clause has to be added to φx2 ∧φx6 , i.e. (x2 ∧ x6)→ x4. This provides an example of a
situation where a 3− SAT formula is required.

Relying on the above example, it may happen, in general, that the inclusion of a
subset of k points of X leads to a (k+1)-SAT formula as defined in StepConv 2. In the
sequel, we define some properties that allow us to simplify the SAT clauses leading to
a normal form involving only 3-SAT clauses. Up to now, no polynomial time valuation
is known for this class of formulas.

6.1.5 Properties of the k-SAT formulas to impose global convexity
As previously shown, in [63] the author proved that in the case of fat convex polyominoes,
adding points ofX to the convex kernel can be performed in polynomial time. This result
is related to some specific switching components of the elements of the class.

However, the complexity for the whole set is still unknown. Therefore, the general
versions of the algorithm to reconstruct convex polyominoes from projections may ben-

104

(a) (b)

(c) (d)

kernel
x1

x2

x3

x4

x5

x6

kernel
x1

x2

x3

x4

x5

x6

kernel
x1

x2

x3

x4

x5

x6

kernel
x1

x2

x3

x4

x5

x6

Figure 6.7: An example of 3− SAT in the convex reconstruction problem.

efit from the following results about the SAT formula φConv that has to be defined in
StepConv 2 to express the global convexity. Given two points x and y in X , we define
the partial order x <o y if and only if x precedes y while moving clockwise along the
WN -path of the kernel.

Proposition 11. Let c = (x1∧x2)→ x be a clause includedφConv. Then x1 <o x <o x2.

Proof. Let us assume, w.l.o.g., that x <o x1 <o x2. This implies that either the segment
[x1;x2] is one of the sides of the convex hull computed after the kernel inclusion of x1

and x2 or it lies behind it. In the first case, it holds x1 → x, while in the second case
either x1 → x or x2 → x according to which among x1 or x2 is a vertex of the convex
hull. So, c is equivalent to one of the two above clauses and it has not to be included in
φConv.

Proposition 12. Let c = (x1∧x2∧x3)→ x be a clause included in φConv. There exists
a 3-SAT clause that is equivalent to c.

Proof. Let us assume w.l.o.g. that x1 < x < x2 < x3, where xi < xj means that the
point xi precedes xj while moving clockwise along the WN -path of the kernel. Then
the convex hull computed after the kernel inclusion of the three points x1, x2, and x3

includes also x. Two cases arise:

105

(a) (b)

(c) (d)

kernel

kernelkernel

kernel

x1

x
x2

x3

x1

x

x2

x3

x1

x
x2

x3

x1

x

x2

x3

Figure 6.8: The different configurations of points related to the clause c in the proof of
Proposition 6.1.5. Internal segments are dashed while a full line indicates the convex
hull.

i) the line segment [x2;x3] lies inside the convex hull. In this case either the segment
[x1;x3] or [x1;x2] is a side of the convex hull. In the first case the point x2 lies
below it, see Figure 6.8, (a). Then (x1∧x3)→ x2, and c turns out to be equivalent
to c1 = (x1 ∧ x3)→ x. Analogously, in the second case x3 lies inside the convex
hull, see Figure 6.8, (b). Then x2 → x3, and c turns out to be equivalent to
c1 = (x1 ∧ x2)→ x.

ii) the line segment [x2;x3] is a side of the convex hull. Reasoning similar to i) holds.
Two cases arise: either [x1;x2] is also a side of the convex hull or it is internal
to the convex hull. In the first case c is equivalent to c1 = (x1 ∧ x2) → x, see
Figure 6.8, (c). In the latter case, the clauses x2 → x1 and x2 → x are equivalent
to c, see Figure 6.8, (d).

A similar reasoning on a generic SAT clause leads to

Corollary 10. Let c = (x1 ∧ · · · ∧ xk) → x be a clause in φConv, with k ≥ 2. There
exists a set of clauses in 3-SAT that are equivalent to c.

Proposition 13. If a clause c of φConv includes both x and x̄, then c can be reduced to
2−SAT.

106

Proof. The proof directly follows from the definitions of the logical operators. Two
cases arise: if c = (x1 ∧ x̄1) → x, then the implication is a tautology. Otherwise, if
c = (x1 ∧ x)→ x̄1, then only three valuations of x1 and x are admissible to have c = 1:
either x1 = 1 and x = 0 (so being x̄1 = 0) or x1 = 0 and x is either 0 or 1. These
valuations are equivalent to the 2-SAT clause x1 → x̄.

Experimental evidence allows us to conjecture the following statement:

Conjecture 2. Consider two consecutive Christoffel words w1 and w2 such that adding
c(w̃1) or c(w̃2) separately does not cause the addition of anything else in the convex hull.
Then, if (xi ∧ xj)→ xk is a clause of φConv, then xi and xj cannot be both minimum of
the two consecutive Christoffel words.

From the above conjecture it follows that, in case StepConv 1 detects a set X whose
elements are minimum of the Christoffel words of the kernel border, then the reconstruc-
tion procedure can be performed in polynomial time.

6.2 MSP for polyominoes
In this section, we introduce a new perspective on the reconstruction problem faced so
far. In particular, we consider a general setting in which projections are computed using
8 and 4−neighbours of each element of the matrix. We will see later in this section that
these types of problems are strongly related to their graph counterparts.

Consider a binary matrix A of dimension n ×m and a position (i, j) inside it. We
define N8(i, j) as the set of the positions in the 8-neighbourhood of (i, j), i.e.,

N8(i, j) = {(h, k) | 1 ≤ h ≤ n, 1 ≤ k ≤ m, for h ∈ {i, i±1}, k ∈ {j, j±1}}∪{(i, j)}.

Analogously, the set N4(i, j) is the 4-neighbourhood of (i, j) and contains the verti-
cal neighbours (i± 1, j) and the horizontal neighbours (i, j± 1) entries, including (i, j)
itself.

Analogously to what did in Chapter 5, we indicate probe p8ij (resp. p4ij) the sum of
the entries of the elements of A in the positions N8(i, j) (resp. N4(i, j)).

When varying (i, j), we can arrange the probes of the m×n matrix A in two integer
projections matrices of the same dimensions P 8 or P 4, respectively, according to the N8

or N4 considered set. The entries of the two probe matrices P 8 or P 4 range from 0 to 9,
in the first case, or from 0 to 5, in the latter, i.e., the size of the considered neighbourhood
sets.

As explained in the previous section, when we are interested in reconstructing hv-
polyominoes using their projections, an issue is the uniqueness of the obtained binary
matrix solution. To remove this ambiguity, we repeat what was done in Chapter 5, using

107

0 1 0

1 1 1

110

0

1

1

0 1 0 0

N4

N8

Figure 6.9: Equivalence between the binary matrix on the left with the Grid Graph (up)
and the King’s Graph (down). Grey nodes represent 0-entries and yellow nodes are
1−entries.

the surgical probes. We recall that a surgical probe at position (i, j) returns the value of
aij . Therefore, considering a binary matrix A, the following problem arises.

Definition 17 (hv − Minimum Surgical Probing). Given a projection matrix P , the
Minimum Surgical Problem (MSPhv) asks to find the minimum number of surgical
probes needed to uniquely determine a hv−convex matrix A consistent with P , if it
exists.

This problem was presented also in Chapter 5 for graphs, but here we are focused on
its application for polyominoes. Here we only consider the cases in which P = P 4 or
P = P 8. However, a much more general subset of positions may be considered.

Note that using the notions introduced in Chapter 5, A can be modelled as a graph G,
depending on the type of probe considered. In fact, suppose to associate to each entry
(i, j) of A a node vij ∈ V (G). Then, N8(i, j) corresponds to the closed neighbour set of
node vij if G is a King Graph. Similarly, N4(i, j) corresponds to the closed neighbour
set of node vij if G is a Grid Graph. Thus, this problem can be equivalently considered
as a MSP problem on graphs in which each node possesses a binary label ℓ ∈ {0, 1}n
and we have to find a hv−convex subset of 1−nodes. Figure 6.9 shows an example.

108

6.2.1 P 8 scans to reconstruct hv-polyominoes
Let A be a hv−convex matrix of dimension n × m; in this section we aim at finding
the minimal number of surgical probes to get a faithful reconstruction of A using the
projection matrix P 8.

We define the element aij to be internal if i /∈ {1, n} and j /∈ {1,m}; it is a border
element otherwise.

The following lemma allows determining the entries’ values of the internal elements
of A from its projection matrix P .

Lemma 27. Let P 8 be an instance of MSPhv problem. Let (i, j) be an internal position
of the related solution, then aij = 0 if and only if there is an entry (i′, j′) ∈ N8(i, j)
such that p8i′,j′ = 0.

Proof. (⇐) Assume that there is (i′, j′) ∈ N8(i, j) such that pi′,j′ = 0. It follows that
aij = 0.

(⇒) Let us proceed by contradiction assuming aij = 0, and p8i′,j′ ≥ 1 for all (i′, j′) ∈
N(i, j). It follows that from p8i−1,j−1 ≥ 1, p8i,j−1 ≥ 1, p8i+1,j−1 ≥ 1 and hv-convexity
constraints we have either ai,j−1 = 1 or ai,j−2 = 1.

A similar reasoning applied to p8i−1,j+1, p8i,j+1 and p8i+1,j+1 imply that either ai,j+1 = 1
or ai,j+2 = 1. Finally, the convexity implies aij = 1, a contradiction.

Figure 6.10 shows an example of the partial reconstruction of hv-matrix using the
previous lemma. Note that we adopt a graph representation of the matrix A in such
a way the projections matrix contains exactly the sum of the neighbours’ labels. The
orange nodes are the positions whose values are not yet determined while yellow nodes
represent 1-entries and grey nodes 0-entries.

1 3 4 4 3 2

3 6 7 7 6 4

699985

4 7 8 8 7 4

2 5 7 7 5 2

024420

0 1 1 1 1 1

1 2

32

2 2

1 1

012210

Figure 6.10: An example of application of Lemma 27. The 1-elements of the discrete
set A in Z2 are in yellow, the 0-elements are in grey, while in orange are the unknown
elements. The updated projections on each of them are computed on the right part.

109

After the application of Lemma 27, it remains to retrieve the labels of the border
nodes. It is here that some ambiguities may occur, requiring surgical probing.

To accomplish the reconstruction task, the idea is to use the updated projections of
the border entries after subtracting the values of the already computed internal nodes.

Algorithm 8 is the main routine to detect the positions where a surgical probe has
to be performed, if needed, to reach the final faithful reconstruction of a n ×m matrix
A, with n,m ≥ 5 from a projection matrix P 8. As subroutines, it uses Algorithms 6
and 7 hereafter described. Using Lemma 27, Algorithm 7 proceeds in reconstructing
the border nodes values. We initially set each border element aij = −1 meaning that its
value is yet unknown. We denote with d(i, j) = |N8(i, j)| − 1 without (i, j) itself (i.e.
d(i, j) is the degree of node vij). N(i, j)k is the number of k-nodes (i.e. the number of
nodes with label k), with k ∈ {−1, 0, 1}, in the neighbour of the node (i, j).

In order to complete the reconstruction, different strategies are adopted according to
the length of the sides. In particular, Algorithm 6 performs the border reconstruction in
case it has dimension 6 since some special cases appear. We treat the consecutive border
elements of A as a 1× 6 matrix A′ having scan P ′.

Algorithm 6 Rec-6-line
Require: an unknown 1× 6 matrix A′ and its probe P ′

Ensure: some entries of A′ compatible with P ′

if p′1,3 = 1 and p′1,4 = 1 then
a′1,i = 0, i ∈ {1, 2, 5, 6}

else if p′1,3 = 1 and p′1,4 = 2 then
a′1,i = 0, i ∈ {1, 2, 3}
a′1,i = 1, i ∈ {4, 5}

else if p′1,3 = 2 and p′1,4 = 1 then
a′1,i = 0, i ∈ {4, 5, 6}
a′1,i = 1, i ∈ {2, 3}

else if p′1,3 = 2 and p′1,4 = 2 then
a′1,i = 0, i ∈ {1, 2, 5, 6}
a′1,i = 1, i ∈ {3, 4}

end if
Return: A′

Algorithm 7 is the core of the reconstruction of A: first, it computes the values of
its internal elements, then it moves to those in the border. If n or m have dimension 6,
then it runs Rec-6-line on them; otherwise, it starts computing the unknown entries of A
recursively, based on the updated probes of P 8, until no further changes are possible. If
some ambiguities remain, then surgical probes are required.

110

Algorithm 7 P 8-Rec
Require: an unknown n×m binary matrix A and its scan matrix P 8

Ensure: some values of the elements of A compatible with P 8

1: Apply Lemma 27 to a n×m matrix A and set to−1 its non detected (border) entries

2: Compute P as pij = p8ij − |N(i, j)1|, with 1 ≤ i ≤ n and 1 ≤ j ≤ m

3: if n = 6 or m = 6 then
4: Apply Rec-6-line to the borders of A of length 6 and update P accordingly
5: end if
6: check = TRUE
7: while check do
8: check = FALSE
9: Update pij = pij − |N(i, j)1|, with 1 ≤ i ≤ n and 1 ≤ j ≤ m

10: for 1 ≤ i ≤ n and 1 ≤ j ≤ m do
11: if pij = |N(i, j)−1| then
12: check = TRUE
13: update ak,t = 1 for each (k, t) ∈ N(i, j)−1

14: else if pij = 0 then
15: check = TRUE
16: update ak,t = 0 for each (k, t) ∈ N(i, j)−1

17: else if pij = 2 and i /∈ {1, 2, n− 1, n} and j /∈ {1, 2,m− 1,m} then
18: check = TRUE
19: aij = 1

20: end if
21: end for
22: if check == FALSE then
23: break
24: end if
25: end while

Figure 6.11 shows the results of one iteration of Algorithm 7, starting from the probe
of Figure 6.10, on the left.

Lemma 28. Algorithm 7, P 8-Rec, computes the values of all the entries of a n × m
binary matrix A from its scan P 8, if it exists, except for at most the four corners and
their neighbours.

Proof. At first, Algorithm 7 applies Lemma 27 to retrieve all the internal entries of A.

111

Algorithm 8 Probe-Detect
Require: an unknown binary matrix A and its scan P 8

Ensure: the entries’ values of A, and the number of the needed surgical probes
check = TRUE
while check do

Run P 8-Rec on inputs A and P
8

if for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, it holds aij ̸= −1 then
check = FALSE

else
Do a surgical probe in (i, j) such that aij = −1 and d(i, j) = 5 (i.e., (i, j) is not
a corner element)

end if
end while

0 1 1 1 1 1

1 2

32

2 2

1 1

012210

0 1 1 1 0 0

0

0 0

0000

Figure 6.11: Starting from the situation in Figure 6.10, we show the results after one
application of Algorithm 7. The successive iteration of the algorithm returns a1,3 =

1, a1,4 = 0.

Let us first assume w.l.o.g. that n = 6. Algorithm 6, runs Rec-6-line on the border
of A of length 6. Maintaining the notation A′ and P ′ for a border and its scans, as in
Rec-6-line, the following cases hold:

• if p′1,3 = p′1,4 = 1, then the only 1-entry must lie between a′1,3 and a′1,4. Therefore
all the other nodes still are unknown and so have value −1;

• if p′1,3 = 1 and p′1,4 = 2, then, by convexity, we know that a′1,3 = 1, therefore
a′1,4 = a′1,5 = 1. The entry a′1,6 remains unknown;

• if p′1,3 = 2 and p′1,4 = 1 a symmetric result holds;

• if p′1,3 = p′1,4 = 2, by convexity we infer that a′1,3 = a′1,4 = 1 and a′1,5 = 0.

112

A simple check confirms that the thesis holds in this case.
Now, let us consider n > 6. By the hv-convexity of A it holds that along the border

of length n it lies a sequence of consecutive values 1. If those values are 3 or more, then
there exists an entry of P 8 (as defined in Algorithm 7) on the border having value 3, so
P 8-Rec inserts the three values 1.

On the other hand, if there are less than three consecutive elements 1, then there are
three consecutive values 0, so P 8-Rec inserts three entries 0.

In both cases, the remaining values of the border are obtained in successive updates
of P 8.

Finally, the cases with n less than 6 are treated in Section 6.2.2 by exhaustive com-
putation. We will underline that the only unknown values of A lie according to the thesis
of the lemma.

Theorem 25. If P 8 is a scan whose dimensions are greater than 5, then P 8-rec recon-
structs the related hv-polyomino A without surgical probes.

The proof follows directly from the reconstruction provided in Lemma 28 when the
dimensions of the input scan P 8 are greater than five.

On the other hand, the exhaustive computation presented in Section 6.2.2 on smaller
cases shows that at most four different configurations may share the same projections,
and, to determine them, only two surgical probes are needed.

The following example shows the full reconstruction for a 5 × 5 hv-convex matrix
that requires one surgical probe. Follow the steps of the reconstruction in Fig. 6.12 where
the 1-entries are colored in yellow, 0 entries are in grey, and −1 entries are in orange.

Example 15. Consider the scan matrix F 8 in Fig.6.12, (a). By applying P 8-Rec we
obtain the matrix in Fig.6.12, (b), where the border entries are those of the updated P

8

matrix.
Note that P 8-Rec also detects the values of a1,3 = a3,5 = a5,3 = a3,1 = 1. Then

it performs a surgical probe in one border position with degree equal to 5 (i.e., the red
circle in Fig.6.12, (b) and it avoids corner nodes). Further runs of P 8-Rec lead to the
final solution.

6.2.2 Small cases for P 8

In this section, we present the results of the exhaustive computation of the hv-matrix
sharing the same scan, and the required minimal surgical probes needed to determine
them. The interested reader can use the Matlab code provided in the Appendix to reply
the tests. We start from those of dimension 5 × 5: Figure 6.13 shows, row by row, all
the different couples sharing the same scans, up to rotations and symmetries. So, one
surgical probe is needed to determine the elements of the couples.

113

2 4 5 4 2

4 7 8 7 4

5 8 9 8 5

4 7 8 7 4

2 4 5 4 2

1 1 1 1

1 2

1 1

1 1 1 1

(a) (b) (c)

Figure 6.12: Left, example of projections of a matrixA. Middle, reconstruction obtained
applying Algorithm 7. A surgical probe is highlighted in red. Right, final reconstruction
of the labels.

The exhaustive generation of the smaller cases provides at most four different con-
figurations that may share the same scans, as shown in Fig. 6.14, last row, for the cases
of dimension 2×3. In those cases, the characterization of each matrix can be performed
after two surgical probes at most.

The following theorem holds:

Theorem 26. If a scan P 8 has one dimension lower than 6, then P 8-rec uniquely recon-
structs the related hv-polyomino A from P 8 with at most two surgical probes.

6.2.3 P 4 scans to reconstruct hv-polyominoes
We highlight that in this section we keep the notation and the notion introduced in the
previous section. Again, we indicate with A the hv−convex matrix to reconstruct.

In particular, here we aim to find the minimal number of surgical probes to get a
faithful reconstruction of A using the projection matrix P 4.

Note that Lemma 27 can be adapted to the case of interest and the proof is similar.

Lemma 29. Let P 4 be an instance of MSPhv problem. Let (i, j) be an internal position
of the related solution, then aij = 0 if and only if there is an entry (i′, j′) ∈ N4(i, j)
such that p4i′,j′ = 0.

Lemma 29 allows us to uniquely detect the internal elements of the matrix A. Fig-
ure 6.15 shows an example of the use of Lemma 29 to detect internal elements.

Moving to the border entries, we realize that their detection requires small changes
in Algorithm 7 P 8-Rec that is updated to Algorithm 9, P 4-Rec where the notation intro-
duced in the previous section is maintained. Algorithm 6 Rec-6-line and Algorithm 8
Probe-Detect are preserved, up to updating P 8-Rec with P 4-Rec.

114

Figure 6.13: In each row represents polyominoes sharing the same projections. Note
that, to uniquely determine one of them, at most one surgical probe is needed.

Algorithm 9 P 4-Rec
Require: an unknown n×m binary matrix A and its scan matrix P 4

Ensure: some values of the elements of A compatible with P 4

1 : 16 as in Algorithm 7
17: else if p̄ij = 2 and i /∈ {1, n} and j /∈ {1,m} then
18 : 25 as in Algorithm 7

The main difference between P 8-Rec and P 4-Rec emerges in the border entries
whose value is 2. This is due to the fact that the scans of the positions close to a corner
do not include each other anymore.

Theorem 27. If P 4 is a scan whose dimensions are greater than 4, then P 4-rec recon-
structs the related hv-polyomino A without surgical probes.

Proof. The result easily follows considering that Algorithm 9 works for all the cases
with n,m ≥ 6, since there are no differences with Algorithm 7 in this case. If n = 5 or
m = 5 we can reconstruct the border without surgical probes: w.l.g. let us reconstruct
the first row of A. The knowledge of p2,3 and all the internal elements of A allows us
to get a1,3. Updating the scan and using P 4-Rec, we have, for i ∈ {2, 4}, that p1,i = 2
implies a1,i = 1, a1,i = 0 otherwise. The values a1,i with i ∈ {1, 5} can be obtained by
difference, and the thesis follows.

115

Figure 6.14: Each row group matrices share the same projections according to a square
window. At most 2 surgical probes are needed to determine

1 3 3 2 1 1 0

2

2

1

0

0 0

0

2

4

4 5

5

3

2

1 3

4

5

5

4 4

5

5

5

3 2

3

5

5

3 2

3

3

2

0

0 2 2 1 0 0 0

1

1

1

0

0 0 1 2 2 1

1

2

2

1

0

Figure 6.15: An example of application of Lemma 29. 1-nodes are highlighted in yel-
low, 0−nodes in grey and unknown nodes in orange. Note that updated projections are
computed on the right.

Example 16. Let us consider the probe P 4 shown in Fig. 6.16, left. P 4-Rec computes
the internal entries of the related matrix A and some elements of each border, according
to the proof of Theorem 27. In Fig. 6.16, center, there are the updated scans. Finally, in
Fig. 6.16, right, the whole matrix is reconstructed.

6.2.4 Small cases for P 4

In this section, we exhaustively study the hv-polyominoes whose dimensions are smaller
than five and that share the same P 4 scans in order to solve the related MSPhv problem.
The interested reader can use the Matlab code provided in the Appendix to reply the
tests. Again, the computation reveals that some matrices require surgical probes. As an
example, Fig. 6.17 shows two couples of them.

Furthermore, no more than two different hv-polyominoes share the same P 4 scans,
so one surgical probe is required to determine them. The following theorem holds.

116

1 2 3 3 2

3 4 5 5 3

3 5 5 5 3

2 4 5 3 2

1 3 2 03

0 0 0

0 0

0 0 0

Figure 6.16: The steps performed by P 4-Rec leading to the reconstruction of a hv-
polyomino from the P 4 scan on the left. Since the dimensions of P 4 are greater than
4, then no surgical probes are needed.

Figure 6.17: Two couples of hv-polyominoes sharing the same P 4 scan. In both cases,
only a single surgical probe is needed to determine them.

Theorem 28. If a scan P 4 has one dimension lower than 5, then P 4-rec uniquely recon-
structs the related hv-polyomino A from P 4 with at most one surgical probe.

Bibliography

[1] Claude Berge. Graphs and hypergraphs. 1973.

[2] Michael R Garey, David S. Johnson, and R Endre Tarjan. The planar hamiltonian
circuit problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[3] Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936.
Oxford University Press, 1986.

[4] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

[5] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier,
1984.

[6] Gabriel Deza and Shmuel Onn. Optimization over degree sequences of graphs.
Discrete Applied Mathematics, 296:2–8, June 2021.

[7] Fethi Jarray. Solving problems of discrete tomography: application in workforce
scheduling. 4OR, 3:337–340, 2005.

[8] Fethi Jarray, Marie-Christine Costa, and Christophe Picouleau. Complexity re-
sults for the horizontal bar packing problem. Information processing letters,
108(6):356–359, 2008.

[9] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and cellular net-
works. PLoS computational biology, 5(5):e1000385, 2009.

[10] Emad Ramadan, Arijit Tarafdar, and Alex Pothen. A hypergraph model for the yeast
protein complex network. In 18th International Parallel and Distributed Process-
ing Symposium, 2004. Proceedings., page 189. IEEE, 2004.

[11] Max Falkenberg, Alessandro Galeazzi, Maddalena Torricelli, Niccolò Di Marco,
Francesca Larosa, Madalina Sas, Amin Mekacher, Warren Pearce, Fabiana Zollo,
Walter Quattrociocchi, et al. Growing polarization around climate change on social
media. Nature Climate Change, pages 1–8, 2022.

117

118

[12] Matteo Cinelli, Gianmarco De Francisci Morales, Alessandro Galeazzi, Walter
Quattrociocchi, and Michele Starnini. The echo chamber effect on social media.
Proceedings of the National Academy of Sciences, 118(9):e2023301118, 2021.

[13] Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chem-
ical information and computer sciences, 25(3):334–343, 1985.

[14] Michael D Koenig and Stefano Battiston. From graph theory to models of economic
networks. a tutorial. Networks, topology and dynamics, 613:23–63, 2009.

[15] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices. Math. Lapok,
11:264–274, 1960.

[16] A. K. Dewdney. Degree sequences in complexes and hypergraphs. Proceedings of
the American Mathematical Society, 53(2):535–540, 1975.

[17] Sarah Behrens, Catherine Erbes, Michael Ferrara, Stephen G. Hartke, Benjamin
Reiniger, Hannah Spinoza, and Charles Tomlinson. New results on degree se-
quences of uniform hypergraphs. The Electronic Journal of Combinatorics, 20(4),
November 2013.

[18] Srecko Brlek and Andrea Frosini. A tomographical interpretation of a sufficient
condition on h-graphical sequences. In Discrete Geometry for Computer Imagery,
pages 95–104. Springer International Publishing, 2016.

[19] Andrea Frosini, Christophe Picouleau, and Simone Rinaldi. On the degree se-
quences of uniform hypergraphs. In Discrete Geometry for Computer Imagery,
pages 300–310. Springer Berlin Heidelberg, 2013.

[20] Andrea Frosini, Christophe Picouleau, and Simone Rinaldi. New sufficient con-
ditions on the degree sequences of uniform hypergraphs. Theoretical Computer
Science, 868:97–111, May 2021.

[21] G.T. Herman and A. Kuba, editors. Discrete tomography Foundations algorithms
and applications. Birkhäuser, 1999.

[22] Gabor T. Herman and Attila Kuba, editors. Discrete Tomography. Birkhäuser
Boston, 1999.

[23] William Kocay and Pak Ching Li. On 3-hypergraphs with equal degree sequences.
Ars Combinatoria, 82:145–158, 2007.

[24] Svatopluk Poljak, Vojtěch Rödl, and Daniel TURZiK. Complexity of representa-
tion of graphs by set systems. Discrete Applied Mathematics, 3(4):301–312, 1981.

119

[25] Amotz Bar-Noy, Toni Böhnlein, Zvi Lotker, David Peleg, and Dror Rawitz. The
generalized microscopic image reconstruction problem. Discrete Applied Mathe-
matics, 321:402–416, 2022.

[26] J. M. Carazo, C. O. Sorzano, E. Rietzel, R. Schröder, and R. Marabini. Discrete
Tomography in Electron Microscopy, pages 405–416. Birkhäuser Boston, Boston,
MA, 1999.

[27] K.J. Batenburg, S. Bals, J. Sijbers, C. Köbel, P.A. Midgley, J.C. Hernandez,
U. Kaiser, E.R. Encina, E.A. Coronado, and G. Van Tendeloo. 3d imaging of nano-
materials by discrete tomography. Ultramicroscopy, 109(6):730–740, 2009.

[28] Sandra Van Aert, Kees J. Batenburg, Marta D. Rossell, Rolf Erni, and Gustaaf Van
Tendeloo. Three-dimensional atomic imaging of crystalline nanoparticles. Nature,
470(7334):374–377, February 2011.

[29] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity
of reconstructing lattice sets from their x-rays. Discrete Mathematics, 202(1):45–
71, 1999.

[30] Elena Barcucci, Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. Recon-
structing convex polyominoes from horizontal and vertical projections. Theoretical
Computer Science, 155(2):321–347, 1996.

[31] R Gardner and Peter Gritzmann. Discrete tomography: determination of finite sets
by x-rays. Transactions of the American Mathematical Society, 349(6):2271–2295,
1997.

[32] Paolo Dulio, Andrea Frosini, Simone Rinaldi, Lama Tarsissi, and Laurent Vuil-
lon. Further steps on the reconstruction of convex polyominoes from orthogonal
projections. Journal of Combinatorial Optimization, 44(4):2423–2442, May 2021.

[33] Yan Gerard. Regular switching components. Theoretical Computer Science,
777:338–355, July 2019.

[34] Andrea Frosini and Maurice Nivat. Binary matrices under the microscope: A to-
mographical problem. Theoretical Computer Science, 370(1):201–217, 2007.

[35] Ignacio M Pelayo. Geodesic convexity in graphs. Springer, 2013.

[36] S. Brlek, J.O. Lachaud, X. Provençal, and C. Reutenauer. Lyndon + christoffel =
digitally convex. Pattern Recognition, 42(10):2239–2246, 2009. Selected papers
from the 14th IAPR International Conference on Discrete Geometry for Computer
Imagery 2008.

120

[37] S. Brlek, J.O. Lachaud, X. Provençal, and C. Reutenauer. Lyndon christoffel digi-
tally convex. Pattern Recognition, 42(10):2239–2246, October 2009.

[38] Herbert Freeman. On the encoding of arbitrary geometric configurations. IEEE
Transactions on Electronic Computers, EC-10(2):260–268, June 1961.

[39] Monsieur Lothaire. Combinatorics on words, volume 17. Cambridge university
press, 1997.

[40] J.-P. Borel and F. Laubie. Quelques mots sur la droite projective réelle. Journal de
théorie des nombres de Bordeaux, 5(1):23–51, 1993.

[41] Niccolò Di Marco, Andrea Frosini, and William Lawrence Kocay. A study on
the existence of null labelling for 3-hypergraphs. In Paola Flocchini and Lucia
Moura, editors, Combinatorial Algorithms, pages 282–294, Cham, 2021. Springer
International Publishing.

[42] Andrea Frosini, William L. Kocay, Giulia Palma, and Lama Tarsissi. On null 3-
hypergraphs. Discrete Applied Mathematics, 303:76–85, November 2021.

[43] F. Harary. Graph Theory. Addison Wesley Publishing Company, 1972.

[44] Niccolò Di Marco, Andrea Frosini, William Lawrence Kocay, Elisa Pergola, and
Lama Tarsissi. Structure and complexity of 2-intersection graphs of 3-hypergraphs.
Algorithmica, 85(3):745–761, June 2022.

[45] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.
H. Freeman, first edition edition, 1979.

[46] Anne Berry and Geneviève Simonet. Computing a clique tree with the algorithm
maximal label search. Algorithms, 10(1):20, January 2017.

[47] Petr Hliněný and Jan Kratochvíl. Computational complexity of the krausz dimen-
sion of graphs. In Rolf H. Möhring, editor, Graph-Theoretic Concepts in Computer
Science, pages 214–228, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[48] Alan A. Bertossi. The edge hamiltonian path problem is NP-complete. Information
Processing Letters, 13(4-5):157–159, January 1981.

[49] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10(4):718–720, November 1981.

[50] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, 1980.

121

[51] M. R. Garey, D. S. Johnson, and R. Endre Tarjan. The planar hamiltonian circuit
problem is NP-complete. SIAM Journal on Computing, 5(4):704–714, December
1976.

[52] Maurice Nivat. Sous-ensembles homogénes de Z2 et pavages du plan. Comptes
Rendus Mathematique, 335(1):83–86, 2002.

[53] D. Battaglino, A. Frosini, and S. Rinaldi. A decomposition theorem for homo-
geneous sets with respect to diamond probes. Computer Vision and Image Under-
standing, 117(4):319–325, 2013. Special issue on Discrete Geometry for Computer
Imagery.

[54] Amotz Bar-Noy, Toni Böhnlein, Zvi Lotker, David Peleg, and Dror Rawitz.
Weighted microscopic image reconstruction. In Tomáš Bureš, Riccardo Dondi, Jo-
hann Gamper, Giovanna Guerrini, Tomasz Jurdziński, Claus Pahl, Florian Sikora,
and Prudence W.H. Wong, editors, SOFSEM 2021: Theory and Practice of Com-
puter Science, pages 373–386, Cham, 2021. Springer International Publishing.

[55] Toni Böhnlein, Niccolò Di Marco, and Andrea Frosini. Minimum surgical probing
with convexity constraints. In Lecture Notes in Computer Science, pages 136–147.
Springer Nature Switzerland, 2023.

[56] Niccolò Di Marco and Andrea Frosini. The generalized microscopic image recon-
struction problem for hypergraphs. In Lecture Notes in Computer Science, pages
317–331. Springer International Publishing, 2023.

[57] Claude Berge. Hypergraphs. page 256, 1989.

[58] Robert Janczewski, Pawel Obszarski, and Krzysztof Turowski. Weighted 2-sections
and hypergraph reconstruction. Theoretical Computer Science, 915:11–25, 2022.

[59] Niccolò Di Marco and Andrea Frosini. Properties of SAT formulas characterizing
convex sets with given projections. In Lecture Notes in Computer Science, pages
153–166. Springer International Publishing, 2022.

[60] Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. The number of convex
polyominoes reconstructible from their orthogonal projections. Discrete Mathe-
matics, 157(1):65–78, 1996.

[61] Paolo Dulio and Andrea Frosini. On some geometric aspects of the class of hv-
convex switching components. In Joakim Lindblad, Filip Malmberg, and Nataša
Sladoje, editors, Discrete Geometry and Mathematical Morphology, pages 299–
311, Cham, 2021. Springer International Publishing.

122

[62] Paolo Dulio and Andrea Frosini. Characterization of hv-convex sequences. Journal
of Mathematical Imaging and Vision, 64(7):771–785, May 2022.

[63] Yan Gerard. About the reconstruction of convex lattice sets from one or two x-rays.
arXiv preprint arXiv:2211.08091, 2022.

[64] Andrea Frosini and Laurent Vuillon. Tomographic reconstruction of 2-convex poly-
ominoes using dual horn clauses. Theoretical Computer Science, 777:329–337,
July 2019.

[65] Jean Berstel. Combinatorics on words: Christoffel words and repetitions in words,
volume 27. American Mathematical Soc., 2009.

Chapter 7

Appendix

Algorithms for null label detection
In this section we provide Matlab code that deals with the null label problem. In partic-
ular, the following functions are provided:

• dual hyp, computes the dual of a 3−hypergraph;

• find_null_label, compute (if exists) the null label of a 3−hypergraph;

• find_null_label_rand, search randomly the null label of a 3−hypergraph. It is
useful when dealing with bigger 3−hypergraphs;

Finally, we provide an example in which 3−hypergraphs are generated and the ex-
istence of a null label is tested in each of them. The interested reader can check that
Conjecture 1 is satisfied for n ≤ 7.

function [Ad] = dual_hyp(A)
% This function construct the dual of the 3-hypergraph

described by the edge list A. The dual of a
hypergraph A is the hypergraph B whose edges are the
complementary of the edges of A.

n = length(unique(A));
arc = nchoosek ((1:n) ,3);

Ad = setdiff(arc ,sort(A,2),'rows');

end

123

124

function [null_label] = find_null_label(A,n)
% This function find (if exists) a null label for the 3-

hypergraph described by the edge list A. It generates
all the unique permutations and then applied them in
order to find it.

null_label = 0;
ed = size(A,1); % number of edges
label = ones(1,ed);
label(fix((ed/2))+1: end) = 0; % half elements are -1

% generate unique permutations
k = nnz(label);
C = nchoosek (1:ed ,k);
m = size(C,1);
L = zeros(m,ed);

for ix = 1:m
L(ix,C(ix ,:)) = 1;

end

L(L == 0) = -1;

for i = 1:m

label = L(i,:);
B = incidence_matrix_hyp(A,n);

if isequal(B'*label ', zeros(n,1))

null_label = label;
break

end

end

125

function [null_label] = find_null_label_rand(A,n,iter)
% This function try to find a null label for the 3-

hypergraph described by the edge list A. It generates
random permutations and then applied them in order

to find it. The users must give a maximum number of
iterations.

null_label = 0;
ed = size(A,1); % number of edges

% generate unique permutations
k = ed/2;

count = 0;
value = 0;

while(value == 0 && count <= iter)

comb = randperm(ed ,k);
n_label = -ones(1,ed);
n_label(comb) = 1;
count = count + 1; % number of null label verified

if isequal(A'*n_label ', zeros(n,1))

null_label = label;
break

end

end

% Generate 3-hypergraphs and check if they are null

n = input(" Choose the number of nodes: ");
m = input(" Choose the number of edges: ");
A = nchoosek (1:n,3);

126

n = length(unique(A));
c_arc = size(A,1);
all1 = nchoosek (1:c_arc ,m);

for k = 1:size(all1 ,1) % all the hypergraph

B = A(all1(k,:) ,:);

H = incidence_matrix_hyp(B,n);
deg = sum(H);

if ~isequal(zeros(1,size(H,2)),mod(deg ,2))

nl = find_null_label(B,n);

if nl == 0

disp('B has no null label!')
B

else

disp('B has a null label!')
B
nl

end

end

end

Reconstruction of Convex Polyominoes
In this section, we perform a Matlab implementation of the algorithm for the reconstruc-
tion of (full) convex polyominoes. The algorithm, called reconstruct_polyomino starts

127

with the horizontal and vertical projections of a (convex) polyomino P . Following the
strategy presented in [30], our reconstruction procedure performs in two steps: first, it
applies the filling operations but, differently from the standard approaches, after each
iteration the convex hull is computed and points belonging to it are added into the ker-
nel. After the first part, the output is a matrix with elements in {−1, 0, 1}. 0−elements
are not belonging to P , while 1−elements are belonging for sure to P . The remaining
elements are ambiguous and belong to the switching components.

To compute the Convex Hull, the procedure described in [36] is followed. In partic-
ular, the Algorithm relies on the fundamental Property 1, presented in Chapter 2.

The function getborder has been obtained from MathWorks (https://it.mathworks.
com/matlabcentral/fileexchange/12303-getborder). All the functions used to
perform reconstruct_polyomino are presented with a description provided before the
code.

function wd = word_rotation(wd,i)
% apply the rotation of 90 degrees to the characters of

w.

if nargin == 1

i = 1;

end

for j = 1:i

e = wd == 'e';
n = wd == 'n';
w = wd == 'w';
s = wd == 's';

wd(e) = 's';
wd(n) = 'e';
wd(w) = 'n';
wd(s) = 'w';

end

end

https://it.mathworks.com/matlabcentral/fileexchange/12303-getborder
https://it.mathworks.com/matlabcentral/fileexchange/12303-getborder

128

function wd = word_rotation(wd,i)
% Apply the rotation of 90 degrees to the characters of

w.

if nargin == 1

i = 1;

end

for j = 1:i

e = wd == 'e';
n = wd == 'n';
w = wd == 'w';
s = wd == 's';

wd(e) = 's';
wd(n) = 'e';
wd(w) = 'n';
wd(s) = 'w';

end

end

function [w,P] = NWConvexHull(w)
% The word w represents the NW border of a polyomino.
% This function computes the vertices belonging the the

convex hull of w
% and then modifies w in order to obtain a convex border

.
%
% INPUT
% w : word that identifies the border;
%
% OUTPUT

129

% w : final (convex) border;
% P : stack containing the position and direction of

each vertex belonging
% to the convex hull of w.

w = convertStringsToChars(w);
P = [];
n = length(w);

for i = 1:n

u.pos = i;

switch w(i)

case 'e'

u.a = 0; u.b = 1;

case 'n'

u.a = 1; u.b = 0;

otherwise

error('The path is not the border of a
polyomino ')

end

l = 1;

while(l && ~isempty(P))

v = P(1);

if v.a*u.b <= v.b*u.a

130

u.pos = v.pos;
u.a = u.a + v.a;
u.b = u.b + v.b;
P(1) = [];

else

l = 0;

end

end

P = [u P];

end

% fill the interior

position = zeros(1,length(P)+1); % position of the
vertices

for k = length(P):-1:1

position(length(P)-k+1) = P(k).pos;

end

position(length(P)+1) = length(w) + 1;
position = position - 1; % position in the string

for j = length(P):-1:1

use = christoffel(P(length(P)-j+1).b,P(length(P)-j
+1).a);

w = replaceBetween(w,position(j)+1,position(j+1),use

131

);

end

end

function P = ConvexHull(P)
% Compute the convex hull of the polyomino P trough

christoffel words.

P = logical(P);
lb = getborder(P,'inside ');
[n,m] = size(lb);

% Find the four feet

W = find(lb(:,1) ,1,'last');

N = find(lb(1,:) ,1,'first');

E = find(lb(:,m),1,'first');

S = find(lb(n,:) ,1,'last');

% compute the borders

NW = lb(1:W,1:N);
w1 = NWBorderToWord(NW);
w1 = NWConvexHull(w1);

NE = lb(1:E,N:end);
NE = rot90(NE);
w2 = NWBorderToWord(NE);
w2 = NWConvexHull(w2);
w2 = word_rotation(w2);

ES = lb(E:end ,S:end);

132

ES = rot90(ES ,2);
w3 = NWBorderToWord(ES);
w3 = NWConvexHull(w3);
w3 = word_rotation(w3 ,2);

SW = lb(W:end ,1:S);
SW = rot90(SW ,3);
w4 = NWBorderToWord(SW);
w4 = NWConvexHull(w4);
w4 = word_rotation(w4 ,3);

w = strcat(w1,w2 ,w3,w4);

lb = WordToBorder(w,W,n,m);
P(lb) = 1;

end

function [rejected] = isNW_Convex(w)
% Verify if the border definied by the word w is NW-

convex.
% The alphabet of w must be {'e','n'}.

w = convertStringsToChars(w);
n = length(w);

index = 1;
rejected = 0;
while ~rejected && index <= n

[l1 ,n1] = FirstLyndonFactor(w(index:n));
rejected = ~(IsChristoffelPrimitive(l1));
index = index + n1*length(l1);

end

rejected = ~rejected;

133

end

function w = NWBorderToWord(b)
% Starting from the border b, this function converts the

border (given as a
% logical matrix) to its relative word , using alphabet

{'e','n'}.

w = '';
W = find(b(:,1) ,1,'last');
N = find(b(1,:) ,1,'first');

initial = [W,1]; % initial position of the border
final = [1,N]; % final position
aux = initial;

while ~isequal(aux ,final)

if aux(1) ~= 1

if b(aux(1) -1,aux (2)) % nord

aux (1) = aux(1) - 1;
w = strcat(w,'n');

elseif b(aux (1),aux (2)+1) % east

aux (2) = aux(2) + 1;
w = strcat(w,'e');

else

error('Something is wrong in the border ')

end

134

else % first row

% only est is available

if b(aux(1),aux(2)+1)

aux (2) = aux(2) + 1;
w = strcat(w,'e');

else

disp('Error on the board of P')
return

end

end

end

end

function value = IsConvex(P)
% Verify if the polyomino P is convex trough a string

algorithm.

value = 1;
[n,m] = size(P);
lb = getborder(logical(P),'inside ');

W = find(lb(:,1) ,1,'last');

N = find(lb(1,:) ,1,'first');

E = find(lb(:,m),1,'first');

S = find(lb(n,:) ,1,'last');

135

% compute the NW border

NW = lb(1:W,1:N);
w1 = NWBorderToWord(NW);

if ~isNW_Convex(w1)

value = 0;

end

NE = lb(1:E,N:end);
NE = rot90(NE);
w2 = NWBorderToWord(NE);

if ~isNW_Convex(w2)

value = 0;

end
ES = lb(E:end ,S:end);
ES = rot90(ES ,2);
w3 = NWBorderToWord(ES);

if ~isNW_Convex(w3)

value = 0;

end

SW = lb(W:end ,1:S);
SW = rot90(SW ,3);
w4 = NWBorderToWord(SW);

if ~isNW_Convex(w4)

136

value = 0;

end

end

function value = check_condition(r,h,v,i)
% Given a single row (or column) of a polyomino and its

projections , the
% function checks if the projections conditions are

satisfied.

value = 1;

[n,m] = size(r);

if n > 1 && m == 1

if sum(r == 1) > v(i)

value = 0;

end

elseif n == 1 && m > 1

if sum(r == 1) > h(i)

value = 0;

end

end

function [P,alpha ,beta ,flag] = filling_operations(P,i,
row_or_col ,h,v)

% Compute the filling operations for reconstructing a hv
-convex polyomino

137

% starting from P and its vertical and horizontal
projections.

flag = 1;

alpha = find(P == 1);
beta = find(P == 1 | P == -1);

if row_or_col == 0 % row

r = P(i,:);

elseif row_or_col == 1 % col

r = flip(P(:,i));

else

error("Wrong row_or_col ")

end

% kernel connecting

n = length(r);

aux_alpha = find(r == 1);
r(min(aux_alpha):max(aux_alpha)) = 1;
aux_alpha = find(r == 1);

if ~check_condition(r,h,v,i)

flag = 0;
return

end

138

% shell connecting

aux = find(r == 0);

if ~isempty(aux_alpha)

for t = 1: length(aux)

if aux(t) < min(aux_alpha)

r(1:aux(t)) = 0;

elseif aux(t) > max(aux_alpha)

r(aux(t):end) = 0;

end

end

end

if ~check_condition(r,h,v,i)

flag = 0;
return

end

% coherence kernel

aux_alpha = find(r == 1);
aux_beta = find(r == 1 | r == -1); % beta
c = aux_beta (2: end)-aux_beta (1:end -1);
c = c(:);

% test if beta is connected

139

if isequal(c,ones(length(c) ,1)) && isempty(aux_alpha)

if row_or_col == 0 % row

r(max(min(aux_beta),max(aux_beta)-h(i)+1):min(
min(aux_beta)+h(i)-1,max(aux_beta))) = 1;

elseif row_or_col == 1 % col

r(max(min(aux_beta),max(aux_beta)-v(i)+1):min(
max(aux_beta),min(aux_beta)+v(i) -1)) = 1;

end

elseif isequal(c,ones(length(c) ,1)) && ~isempty(
aux_alpha)

if row_or_col == 0 % row

r(min(aux_alpha):min(min(aux_beta)+h(i) -1,max(
aux_beta))) = 1;

r(max(min(aux_beta),max(aux_beta)-h(i)+1):max(
aux_alpha)) = 1;

elseif row_or_col == 1 % col

r(min(aux_alpha):min(min(aux_beta)+v(i) -1,max(
aux_beta))) = 1;

r(max(min(aux_beta),max(aux_beta)-v(i)+1):max(
aux_alpha)) = 1;

end

end

if ~check_condition(r,h,v,i)

140

flag = 0;
return

end

aux_alpha = find(r == 1);
aux = find(r == 0);

% coherence shell

if ~isempty(aux_alpha)

if row_or_col == 0 % row

aux = union(aux ,1:max(aux_alpha)-h(i));
aux = union(aux ,min(aux_alpha)+h(i):n);

elseif row_or_col == 1 % col

aux = union(aux ,1:max(aux_alpha)-v(i));
aux = union(aux ,min(aux_alpha)+v(i):n);

end

end

if ~check_condition(r,h,v,i)

flag = 0;
return

end

r(aux) = 0;

% final assignation

141

if row_or_col == 0 % row

P(i,:) = r;

elseif row_or_col == 1 % col

P(:,i) = flip(r);

end

if check_condition(P,h,v) == 0

flag = 0;

end

alpha = find(P == 1);
beta = find(P == 1 | P == -1);

function [P,exist] = inside_rec(Ptry ,h,v)
% Function that works inside the

reconstrunction_polyomino algorithm.
%
% INPUT
% Ptry : logical matrix representing the polyomino;
% h,v : desired projections.
%
% OUTPUT
% P : obtained polyomino after the (non -convex)

reconstruction algorithm;
% exist : variable equal to 0 if the desired polyomino

does not exist and
% is equal to 1 otherwise.

exist = 1;
[n,m] = size(Ptry);

142

alpha_old = find(Ptry == 1);
beta_old = find(Ptry == 1 | Ptry == -1);
alpha_new = 0;
beta_new = 0;
P = Ptry;

while(~ isequal(alpha_old , alpha_new) || ~isequal(
beta_old , beta_new))

alpha_old = alpha_new;
beta_old = beta_new;
count_r = 1;
count_c = 1;

for tt = 1:n+m

if tt <= n

[Ptry ,~,~,flag] = filling_operations(Ptry ,
count_r ,0,h,v);

if flag == 0

break

end

count_r = count_r + 1;

else

[Ptry ,~,~,flag] = filling_operations(Ptry ,
count_c ,1,h,v);

if flag == 0

break

143

end

count_c = count_c + 1;

end

end

if flag == 0

break

end

alpha_new = find(Ptry == 1);
beta_new = find(Ptry == 1 | Ptry == -1);

end

if flag == 0

exist = 0;
return

else

for i = 1:n % rows

r = Ptry(i,:);
a = find(r == 1);
b = find(r == -1 | r == 1);

if length(a) > h(i) || length(b) < h(i)

exist = 0;
return

144

end

end

for i = 1:m % rows

r = Ptry(:,i);
a = find(r == 1);
b = find(r == -1 | r == 1);

if length(a) > v(i) || length(b) < v(i)

exist = 0;
return

end

end

P = Ptry;

end

end

function lb = WordToBorder(w,W,n,m)
% Conver a word in the alphabet {e,n,s,w} as the border

of a polyomino.

lb = zeros(n,m);
lb(W,1) = 1;
aux = [W,1]; % actual position

for i = 1: length(w)

switch w(i)

145

case 'e'

lb(aux (1),aux (2)+1) = 1;
aux (2) = aux(2) + 1;

case 'n'

lb(aux (1) -1,aux(2)) = 1;
aux (1) = aux(1) - 1;

case 'w'

lb(aux (1),aux (2) -1) = 1;
aux (2) = aux(2) -1;

case 's'

lb(aux (1)+1,aux(2)) = 1;
aux (1) = aux(1) + 1;

end

end
end

function [w] = christoffel(x,y)

% Take as input a couple of numbers x and y and give as
output the Christoffel Word of slope y/x.

check = 0;
w1=[];
j=0;

if x<y

146

check =1;
x1=y;
y1=x;

else

x1=x;
y1=y;

end

for i=1:x1
if (i*y1-j*x1)<x1

w1=[w1 'e'];

else

w1=[w1 'e' 'n'];
j=j+1;

end

end

if check ==1

w1 = strrep(w1,'e','a');
w1 = strrep(w1,'n','e');
w1 = strrep(w1,'a','n');
w1=fliplr(w1);

end

w=w1;

end

147

function P = ConvHull_Feet(P,i,j,k,t)
% Compute the convex hull starting from only the feet of

the polyomino P.
%
% INPUT
% P : logical matrix with only feet = 1.
% i : initial position for the foot in the first column;
% j : initial position for the foot in the first row;
% k : initial position for the foot in the last column;
% t : initial position for the foot in the last row.
%
% OUTPUT
% P : convex hull of the polyomino P.

[n,m] = size(P);

% construct the borders
NW = christoffel(j-1,i-1);
lb = WordToBorder(NW,i,i,j);
P(1:i,1:j) = lb|P(1:i,1:j);

NE = christoffel(k-1,m-find(P(1,:) ,1,'last'));
lb = WordToBorder(NE,m-find(P(1,:) ,1,'last')+1,...

m-find(P(1,:) ,1,'last')+1,k);
P(1:k,find(P(1,:) ,1,'last'):m) = rot90(lb ,3)|P(1:k,find(

P(1,:) ,1,'last'):m);

ES = christoffel(m-find(P(n,:) ,1,'last'),n-find(P(:,m)
,1,'last'));

lb = WordToBorder(ES,n-find(P(:,m),1,'last')+1,...
n-find(P(:,m) ,1,'last')+1,m-find(P(n,:) ,1,'last')+1)

;
P(find(P(:,m) ,1,'last'):n,find(P(n,:) ,1,'last'):m) =

rot90(lb ,2)|...
P(find(P(:,m) ,1,'last'):n,find(P(n,:) ,1,'last'):m);

148

SW = christoffel(n-find(P(:,1) ,1,'last'),t-1);
lb = WordToBorder(SW,t,t,n-find(P(:,1) ,1,'last')+1);
P(find(P(:,1) ,1,'last'):n,1:t) = rot90(lb ,1)|P(find(P

(:,1) ,1,'last'):n,1:t);

% fill the interior

for i = 1:n

P(i,find(P(i,:) ,1,'first'):find(P(i,:) ,1,'last')) =
1; % fill rows

P(find(P(:,i) ,1,'first'):find(P(:,i) ,1,'last'),i) =
1; % fill columns

end

end

function P = reconstruct_polyomino(h,v,conv ,i,j,k,t)
% Function that reconstruct a polyomino based on the

horizontal and
% vertical projections h and v.
% i,j,k,t are the (optional) position of the feet.
% If conv = 1 the function search for a (full) convex

polyomino.

m = length(v); % number of columns
n = length(h); % number of rows

v = v(:) ';
h = h(:);

P = -ones(n,m);

% check initial conditions

149

if ~isequal(v<=n,ones(1,m)) || ~isequal(h<=m,ones(n,1))

error(" Dimension does not match")

end

if sum(h) ~= sum(v)

error("The sum of the projections isn 't equal ")

end

% place feet

Ptry = P;
control = 0;

if nargin <= 3

for i = 1:(n-v(1)+1) % first column

for j = 1:(m-h(1)+1) % first row

for k = 1:(n-v(m)+1) % last column

for t = 1:(m-h(n)+1) % last row

% place feet and projections

% first column

for u = i:i+v(1) -1

Ptry(u,1:h(u)) = 1;

end

150

% first row

for u = j:j+h(1) -1

Ptry (1:v(u),u) = 1;

end

% last column

for u = k:k+v(m)-1

Ptry(u,m:-1:(m-h(u)+1)) = 1;

end

% last row

for u = t:t+h(n)-1

Ptry((n-v(u)+1):n,u) = 1;

end

if conv % apply convex hull

Ptry = ConvHull_Feet(Ptry ,i,j,k,
t);

end

[Ptry ,flag] = inside_rec(Ptry ,h,v);

if conv && flag % apply again the
reconstruction

P = Ptry;

151

while(~ IsConvex(Ptry ==1))

use = ConvexHull(Ptry == 1);
Ptry(use) = 1;

[Ptry ,flag] = inside_rec(
Ptry ,h,v);

P = Ptry;

if ~flag

control = 1;
break

end

end

elseif flag % already convex

P = Ptry;

end

if ~flag

control = 1;
break

end

end

if control

break

152

end

end

if control

break

end

end

if control

break

end

end

else % chosen feet

Ptry(i:i+v(1) -1,1) = 1;
Ptry(1,j:j+h(1) -1) = 1;
Ptry(k:k+v(m) -1,m) = 1;
Ptry(n,t:t+h(n) -1) = 1;

% first column

for u = i:i+v(1) -1

Ptry(u,1:h(u)) = 1;

end

% first row

153

for u = j:j+h(1) -1

Ptry (1:v(u),u) = 1;

end

% last column

for u = k:k+v(m)-1

Ptry(u,m:-1:(m-h(u)+1)) = 1;

end

% last row

for u = t:t+h(n)-1

Ptry((n-v(u)+1):n,u) = 1;

end

% from here P is ready

[Ptry ,flag] = inside_rec(Ptry ,h,v);

if ~flag

disp("The polyomino does not exists with those
feet")

return

elseif conv % apply again the reconstruction

P = Ptry;

154

while(~ IsConvex(Ptry ==1))

use = ConvexHull(Ptry == 1);
Ptry(use) = 1;

[Ptry ,flag] = inside_rec(Ptry ,h,v);
P = Ptry;

if ~flag

disp("The polyomino does not exists with
those feet")

return

end

end

else % already convex

P = Ptry;

end

end

MSP for polyominoes
In this section we provide the Matlab code we used to test the small cases for the MSP
problem on polyominoes. In particular, we used the following functions:

• get_projections, gets the projections of a matrix according to the type of neigh-
bours defined by the user;

• is_hv_convex, test if a binary matrix A is hv−convex;

• small_cases, find the matrices sharing the same projections according to the type
of neighbour defined by the user.

155

Finally, we provide a script that uses all the previous function and ask to the user to
provide the dimensions of the matrix to test.

function P = get_projections(A,type)
% This function gets the projections of matrix A

according to the neighbours defined in type. If type
== 'S', then it is its 8-neighbourhood , if type == "D
" then it is its 4-neighbourhood.

[n,m] = size(A);
P = zeros(n,m);

for i = 1:n

for j = 1:m

if strcmp(type ,'S')

P(i,j) = sum(A(max(1,i-1):min(n,i+1),max(1,j
-1):min(m,j+1)),'all');

elseif strcmp(type ,'D')

if (i > 1 && i < n && j > 1 && j < m)

P(i,j) = A(i-1,j) + A(i,j) + A(i+1,j) +
...
A(i,j-1) + A(i,j+1);

elseif i == 1 && j == 1

P(i,j) = A(1,1) + A(1,2) + A(2,1);

elseif i == 1 && j == m

P(i,j) = A(1,m) + A(1,m-1) + A(2,m);

elseif i == n && j == 1

156

P(i,j) = A(n,1) + A(n-1,1) + A(n,2);

elseif i == n && j == m

P(i,j) = A(n,m) + A(n-1,m) + A(n,m-1);

elseif i == 1 % first row

P(i,j) = sum(A(1,j-1:j+1),'all') + A(2,j
);

elseif i == n % last row

P(i,j) = sum(A(n,j-1:j+1),'all') + A(n
-1,j);

elseif j == 1 % first column

P(i,j) = sum(A(i-1:i+1,1)) + A(i,2);

elseif j == m % last column

P(i,j) = sum(A(i-1:i+1,m),'all') + A(i,m
-1);

end

else

error("Wrong type. It must be 'S' or 'D'")

end

end

end

157

end

function flag = is_hv_convex(A)
% Find if a binary matrix is hv-convex.

[n,m] = size(A);

flag = 1;

for k = 1:n

use = find(A(k,:));
i = min(use);
j = max(use);

if ~isequal(unique(A(k,i:j)) ,1)

flag = 0;
return

end

end

for k = 1:m

use = find(A(:,k));
i = min(use);
j = max(use);

if ~isequal(unique(A(i:j,k)) ,1)

flag = 0;
return

end

158

end

function [T,M] = small_cases(n,m,type)
% This function finds matrices with the same projections

(i.e. having switching components). It generates all
the matrices of dimension n x m and computes their

projections according to the window. 'D' is the 4-
neighbourhood and 'S' the 8-neighbourhood.

The intern of the matrix is always full otherwise is not
possible to have switching components.
Return a tensor with the projections of all possible

polyominoes.

%% Compute all the possible feet 's lengths
ln = nchoosek (1:n,2);
ln = [ln;ln(: ,2: -1:1) ;[(1:n) ',(1:n) ']];

lm = nchoosek (1:m,2);
lm = [lm;lm(: ,2: -1:1) ;[(1:m) ',(1:m) ']];

l = [];

for q = 1:size(ln ,1)

use = repmat(ln(q,:),size(lm ,1) ,1);

l = [l;[use ,lm]];

end

%% Create the matrix

A = zeros(n,m);

% Fill the intern
A(2:n-1,2:m-1) = 1;

159

% Try with all the possible feet

T = [];
M = [];
count = 1;

%% Generate all the possible matrices

for w = 1:size(l,1) % length of the feet

for i = 1:(n-l(w,1) +1) % first column

for j = 1:(m-l(w,3) +1) % first row

for k = 1:(n-l(w,2) +1) % last column

for t = 1:(m-l(w,4) +1) % last row

B = A;

B(i:i+l(w,1) -1,1) = 1; % first
column

B(1,j:j+l(w,3) -1) = 1; % first row
B(k:k+l(w,2) -1,m) = 1; % last column
B(n,t:t+l(w,4) -1) = 1; % last row

if is_hv_convex(B)

% Get projections

P = get_projections(B,type);

% Save the projections in a
tensor

M(:,:,count) = B;

160

T(:,:,count) = P;
count = count + 1;

end

end

end

end

end

end

% This script print all the $hv -$ convex polyominoes of
dimension n x m having the same projections according
to the type of neighbours given by the user.

close all
clear all

% test small cases
n = input('Insert the number of rows: ');
m = input('Insert the number of columns: ');
type = input('Insert S for 4-Neighbourhood or D for 8-

neighbourhood: ', 's');

while type ~= 'S' && type ~= 'D'

type = input('Insert S for 4-Neighbourhood or D for
8-neighbourhood: ', 's');

end

[T,A] = small_cases(n,m,type);

161

% Create a vector to save the equal matrix projections
use = zeros(1,size(T,3));
aux = 1; % determine equal projections

for i = 1:size(T,3)

value = 0;

for j = 1:size(T,3)

if isequal(T(:,:,i),T(:,:,j))

if i ~= j && ~isequal(A(:,:,i),A(:,:,j)) &&
use(j) == 0

use(i) = aux;
use(j) = aux;
value = 1;

end

end

end

if value

aux = aux + 1;

end

end

u = unique(use);

for r = 1: length(u)-1

162

M = A(:,:,use == u(r+1));
F = reshape(M,size(M,1)*size(M,2) ,[]) ';
F = unique(F,'rows');
M = reshape(F',[size(M,1),size(M,2),size(F,1)]);
l = size(M,3);

for s = 1:l

subplot(1,l,s)
imagesc(M(:,:,s))

end

pause

end

	Introduction
	Graph and Hypergraph Theory
	Discrete Tomography

	Basic Notions
	Graphs and hypergraphs
	Classes of intersection graphs
	Convexity on graphs

	Notions on polyominoes
	Coding the boundary of a convex polyomino
	Christoffel words

	Null label problem
	Problem definition and previous results
	The 2-intersection graph and its connection to the null label problem

	Reconstruction of the 2-intersection graphs
	Properties of graphs in L3 2
	Computational complexity of 2-intersection property
	Reconstruction of Claw-Free Graphs
	Claw-free graphs in L3 2
	Complexity of recognizing claw free graphs in L3 2
	Complexity of recognition for triangulated claw-free graphs in L3 2

	Further results
	NP-complete problems in the class L1k
	Hamiltonian cycle detection in L3 2
	Recognition problem for trees

	Minimum Surgical Probing
	Definition of MSP and previous results
	The MSP problem on classes of hypergraphs
	3-hypergraphs whose 2-intersection graph is a line
	3-hypergraphs whose 2-intersection graph is a tree

	Convex Minimum Surgical Probing
	Reduction Algorithm
	Label Vectors with Support 1
	Graphs with Small Maximum Cliques
	Grid Graphs
	King's Graphs

	Reconstruction of convex polyominoes and related problems
	Reconstruction of Convex Polyominoes
	The reconstruction of hv-convex polyominoes from horizontal and vertical projections
	An approach to reconstruct convex polyominoes from horizontal and vertical projections
	Previous results
	Convexity preserved by k-SAT clauses
	Properties of the k-SAT formulas to impose global convexity

	MSP for polyominoes
	P8 scans to reconstruct hv-polyominoes
	Small cases for P8
	P4 scans to reconstruct hv-polyominoes
	Small cases for P4

	Appendix

