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Embedding the Dynamics of Forced Nonlinear
Systems in Multistable Memristor Circuits

Giacomo Innocenti , Alberto Tesi, Mauro Di Marco, and Mauro Forti

Abstract— A well-known feature of memristors is that they
makes the circuit dynamics much richer than that generated by
classical RLC circuits containing nonlinear resistors. In the case
of circuits with ideal memristors, such a multistability property,
i.e., the coexistence of many different attractors for a fixed set
of parameters, is connected to the fact that the state space is
composed of a continuum of invariant manifolds where either
convergent or oscillatory and more complex behaviors can be
displayed. In this paper we investigate the possibility of designing
memristor circuits where known attractors are embedded into
the invariant manifolds. We consider a class of forced nonlinear
systems containing several systems which are known to display
complex dynamics, and we investigate under which conditions the
dynamics of any given system of the class can be reproduced by a
circuit composed of a two-terminal (one port) element connected
to a flux-controlled memristor. It is shown that an input-less
circuit is capable to replicate the system attractors generated by
varying the constant forcing input, once the parameters of the
two-terminal element and the memristor nonlinear characteristic
are suitably selected. Indeed, there is a one-one correspondence
between the dynamics generated by the nonlinear system for a
constant value of the input and that displayed on one of the
invariant manifolds of the input-less memristor circuit. Some
extensions concerning the case of non-constant forcing terms and
the use of charge-controlled memristors are also provided. The
results are illustrated via FitzHugh-Nagumo model and Duffing
oscillator.

Index Terms— Analog circuits, memristors, nonlinear circuits,
nonlinear dynamical systems, systems modeling.

I. INTRODUCTION

RECENT years have witnessed a widespread interest in
exploring possible ways to alleviate some emerging lim-

itations of digital Von Neumann computing systems [1], [2].
Within this context, in-memory computing is seen as a promis-
ing approach to overcome the memory bottleneck related to
the strongly increasing amount of data to be processed in
solving computational tasks. In-memory computing is based
on new nanoscale devices, such as memristors, possessing
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unconventional features which make it possible to foreseen the
development of novel analogue and parallel (neuromorphic)
computing schemes [3], [4].

The ideal memristor has been introduced in the seminal
1971 paper by Chua [5] as the fourth basic passive circuit
element in addition to the resistor, capacitor and inductor.
Its constitutive relation is a nonlinear function linking charge
to flux (resp., flux to charge) for a flux-controlled (resp.,
charge-controlled) memristor. In the voltage-current domain
an ideal memristor satisfies a state-dependent Ohm’s law
where the state variable is either the flux, for a flux-controlled
memristor, or the charge, for a charge-controlled memristor.
Later on, a wider class of memristive systems has been
proposed by Chua and Kang [6]. These have been further
subdivided in generic and extended memristors, depending
upon the complexity of the constitutive relation involving
voltage, current and additional memristor internal state vari-
ables. We refer the reader to [7] for the nomenclature and
a discussion of the hierarchy and genealogy of memristor
models used in the literature. Generic and extended mem-
ristors are of practical importance in that they can be used
to better model some classes of real memristive devices in
nanotechnology with respect to ideal memristors [8], [9], [10].
On the other hand, ideal memristors are of great interest
in nonlinear circuit theory [11], [12], [13], [14]. Moreover,
several articles in the literature discuss physical components or
systems whose dynamic behavior can be approximated by that
of ideal memristors [15], [16], [17]. In particular, [18] and [19]
show that in practical ranges of temperature and thickness of
the amorphous region, mushroom-type phase-change memory
(PCM) and ReRAM devices obey a flux-charge model as
that describing ideal memristors. It is also worth to note that
numerous analog or digital techniques are available to imple-
ment ideal memristors. We refer the reader to [13] and [20]
for a detailed account of the current state of the art. Such
techniques are based on using current-mode building blocks
as second-generation Current Conveyor (CCII), electronically
tunable CCII, operational transconductance amplifier (OTA),
current feedback operational amplifier (CFOA), differential
difference current conveyor, current conveyor transconduc-
tance amplifier (CCTA), and differential voltage CCTA. Also,
relatively simple structures based on MOS transistors have
been proposed (see, e.g., [20] and references therein). Wave-
digital emulators of memristors have been devised in [21].

From a dynamic point of view, the key feature of memris-
tors, either ideal or extended and real physical ones, is that
their presence makes the circuits capable to generate a large
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variety of attractors for a fixed set of circuit parameters [12],
[22], [23], [24], [25]. This important property is referred to
as (extreme) multistability and it is not enjoyed by traditional
nonlinear RLC circuits which generally display only a limited
number of attractors for any fixed set of circuit parameters.
For ideal memristors, it has been shown that multistability is
connected to the fact that the state space of memristor circuits
is decomposed into a continuum of invariant manifolds [11].
Since on each manifold either convergent or oscillatory and
more complex behaviors can be displayed, the coexistence of
infinitely many attractors is a natural scenario for circuits with
ideal memristors [26], [27], [28], [29], [30], [31], [32]. More-
over, each invariant manifold can be uniquely identified via
some parameters referred to as manifold indexes, whose values
depend on the initial conditions of the circuit. By suitably
setting these indexes, it is possible to select a desired manifold
and also to switch the circuit dynamics between different
invariant manifolds and the attractors therein contained [33],
[34], [35], [36], [37]. In particular, [37] shows how a shaped
voltage/current source can be pulse programmed in order to
steer the dynamics from one invariant manifold to another.

The multistability feature of memristors has been thor-
oughly investigated, also in connection with some classic
problems (see, e.g., [38] and [39]). However, several inter-
esting issues still deserve to be analyzed. One concerns how
many and which type of attractors can be embedded in a
memristor circuit, an issue which is certainly appealing from a
theoretical point of view since it leads to a better understanding
of the richness of the memristor circuits dynamics. It can
also have some practical implications, as for instance in the
realization of reservoir computing systems [40]. The problem
of embedding known dynamics in some system is indeed
a classical problem. For instance, a fundamental result of
Smale ensures that any dynamic system of order n − 1 can be
embedded in a competitive system of order n (see, e.g., [41]
at pp. 344-345). However, this competitive system has not
the structure of a circuit or a neural network. Here, we are
interested in analyzing how many attractors can be embedded
in a system which is implementable via a memristor circuit.
Another issue is connected with the role of the input to
generate attractors in forced nonlinear systems. For instance,
it is well-known that in the FitzHugh-Nagumo model [44],
[45] either convergent or oscillatory behaviors are displayed
depending on the constant value of the input, i.e., the injected
current.

In this paper we investigate how the multistability feature
of circuits with an ideal memristor can be exploited to
reproduce all the dynamics displayed by a forced nonlinear
system. If the forcing input is constant, as in the case of
the FitzHugh-Nagumo model, then we consider an input-less
memristor circuit whose manifold index is related to the value
of the input. If the input is non-constant, as for instance
in the case of the Duffing system, then some independent
voltage/current sources are introduced in the circuit and pro-
grammed according to the index variations. Specifically, the
considered class of forced nonlinear systems contains several
systems which are known to display complex dynamics, and it
is described in Section II together with the memristor circuit

Fig. 1. Memristor circuit. L: finite-dimensional causal linear time-invariant
two-terminal (one port) element; MR: ideal memristor.

to be designed. Such a circuit is assumed to be composed of
a finite-dimensional causal linear time-invariant two-terminal
(one port) element connected to a flux-controlled ideal mem-
ristor. Section III investigates under which conditions an
input-less memristor circuit is capable to exactly reproduce
the dynamics generated when the nonlinear system is forced
by a constant input. Specifically, we look for conditions on
the circuit structure which ensure the existence of a one-to-
one correspondence between the dynamics of the nonlinear
system for a given value of the constant forcing input and
that displayed on one of the invariant manifolds. Moreover,
a procedure to synthesize the two-terminal element is dis-
cussed and its application to the FitzHugh-Nagumo model is
illustrated in Section IV. Section V considers the extension
to the case when the forcing input of the nonlinear system
is no longer constant, by showing that the system dynam-
ics can be still replicated once the two-terminal element is
equipped with suitable programmed voltage/current sources.
Finally, Section VI considers the case when the flux-controlled
memristor is replaced by a charge-controlled one, while some
concluding remarks are given in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper we consider the class of nonlinear systems
which are described by the following state space representation

� :
{

ẋ(t) = Ax(t) + B f (y(t)) + Du(t)

y(t) = Cx(t) ,
(1)

where x ∈ R
n is the state vector, u ∈ R is a scalar input,

y ∈ R is a scalar output, A ∈ R
n×n , B ∈ R

n×1, C ∈ R
1×n ,

D ∈ R
n×1. We assume that the nonlinear function f : R → R

is such that f (0) = 0 and it is sufficiently smooth to ensure
existence and uniqueness of the solutions of �. The following
assumptions are enforced on the matrices A, B , and C .

Assumption 1: The pair (A, B) is controllable and the pair
(A, C) is observable.

Also, we initially assume the matrix A is non-singular and
the input u is constant over time, i.e.,

u(t) = U0 ∀t ≥ t0 .

We observe that the structure of � is enjoyed by many
systems displaying either convergent or oscillatory and more
complex behaviors, such as the FitzHugh-Nagumo model, the
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Van der Pol and Duffing oscillators, the Chua and Murali–
Lakshmanan–Chua circuits.
In the sequel we denote by x0(t) the solution of (1) for
t ≥ t0 with initial conditions x0(t0) = x0 and constant input
U0. Accordingly, we refer to S as the set of all the solutions
of � generated by varying x0 ∈ R

n and U0 ∈ R. We find it
convenient to write this set as

S =
⋃

U0∈R

SU0 (2)

where SU0 is the set of all the solutions x0(t) obtained for
the fixed input u(t) = U0 by varying the initial conditions
x0 ∈ R

n .
Our aim is to show that the set S can be reproduced via the
dynamics of the circuit depicted in Fig. 1, which is composed
of a two-terminal (one port) element L, with voltage vL
and current iL, and a memristor MR, with voltage vM and
current iM .

The two-terminal element L is either a passive or an active
input-less circuit which is described by the following state
space representation

L :
{

ż(t) = ALz(t) + BLiL(t)

vL(t) = CL z(t) ,
(3)

where z ∈ R
n , AL ∈ R

n×n , BL ∈ R
n×1, CL ∈ R

1×n . Clearly,
L admits an input-output description by expressing the Laplace
transform of vL as the product of the Laplace transform of iL
and the equivalent impedance of L given by

L(s) = CL(s In − AL)−1 BL , (4)

where In is the identity matrix of order n and s is the complex
variable.
The memristor MR is initially assumed to be an ideal
flux-controlled memristor and thus described by the nonlinear
flux-charge characteristic N : R → R, i.e.

qM = N(ϕM ) ,

where ϕM and qM are the memristor flux and charge, whose
standard definitions are recalled next [5]:

ϕM (t) =
∫ t

−∞
vM (τ )dτ , qM(t) =

∫ t

−∞
iM (τ )dτ .

In the voltage-current domain the memristor dynamics is
modeled by the following nonlinear system

MR :
{

ϕ̇M (t) = vM (t)

iM (t) = Ṅ (ϕM (t)) = N ′(ϕM (t))vM (t) ,
(5)

where the derivative N ′(ϕM ) is known as the memconductance
of the memristor.
Since vL = vM and iL = −iM the dynamics of the circuit of
Fig. 1 is described by the following equations

�C :
{

ż(t) = ALz(t) − BL Ṅ (ϕM (t))

ϕ̇M (t) = CL z(t) .
(6)

Let z0(t) and ϕ0
M (t) be the solution of (6) for t ≥ t0 with

initial conditions z0(t0) = z0 and ϕ0
M (t) = ϕM0 , and let SC

denote the set of all the solutions generated by varying z0 ∈ R
n

and ϕM0 ∈ R. In the next section we determine under which
conditions on L and MR, i.e., on the matrices AL , BL , CL

and the memristor nonlinear characteristic N(·), there exists
a one-to-one correspondence between SC and the solution set
S of �.

III. STRUCTURE OF THE DYNAMICALLY EQUIVALENT

MEMRISTOR CIRCUIT

It has been shown that the state space of circuits containing
an ideal memristors is composed of a continuum of invariant
manifolds where either convergent or oscillatory and more
complex dynamical behaviors can be displayed (see, e.g., [26]
and references therein). These infinitely many invariant man-
ifolds are parameterized by the manifold index I ∈ R whose
value determines the specific invariant manifold where the
dynamics is confined to lie. A general characterization of the
invariant manifolds of the circuit of Fig. 1 �C can be found
in [37]. Here, we consider the case when AL is non-singular.

Proposition 3.1: Let AL be non-singular. Then, the invari-
ant manifolds of the memristor circuit �C are given by

MI = {
z ∈ R

n, ϕM ∈ R :
ϕM − CL A−1

L z − CL A−1
L BL N(ϕM ) = I}

. (7)

Moreover, the following set equivalence{
z ∈ R

n, ϕM ∈ R : (z�, ϕM )� ∈
⋃
I∈R

MI

}
≡ R

n+1 (8)

holds, i.e., the state space of the memristor circuit �C is
decomposed into a continuum of invariant manifolds.

Proof: Since AL is invertible, from the first equation of (6)
we get

z(t) = A−1
L

(
ż(t) + BL Ṅ(ϕM (t))

)
and thus the second equation boils down to

ϕ̇M (t) − CL A−1
L ż(t) − CL A−1

L BL Ṅ (ϕM (t)) = 0

This implies that

σ(t)
.= ϕM (t) − CL A−1

L z(t) − CL A−1
L BL N(ϕM (t))

is constant over time, thus showing that MI is an invariant
manifold. To prove (8) it is enough to observe that for any
fixed ϕM all z ∈ R

n belong to some manifold MI .
Remark 1: The above proposition implies that the solution

z0(t), ϕ0
M (t), t ≥ t0, of (6) with initial conditions z(t0) =

z0, ϕ0
M (t0) = ϕM0 is confined to lie onto a specific invariant

manifold. Indeed, from the proof it follows the such a solution
belongs to the invariant manifold MI with

I = ϕM0 − CL A−1
L z0 − CL A−1

L BL N(ϕM0 ) . (9)

Hence, the initial conditions z0, ϕM0 dictate the invariant
manifold MI where the solutions are confined to lie.

Proposition 3.1 states that the solution set SC of (6) can be
obtained by collecting the sets of solutions belonging to MI
for I ∈ R, i.e.,

SC =
⋃
I∈R

SCI ,
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where SCI is the set of all the solutions z0(t), ϕ0
M (t), t ≥ t0,

of (6) with initial conditions z(t0) = z0, ϕ0
M(t0) = ϕM0 such

that condition (9) holds.
We are now ready to determine the sought conditions ensuring
that there is a one-to-one correspondence between SC and the
solution set S in (2). The next result holds true.

Proposition 3.2: Let A be non-singular and suppose that
the nonlinear characteristic of MR is chosen as

N(·) = − f (·) . (10)

and the matrices of L are such that

AL = T −1 AT , BL = T −1 B , CL = CT , (11)

where T ∈ R
n×n is a non-singular matrix. Then, for any x0 ∈

R
n and U0 ∈ R the solution x0(t) of (1) for t ≥ t0 with initial

conditions x0(t0) = x0 and input u(t) = U0 can be written as

x0(t) = x0 +
∫ t

t0
T z0(τ )dτ , (12)

where z0(t) is the solution for t ≥ t0 of (6) with initial
conditions

z0 = T −1 (Ax0 + B f (Cx0) + DU0) , ϕM0 = Cx0 . (13)

Moreover, z0(t) belongs to the invariant manifold MI with
the index given by

I = −C A−1 DU0 . (14)

Proof: Consider the following equations{
ξ̇ (t) = Aξ(t) + B ḟ (η(t))

η̇(t) = Cξ(t) ,
(15)

which are obtained by first making the time-derivative of
equations (1) and then replacing ẋ and y with ξ and η,
respectively. It can be readily verified that if x0(t), t ≥ t0,
is the solution of (1) with initial conditions x0(t0) = x0 and
input u(t) = U0, then the solution of (15) for t ≥ t0 with initial
conditions ξ(t0) = Ax0 + B f (Cx0)+ DU0 and η(t0) = Cx0 is
given by {

ξ(t) = ẋ0(t)

η(t) = Cx0(t) .

Now, the memristor circuit equations (6) with the nonlinear
characteristic N(·) and the matrices AL , BL , CL are set
according to (10) and (11), respectively, become{

ż(t) = T −1 AT z(t) − T −1 B ḟ (ϕM(t))

˙ϕM (t) = CT z(t) .
(16)

By comparing (15) and (16) and rewriting the first equation
of (16) as T ż(t) = AT z(t)−B ḟ (φ(t)), it readily follows that
the solutions z0(t) and ϕ0

M (t) of (16) with the initial conditions
in (13) are such that{

T z0(t) = ẋ0(t)

ϕ0
M (t) = Cx0(t) ,

thus proving relation (12). The assumption that A is
non-singular ensures that also AL is non-singular and thus

from Proposition 3.1 we have that z0(t) belongs to an invariant
manifold having the structure in (7). Taking into account (10)
and (11), (7) can be rewritten as

MI = {
z ∈ R

n, ϕM ∈ R :
ϕM − C A−1T z + C A−1 B f (ϕM ) = I}

,

and hence, according to Remark 1, z0(t) belongs to the
invariant manifold MI with

I = ϕM0 − C A−1T z0 + C A−1 B f (ϕM0) .

By replacing z0 with the expression in (13) and taking into
account that ϕM0 = Cx0, we finally get

I = ϕM0 − C A−1 (Ax0 + B f (Cx0) + DU0)

+ C A−1B f (ϕM0) = −C A−1 DU0 .

Proposition 3.2 provides the conditions under which each
solution x0(t) of � is exactly reproduced via a suitable solu-
tion z0(t) of �C , according to (12). We remark that, according
to (10), the ideal memristor flux-charge characteristic needs
to coincide with the function f (φ), which, as in the case
of the FitzHugh model of Section IV, can be a monotonic
odd function. When N(·) is non-monotonic and the memristor
is active, it can be implemented in a standard way via a
passive memristor in parallel to a negative resistor obtained
using a current inverter (INIC). We also remark that an odd
characteristic of the passive memristor may be obtained for
instance by adequately biasing with some adapting circuitry
PCM devices [18]. Another possibility is to resort to analog
implementations via OTA or CMOS [13], [20] in combination
with techniques to symmetrize the flux-charge characteristic as
for instance using two memristors in a complementary resistive
switching (CRS) configuration. The result in Proposition 3.2
can be strengthened as follows.

Proposition 3.3: Let A be non-singular and let condi-
tions (10)-(11) hold. If

C A−1 D 
= 0 , (17)

then there is a one-to-one correspondence between the solution
sets S and SC of � and �C , respectively.

Proof: If (17) is satisfied then (14) shows that there is
a proportional relation between the index I of the invariant
manifold and the value U0 of the constant input. Hence, it is
enough to prove that there exists a one-to-one correspondence
between the solution sets SU0 and SCI , with U0 and I being
related via (14). Recall that SU0 is the set of all solutions
of � obtained for a fixed U0 by varying the initial condition
x0 ∈ Rn , while SCI is the set of all solutions of �C with
initial conditions z0, ϕM0 belonging to the following set

LI = {
z0 ∈ R

n, ϕM0 ∈ R :
ϕM0 − C A−1T z0 + CL A−1 B f (ϕM0) = I}

,

Since LI ≡ R
n , to prove one-to-one correspondence between

S and SC it is enough to show that there not exist two different
solutions in S to which correspond the same solution in SC .
Hence, let x̄0(t) and x̂0(t) denote the solutions in S with initial
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conditions x̄0(t0) = x̄0 and x̂0(t0) = x̂0, x̄0 
= x̂0, respectively.
From Proposition 3.2 we have that the solutions z̄0(t), ϕ̄0

M (t)
and ẑ0(t), ϕ̂0

M (t) have the initial conditions z̄0, ϕ̄M0 and ẑ0,
ϕ̂M0 , respectively. According to (13), we have

z̄0 = T −1 (Ax̄0 + B f (Cx̄0) + DU0) , ϕ̄M0 = Cx̄0

and

ẑ0 = T −1 (
Ax̂0 + B f (Cx̂0) + DU0

)
, ϕ̂M0 = Cx̂0 .

Clearly, z̄0(t), ϕ̄0
M (t) coincides with ẑ0(t), ϕ̂0

M (t) if and only
if z̄0 = ẑ0 and ϕ̄M0 = ϕ̂M0 . These two conditions can be
equivalently written as

Ax̄0 + B f (Cx̄0) = Ax̂0 + B f (Cx̂0) , (18)

and

Cx̄0 = Cx̂0 , (19)

respectively. Exploiting (19), condition (18) boils down to

A(x̄0 − x̂0) = 0

and thus it is solved only if x̄0 = x̂0, which is a
contradiction.

Remark 2: The proof of Proposition 3.3 shows that each
invariant manifold MI replicates all the solutions of (1)
obtained for a fixed constant input u(t) = U0 once I and
U0 satisfy the linear relation (14). In the case that � displays
different attractors for different values of U0, this relation
permits to keep track of the invariant manifolds where these
attractors are reproduced. In [37] it has been shown that the
introduction of pulse programmed sources in the memristor
circuit makes it possible to switch the circuit dynamics between
different attractors. This suggests that the case of non-constant
input u can be tackled by incorporating suitably designed
voltage/current sources in the two-terminal element L of the
circuit of Fig. 1. This issue will be investigated in Section V.

Proposition 3.2 defines the structure that equations (3)
and (5) should enjoy to reproduce the solutions of sys-
tem �. Specifically, the flux-controlled memristor is com-
pletely designed once the nonlinear characteristic satisfies (10),
while different matrices AL , BL , and CL can be chosen by
varying the matrix T .

This degree of freedom is used to select a specific circuital
realization of the equations (3) governing the two-terminal
element. We first observe that for any choice of AL , BL , and
CL the impedance (4) of L satisfies

L(s) = C(s In − A)−1 B . (20)

Hence, we have to synthesize either a passive or an active
two-terminal element L having such an impedance. This can
be done by exploiting one of the available procedures (see,
e.g., [42] and [43]), together with the impedance scaling
technique. Note that Assumption 1 ensures that the strictly
proper rational function L(s) has order equal to n. This
implies that L can be synthesized with nC ≥ 0 capacitors and
nL ≥ 0 inductors with n = nC + nL . Let vCi , i = 1, . . . , nC ,
and iL j , j = 1, . . . , nL , denote the voltages of the capacitors
and the currents of the inductors, respectively, and consider the
state vector z̄ = (vC1, . . . , vCnC

, iL1, . . . , iLnL
) ∈ R

n . Then,

by applying the Kirchhoff’s law to the loops and nodes of
the synthesized L, we can write the following state space
representation { ˙̄z(t) = ĀL z̄(t) + B̄LiL(t)

vL(t) = C̄L z̄(t) ,
(21)

for some suitable matrices ĀL , B̄L , and C̄L . Since by con-
struction

C̄L(s In − ĀL)−1 B̄L = L(s) , (22)

there exists a non-singular matrix T̄ ∈ R
n×n satisfying (11),

i.e., solving the linear equations

AT̄ = T̄ ĀL , B = T̄ B̄L , CT̄ = C̄L . (23)

Clearly, the designed circuit obeys equations (6) with AL =
ĀL , BL = B̄L , CL = C̄L , and N(·) = − f (·) and hence,
according to Proposition 3.2, it is capable to reproduce all
the solutions of �. Specifically, the solution x0(t) of (1) for
t ≥ t0 with initial conditions x0(t0) = x0 and input u(t) =
U0 is given by (12) once T is replaced by T̄ and z0(t) is
the solution generated by the designed circuit for t ≥ t0 with
initial conditions as in (13) with T −1 replaced by T̄ −1.

A. The Case of Singular Matrix A

In this subsection we show how the assumption of A being
non-singular can be relaxed. Indeed, if the matrix A of � is
non-invertible we can rewrite equations (1) as{

ẋ(t) = (A − k BC)x(t) + B( f (y(t)) + ky(t)) + Du(t)

y(t) = Cx(t) ,
(24)

where k ∈ R is a parameter to be chosen such that
det(A−k BC) 
= 0. Clearly, for such a k all the results obtained
in the case of a non-singular A are still valid once A and f (y)
are replaced by Ak

.= A − k BC and fk(y)
.= f (y) + ky.

In particular, it can be checked that the impedance of the
two-terminal element L to be synthesized becomes

Lk(s) = C(s In − Ak)
−1 B = L(s)

1 + kL(s)
, (25)

where L(s) is as in (20). This relation between Lk(s) and
L(s) is exploited to show that it is possible to find k such that
Ak is non-singular. The next result holds true.

Proposition 3.4: Let Assumption 1 hold and let A be sin-
gular. Then, there always exists k ∈ R such that

det(A − k BC) 
= 0 .

Proof: Observe that L(s) can be expressed

L(s) = CAdj(s In − A)B

det(s In − A)

and Lk(s) can be written as

Lk(s) = CAdj(s In − Ak)B

det(s In − Ak)

= CAdj(s In − A)B

det(s In − A) + kCAdj(s In − A)B
.
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Fig. 2. Memristor circuit capable to reproduce the dynamics of the
FitzHugh-Nagumo neuron model: the passive two-terminal elementi L (blue
box) with Rm , Lm , and Cm as in (32), and the flux-controlled memristor (red
box) with the nonlinear characteristic (30).

where the second equality follows from (25). Hence, we have
the following equality

det(s In − Ak) = det(s In − A) + kCAdj(s In − A)B .

which implies that det Ak = 0 if and only if

det(−A) + kCAdj(−A)B = kCAdj(−A)B = 0 . (26)

Since A is singular, zero is a pole of L(s), and, because
Assumption 1 ensures that L(s) cannot have any zero-pole
cancellation, L(s) cannot have a zero at s = 0 and hence we
have that C Adj(−A)B 
= 0. This implies that (26) holds only
for k = 0 and hence we have shown that det(A−k BC) 
= 0 for
all k 
= 0.

Remark 3: From the proof of Proposition it follows that
Ak is non-singular for all k 
= 0. This degree of freedom in
the choice of k can be used to optimize the synthesis of the
impedance of L and/or the memristor nonlinear characteristic
N(·) = − fk(·). Since � can be written in the form (24)
even if A is non-singular, it follows that also in this case the
parameter k can be chosen to optimize the synthesis of the
memristor circuit.

IV. APPLICATION TO THE FITZHUGH-NAGUMO MODEL

In this section the application of the previous results
will be illustrated by designing a memristor circuit capable
to reproduce the dynamics of the FitzHugh-Nagumo neu-
ron model [44], [45], [46], [47], which is a second order
approximation of the celebrated Hodgkin-Huxley model [48].
Some other memristive FitzHugh–Nagumo circuits have been
already proposed for different purposes [49], [50], [51]. The
model FitzHugh-Nagumo equations read⎧⎨

⎩ V̇ = V − W − V 3

3
+ I

Ẇ = a (bV − cW )
(27)

where V represents the membrane potential, W is an internal
variable, the coefficients a, b, c are positive tuning parameters,
and I is a constant forcing current, used to stimulate the neuron
response. It can be readily verified that model (27) admits the
state space representation � in (1) once

x =
(

V
W

)
, y = V , u = I , f (y) = y − y3

3
, (28)

A =
(

0 −1
ab −ac

)
, B =

(
1
0

)
,

D =
(

1
0

)
, C = (

1 0
)

. (29)

Since a, b, c > 0, we have

det A = ab 
= 0 , C A−1 D = c

b

= 0 ,

and hence A is non-singular and condition (17) holds.
To design the memristor circuit of Fig. 1, we first observe
that the flux-controlled memristor MR should be implemented
according to equation (5) where the nonlinear characteristic
must satisfy (10), which implies

N(ϕM ) = − ϕM + ϕ3
M

3
. (30)

Exploiting the expression of A, B , and C in (29), we get that
the impedance (4) of the two-terminal element L is given by

L(s) = s + ac

s2 + acs + ab
(31)

and, therefore, the corresponding admittance is

L−1(s) = s2 + acs + ab

s + ac
= s + ab

s + ac
.

It can readily verified that this admittance can be synthesized
via the parallel interconnection of a capacitor Cm with the
series of an inductor Lm and a resistor Rm , once

Rm = c

b
, Lm = 1

ab
, Cm = 1 . (32)

Figure 2 depicts the synthesized circuit whose governing
equations are⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
v̇Cm = 1

Cm

(
iLm − iM

)
i̇ Lm = − 1

Lm

(
vCm + RmiLm

)
ϕ̇M = vM

(33)

where vM = vCm and iM = Ṅ(ϕM ) = (−1 + ϕ2
M )vCm . Since

iL = −iM and vL = vCm = vM , we get that equations (33)
admit the state space representation �C in (6) with z =
(vCm , iLm )� and AL = ĀL , BL = B̄L , and CL = C̄L where

ĀL =
⎛
⎜⎝ 0

1

Cm

− 1

Lm
− Rm

Lm

⎞
⎟⎠ , B̄L =

⎛
⎝ 1

Cm
0

⎞
⎠ ,

C̄L = (
1 0

)
.

To apply Propositions 3.2 and 3.3 it remains to compute the
matrix T̄ solving conditions (23). Indeed, we get

AT̄ =
( −T21 −T22

abT11 − acT21 abT12 − acT22

)

=
⎛
⎜⎝ − 1

Lm
T12

1

Cm
T11 − Rm

Lm
T12

− 1

Lm
T22

1

Cm
T21 − Rm

Lm
T22

⎞
⎟⎠ = T̄ ĀL
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B =
(

1
0

)
=

⎛
⎜⎜⎝

1

Cm
T11

1

Cm
T21

⎞
⎟⎟⎠ = T̄ B̄L

CT̄ = (
T11 T12

) = (
1 0

) = C̄L

where Ti j , i = 1, 2, j = 1, 2, are the entries of T̄ . The above
equations boil down to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T21 − 1

Lm
T12 = 0

T22 + 1

Cm
T11 − Rm

Lm
T12 = 0

abT11 − acT21 + 1

Lm
T22 = 0

abT12 − acT22 − 1

Cm
T21 + Rm

Lm
T22 = 0

T11 = Cm

T11 = 1

T12 = 0

T21 = 0

which, taking into account (32), are solved for

T̄ =
(

1 0
0 −1

)
.

According to Proposition 3.3, there is a one-on-one correspon-
dence between the solutions of (27) generated by the constant
forcing current I and those of (33) belonging to the invariant
manifold

MI =
{
vCm ∈ R, iLm ∈ R, ϕM ∈ R : Cm RmvCm

+ LmiLm + (1 − Rm) ϕM + Rm

3
ϕ3

M = I
}

, (34)

with the manifold index given by

I = c

b
I .

Moreover, from Proposition 3.2 and in particular from (13),
it follows that the solution of (27) with initial condi-
tions V (t0) = V0, W (t0) = W0 is reproduced by that of (33)
with initial conditions(

vCm (t0)
iLm (t0)

)
= z0 =

⎛
⎝ V0 − W0 − V 3

0

3
+ I

acW0 − abV0

⎞
⎠ ,

ϕM (t0) = ϕM0 = V0. (35)

A. Numerical Simulations

Consider the FitzHugh-Nagumo model (27). Without any
loss of generality, both the state variables and the time variable
can be assumed to be expressed in normalized values, which
are obtained from the corresponding biological values by
shifting the axes origin and applying a scale factor. Then,
consider the normalized parametric configuration

a = 0.2 , b = 0.4 , c = 0.32 , (36)

Fig. 3. State space orbits of the FitzHugh-Nagumo model (27) for parametric
configuration (36). The circle, triangle and square respectively depict the
starting points x(1)

0 , x(2)
0 , x(3)

0 illustrated in Subsection IV-A.

Fig. 4. Time representation of the solutions of the FitzHugh-Nagumo
model (27) illustrated in Subsection IV-A. The solid curves (initially dotted)
depict the behavior of the state variables for the solution starting from the
initial condition x(1)

0 and passing by x(2)
0 at t = 20, when the line style

changes. The dashed curves regard the solution starting from the initial
condition x(3)

0 .

which is coherent with the original system (see [44], [45],
and [46]). The system is numerically simulated in the Matlab
environment using the ode45 solver for different constant
values of the input I and of the initial conditions x0. Figure 3
depicts the trajectory obtained for input I = 0.2 starting
from x (1)

0 = (0.1, 0.4)T . For the sake of the next discussion,
after 20 time units the simulation is stopped and the reached
state is used as a new starting point x (2)

0 = (1.8189, 0.0740)T

for a second run lasting other 80 time units. The corresponding
trajectory is drawn with a different line style. The same figure
shows also a different orbit originated from x (3)

0 = (2,−1)T

when I = −0.8. Figure 4 illustrates the same trajectories in
their temporal evolution.

Consider now the corresponding memristor circuit depicted
in Fig. 2. From (32), the normalized equations of circuit (33)
feature

Rm = 0.8 , Lm = 12.5 , Cm = 1 . (37)

In view of practical implementation, an impedance scaling
technique has to be employed to obtain realistic values of the
circuit components. The previous starting points x (1)

0 , x (2)
0 , x (3)

0

are transformed via (35) into the initial conditions (z(1)
0 , ϕ

(1)
M0

),

(z(2)
0 , ϕ

(2)
M0

), (z(3)
0 , ϕ

(3)
M0

). From (34) it follows that (z(1)
0 , ϕ

(1)
M0

)
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Fig. 5. Two samples, observed from different points of view, of the invariant
manifold (34) pertaining the FitzHugh-Nagumo circuit (33) for the parametric
configuration (37). The upper surface corresponds to the manifold index
I = 0.16, while the lower one to index I = −0.64.

and (z(2)
0 , ϕ

(2)
M0

) belong to the same manifold of index I =
0.16, while (z(3)

0 , ϕ
(3)
M0

) belongs to that of index I = −0.64.
A picture of the corresponding manifolds is provided by Fig. 5.
The trajectories of the circuit originated from those starting
points are shown in Fig. 6.

V. EXTENSION TO NON-CONSTANT INPUTS u

In this section we relax the assumption that the input u of
� is constant. We recall that � typically displays an attractor
for many constant values of the input u, as illustrated in Fig. 7
for the FitzHugh-Nagumo model. Consider the case where �

exhibits two different attractors for the input values U (1)
0 and

U (2)
0 , U (1)

0 
= U (2)
0 , and let u(t) be varied between these values

in order to make the dynamics switching between the different
attractors.

As an example, we can consider the input

u(t) =

⎧⎪⎨
⎪⎩

U (1)
0 if t ∈ [t0, t1]

r(t) if t ∈ [t1, t2]
U (2)

0 if t ∈ [t2,+∞) ,

(38)

where r(t) satisfies r(t1) = U (1)
0 and r(t2) = U (2)

0 . With
some abuse of notation, we denote by x0(t) the solution
with initial condition x(t0) = x0 and input u as in (38).
We suppose that at t = t1 such a solution lies onto the attractor
corresponding to the constant input U (1)

0 , while at t = t2 it
belongs to the stability region of the attractor relative to the
constant input U (2)

0 so that it converges towards this attractor
for t > t2. Propositions 3.2 and 3.3 ensure that the attractors

Fig. 6. State space orbits of the FitzHugh-Nagumo circuit (33)-(37) origi-
nated from the initial conditions x(1)

0 , x(2)
0 , x(3)

0 transformed according to (35).
The circle, triangle and square correspond to the equivalent symbols used
in Fig. 3 for the simulation of the FitzHugh-Nagumo system. The trajectories
starting from the circle and triangle lie on the manifold of index I = 0.16,
while the orbit originated from the square lies onto the manifold of index
I = −0.64.

Fig. 7. The FitzHugh-Nagumo circuit (33)-(37) exhibits a very rich
dynamics comprising an infinite amount of different attractors according to
the characterization illustrated in Section III. Seven different solutions are
initialized so that their initial conditions (the circle symbols) are settled on
different attractors. The diamonds and squares are, respectively, stable and
unstable equilibrium points of the system, while the solid closed curves are
stable limit cycles.

are replicated onto the two different invariant manifolds MI
with I = −C A−1 DU (1)

0 and I = −C A−1 DU (2)
0 . Clearly,

the switching solution x0(t) cannot be reproduced by �C

since its dynamics cannot move from one invariant manifold
to another. However, it can be shown that x0(t) can be
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replicated by introducing suitable voltage/current sources in
the two-terminal element L which has been synthesized in the
case of constant inputs. We recall that in this case the state
space representation and the impedance are as in (21) and (22),
respectively, and that T = T̄ in Proposition 3.2. Proceeding as
in [37], we replace each capacitor Ci with the same capacitor
with in parallel a current source I (s)

i , i = 1, . . . , nC , and each
inductor L j with the same inductor with in series a voltage
source V (s)

j , j = 1, . . . , nL . It follows that the state space
representation of the so-modified L becomes{ ˙̄z(t) = ĀL z̄(t) + B̄LiL(t) + 	−1
(t)

vL(t) = C̄L z̄(t) ,
(39)

where 
 ∈ R
n is the vector of the voltage and current sources,

i.e.,


 = (I (s)
1 , . . . , I (s)

nC
, V (s)

1 , . . . , V (s)
nL

)� , (40)

and 	 ∈ R
n×n is the following non-singular diagonal matrix

	 = diag (C1, . . . , CnC , L1, . . . , LnL ) . (41)

Hence, by joining equations (39) with (5) and exploiting
conditions (10) and (11), we get that the dynamics of the
modified memristor circuit obeys{ ˙̄z(t) = T̄ −1 AT̄ z̄(t) + T̄ −1 B ḟ (ϕM (t)) + 	−1
(t)

ϕ̇M (t) = CT̄ z̄(t) .
(42)

The next result is instrumental for the design of the vector 

ensuring that equations (42) replicate the switching solution
of �.

Proposition 5.1: Let x0(t) denote the solution of � with
initial condition x0(t0) = x0 and non-constant input u(t) such
that u̇(t) is piecewise-continuous for t ≥ t0, and let z̄0(t) and
ϕ0

M (t) be the solutions for t ≥ t0 of (42) with initial conditions

z0 = T̄ −1 (Ax0 + B f (Cx0) + Du(t0)) , ϕM0 = Cx0 . (43)

Suppose that the vector 
 of the current and voltage sources
satisfies


(t) = 	T̄ −1 Du̇(t) (44)

for t ≥ t0. Then, x0(t) can be written as

x0(t) = x0 +
∫ t

t0
T̄ z̄0(τ )dτ . (45)

Proof: By proceeding as in the proof of Proposition III
we have that the equations{

ξ̇ (t) = Aξ(t) + B ḟ (η(t)) + Du̇(t)

η̇(t) = Cξ(t)
(46)

admit the solutions ξ(t) = ẋ0(t) and η(t) = Cx0(t) for the
initial condition ξ(t0) = Ax0+ B f (Cx0)+ Du(t0) and η(t0) =
Cx0. We observe that equations (42) can be rewritten as{

T̄ ˙̄z(t) = AT̄ z̄(t) + B ḟ (ϕM (t)) + Du̇(t)

ϕ̇M (t) = CT̄ z̄(t)
(47)

once 
 is replaced with its expression in (44). By com-
paring (47) and (46), it readily follows that the solutions

Fig. 8. The memristor circuit designed to reproduce the FitzHugh-Nagumo
dynamics for non-constant input I . The circuit might use up to two
independent sources I (s)

1 and V (s)
1 to steer the state among the invariant

manifolds, which characterize the state space when the input I of the original
dynamics (27) is assumed constant.

z̄0(t) and ϕ0
M (t) of (47) with the initial conditions in (43)

are such that ϕ0
M (t) = Cx0(t) and T̄ z̄0(t) = ẋ0(t), thus

proving (45).
Remark 4: It is worth noting that if u(t) is as in (38) then

u(t0) = U (1)
0 , u(t2) = U (2)

0 and 
(t) = 0 for both t ∈ [t0, t1]
and t > t2. According to Proposition III, this implies that the
solutions z̄0(t) and ϕ0

M (t) of (42) is confined to lie onto the
invariant manifold

MI = {
z̄ ∈ Rn, ϕM ∈ R :

ϕM − C A−1T̄ z̄ + C A−1 B f (ϕM ) = I}
,

with I = −C A−1 DU (1)
0 for t ∈ [t0, t1] and I =

−C A−1 DU (2)
0 for t ≥ t2. Since for t ∈ [t1, t2] the input u(t)

is non-constant, z̄0(t) and ϕ0
M (t) are not belonging to any

invariant manifold. This means that the manifold index

I = ϕM − C A−1T̄ z̄ + C A−1 B f (ϕM )

is no longer constant. In fact, we have

İ(t) = ϕ̇0
M (t) − C A−1T̄ ˙̄z0(t) + C A−1 B ḟ (ϕ0

M (t))

= − C A−1 Du̇(t) (48)

where the second equality follows by replacing T̄ ˙̄z0(t) and
ϕ̇0

M (t) with the expressions in the right-side terms of (47),
respectively. Since I(t0) = −C A−1 Du(t0), from (48) we get

I(t) = −C A−1 Du(t) . (49)

Hence, for t ∈ [t1, t2] the index of the manifold varies linearly
with the non-constant input of �.

A. The FitzHugh-Nagumo Model

According to the above results, the implementation of the
memristor circuit when input u is non-constant is achieved
by introducing as many voltage and current sources as the
number of inductors and capacitors, respectively, in the circuit
implementation already obtained for the constant input case.
Taking into account that all the voltage sources must be in
series of the inductors, and the current sources in parallel of
the capacitors, the application of this procedure to the circuit
equations (33) brings to the circuit implementation illustrated
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Fig. 9. Time representation of the solution of the FitzHugh-Nagumo circuit
described in Subsection V-A. During the intervals (95, 105), (240, 260) the
manifold index is changed from I = −0.64 to I = 0.36 and back to I =
−0.64 using the current source.

Fig. 10. State space orbits of the FitzHugh-Nagumo circuit described in
Subsection V-A. The trajectory starts from a stable fixed point (the circle
symbol) in the manifold of index I = −0.64, then the system is brought
onto the manifold of index I = 0.36, where a stable limit cycle attracts the
trajectory, and, finally, it is switched back to I = −0.64, where it lands onto
the starting equilibrium point. Lines are solid when the dynamics evolves onto
a manifold, i.e., when the manifold index is constant, while they are dashed
during the passage from a manifold to another.

Fig. 11. Evolution of the manifold index of the FitzHugh-Nagumo circuit
described in Subsection V-A. The index switches between the values I =
−0.64 and I = 0.36. During the interval (95, 105) it increases as a linear
ramp, while in (240, 260) it decreases as a parabolic ramp, according to the
programming of the current source.

in Fig. 8, which is described by the following system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̇Cm = 1

Cm

(
iLm + (1 − ϕ2

M )vCm + I (s)
1

)
i̇ Lm = − 1

Lm

(
vCm + RmiLm − V (s)

1

)
ϕ̇M = vCm

(50)

Observe that the vector of the sources is 
 = (I (s)
1 , V (s)

1 )�,
just in agreement with (40). Also, note that 	 =
diag (Cm , Lm) in accordance to (41). In order to change the
manifold index as in (49), condition (44) must be enforced.
Taking into account (32), it turns out that


(t) =
(

I (s)
1 (t)

V (s)
1 (t)

)
=

(
Cm

0

)
u̇(t) .

Therefore, the voltage source V (s)
1 is not necessary to steer the

manifold index. From (49) it follows that such a 
 enforces
in the manifold index the following dynamics:

I(t) = c

b
u(t) = Rmu(t) ,

where u stands for the time-varying stimulus of the FitzHugh-
Nagumo system, as described by (28)-(29). Note that its
derivative u̇ is the real objective of the design, since it defines
the actual implementation of the current source, that, in this
example, has been chosen as follows:

I (s)
1 (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , t ∈ [0, 95]

0.1
Cm

Rm
, t ∈ (95, 105)

0 , t ∈ [105, 240]

−4Cm
t − 240

202 Rm
, t ∈ (240, 250)

−4Cm
260 − t

202 Rm
, t ∈ [250, 260)

0 , t ∈ [260,+∞) .

In Fig. 9 the circuit (50) is numerically simulated, as before,
by the Matlab software, and the same configuration (37)
used in Section IV-A is considered. The manifold index (or
equivalently u) is kept constant over the time intervals [0, 95],
[105, 240], and [260, 350], so that during these periods the
circuit dynamics remains confined into three different invariant
manifolds respectively of indexes I = −0.64, I = 0.36, and
again I = −0.64, which in the original FitzHugh-Nagumo
system correspond to I = −0.8 and I = 0.2. During the tran-
sients (95, 105) and (240, 260), the I (s)

1 source (or equivalently
u̇) is used to steer the trajectory from a manifold to another.
In particular, it is constant and non-negative in (95, 105) and
it acts as a linear ramp in (240, 260). Therefore, the manifold
index varies as linear ramp in the first period, and as a
decreasing parabolic ramp in the second one. Out of these
intervals the source is constant at zero, and therefore the
manifold index remains unchanged. Figure 10 illustrates the
same resulting trajectory in the state space of the circuit, while
the dynamics of the manifold index is reported in Fig. 11.

B. The Duffing System

The application of the previous results will be illustrated by
designing a memristor circuit capable to reproduce the dynam-
ics of the forced Duffing system. Other memristive Duffing
type circuits have been proposed in the recent literature (see,
e.g., [52] and [53]), but their design has been mainly inspired



INNOCENTI et al.: EMBEDDING THE DYNAMICS OF FORCED NONLINEAR SYSTEMS IN MULTISTABLE MEMRISTOR CIRCUITS 745

Fig. 12. Memristor circuit reproducing the dynamics of the Duffing system (51): the active two-terminal element L (blue box), designed via the technique
in [43] with R, C1, and C2 as in (55), and the flux-controlled memristor (red box) with the nonlinear characteristic (54).

Fig. 13. First row: Different dynamics exhibited by the Duffing system (51) in its state representation (52). A, B, C, D: State space orbits originated
from x(1)

0 , x(2)
0 , x(3)

0 , and x(4)
0 (the circle symbols) when the system if respectively forced by u1(t), u2(t), u3(t), and u4(t). Second row: Different dynamics

exhibited by the Duffing circuit of Fig. 12 for configurations equivalent to those reported in the left column for the Duffing system. E, F, G, H: State space
orbits of originated from the initial conditions (57) computed on the couples (x(1)

0 , u1(t0)), (x(2)
0 , u2(t0)), (x(3)

0 , u3(t0)), and (x(4)
0 , u4(t0)) derived from the

original configurations of the Duffing system. In each case the circuit is driven by the related I (s)
2 (t). Third row: Behavior of the manifold index (56) for

the Duffing circuit of Fig. 12 when it is configured as in the scenarios of the center column. I, J, K, L: Temporal evolution of the manifold index under the
forcing input I (s)

2 (t).

by the original nonlinear circuit [54]. The Duffing system
equation reads [55]

ξ̈ (t) + δξ̇ (t) + αξ + βξ3(t) = u(t) , (51)

where the forcing input u(t) is any non-constant input satis-
fying the assumptions of Proposition 5.1. System (51) can be

put in form (1) by defining

x =
(

ξ

ξ̇

)
, f (y) = −y3 , A =

(
0 1

−α −δ

)
,

B =
(

0
β

)
, C = (

1 0
)

, D =
(

0
1

)
(52)

and the corresponding L(s) is

L(s) = β

s2 + δs + α
.
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For the implementation’s sake and without any loss of general-
ity, consider the equivalent though extended form (24), where
k plays the role of an additional degree of freedom. Then,
the synthesis of the circuit can be performed starting from
impedance (25), which turns out equal to

Lk(s) = β

s2 + δs + α + kβ
. (53)

Indeed, if α + kβ > 0, the impedance (53) can be obtained
via the circuit L depicted in Fig. 12, where each capacitor has
already been coupled with as many parallel current sources.

The equations governing the two-terminal element L are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇C1 = − 1

RC1
vC2 + 1

C1
I (s)
1

v̇C2 = 1

RC2
vC1 − 2

RC2
vC2 + 1

C2
I (s)
2 − 1

C2
iL

vL = 2vC1

and, thus, they admit the form (39) once z̄ = (vC1, vC2)
� and

ĀL =
⎛
⎜⎝ 0 − 1

RC1
1

RC2
− 2

RC2

⎞
⎟⎠ , B̄L =

⎛
⎝ 0

− 1

C2

⎞
⎠ ,

C̄L = (
2 0

)
,	 =

(
C1 0
0 C2

)
,
(t) =

(
I (s)
1 (t)

I (s)
2 (t)

)
.

The complete circuit is obtained by introducing the dynam-
ics (5) of the memristor MR with

N(y) = − fk(y) = − f (y) − ky = y3 − ky . (54)

The solution of (23) leads to

R = β

2(α + kβ)
, C1 = δ

β
, C2 = 4(α + kβ)

βδ
,

T̄ =
⎛
⎝ 2 0

0 − 2

RC1

⎞
⎠ , (55)

and also to the inverse relationships between the circuit
elements and the original dynamics’ parameters, which are

α = 1 − 2k R

R2C1C2
, β = 2

RC1C2
, δ = 2

RC2
.

Finally, observe that equation (44) gives


(t) =
(

I (s)
1 (t)

I (s)
2 (t)

)

and then the current source I (s)
1 turns out unnecessary. Indeed,

the manifold index is related to the input u as follows:
I(t) = − C(A − k BC)−1 Du(t) = R2C1C2u(t)

= 1

α + kβ
u(t) . (56)

The Duffing system (51) in its state representation (52)
has been numerically simulated in the Matlab environment
for different inputs u(t) when the parametric configuration is
α = −1, β = 1, δ = 0.3. Figures 13.A, 13.B, and 13.C shows
the trajectories generated from x (1)

0 = (−0.4881, 0.3745)�,

Fig. 14. Memristor circuit capable to reproduce the dynamics of the
FitzHugh-Nagumo neuron model with a charge-controlled memristor (red box)
of nonlinear characteristic (60) and a passive two-terminal elementi L (blue
box) with Rm , Lm , and Cm as in (61).

x (2)
0 = (−0.3669, 0.3592)�, and x (3)

0 = (−0.7809, 0.4658)�,
when u(t) is equal u1(t) = 0.25 cos(1.2t), u2(t) =
0.28 cos(1.2t), and u3(t) = 0.29 cos(1.2t), respectively. As the
input amplitude increases, Duffing system exhibits a limit
cycle undergoing a period doubling cascade, which ends
into chaos. The chaotic attractor for u4(t) = 0.50 cos(1.2t)
is reported in Fig. 13.D for the initial condition x (4)

0 =
(−0.8553, 0.5371)�. According to (55) and assuming k = 2
so that α + kβ = 1, the corresponding memristor circuit fea-
tures the parameters R = 0.5, C1 = 0.3, C2 = 13.3333. The
starting points of the simulations of Fig.s 13.A, 13.B, 13.C,
and 13.D are transformed into initial conditions of the circuit
according to (43), which reads

z0 =
⎛
⎜⎝

1

2
x0,2

δ

4(α + kβ)

(
αx0,1 + δx0,2 + βx3

0,1 − u0

)
⎞
⎟⎠

ϕM0 = x0,1 , (57)

where x0,i denotes the i -th element of vector x0, and u0 =
u(t0) = γ cos(1.2t0) for γ ∈ {0.25, 0.28, 0.29, 0.50}, depend-
ing on the chosen input. The corresponding simulations are
illustrated in Fig.s 13.E, 13.F, 13.G, and 13.H. The dynamics
of the corresponding manifold indexes, instead, has been
reported in Fig.s 13.I, 13.J, 13.K, and 13.L. Figures 13.H
and 13.L show the behaviors of the circuit state and of the
index, which correspond to the chaotic orbit described in the
situation of Fig. 13.D.

VI. EXTENSION TO CHARGE-CONTROLLED MEMRISTORS

In this section we consider the case when the memristor
MR in Fig. 1 is assumed to be an ideal charge-controlled
memristor. Such a memristor is described by a nonlinear
charge-flux characteristic which is denoted by N(·) as in the
case of the flux-controlled memristor. It relates the memristor
charge and flux as follows

ϕM = N(qM ) .

In the voltage-current domain the memristor dynamics is
modeled by the following nonlinear system

MR :
{

q̇M(t) = iM (t)

vM (t) = Ṅ(qM (t)) = N ′(qM (t))iM (t) ,
(58)



INNOCENTI et al.: EMBEDDING THE DYNAMICS OF FORCED NONLINEAR SYSTEMS IN MULTISTABLE MEMRISTOR CIRCUITS 747

where the derivative N ′(qM ) is known as the memristance of
the memristor.
Note that in the case of charge-controlled memristor iM and
vM are the input and the output of MR, respectively. Hence,
to ensure that the memristor circuit of Fig. 1 is well-posed,
the two-terminal element L should have vL as input and iL as
output, i.e., L is either a passive or an active input-less circuit
which is described by the following state space representation

L :
{

ż(t) = ALz(t) + BLvL(t)

iL(t) = CL z(t) ,

where z ∈ R
n , AL ∈ R

n×n , BL ∈ R
n×1, CL ∈ R

1×n . Observe
that in this case the strictly proper rational function

L(s) = CL(s In − AL)−1 BL ,

is the admittance of the two-terminal element.
Since vL = vM and iL = −iM , it follows that the dynamics
of the circuit of Fig. 1 obeys the following equations

�C :
{

ż(t) = AL z(t) − BL Ṅ(qM (t))

q̇M (t) = CL z(t)
(59)

which have been labeled with the same symbol �C used for
the equations (6) in the flux-controlled memristor case.
By comparing (6) and (59) we note that the unique difference
is that ϕM has been replaced with qM . Hence, we can conclude
that all the results obtained for the flux-controlled memristor
are still valid for the case of the charge-controlled memristor,
once the flux ϕM is replaced by the charge qM . Clearly, now L
should be synthesized by ensuring that its admittance is equal
to (4).

A. The Charge-Controlled FitzHugh-Nagumo Circuit

In this subsection a charge-controlled memristor circuit is
derived for the FitzHugh-Nagumo neuron model by following
the previous procedure. In this case, the memristor is described
by (58) along with the nonlinear characteristic

N(qM ) = − qM + q3
M

3
, (60)

while L(s) in (31) represents the admittance of the
two-terminal element L between vL and iL. This implies that
the corresponding impedance can be written as

L−1(s) = s2 + acs + ab

s + ac
= s + ab

s + ac
.

Hence, it turns out that it can be synthesized by the series of
an inductor Lm with the parallel connection of a resistor Rm

and a capacitor Cm , once

Rm = b

c
, Lm = 1 , Cm = 1

ab
. (61)

Figure 14 depicts the implemented circuit which is governed
by the following equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
v̇Cm = − 1

RmCm
vCm − 1

Cm
iLm

i̇Lm = − 1

Lm
vCm − 1

Lm
vM

q̇M = iM

(62)

where vM = Ṅ (qM ) and iM = −iLm . Since vL = vM and
iL = −iLm , we get that (62) can be written as in (6) once
z = (vCm , iLm )� and AL = ĀL , BL = B̄L , CL = C̄L with

ĀL =
⎛
⎜⎝− 1

RmCm
− 1

Cm

− 1

Lm
0

⎞
⎟⎠ , B̄L =

⎛
⎝ 0

− 1

Lm

⎞
⎠ ,

C̄L = (
0 −1

)
.

Finally, the matrix T̄ solving conditions (23) is

T̄ =
(

0 −1
1 0

)
.

VII. CONCLUSION

In this paper the dynamics of a class of forced nonlinear
systems which includes several systems displaying complex
dynamics, has been considered. First, it has been shown
that there exists a one-to-one correspondence between the
dynamics of the nonlinear system obtained for a given constant
value of the forcing input and that displayed on one of the
invariant manifolds of a suitably synthesized input-less circuit
composed of a two-terminal element connected with an ideal
flux-controlled memristor. In particular, it turns out that in the
case of the FitzHugh-Nagumo model there is a linear relation
between the values of the injected current and the index of the
invariant manifolds. Then, it is shown that, even in the case of
a non-constant forcing input, the system dynamics can be still
replicated by introducing suitably programmed voltage/current
sources in the two-terminal element of the circuit, as illustrated
via the application to the FitzHugh-Nagumo model and the
Duffing system. Also, it is observed that quite similar results
hold if the flux-controlled memristor is replaced by a charge-
controlled one. Several future research issues can be foreseen,
such as the practical implementation of ideal memristor and
their interconnection with suitably designed two-terminal ele-
ments, as well as the study of the capability of circuits with
real physical memristors to replicate the dynamics of known
oscillatory systems.
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