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Abstract: The sustainability of coffee production is a concern for producers around the world.
To be sustainable, it is necessary to achieve satisfactory levels of coffee productivity and quality.
Pests and diseases cause reduced productivity and can affect the quality of coffee beans. To ensure
sustainability, producers need to monitor pests that can lead to substantial crop losses, such as the
coffee leaf miner, Leucoptera coffeella (Lepidoptera: Lyonetiidae), which belongs to the Lepidoptera
order and the Lyonetiidae family. This research aimed to use machine learning techniques and
vegetation indices to remotely identify infestations of the coffee leaf miner in coffee-growing regions.
Field assessments of coffee leaf miner infestation were conducted in September 2023. Aerial images
were taken using remotely piloted aircraft to determine 13 vegetative indices with RGB (red, green,
blue) images. The vegetation indices were calculated using ArcGis 10.8 software. A comprehensive
database encompassing details of coffee leaf miner infestation, vegetation indices, and crop data. The
dataset was divided into training and testing subsets. A set of four machine learning algorithms was
utilized: Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Stochastic
Gradient Descent (SGD). Following hyperparameter tuning, the test subset was employed for model
validation. Remarkably, both the SVM and SGD models demonstrated superior performance in
estimating coffee leaf miner infestations, with kappa indices of 0.6 and 0.67, respectively. The
combined use of vegetation indices and crop data increased the accuracy of coffee leaf miner detection.
The RF model performed poorly, while the SVM and SGD models performed better. This situation
highlights the challenges of tracking coffee leaf miner infestations in fields with varying ages of coffee
plants, different cultivars, and other environmental variables.

Keywords: remote sensing; Leucoptera coffeella; artificial intelligence

1. Introduction

Coffee (Coffea arabica) is recognized as a global commodity, impacting the lives of
millions from producers to consumers [1]. In 2023, Brazil was the top producer of Coffea
arabica, processing 38.9 million bags [2]. However, production can be impacted by pest
infestations, such as the coffee leaf miner (CLM), Leucoptera coffeella. This insect belongs to
the Lepidoptera order and the Lyonetiidae family. It is a significant pest in unshaded, arid,
and hot regions like the Cerrado, a Brazilian biome resembling savanna vegetation [3–8].
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The CLM females lay eggs on the leaves of coffee plants and, after hatching in 3–21 days, the
larvae feed on the palisade parenchyma cells [4,9,10]. The damage may cause defoliation
up to 70% at high population levels, presenting a decrease in photosynthesis rate and
reducing coffee yields by 80% [3,11].

For effective CLM control in coffee crops, it is extremely necessary to conduct decision-
making at the right moment of intervention. For this reason, the coffee crops need to be
constantly monitored, mainly during the critical infestation period. The CLM infestation
leads to defoliation of the plant from top to bottom, and a more intense attack can lead
to complete defoliation of the upper part of the coffee trees [3]. These features can help
monitor the miner infestation through remote sensing.

Remote sensing research using drones has become increasingly vital for advancing
coffee farming, especially in crop monitoring [12]. This approach facilitates the ongoing
evaluation of extensive coffee plantations, providing an efficient and low-cost method for
early detection of phytosanitary issues. Thus, some research has demonstrated the possibil-
ity of using machine learning techniques and aerial images to monitor important damage
caused mainly by pests and diseases in coffee farming, such as rust [13,14], nematodes [15],
and coffee leaf miner [16,17], and damage by frost in coffee plants [18]. The study by Dos
Santos et al. [16] aimed to identify lesions on leaves infested with coffee leaf miners, cultivar
Catuaí Vermelho IAC 99, using images from drones flying at a height of 3 m, in a coffee
plant less than one year old. In another study [17], to identify plants infested with CLM, a
drone flight was carried out at a height of 50 m, in a cultivar Catuaí Vermelho IAC 99, also
less than 1 year old, and the Random Forest algorithm was used.

However, there are still research gaps that need to be investigated, as several factors
influence the spectral response of the plant, which can interfere in the assessment of coffee
leaf miner infestation through remote sensing on a larger scale. Therefore, studies should
be carried out in coffee plantations at different phenological stages and ages, and with
different cultivars and management effects, among other environmental effects, as these
may interfere with large-scale monitoring, in addition to evaluating different machine
learning models. Remote monitoring of the CLM infestation is a complex practice that
must take into account various environmental and crop characteristics, and management
factors. Therefore, more research must be carried out to better understand the detection of
miner infestation through machine learning and remote sensing techniques.

Thus, with this research we aimed to detect the infestation of CLM in coffee crops
of different ages, using different crop management practices, cultivars, machine learning
techniques, and vegetation indices derived from aerial images captured by an RGB (red,
green, blue) camera mounted on a remotely piloted aircraft.

2. Materials and Methods

To detect CLM infestation using a remotely piloted aircraft, infestation data were first
collected from identified plants, and then a flight was performed. Vegetation indices were
calculated from the orthomosaic generated. Machine learning algorithms were used from
this database and compared using performance metrics (Figure 1).
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The study was carried out on eight farms situated in the municipalities of Coromandel,
Presidente Olegário, Varjão de Minas, Carmo do Paranaíba, and Patrocínio in the State of
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Minas Gerais, Brazil, within the Cerrado Biome (Table 1, Figure 2). In each study area, a
plot with 0.28 ha of coffee (Coffea arabica L.) was selected.

Table 1. Coffee cultivars and characteristics of the study area.

Study Area Latitude
(South)

Longitude
(West) Cultivar Planting

(Year)
Elevation
(Meters)

1—Presidente Olegário 18◦33′49.82′′ 46◦19′45.51′′ IAC 125 (IBC 12) 11 December 2020 1090
2—Varjão de Minas 18◦31′22.09′′ 46◦3′46.36′′ IPR 100 12 December 2021 0926
3—Varjão de Minas 18◦31′18.35′′ 46◦3′46.04′′ IPR 100 12 December 2021 0926
4—Carmo do Paranaíba 18◦57′57.99′′ 46◦15′46.44′′ IPR 100 12 December 2020 1100
5—Carmo do Paranaíba 19◦0′6.52′′ 46◦13′51.66′′ Catucai 144 12 January 2021 1100
6—Patrocínio 18◦59′10.86′′ 46◦58′57.48′′ Paraíso 12 December 2008 0987
7—Patrocínio 18◦56′28.57′′ 47◦17′18.59′′ Paraíso 12 December 2017 1070
8—Coromandel 18◦37′18.41′′ 46◦49′52.43′′ Paraíso 2 12 December 2020 1140
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2.1. Pest Monitoring

The highest coffee leaf miner infestations in the Cerrado region of Minas Gerais
typically occur in September and October [3]. To address this, CLM infestation was
assessed in September 2023. Leaves were collected randomly from 10 plants per plot, with
one plant chosen from each row. All sampled plants were marked with control points.
Samples were collected from the middle section of two branches on opposite sides of each
plant, using leaves from the third or fourth pair counted from the tip (adapted from Souza
et al., 1998) [9], and a total of four leaves were collected per plant. The coffee leaves were
examined to determine active mines (infestation). The CLM infestation rate was calculated
using the following formula:

CLM Infestation rate (%) = (Number of coffee leaf with active mines × 100)/n* (1)

* n = Total number of collected coffee leaves
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The CLM infestation data were summarized into two classes: “infested”, when there
was presence of infestation in the study area, and “healthy”, when there was no presence
of infestation in the experimental field

2.2. Aerial Data Collection

In September, aerial surveys were conducted with the remotely piloted DJI Mavic 2
Zoom aircraft. An RGB sensor from the aircraft was employed to capture aerial images.
This sensor can acquire images with a 12-megapixel resolution (4000 × 3000 pixels). The
flight plan was established using the DroneDeploy application—5.43.0, with the following
parameters: a flight altitude of 60 m and image overlaps of 80% longitudinally and 75%
laterally, with the survey conducted at a speed of 5 m/s. The images were processed
using Agisoft software, Version 1.5.1. Approximately 40 photos per farm were processed.
All collected images were used to generate the othomosaics. Thus, utilizing the raster
calculator tool to perform arithmetic operations on the red, green, and blue bands with the
reflectance values obtained from the ArcGis 10.8 software, 13 spectral indices were used,
according to Table 2. A 50 cm buffer, with 0.78 m2, was generated on top of each plant, and
the vegetation index (VI) values were extracted; the average value was then determined
with R 4.3.3 software.

Table 2. Vegetation indices were calculated from RGB images.

Vegetation Index Equation Reference

Normalized Redness Intensity—NRI RED
RED+GREEN+BLUE [19]

Excess Green Index—EXG 2 ×RED −(GREEN + BLUE) [20]

Green Red Ratio Vegetation Index—GRRI GREEN
RED [21]

Green Blue Ratio Index—GBRI GREEN
BLUE [22]

Red Blue Ratio Index—RBRI RED
BLUE [22]

Woebbecke Index—WI GREEN−BLUE
RED−GREEN [23]

Normalized Pigment Chlorophyll Ratio Index—NPCI BLUE−RED
BLUE+RED [24]

Normalized Green–Red Difference Index—NGRDI GREEN−RED
GREEN+RED [25]

Redness Index—RI RED2

GREE3∗BLUE [26]

Primary Colors Hue Index—HI 2×RED−GREEN−BLUE
GREEN−BLUE [27]

Green Leaf Index—GLI 2×GREEN−RED−BLUE
2×GREEN+RED+BLUE [28]

Spectra Slope Saturation Index—SI RED−BLUE
RED+BLUE [29]

Normalized Blueness Intensity—NBI BLUE
RED+GREEN+BLUE [19]

A detailed statistical analysis was performed on the reflectance values of the vegetation
index data. To analyze the VI in infested and healthy coffee plants, we used the generalized
linear mixed model (GLMM). When necessary, the BoxCox transformation was applied
to each of the numerical variables. The infested and healthy states were defined as fixed
effects, and the farm, cultivar, and planting year were random effects. Coffee cultivars
present great variability in their morphology, plant height, leaf, and canopy shape, among
others. Therefore, the cultivar was set as a random effect. The vegetation index data
were analyzed using principal component analysis (PCA) and permutational multivariate
analysis of variance (PERMANOVA), with 1000 permutations and Euclidean distance,
to explore patterns among various treatment groups (infested and healthy). The data
were normalized by subtracting the mean and dividing by the standard deviation, and
eigenvalues and eigenvectors were computed from the covariance matrix. All statistical
analyses were performed with R 4.3.3 software (R Core Team, 2024).
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2.3. Model Development

A database containing infestation data and 13 vegetation indices for September 2023
was created. The algorithms employed included Random Forest (RF), Stochastic Gradient
Descent (SGD), Support Vector Machine (SVM), and Logistic Regression (LR). A database
was created with infestation data and 13 vegetation indices for September 2023. The algo-
rithms used comprised Random Forest (RF), Stochastic Gradient Descent (SGD), Support
Vector Machine (SVM), and Logistic Regression (LR). The implementation was conducted in
Python (version 3.9), utilizing libraries like Numpy [30], Pandas [31], and Scikit learn [32].

The data were split into 80% for training and 20% for testing. Subsequently, vari-
able selection and hyperparameter tuning were implemented for each machine learning
model (Table 3). Accuracy was selected as the evaluation metric, utilizing 5-fold cross-
validation. To determine the most relevant variables, recursive feature elimination with
cross-validation was performed. Hyperparameter tuning was carried out using 5-fold
cross-validation. Value determination and hyperparameter selection were guided by the
Scikit-learn library [32]. Primary performance indicators commonly used in machine learn-
ing, such as the confusion matrix, precision, kappa, auc, recall, and F1 score, were utilized
to assess the efficacy of the CLM monitoring models [17].

Table 3. Hyperparameters optimized for machine learning algorithms.

Algorithm Hyperparameter Value Algorithm Hyperparameter Value

RF Number of trees 123 Power t 3
Criterion gini SGD Loss hinge

Maximum depth 17 Penalty l2

SVM C 5 C 2
Kernel rbf LR Tol 0
Degree 10 Max iter 152
Gamma scale Intercept scaling 0

3. Results
3.1. Exploratory Data Analysis
Monitoring of Coffee Leaf Miner Infestation and Image Selection

The summary of the descriptive analysis data of the two classes, healthy and infested,
based on the CLM infestation monitoring data recorded in the eight experimental plots
in September of 2023, is presented in Table 4. The CLM infestation varied between 0 and
75%, with an average of 10%. Approximately 75% of the plants evaluated presented an
infestation below 25% (Table 4). The descriptive analysis of the values of the vegetative
indices are shown in Table 5.

Table 4. Descriptive analysis of coffee leaf miner infestation in September 2023.

Year Minimum Q1 Mean Q3 Maximum Sd

2023 0.000 0.000 10.58 25.00 75.00 19.54
Q1: Quartile 1; Q3: Quartile 3; Sd: Standard deviation.

Table 5. Summary of descriptive statistical values for VI in healthy and infested plants.

VI State of the Plants Mean Mediana SD Min Max

EXG
healthy 30.323 12.586 44.915 −14.752 140.502
Infested 22.042 15.458 26.812 −2.347 130.963

GBRI
healthy 2.334 2.366 0.588 1.147 3.913
Infested 2.215 2.150 0.468 1.308 3.226

GLI
healthy 0.205 0.225 0.063 0.034 0.274
Infested 0.192 0.196 0.046 0.080 0.264



AgriEngineering 2024, 6 3179

Table 5. Cont.

VI State of the Plants Mean Mediana SD Min Max

GRRI
healthy 1.279 1.301 0.134 1.014 1.572
Infested 1.221 1.206 0.099 1.076 1.405

HI
healthy 3.537 2.538 4.062 −0.304 23.929
Infested 3.304 2.908 2.008 −0.114 10.365

NBI
healthy 0.225 0.217 0.029 0.181 0.306
Infested 0.223 0.221 0.023 0.190 0.290

NGRDI
healthy 0.115 0.127 0.050 0.006 0.201
Infested 0.095 0.091 0.038 0.036 0.162

NPCI
healthy −0.218 −0.226 0.065 −0.342 −0.059
Infested −0.231 −0.238 0.056 −0.336 −0.081

NRI
healthy 0.342 0.343 0.015 0.302 0.376
Infested 0.351 0.350 0.013 0.324 0.372

RBRI
healthy 1.744 1.713 0.343 1.132 2.752
Infested 1.757 1.728 0.289 1.188 2.510

RI
healthy 0.000 0.000 0.000 0.000 0.000
Infested 0.000 0.000 0.000 0.000 0.000

SI
healthy 0.218 0.226 0.065 0.059 0.342
Infested 0.231 0.238 0.056 0.081 0.336

WI
healthy −2.614 −2.445 0.855 −5.437 −0.914
Infested −3.385 −3.127 1.221 −6.909 −1.880

The EXG index presented a greater standard deviation, that is, greater dispersion
of data, which is also evident from the larger difference between the median and mean
compared to the other indices. The NRI index presented greater uniformity of data, and
lower standard deviation.

The GLMM was applied to compare the mean VI between the two plant conditions
studied (Figure 3). The statistical results provide insight into the variations of VI in both
healthy and infested plants.

For all indices, the p-value was greater than 0.05, suggesting no significant difference
in the means between the infested and healthy plants (Figure 3).

The entire dataset of vegetation index and coffee leaf miner infestation was analyzed
by principal component analysis (PCA) (Figure 4). The PCA diagram shows the relationship
among the different vegetation indices and the two plant states (infested and healthy).
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Thus, PC1 and PC2, the first and second components of PCA, explained 53.1% and
26.8% of the total variance, respectively. Sample homogeneity within each treatment group
was confirmed (homogeneous dispersion) (PERMIDISP: F = 3.05, p = 0.08). No significant
differences were found in the detection patterns of coffee leaf miner infestation using the
vegetation indices (F = 1.96, p = 0.12, Figure 4).
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3.2. Machine Learning

Apart from the vegetative indices, the age of the plants and the cultivar were the
most significant variables for the machine learning models (Figure 5). Plant age was the
non-vegetative index that presented significant importance, reaching 30% in the SVM
models and 28% in the LR. The vegetative index HI presented the best performance in the
models presented. The RF model selected only the NRI index.
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Algorithm Performance

The RF algorithms were unable to identify plants with CLM infestation. All predictions
from the RF algorithm indicated that the plants were not infested with CLM. The SGD
algorithm showed the best performance in identifying the infestation, followed by the SVM
algorithm, with 75% and 50% accuracy in identifying plants with infestation, respectively
(Figure 6).
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Figure 6. Confusion matrices for machine learning algorithms used to forecast coffee leaf miner
infestation (Infested = coffee plants affected by leaf miner; Healthy = plants free from leaf miner). The
algorithms employed included Random Forest (RF), Support Vector Machine (SVM), and Stochastic
Gradient Descent (SGD). The confusion matrices illustrate the proportion of accurate and inaccurate
predictions for each category.

To evaluate the performance metrics, the Random Forest model showed precision,
recall, F1 e Kappa, and had a value of zero. On the other hand, the SGD and SVM
algorithms presented satisfactory results, with Kappa of 0.67 and 0.6, and precision of 0.75
and 1, respectively (Table 6).

Table 6. Performance metrics for the classification algorithms.

Algorithm Precision Recall Auc f1_Score Log_Loss Kappa

SVM 1 0.5 0.75 0.66 8.63489 0.60
RF 0 0 0.5 0 8.63489 0
LR 1 0.37 0.68 0.54 11.5131 0.44

SGD 0.75 0.75 0.83 0.75 8.63489 0.67

4. Discussion

In the study areas, CLM infestation had an average of 10.58% and a standard deviation
of 19.54%, however, it reached 75% in some plants (Table 4). The months of Septem-
ber/October are considered the months with the highest incidence of CLM infestation
due to low relative humidity, low precipitation, and high temperatures. These weather
conditions favor the development of the CLM population [3].

The identified variability highlights a highly heterogeneous distribution of infestation,
indicating that local factors such as microclimate and management practices play important
roles in determining infestation levels. The need for specific and localized management
strategies became evident with the presence of plants with no infestation (0%), alongside
highly infested plants (75%). Although the average infestation was relatively low, the stan-
dard deviation was high (Table 5), demonstrating the importance of continuous monitoring
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to quickly identify critical areas and carry out targeted management. Additionally, the
variability of the observed data helps to understand the complexity and the most influential
factors in the infestation, which can be incorporated into machine learning models to
improve their predictive capacity.

The descriptive analysis and PCA indicated some vegetation indices with the potential
to be used to identify coffee leaf miner infestation, such as NRI, EXG, GBRI, GRRI, WI, and
HI (Table 5). The data were similar to those found by dos Santos et al. (2024) [16], who
used the vegetation indices GRRI and MPCI to separate healthy plants. However, when
evaluating the indices using generalized linear models, the indices showed no difference
between infested and healthy plants (Figure 3). When considering the variability in areas
with different management, plants of different ages, and cultivars, the univariate analysis of
the vegetation indices was not able to differentiate between infested and healthy plants. Due
to the complexity of evaluating areas with coffee plantations with different characteristics,
such as age, nutritional status, and cultivar, the use of vegetation indices derived from
RGB images were not sensitive enough to detect CLM infestation in univariate analyses
(Figure 3). When monitoring large-scale CLM infestations in coffee plants across different
environments, vegetation indices that include the infrared band may offer greater sensitivity
in univariate analyses. This is because the reflectance of the infrared band is influenced by
alterations in the leaf parenchyma [33], which is the tissue targeted by coffee leaf miner
larvae, leading to necrosis [3,8]. For CLM monitoring, the GRNDVI index showed the best
performance in differentiating infested and healthy plants. Another situation that may have
influenced the result is the flight height. The present study carried out the flight at a height
of 60 m. Flights at lower heights may be more suitable as they generate more detailed
images and, consequently, more sensitive vegetation indices to detect changes caused by
CLM infestation in a univariate analysis. Detection of Cercospora disease symptoms in
coffee plants was achieved through vegetation indices generated from RGB images taken
by a remotely piloted aircraft flying at 30 m altitude [34].

The four algorithms based on machine learning employed to differentiate between
coffee leaf miner-infested and healthy plants demonstrated varying levels of effectiveness.
All models had high accuracy in identifying healthy plants, but most of them performed
poorly when identifying infested plants. The Random Forest model was not able to identify
CLM in infested plants through remote sensing. In an effort to assess the potential of
RGB-based VI for monitoring nitrogen levels in a coffee-growing area using a remotely
piloted aircraft at a fixed flight altitude of 50 m, the Random Forest algorithm performed
poorly when assessing and forecasting nitrogen content in coffee plants, as indicated by
a Kappa value of −0.02 [35]. Another study utilized the Random Forest algorithm along
with vegetation indices obtained from a remotely piloted aircraft to estimate the nitrogen
content in coffee plants [36]. The RF algorithm exhibited reduced effectiveness when
applied to vegetation indices derived from RGB bands compared to those incorporating the
infrared band [36]. The RF algorithm showed lower performance when using vegetation
indices based on RGB bands, when compared to indices that used indices that had the
infrared band [36]. The Random Forest model has shown good results in detecting CLM
infestation [16]. However, this study employed vegetative indices that included green, red,
near-infrared (NIR), and edge bands.

The selection of variables is important to make the algorithm simpler and more capable
of generalization. The algorithms selected between five and one variable, according to
the models. The planting (year) variable was chosen in almost all models, indicating that
the age of the plant should be considered when evaluating the spectral response of the
plant. The vegetation indices HI and NRI were the most important indices, as they were
chosen by most models. The algorithms mostly presented Kappa values between 0.4 and
0.8, which can be considered moderate/substantial [37]. High precision indicates that the
models presented better performance when predicting healthy plants.

Our results demonstrate that machine learning-based approaches have promising
results for detecting patterns of changes due to CLM infestation that are not found in



AgriEngineering 2024, 6 3184

univariate behavioral assessments when evaluating indices formed with RGB bands. How-
ever, more studies should be carried out using cameras that have images with bands other
than RGB. Lower flight heights that present more details are also necessary for a better
assessment of plant infestation with coffee leaf miner. Furthermore, other machine learning
algorithms can be evaluated to detect coffee leaf miner infestation, such as convolutional
neural networks. The inclusion of a larger amount of databases, in addition to the effect of
other variables such as other diseases and pests that can influence monitoring, should be
considered. Finally, the possibility of monitoring via plant stress signals, as well as thermal
sensors, can represent an alternative for future evaluations. However, further research is
needed to improve the detection of coffee leaf miner infestations using aerial images and
machine learning techniques.

5. Conclusions

The combined use of vegetation indices and crop data increased the accuracy of coffee
leaf miner detection. The machine learning models performed variably. The RF model
performed poorly, while the SVM and SGD models performed best. This dynamic reflects
the complexity of monitoring coffee leaf miner infestation in areas with coffee of different
ages, cultivars, and other environmental factors. The present work contributes substantially
to the advancement of knowledge about monitoring coffee leaf miners. However, there are
limitations due to the complexity involved in the remote monitoring of coffee leaf miner
infestation, as several factors influence the spectral response of the plant, such as stress
caused by diseases and pests, water vigor, nutritional status, and pruning, among others.
For future work, other machine learning algorithms and lower flight heights can be tested.
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