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Abstract. Longitudinal data often give the chance to control for time-
constant heterogeneity, which is added to the model formulation via
individual-specific effects. Adopting a random effect specification, issues
of endogeneity may arise. We discuss quantile regression models for lon-
gitudinal data and propose a concomitant variable framework to ad-
dress endogeneity. Specifically, we assume that mixing proportions are
unknown and depend on time-constant covariates, as well as on time-
constant levels of time-varying covariates. A multinomial logit specifica-
tion is considered to model the relation between such proportions and
the (potentially) endogenous covariates. This provides a simple, efficient,
and general solution to the aforementioned problem. The performance
of the proposed model is examined using a simulation study. The results
are promising and warrant additional discussion.
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1 Introduction

In many instances of practical applications, dependent observations with a hi-
erarchical structure may be encountered. Such a structure may originate from
several sources, such as spatial configurations, multilevel frameworks, or longi-
tudinal sampling designs. In the framework of regression models for longitudinal
data, it is often essential to take into account the potential dependence between
observations from the same individual and the potential heterogeneity between
individuals participating in the sample. These two sources of extra-model varia-
tion may be due to time-constant features that are specific to sampled individ-
uals, as well as to serial correlation between measurements recorded at different
time points. See, e.g., Fitzmaurice et. al [6] for a general discussion of this and
related issues. If the dependence is not adequately addressed, and potential het-
erogeneity is not inserted in the model specification, the model parameter esti-
mates could exhibit significant bias or even be inconsistent. Individual-specific
intercepts are often included in a regression framework to address the effect of
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unobserved heterogeneity. Often, these are treated as random variables with a
known, parametric (Gaussian), distribution, and they are integrated out of the
likelihood to get parameter estimates. Although there is a widely accepted con-
sensus on this objective, the naive random effect approach has two assumptions
that often faced criticisms. First, the specification of a parametric (Gaussian)
distribution for the random effects is generally challenging to be assessed based
solely on the observed data. Further, in the presence of non-Gaussian data,
the computational burden for numerical integration or related approximations
may be substantial. Second, a frequent assumption is that of exogeneity of the
random effects. They are assumed to capture the effect of omitted covariates
on the response and often, they are assumed to convey non-overlapping signals
with respect to the covariates already in the model. This is translated into lin-
ear or stochastic independence between observed (covariates) and unobserved
(individual-specific effects) heterogeneity.

This paper aims to address the issue of endogeneity in the framework of linear
quantile regression models for longitudinal data. These represent a valuable tool
of analysis thanks to their robustness to asymmetry and outliers in the data, as
well as to their ability in capturing the effects that covariates may have on dif-
ferent quantiles of the (conditional) response distribution. Up to our knowledge,
only a few attempts have been proposed to deal with endogeneous covariates
in the longitudinal quantile regression framework. Most of these fall within the
fixed effect framework [11, 7, 13, 8], and, in turn, suffer from the so called inci-
dental parameter problem [20]. Further, they do not allow for the estimation of
the effect that time-invariant covariates may have on the response (conditional)
quantiles. The correlated random effect estimators proposed by Abrevaya and
Dahl, [1] and revisited by Bache et. al, [3] represent an interesting alternative.
Here, a set of sufficient covariates, derived from time-varying endogenous covari-
ates, is included in the model specification to obtain unbiased estimates for the
parameters of interest.

In this paper, we try to address endogeneity by extending the mixture of
linear quantile regression models proposed by Alfó et. al [2]. That is, we in-
clude individual-specific, time-constant, random effects in the model for the
(conditional) response quantiles; these are treated as random variables, with
an unspecified distribution that is estimated from the data via a nonparametric
maximum likelihood (NLPM) approach, as discussed by [12, 15, 14]. Such an
approach leads to a discrete estimate of the mixing distribution, which is both
straightforward to handle and exhibits robustness against deviations from the
standard Gaussian assumption on the random effects. On the other hand, we
take advantage from the finite mixture specification, and we handle the depen-
dence between the observed and unobserved heterogeneity by explicitly modeling
the influence that the possible endogenous covariates have on the random effect
distribution, through the corresponding mixing proportions. These are modeled
via a multinomial logit model, as in mixtures of regression models in the presence
of concomitant variables [4]. This parameterization offers a clear interpretation
while accounting for general forms of dependence between the random effects
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and the observed covariates. Model parameter estimation is achieved through
maximum likelihood via an EM algorithm [5].

2 Finite mixtures of linear quantile regression models

Let us start considering a continuous longitudinal response Yit observed for in-
dividuals i = 1, . . . , n, at time points t = 1, . . . , Ti. Further, let xit denote a
p-dimensional vector of covariates. We are interested in modeling the effect that
these covariates have on different portions of the (conditional) response vari-
able distribution. For this purpose, a regression model for the τ -th (conditional)
quantile of Yit, τ ∈ (0, 1), is defined as

Qτ (yit | xit, αiτ ) = x′
itβτ + αiτ , (1)

or, alternatively, as
Yit = x′

itβτ + αiτ + eitτ ,

under the constraint that Qτ (eitτ | αiτ ,xit) = Qτ (eitτ ) = 0. The parameter
βτ appearing in the above equations denotes a p-dimensional and τ -dependent
parameter vector which summarizes the relation between the observed covariates
in x and the τ -th (conditional) quantile of the response. On the other hand,
terms αiτ represent the effect of unobserved time-constant, individual-specific,
features that have not been considered in the design vector. In this framework,
we assume that they are realizations of a random variable with density gα(·).
Lastly, eitτ is an error term assumed to be independent of both xit and αiτ . Thus,
for a fixed τ , the dependence between observations from the same individual
i = 1, . . . , n, recorded at the different occasions t = 1, . . . , Ti, arises from the
shared common parameter αiτ . Conditional on the individual-specific terms,
repeated measurements recorded from the same individual become independent.

Regarding the conditional response variable distribution fY (yit | xit, αiτ , τ),
a frequent assumption within the framework of parametric linear quantile re-
gression models is that of a conditional Asymmetric Laplace (AL) density [22,
10, 9, 2, 16, 17]. The corresponding location parameter is modeled according to
equation (1). The assumption of (conditional) AL responses is ancillary and it
simply allows us to recast model parameter estimates within a maximum like-
lihood framework. Based on the above assumptions, the marginal log-likelihood
is

ℓ (·) =
n∑

i=1

log


∫
A

[
Ti∏
t=1

fY (yit | xit, αiτ , τ)

]
gα(αiτ | Xi)dαiτ


=

n∑
i=1

log


∫
A

fY (yi | Xi, αiτ , τ) gα(αiτ | Xi)dαiτ

 , (2)

where yi = (yi1, . . . , yiTi
)′, Xi is the (Ti × p)-dimensional matrix of covariates

recorded from the i-th individual, and and A denotes the support for the distri-
bution of the random effects.
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As it can be easily noticed, even if a known parametric density is chosen for
the individual-specific effects gα(·), the previous integral for the log-likelihood
contains a conditional density, gα(· | Xi), which should be handled properly. A
simple and typically adopted solution is based on assuming gα(· | Xi) = gα(·).
Moreover, parametric assumptions on the random effect distribution cannot be
directly tested in practical applications. Many researchers in the statistical field
have investigated into this topic without finding a clear-cut solution [18, 21].

To address this issue, we opt for the nonparametric approach proposed, in the
linear quantile regression context, by Alfo’ et. al [2]. The idea is to approximate
gα(·) by a discrete distribution that spans K ≤ m locations, {ζ1τ , . . . , ζKτ},
with associated masses defined by πkτ = Pr(αiτ = ζkτ ), for i = 1, . . . , n, and
k = 1, . . . ,K. Here, m denotes the number of different individual profiles in the
sample, which represents a bound for the total number of locations. That is, we
assume that

gα(αiτ ) ∼
K∑

k=1

πkτδζkτ
,

where δζkτ
is a one-point distribution putting a unit mass at ζkτ . Both loca-

tions and masses are directly estimated from the observed data (together with
the remaining model parameters) by maximizing the approximation of the log-
likelihood in the following equation

ℓ (·) ≃
n∑

i=1

log

K∑
k=1

πkτfY (yi | Xi, αiτ = ζkτ , τ) . (3)

As it can be easily noticed, equation (3) resembles the likelihood function for a fi-
nite mixture of linear quantile regression models, where fY (yi | Xi, αiτ = ζkτ , τ)
is defined as the product of Ti (conditional) AL densities for an individual i com-
ing from the k-th mixture component, i = 1, . . . , n, and k = 1, . . . ,K. In line
with standard practice in finite mixture models, parameter estimation involves
maximizing the log-likelihood in equation (3) (once K and τ have been fixed)
through an EM algorithm.

3 Dealing with endogeneity

As discussed in the previous section, a frequent assumption when dealing with
random effect models is that of exogeneity of the observed covariates on the
random effects: gα(· | Xi) = gα(·). This assumption, however, rarely holds.
In fact, it reduces to assuming that observed and unobserved covariates are
independent, and this is often not true. In fact, αiτ is meant to represent the
effect of omitted, time-invariant, covariates on the τ -th quantile of the individual
(conditional) response distribution, and these are typically correlated with the
observed ones. To address issues related to possible endogeneity of observed
covariates, we extend the proposal by Alfo’ et al. [2]. The idea is not to assume
gα(αiτ | Xi) = gα(αiτ ) and let the (approximate) discrete distribution of the
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random effects to depend on the possible endogeneous covariates. As the number
of locations of this distribution (K) is bounded above by the number of distint
individual profiles in the sample (m), we assume that the covariates influence
the masses associated with the locations, but not the locations themselves. In
other words, we assume

gα(αiτ | Xi) ∼
K∑

k=1

πkτ (Xi) δζkτ
.

In the spirit of Mundlak [19] for the mean regression framework and Backe et.
al [3] for the quantile framework, we denote by x̄i the individual-specific vector
of covariate means; the mixture prior weights are then modeled by means of the
following multinomial logit specification:

πkτ (Xi) =
exp (x̄′

iηkτ )

1 +
∑K

h=2 exp (x̄
′
iηhτ )

(4)

as in mixtures of regressions with concomitant variables [4]. It is also worth
noticing that, in this parameterization, we can include not only x̄i but also any
time-invariant variable, wit = wi ∈ xit, available in the dataset by substituting
[x̄i,wi] to x̄i in equation (4).

The simulation findings indicate that the proposed approach consistently
performs well across various scenarios, demonstrating favorable results in terms
of both bias and mean squared error (MSE) of the estimated model parameters.
This leads us to conclude that it can be effectively applied for the analysis of
real datasets entailing the social, the behavioral, as well as the bio-medical field.
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