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Introduction

The advent of the digital age and the fast evolution of Information Technology
have allowed the creation of sophisticated devices for data acquisition. Hence, in
recent years, various mathematicians and computer scientists have been devoted to
the analysis and the interpretation of digital information, consisting of processing
algorithms and implementation of paradigms. This has produced a strong interdis-
ciplinarity in order to study and analyze acquisition techniques and visualization
methods within the context of Engineering and Mathematics.
Image processing is a very broad discipline that includes techniques to analyze and
modify digital images. Among these techniques there are, for example, deblurring
(anti-blurring), denoising (noise elimination), inpainting (restoring missing or cor-
rupted parts), segmentation (extraction) and reconstruction of surfaces. In recent
years, the analysis of digital images is arousing a strong interest for the develop-
ments in various fields, such as the academic one as well as the scientific, industrial,
military, medical, artistic, technological and forensic contexts.
Enhancement techniques are generally based on heuristic procedures that manip-
ulate the image in order to take advantages from the psychovisual aspects of the
human perceptual system. An example is the application of a deblurring function
to reduce blurring on an image. These disciplines have in common the aim to ex-
tract information from the image or to improve its quality. Among the processing
procedures, there are methods which play an important role, aimed at reducing
the noise in each real image, a phenomenon due to the recording phase which oc-
curs by using electronic and digital devices. Image noise is a random variation of
image information. It represents an unwanted byproduct of image acquisition that
adds incorrect and extraneous information. Image denoising aims to remove noise
from a noisy image in oder to restore the true image. However, as noise, edge, and
texture are high frequency components, it is difficult to distinguish them in the
process of denoising and the denoised images could inevitably lose some details.
Improving the quality of an image from the noise means to increase the percep-
tibility of objects in the scene by increasing the brightness difference among the
objects and their background.
In this thesis, a variational approach is introduced for contrast enhancements of
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viii INTRODUCTION

color images and denoising of each spectral channel. For this aim, it is used energy
functional with non-standard growth, in particular a special form of anisotropic
diffusion tensor for the regularization term and a term which is inspired by the
variational model of Bertalmio et al. The proposed approach does not strongly
modify the histogram of the original image, preserves the global lighting sensation
and shows that the hue of the main objects does not drastically change with the
illumination. One of the most important advantages of this approach is that the
proposed model allows to synthesize, at a high level of accuracy, noise and blur-free
color images, that are captured in extremely low light conditions.
The thesis is organized as follows.
Chapter 1 presents some basic reviews about the denoising problem and the con-
sequences due to the image acquisition by digital devices. Some classical method-
ologies are presented: the possibility of erasing noise is done through the compu-
tation of the grey value of each pixel via correlation between pixel/image patches.
Some techniques, based on transforms, are considered: the possible noise erase
is done considering that noise and image information have different features in
the transformed domains. Some approaches, based on convolutional neural net-
works, are analyzed. Then, metrics for denoising performances and applications
are described. Finally, the issue of image denoising is presented by some classical
variational approaches with variable exponent or with variable nonlinearity order.
Chapter 2 deals with known variational models, based on partial differential equa-
tions (PDEs), in image processing. A generic image, corrupted by noise, is restored
via the resolution of an inverse problem, that foresees the minimization of a cost
functional whose terms, in some cases, are solutions of PDEs. Such an approach is
widely studied in literature and it still remains an open issue. Classical techniques
are first described and then some numerical results are presented: the restora-
tion of satellite optical images using synthetic aperture radar; the denoising and
deblurring of non-smooth hyperspectral satellite images; a two-level variational
model to predict daily surface reflectance at Landsat high spatial resolution and
Modis temporal frequency and, finally, the contrast enhancement of color images.
Chapter 3 is devoted to the original and novel aspects of the conducted research. In
this chapter, a new variational model in Sobolev-Orlicz spaces with non-standard
growth conditions of the objective functional is proposed. Its applications are dis-
cussed for the simultaneous contrast enhancement and denoising of color images.
The main feature of the proposed model is that we deal with a constrained non-
convex minimization problem in variable Sobolev-Orlicz spaces, where the variable
exponent is unknown a priori and it depends on a particular function that belongs
to the domain of the objective functional. Unlike the standard approach, no spatial
regularization to the image gradient is applied and no color image restoration using
saturation-value total variation is considered; on the contrary, we work just with
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the RGB representation of color images. The aim is to increase the perceptibility
of objects in the scene and the noise robustness of the proposed model albeit it
makes such variational problems completely non-smooth, non-convex, and, hence,
significantly more difficult from a minimization point of view.
We discuss the consistency of the variational model, provide the scheme for its reg-
ularization, derive the corresponding optimality system, and propose an iterative
algorithm for practical implementations. Some accurate numerical methods have
been implemented for the coercive parabolic boundary control problem, facing
stability problems. There are numerous approaches to solve quasi-linear partial
differential equations. As we deal with pixels in image processing, finite differ-
ences approaches and an explicit scheme of the forward Euler method are arguably
the best options. For acceleration of computation, efficient Bernstein polynomi-
als approximation could be used. The contrast scale and level in our model are
adjustable, so that the proposed approach is classified as fully adaptive. Our en-
hancement method for color images works directly on the RGB images without
any pre- and/or post-processing. The automatic adaptation of the parameters to
the content of the considered image could be a future direction of research.
The main contributions of the thesis are summarized as follows:

• The variational statement for the simultaneous contrast enhancement and
denoising of multispectral images in the form of minimization problem in
Sobolev-Orlicz spaces with non-standard growth conditions of the objective
functional.

• Rigorous substantiation of the well-posedness of the variational problem with
non-standard growth functional.

• The proof of existence results to the approximation variational problems.

• The iterative algorithm for numerical implementations.

• Derivation of the first order necessary conditions for the original problem
and their substantiation.

• Numerical experiments to study the performances of the new approach.

The results of the research activity have been submitted for publication to Com-
munications on Applied Mathematics and Computation.
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Chapter 1

The denoising problem

Photography has always fascinated many people and nowadays it has a great im-
portance due to the digital technologies. The purely analogical sector made up of
films and chemical agents, is now represented by the large-scale diffusion of digital
photographs thanks to the evolution of information technology and the continuous
development of technological devices, such as smartphones. In recent years, the
analysis of digital images has a strong interest in the developments of applications,
not only in the academic field but also in the scientific, industrial and military con-
texts.
Because of the explosion of the number of digital images, the demand for more ac-
curate and visually pleasing images is increasing. However, the images captured by
modern cameras are inevitably degraded by noise, which leads to deteriorated vi-
sual image quality. Image noise is a random variation (it is not inside the captured
object) in the brightness or color information in the image. It can be produced
by the sensor and the various circuits of a scanner or digital camera. Image noise
is an unwanted by-product of image capture that adds extraneous and incorrect
information. The magnitude of image noise can range from almost imperceptible
specks on a digital photograph taken in good light, to images that can be almost
entirely noise. The main sources of noise in digital images arise during acquisition.
For example, sensor noise caused by low light and/or high temperature, and/or
transmission channel, compression or for example electronic circuit noises.
Image denoising is to remove noise from a noisy image, so as to restore the true
image. However, since noise, edge, and texture are high frequency components, it
is difficult to distinguish them in the process of denoising and the denoised images
could inevitably lose some details. The purpose of digital image enhancement is
to sharpen elements such as edges, outlines, or provide more contrast to the image
itself.
Researchers work to reduce noise without losing image features (edges, corners,
and other sharp structures). Image denoising plays an important role in modern

1



2 CHAPTER 1. THE DENOISING PROBLEM

image processing systems. In fact, image denoising is a classic problem and has
been studied for a long time. However, it remains a challenging and open task.

1.1 Problem statement

The problem, described in [1], is shortly represented as:

y = x+ n (1.1)

where y is the observed noisy image, x is the original image unaffected by noise, and
n is the noise which is represented as an additive white Gaussian noise (AWGN) by
a value of standard deviation σn which is estimated through different approaches,
among which:

• median absolute deviation [2];

• block-based estimation [3];

• principle component analysis (PCA) based methods [4].

The main objective is to achieve a reduction of noise in the image acquired through
digital systems and to minimize the loss of information of the starting image to
reach the improvement of the signal-to-noise ratio (SNR).
The finalities, that the image denoising techniques aim to achieve, are:

• edges should be detected, recognized and protected without blurring;

• textures should be preserved;

• incorrect and extraneous information should not be added.

1.2 Image denoising techniques

Possible image denoising methods are grouped into [5]:

• classical denoising method;

• transform techniques in image denoising.

They are described by the scheme in Fig. 1.1.



1.2. IMAGE DENOISING TECHNIQUES 3

Figure 1.1: Classification of image denoising methods.

1.2.1 Classical denoising method

The methods, that belong to this category and are traced back to the spatial
domain, tend to eliminate noise by calculating the gray value of each pixel through
the correlation between pixels/image patches in the original image [6]. Spatial
domain methods in turn are divided into two further categories: spatial domain
filtering and variational denoising methods.

Spatial domain filtering

It is generally believed that filtering is one of the main mean of image processing
and the solution to eraise noise from the image, i.e. one proceeds with the sup-
pression of the unwanted variation in the intensity values of the pixels. Filtering
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has been long used for smoothness, sharpness, edge detection, and contrast en-
hancement. If an algorithm is applied in a spatial domain, the set of operations
are directly employed on the image matrix, whereas in the case of transformation
domain filtering, the image matrix is first mapped into the corresponding trans-
formed coefficients and then performed a further threshold.
Depending on the selection mode of the candidate pixels used in the filtering pro-
cess, the filter is classified as local filter or non-local filter and again in linear filters
and non-linear filters.
Linear filters aim to remove noise in the spatial domain, but fail to preserve the
texture of the original image. Average filtering [10] aims in the reduction of Gaus-
sian noise. However, in the case of images with high noise, it can lead to excessively
uniform images [11]. To deal with this drawback, Wiener filtering [12, 13] is used.
By using non-linear filters, such as median filtering [10, 14] and weighted median
filtering [14], noise is significantly reduced. Among nonlinear filters, bilateral filter-
ing [16] is widely used for image denoising because it preserves edges and reduces
noise. The intensity value of each pixel is replaced with a weighted average of the
intensity values of the adjacent pixels. However, this filter has a drawback regard-
ing its efficiency. In fact, the execution requires a time of the order of O(Nr2),
which is quite onerous when the kernel radius r is large.
Spatial filters generally manage to eliminate noise to a reasonable extent, but this
comes at the expense of possible blurring of the image which, in some cases, blurs
the edges.
The underlying principle of an image denoising algorithm is that the noise is un-
correlated between pixels while the pixel intensities of the real signal are correlated
with each other [7]-[9].

Local filters

The filters, that belong to this category, foresee to eliminate the noise from one or
more neighboring pixels for a portion of the image, according to a limited spatial
distance. However, when the filter is applied over the whole range of pixels in an
image, it is called non-local filtering. Among the best known local filters, there
are the Gaussian filter, Least Mean Square filters, Bilateral filter, Weiner filter,
SUSAN filter, Anisotropic Diffusion filter, Rank filter, Steering Kernel Regression
(SKR), Metric Steering Kernel Regression and Trained filters [34].
Among the Linear Translational Invariant filters, the simplest is one based on the
calculation of the average between the neighboring pixels in a delimited portion
of the image. Considering the image matrix and the filter mask, the calcula-
tion generates an output value equal to the average one obtained from the pixels
contained within the area in consideration. This type of spatial filtering is the
simplest type of noise removal. However, it often results in smoothing of edges,
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image degradation and loss of detail [7, 8, 34], see the scheme in Fig. 1.2 for a short
review. The Gaussian filter [35] and the Weiner filter [13], [12] also belong to this

Figure 1.2: Spatial filter based on averaging.

category, but they do not use the technique of calculating the average between
neighboring pixels. Wiener filters are a class of optimal linear filters which provide
the estimation of a sequence of signals starting from another correlated sequence.
Gaussian filters, on the other hand, belong to the category of local filters and are
isotropic and linear, and they are often applied in the image denoising. Gaussian
filtering is considered important in the literature as its mathematical features are
easily specified and this has allowed the birth of many local denoising filters in
order to improve their quality and reduce the possible blurring at the edges. A
peculiarity of the Gaussian filter is that the weight of the filter decreases when the
distance from the center increases. This produces blurred edges [34]. While these
filters are a simple and time-efficient solution, they often tend to remove important
structural information and edge details for the image analysis. For this reason,
new solutions and innovative ideas are born in the field of non-linear filters. Valid
examples in the literature are median filtering [8, 14], weighted median filter [15]
and Rank filter [36].
Thanks to Perona and Malik [21], anisotropic diffusion filtering (ADF) are pro-
posed with the aim of solving the shortcomings in the previous methods, such as
the reduction of the Gaussian blur, preserving the edges, the details of the image
and the geometry of the image. This filter is based on a nonlinear diffusion process,
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and in particular on solving the anisotropic heat equation which is a second order
partial differential equation. It applies an inhomogeneous process to lessen the
diffusivity at locations of edges and carries out a diffusion process in homogenous
regions or regions with slight intensity variations. The ADF is effective especially
in medical diagnosis, where the presence of incorrect and extraneous information
usually masks the interpretation of the image [37].
Nowadays, there is a consistent documentation on PDE-based anisotropic models
which suggest several modifications to obtain a steady state solution for the reso-
lution of the staircase effects problem [23], [29], [38]-[43]. Qui et al. [44] propose
a robust non-local derivative based ridge detector, as well as Catte et al. [23]
who consider the beforehand pre-denoising. Scholars have proved that the higher
order partial differential equations produce effective results in reducing staircase
effects, and this is also due to fourth order partial differential equations (FPDE)
that imply satisfactory denoising results [45]-[47]. From the study of the FPDE,
Lu and Tan [48] proposed a denoising model that offers better results in terms of
preservation of edges and features. Another noteworthy work is by You-Kaveh [49]
who, based on FDPE, consider the use of a piecewise harmonic function in order
to reduce the noise in an image. The FPDE sector is the object of study and the
basis of many researches which have shown that the high frequency coefficients
of the image decay much faster than the models based on the PDEs, sometimes
producing noise attributable to small spots and over-smooth the step edges.
Another algorithm, based on PDEs and based on combination of local gradient,
gray level variance and edge stopping function, is the one proposed by Chao and
Tsai [50]. The model introduced by Gilboa et al. [51] aims to achieve edge en-
hancement by suppressing noisy pixels in smoother sections through the use of an
adaptive diffusion process using forward and backward diffusion processes.
In the literature there is a large number of works that are based on the ones by
Perona and Malik. They address non-linear filtering techniques in order to realize
set levels of directions and gradients resulting in better edge preserving ability as
compared to other regularization based filters.
The work by Rudin and Osher in 1992 propose a method to remove noise from
homogeneous areas of the image but without interfering with the edges. This is
due to the total variation minimization method in which the authors propose to
recover original images as solutions of a constrained minimization of the total vari-
ation of the images [25]. The corrected image is obtained by minimizing the energy
variation between the original and the corrected image. Other solutions foresee
Total Variation (TV) based minimization problems. Such problems preserve in-
formation along straight edges but, at the same time, have some disadvantages:
textural information is not preserved and staircase effect is introduced.
Most filters, that belong to the spatial domain typology, are derived through spatial
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proximity, while the neighborhood filters take gray level similarities into consider-
ation to define a neighborhood patch. Yaroslavsky proposes a filter that considers
both the spatial distance and the similarities in the gray level for the purpose
of averaging [52, 53]. Tomasi and Monaco introduce the Bilateral Filter (BF) as
an alternative, starting from the modified neighborhood filter, which deals with
the distance from the reference pixel assigned a weight, rather than proceeding
according to fixed neighborhood [16].
Another spatial filtering approach, based on the neighborhood filter, is called SU-
SAN (Smallest Univalue Segment Assimilating Nucleus) [54]. The aim is to provide
greater edge retention through the use of the average of all pixels equidistant from
the main pixel.
In the process of noise removal by the BF, gray level similarity and spatial proxim-
ity are considered. The noise filtering takes place starting from the areas belonging
to the reference pixels, thus proceeding with the calculation of the average of the
pixels that are spatially close and have similar intensity. This technique preserves
the boundaries and edge shapes of the image. Starting from the results obtained
from this filter, other variants are considered, such as the Weighted Bilateral fil-
ter, Robust Bilateral filter, Fast Bilateral filter, Multi-Resolutional Bilateral Filter
[55].
Elad in [56] shows that bilateral filtering is traced back to Jacobi iteration of
a weighted least squares minimization. Bilateral filtering turns out to be a brute
force implementation, where the computational complexity increases exponentially
as a function of the increasing proximity radius. Other studies on BF done in 2011
by Chaudhary et al. propose a safer and faster approach for BF due to the trigono-
metric range kernels rather than proceeding with the calculation of the Euclidean
spatial distance [57]. In 2013 another approach, [58], proposes a more performing
BF. Various other improved bilateral filtering variants are in [59]-[61].
Frabman and Durand argue that BF create gradient reversal artefacts in high dy-
namic range detail decomposition and compression of images [59, 62]. In [63] it is
reported that BF does not work correctly when there are images that are affected
by low levels of noise. Although bilateral filtering preserves edges, it tends to pro-
vide a poorly restored image [16] when the standard deviation of the noise exceeds
the edge contrast.
Another variant of the BF is introduced by Jin et al. [64] in which a weighting
function is used for the selection of the center pixel or vector median. Again for
the BF, there is a model for the multi-resolution bilateral filter [55, 65]. In the
work Peng et al. [66], an optimized approach for parameter selection using global
information from two related images is provided [67]. Another filter, based on the
ideal interpretation of the BF, is the guided filter [68]. Its implementation is faster
than the conventional BF and its feature is to determine its edge-stopping func-
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tion from a guide image. This filter has an automatic time implementation, which
makes it independent in the choice of window radius k as well as the possibility to
freely choose the kernel size in real time.
Since the basic feature to implement local filters is the use of correlation between
pixels, such filters tend not to work well when there are high noise levels, since the
correlation between pixels is severely damaged.

Non local filters

Buades et al. in [69], in addition to drawing up a ranking of the image denoising
methods, introduce a filter that is based on the similarity between pixels, in a non-
local manner or in the entire image, commonly known as Non-local mean (NLM)
filter. The result of this work has established that the self-similarity amongst char-
acteristics of an image in a non-local manner is the biggest potential basis in the
field of image denoising. In the bilateral filtering method, the weighted average
of the pixels in a given area is considered and the weights depend on both the
geometric distances and the contextual similarity. In the NLM filter, however, the
presence of similar characteristics or patterns in the image is used. The non-local
filtering method is considered as a technique whose basic idea is to use all those
pixels that satisfy the requirement of the Euclidean distance with respect to the
selected reference pixel. The NLM algorithm represents a typical point-wise de-
noising approach that produces a noise-free pixel and the filter weights depend on
the similarity between the areas of the reference pixels.
After the original version of the NLM filter proposed in [69], several refinement are
born with the aim of speeding up the implementation of the filter and improving
its results both in qualitative and quantitative terms. For instance, Zhang et al.
assume that in a two-directional non-local variation model the reduction of noise
from images can occur thanks to the idea that if similar portions are organized in
the form of matrices, then rows and columns enhance the similarities [70]. With
the aim of making NLM faster, [71] reports the contribution which involves the
creation of a series of well-defined portions in which the average and the gradient
are calculated to obtain a pre-selection of the contributing neighbourhoods. In
2012 Wang et al. present a non-local algorithm, called Gabor, that removes noise
from textural images [72]. Goossens et al. in [73] provide an improved version
of the NLM, the improved NLM (INLM), whose idea is to use the concept of
symmetry in the weighting function and to calculate the Euclidean distance by
symmetrical movement of recursive average filter (bi-square robust function). The
iterative execution of the method leads to a better grouping of the areas, carried
out during a pre-stage processing phase. The burdensome calculation due to the
modified bi-square based robust weight calculation leads to a reduced loss of de-
tails. Although this filter allows the removal of extra noise, it tends to blur details
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due to post-processing.
Xu et al. in [95] propose a method based on NLM, called NLM Patch-Grouping
(NLMPG), to remove noise from images acquired in the remote sensing. This
method is essentially based on the Block-wise NLM algorithm proposed by Coupe
et al. [76] which operates on two fronts: it removes redundancy by selecting the
most similar patches and also customizes constant filtering for center patches in
accordance with the variance of image patches. The high performance achieved
by this method, compared to some existing NLM-based methods, is remarkable.
Other variants, based on NLM, are presented in [80, 81]. However, although NLM
is the first filter to use self-similarity across the entire pixel range, artifacts and
performance tend to decrease when the image does not contain similar patches.
The main idea for most denoising algorithms refers to the possibility of using the
non-local characteristics of the image to preserve edges and details and, simulta-
neously, remove noise.
In the context of spatial domain image denoising, a lot of mathematical concepts
are usually used. Among these topics, there is morphological filtering, an effective
tool to level images and remove noise and extract features from the image.
Graham Treece considers a filter based on morphological filtering, which allows
to remove the noise inside images. The bitonic filter is a non-local filter that is
based on the concepts of bitonicity, i.e. it preserves the content of the signal that
is locally bitonic (i.e. it only maintains a maximum or a minimum in a given
range) and continuously removes noise pixels that do not fit in that range. This
method is an adaptive denoising method. It preserves the edges by removing the
noise without needing to know the amount of noise beforehand. Usage tests show
promising results and better denoising performance compared to Gaussian and
Median filters [96].
The main purpose of any denoising algorithm is to preserve details as much as
possible while producing a good image from a visual representation. Most filters
adopt the principle of suspending the noise reduction mechanism upon edge de-
tection. Although spatial domain filters achieve high level performance, there is
still an interest in preserving the original characteristics of the image, perhaps at
the expense of the presence of noise. Although the noise is random, it has a higher
frequency than the true signal which instead has a lower frequency and is repet-
itive in nature. Therefore, the higher frequency is removed in order to achieve
noise reduction. However, the edges are not often repetitive and this characteris-
tic determines their removal, thus generating corruption and blurring of the edges.
Hence, the filters in spatial domain tend to remove high-frequency noise rather
than high-frequency signal.
Furthermore, these filters are subject to gradient inversion and halo effects near
the edges. Due to the size of the filter window and the convolution process, they
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are slow from a performance point of view, and in some cases generate staircase
and rare-patch effect causing high edge blurring. Hence, it is of common interest
to create an approach that solves the problem of reducing noise from the image,
as well as being able to preserve the edges, contours and in general the original
information.

Variational denoising methods

The methods, that belong to this category, minimize the energy function E, ob-
tained from a noisy image y, in order to obtain the denoised image x̄. The denoised
image x̄ is then obtained by minimizing E, that is:

x̄ ∈ arg min
x
E(x) (1.2)

The aim is an estimate of a posterior probability. Using the Bayesian approach it
is expressed as:

x̄ = arg max
x

logP (y|x) + logP (x) (1.3)

where P (y|x) is the likelihood function of x, whereas the term P (x) is the prior
image. If we consider the objective function in the context AWGN, the equation
becomes:

x̄ = arg min
x

1

2
||y − x||22 + λR(x) (1.4)

where ||y− x||22 is the difference between the original and noisy images, whereas λ
and R(x) = −logP (x) are the terms of regularization.

Total variation regularization

The best known method in this category, and widely considered for a long time, is
the Tikhonov regularization [17, 18], whose peculiarity is to minimize R(x) with
the L2 norm, obtaining an over-smooths of the image details [19, 20]. To reduce
the occurrence of this inconvenience as much as possible, diffusion-based methods
[21, 22] are used in order to preserve the details of the image, although the edges
are still blurred [23, 24].
Another method that is worth mentioning is the TV-based regularization [25],
whose characteristic is a statistical factor which predicts that there are locally
smooth areas in the images and that the pixel intensities vary gradually. The
latter method is highly considered in image denoising as it calculates the optimal
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solution, and also manages to keep the edges of the image sharp. But despite this, it
also has disadvantages, which are summarized in the following points: textures run
the risk of being over-smoothed, flat areas are replaced by approximated portions
which lead to a stairway effect, the image itself may be lacking in intensity values
that determine the contrast [26]-[29].
With the aim of improving the performance of the TV-based model, modifications
are introduced for the partial differential equations [30]-[33]. To cite an example,
consider Beck et al. [33] who consider a fast gradient-based method for constrained
TV, in order to satisfy other types of non-smooth regularizers. Although it takes
into account only the local characteristics of the image, it perfects the PSNR
values.

Non-local regularization

Although local denoising techniques have a low time complexity, these techniques
show limitations in their performance when the noise level is high. This happens
because the relationships between adjacent pixels are strongly compromised by
the presence of intense noise. Recently, some approaches implement non-local
self-similarity (NSS) [74]. This is because the images have similar large areas
in different parts. Innovative work using NLM [75] adopt a weighted filtering of
the NSS before proceeding with denoising process in the image, representing the
most significant improvement in the context of noise reduction. The fundamental
concept consists in building a pointwise estimate of the image, where each pixel
is obtained as a weighted average of pixels belonging to regions similar to the one
centered on the estimated pixel. For a given pixel xi in image x, NLM(xi) denotes
the NLM-filtered value. Let xi and xj be image patches centered, respectively, at
xi and xj. We denote by wi,j the weight of xj with respect to xi, calculated by:

wi,j =
1

ci
exp

(
−||xi − xj||

2
2

h

)
, (1.5)

where ci represents a normalization coefficient and h is a filter parameter. Unlike
local denoising techniques, NLM take full advantage of the information in the
images, which can be resistant to noise problem. For this reason, several improved
versions are born. Some approaches focus on optimizing the algorithm [71, 73]
[76]-[79], while others focus on increasing the performances of the algorithm [80]-
[82].
In view of the initial phase of the NLM method [75] (the evaluation of similarity
between pixels), regularization methods are introduced [83]. According to Eq.
(1.4), the NSS prior is defined as [84]:
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RNSS(x) =
∑
xi∈x

||xi − NLM(xi)||22 =
∑
xi∈x

||xi − wTi ki||22 , (1.6)

where ki and wi denote column vectors; the first contains the central pixels around
xi, while the second contains all the relative weights wi,j.
Currently, most research on image denoising refer to non-local methods [85]-[90].
For example, in references [74, 91] there are extensions of non-local methods to
TV regularization. Considering the advantages of TV and NLM methods, adaptive
NLM regularization (R-NL) [91] is proposed to combine NLM with TV regular-
ization. The results prove that combining these two methods allows success in
noise reduction. However, such methods do not adequately preserve structural
information, compromising the visual quality of the image. Furthermore, further
important developments and improvements of NSS methods are based on learning
the probability of image patches [92] and using the low-rank property through
weighted nuclear norm minimization (WNNM) [93, 94].

Sparse representation

Sparse representation implies that each image fragment is described as a linear
combination of various fragments from an extremely large dictionary [97, 98].
Techniques based on sparse representation treat an image using an extremely large
dictionary D, with L1-norm sparsity regularization on the coding vector, i.e.

min
α
||α||1 s.t.x = Dα ,

and this leads to the following general model:

α̂ = arg min
α
||y −Dα||22 + λ ||α||1 , (1.7)

where α represents a matrix containing vectors of sparse coefficients. The equation
(1.7) converts the estimate of x in the equation (1.4) to α.
In the sparse representation model, the dictionary learning method is obtained
from a dataset, as well as derived from the same image using the K-singular value
decomposition (K-SVD) algorithm [99, 100]. The basic principle behind the K-
SVD denoising process is to train the dictionary D by starting from a noisy image
y and solving the underlying joint optimization problem:

arg min
x,D,α

λ||y − x||22 +
∑
i

||Rix−Dαi||22 +
∑
i

µi||αi||1 , (1.8)

where Ri represents the matrix extracting patch xi from image x at position i.
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The strength of the dictionaries describe the structures of the images [101], thus
allowing a better representation in the context of sparse representation models
compared to what is obtained from the use of designed dictionaries. In this regard
it is worth mentioning the K-SVD dictionary [99], which reaches up to 1-2 dB
more for bit rates lower than 1.5 bits per pixel (considered in the context in which
the sparsity model applies) compared to all the others dictionaries. The methods
of this category are all local, as they ignore the correlation between the non-local
information in the image. If the presence of noise is high, the local information
becomes seriously compromised and the denoising result is not eloquent.
The sparsity from self-similarity properties of natural images is widely used in the
field of image denoising [102]-[104] and also in the previous NSS [74]. A repre-
sentative example of this model is the non-local centralized sparse representation
(NCSR) [104], namely:

αy = arg min
α
||y −Dα||22 + λ

N∑
i=1

||αi − βI ||1 , (1.9)

where βi represents a good estimate of α. Therefore, for each area of the image
xi, the value of βi is calculated as a weighted average of αi,q :

βi =
∑
q∈Si

wi,q αi,q , (1.10)

where

wi,q =
1

ci
exp

(
−||x̂i − x̂i,q||

2
2

h

)
.

Notice that x̂i is the estimation of xi and x̂i,q are the non-local similar patches to
x̂i in a search window Si.
The NCSR model integrates NSS into the context of sparse representation and
represents one of the currently widely discussed methods for image denoising.
NCSR excels at effectively reconstructing both uniform and textured areas [104].
Although the results obtained from the fusion of the previous methodologies are
encouraging, the iterative process of dictionary learning and the non-local estima-
tion of sparse coefficients add to the computational complexity of this algorithm,
thus significantly limiting its versatility in various contexts.

Low-rank minimization

Unlike the sparse representation model, the models that belong to this category,
have a low rank and represent similar areas by treating them in matrix form. Each
column of this matrix is equivalent to a stretched patch vector. Since the matrix
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has a low rank, this characteristic allows the noise in an image to be drastically
reduced [105, 106].
The use of low-rank approaches in the reconstruction of data affected by noise
is divided into two main categories such as: methods based on low rank matrix
factorization [107]-[115] and those based on nuclear norm minimization (NNM)
[93, 94, 116, 117].
The methods that belong to the first category generate a data matrix starting from
the product of two fixed low-rank matrices. An application of such a technique is
described in [107, 108], where it is applied in video denoising and the application
of such denoising algorithm on images allows good results. Then, other variants
are proposed, such as: a hybrid noise removal algorithm based on the recovery of
low-rank matrices [110]; a low-rank method based on singular value decomposition
(SVD) to model the sparse representation of non-locally portions of similar images,
see Dong et al. [111]. A common feature of these methods is due to the constraint
of having the rank as an input parameter, and this influences the performance of
the result because it often generates loss of details or, on the contrary, maintains
noise.
The low-rank minimization is a non-convex non-deterministic polynomial (NP)
hard problem [101]. In order to avoid this problem, other methods consider the
approximation of the lowest rank on a further observed matrix. Gu et al. [93, 94]
propose a WNNM model, which adaptively removes weights to singular values of
different sizes and denoise them using a soft threshold method. As described in
[93], WNNM achieves good performance in denoising and is more performant than
other techniques that are based on NNM. The low-rank theory is still widely used
in different contexts, such as in artificial intelligence, image processing, pattern
recognition, computer vision and so on [101]. Despite the good results recognized
for this technique compared to previous denoising methods, and in particular the
WNNM method, it involves a high computational cost.

1.2.2 Transform techniques in image denoising

Over time, image denoising techniques have grown from previous spatial domain
methods to current transform domain methods. These techniques are based on
the Fourier Transform (FT), but several other approaches exist such as, for ex-
ample, the discrete cosine transform (DCT), wavelet domain methods [118]-[120],
block-matching and 3D filtering (BM3D) [90]. A common feature of these meth-
ods is that the characteristics of image information and noise are different in the
transformation domain.
In particular, techniques, based on the FT and on the DCT, are widely used in
order to obtain noise reduction and lossless image compression. Restoring images
by DCT is easier to use, but the reconstructed images contain artefacts and the
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characteristics of the edges and details of the images are not preserved. The reason
why wavelet domain-based methods are more popular than FT-based methods is
that the former provide localization in both space and time, while FT is localized
only in frequency. In the literature, there is a wide amount of contributions that
show performances of using the wavelet transform compared to FT and DCT, both
in terms of efficient image restoration and lossless compression [121].
In 1989, the use of the Mallat wavelet transform in the theory of multi-resolution
signal decomposition introduced a revolution in the field of image processing and
computer vision [122].
DWT (Discrete Wavelet Transform) is a mathematical tool that is obtained by dis-
cretization of continuous wavelet transform. Its main property [123, 124], foresee
that most of the information in the image is encoded in a few high-value coeffi-
cients. DWT works by creating image approximation levels and for this reason it
uses low-pass filters to generate coarse images and it uses banks of high-pass filters
to obtain more detailed images. As the image changes to the next scale, each level
of approximation is further broken down.
Wavelet-based denoising methods divide the image content into multiple subbands,
corresponding to different resolutions and scales. Thus, low-frequency image in-
formation (level of approximation) is represented by the larger frequency coeffi-
cients, while noise and details exist in the high-frequency subbands. Acting on the
threshold value of the smallest coefficients determines the possibility of removing
the noise. By inversely transforming the coefficients in the spatial domain, the
restored image is obtained.
The basic principle of noise removal is to act on the smaller wave coefficients in
the high frequency band, and not to act on the high amplitude coefficients in the
lower frequency band.

Transform domain filtering method

The methods, that belong to this category, unlike spatial domain filtering methods,
transform the noisy image into another domain and subsequently apply a denois-
ing procedure on the transformed image based on the different characteristics of
the image and on the noise. In this scenario, the details or edges of the image are
expressed by the larger coefficients which denote the high frequency parts in the
image, while the noise is associated to the smaller coefficients. Within this cate-
gory, two further classes are identified according to the chosen basic transformation
functions, as well as to the data, that can be of adaptative or non-adaptative type
[125].
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Non-data adaptive transform

The methods, that belong to this category, are divided into two domains, namely
the spatial frequency domain and the wavelet domain.
The former resort to the use of low-pass filtering, which in the frequency domain
allows the passage of all lower frequencies and attenuates all higher frequencies
with respect to a cut-off frequency [10, 12]. The low-pass filter is obtained, for
example, by applying the FT and this allows the image information to spread
mainly in the low frequency domain, while the noise spreads in the high frequency
domain. Then it is possible to proceed with noise removal by selecting specific
features of the transformation domain and transforming them back into the image
domain [126]. The execution of these methods takes a long time and depends on
the cut-off frequency and on the filter function behavior.
In [127]-[132] it is shown how wavelets can remove noise regardless of its frequency
content, while maintaining image characteristics. Similarly as it happens for filter-
ing techniques in the spatial domain, it is possible to apply a further subdivision
based on the following criterion: linear and non-linear methods. Considering the
good characteristics of the wavelet transform, such as sparseness and multi-scale,
this determines a strong interest making this research area still active in the image
denoising sector [133]. The wavelet transformation is highly dependent on the se-
lection of wavelet base parameters. If the choice is inappropriate, the result does
not allow a suitable representation in the wavelet domain, thus generating a poor
denoising effect. Therefore, this method turns out to be non-adaptive.

BM3D

The acronym BM3D stands for “Block Matching 3-D collaborative filtering”and
the filter developed by Dabov et al falls into this category. This filter is particu-
larly effective in the 3D transformation domain, and is designed to combine the
sliding window process with block matching together. It has a multipoint approach
and consists of three phases: in the first phase, the image with noise is processed
smoothly, and similar block images are grouped together. The calculation of the
similarity between blocks is done by the minimum Euclidean distance. The re-
sulting blocks form a 3D matrix of redundant blocks. Subsequently, there is the
second phase, that foresees the attenuation of the noise, performed by applying a
rigid threshold or a Weiner filter. Clustering provides extremely reliable statistical
data and Weiner filtering on 3D arrays is quite effective. As a result, following the
local estimation of the matched blocks, constructed using the inverse 3D trans-
formation, a meaningful improvement is obtained in terms of noise reduction and
efficient detail preservation.
The BM3D approach considers the image contamination, attributable to AWGN
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[90]. In particular BM3D drastically reduces its optimal performance at high noise
levels. This happens when there is a standard deviation above 40, and such an
effect implies that the correlation between blocks is strongly disturbed by noisy
pixels. As an alternative to improve performances to the previous standard de-
viation, the wavelet is replaced with the DCT. This is described in [134], as it is
possible to establish an improvement in performances by acting on an appropriate
adjustment of some numerical parameters.

1.3 Other possible denoising methods

The variational denoising approaches, previously presented, are model-based op-
timization methods, as they lead to optimal results in the noise-free image re-
construction process. However, they usually require a large amount of processing
time.
Other possible methods are described as follows. Convolutional Neural Network
(CNN)-based denoised methods focus on the effort to learn a mapping function
starting from a loss function on a training dataset characterized by pairs of images
both with and without the presence of noise [135, 136].
In recent years, CNN-based studies and methods have aroused interest. They have
been developed rapidly [137, 138]. The application of CNNs in denoising images
dates back to the first decade of this century [139], and this network is composed
of five layers. Recently, several noise reduction techniques based on this type of
networks have been presented [135], [140]-[144].

Chen et al. [135] propose a deep feed-forward network, known as trainable
non-linear reaction diffusion (TNRD), which shows a good performance in remov-
ing noise from images. In fact, the methods, that belong to this category, have
numerous advantages including: a better interpretability, although this leads to
an increase of processing costs; efficiency, to due the lower number of cycles.

Deep learning-based denoising methods

The state-of-the-art DL denoising methods is traced back exclusively to CNNs
and the noise removal methods associated with DL are described by the following
formulation:

min
Θ
loss(x̂, x), s.t.x̂ = F (y, σ; Θ) , (1.11)

where F (·) indicates the CNN, Θ is the CNN parameter and loss(·) represents the
loss function whose purpose is to estimate the distance between the starting image
x and the one subjected to the x̂ noise removal procedure. Deep learning-based
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denoising methods have attracted interest due to their exceptional denoising abil-
ity.
The concept of residual learning and batch standardization is introduced by Zhang
et al. [142] in the context of removing noise from images, and also presents feed-
forward denoising CNNs (DnCNNs). DnCNNs accomplish the goal of learning the
function x̂ = F (y; Θσ), which generates a correspondence mapping between y and
x̂. The values, represented from the parameters Θσ, are trained for noisy images
with respect to a fixed σ variance value. DnCNNs have two main characteristics
that make them so interesting. The first is the capacity of applying a residual
learning formulation to learn a mapping function; the second is to refer to batch
normalization in order to obtain a performance increment in the training procedure
together with denoising results. The advantages, due to either residual learning or
batch normalization, allow to improve the overall performances of the denoising
system. Although a DnCNN manages compression and interpolation errors, the
method is suitable only for certain σ variances of noise.
The fast and flexible denoising convolutional neural network (FFDNet) [143] has
the characteristic of making an adaptive trade-off between noise suppression and
texture protection, when the noise level σ is unknown. The FFDNet is expressed
as x̂ = F (y,M ; Θ), where M represents a noise level map. While for FFDNet
M denotes an input parameter, for the parameter set Θ it is fixed. Furthermore,
another feature of FFDNet is that it acts on down-sampled sub-images, thus con-
tributing to improve the training and testing phase. In general, FFDNet is quite
flexible with respect to different noises.
In conclusion, although this method is efficient and has a short execution time, the
amount of time for the learning process is high and complex. CNN-based denoising
techniques have led to improved learning by a hierarchical network.

The state-of-the-art deep learning denoising

In the field of noise removal from magnetic resonance images, Manjón et al. in
[184] in 2018 propose a technique that combines DL with classical noise reduction
techniques. This technique consists of two phases. The first phase is essentially a
patch-based CNN. The second phase uses a rotationally invariant non-local means
filter. This technique achieves important goals compared to previous methods.
During 2018 another contribution comes from Gondara et al., who in [185] show
a new method to multiple imputation for handling missing data, a very sensitive
problem which affects various fields. Their method consists of overcomplete deep
denoising autoencoders, able of handling different types of data, patterns of miss-
ingness, proportions of missingness. The performed tests show that this method
achieves better results than current methods in variable conditions, and it also im-
proves end-of-the-line analytics. During 2019, Tassano et al. [186] propose a video



1.4. METRICS OF DENOISING PERFORMANCE 19

denoising algorithm that outperforms other patch-based methods. It is based on a
CNN, which aims to be fast and efficient as it requires significantly lower execution
times and low memory consumption, managing different noise levels with a single
network model. Thanks to these characteristics, it is a practical solution for video
denoising applications. The experimental tests confirm the effectiveness of this
method as much as other methods, both in terms of visual quality and objective
metrics. In 2019, Davy et al. [187] present a new CNN-based video denoising
technique, which incorporates non-local self-similarity into the network via a non-
trainable layer. This layer aims to find similar areas to the 3D spatio-temporal
search region and gathers their central values into a feature vector assigned to
each pixel. The CNN network is thus trained on the basis of this information
so that it can be able to predict a clean image, thus obtaining excellent results.
However, this technique appears to be the first application that successfully uses
CNNs in the removal of video noise, thus surpassing previous methods based on
non-local patches. In 2019, Liu et al. [188] propose a Genetic Algorithm-based net-
work evolution approach to enable automatic optimization of network structures
for medical image denoising. This technique reduces the evolutionary process by
using experience-based greedy exploration strategy and transfer learning. This
allows the birth of EvoNets, which goes beyond the previous methods in removing
noise, even at different noise levels, from computed tomography perfusion (CTP)
images.

1.4 Metrics of denoising performance

A common feature of the presented algorithms is the ability to remove the noise
in the image and, at the same time, to preserve the information in the image
itself as much as possible. To establish the effectiveness and computational effi-
ciency of the different algorithm, a series of metrics are in Table 1.1: PSNR (Peak
Signal-to-Noise Ratio), MSE (Mean Square Error), SSIM (structural similarity),
VIF (Visual Image Fidelity), Entropy, AD (Average difference), MD (Maximum
Difference), Normalized Absolute Error (NAE) and Normalized Correlation [145],
[146]-[158].

Metric Mathematical formula Meaning

MSE
∑
M,N [I1(m,n)− I1(m,n)]2

M ×N

Lower MSE depicts better im-
age restoration.
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Metric Mathematical formula Meaning

PSNR
10 log10

(
R2

MSE

)
, R = 255

Higher PSNR means better
quality of the denoised image;
it represents the most used
metric for image quality.

SSIM (x,y)

(2µxµy + C1) (2σxy + C2)(
µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

)
C1 and C2 are constants, µx and
µy are the mean intensities, σ is
the standard deviation.

Metric correlated to human
perception; high SSIM indi-
cates more restoration of orig-
inal information.

VIF

∑
k∈subband s I

(
Dm,k;Tm,k

)
sm,k∑

k∈subband s I (Dm,k;Rm,k) sm,k

where Dm,k represents m ele-
ments of the random field that de-
scribes the coefficients from sub-
band k, Tm,k and Rm,k depicts the
visual signal at the output of the
HVS model for reference and test
images.

Information fidelity criterion;
it quantifies the Shannon in-
formation, which is shared
between the distorted and the
reference image, the fidelity
aspect is correlated to the vi-
sual quality.

Entropy (EN)

SE =
∑
i

A2
i log

(
A2
i

)
;

EN = SE (A)− SE (B) ,

where SE stands for Shannon en-
tropy.

EN is a statistical compu-
tation of randomness which
conveys the amount of tex-
ture information.

AD
∑M

x=1

∑N
y=1 (A (x, y)−B (x, y))

M ×N

It gives the average difference
between the clean and the de-
noised image.
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Metric Mathematical formula Meaning

MD
MAX|A (x, y)−B (x, y) |

A lower value of MD means a
better image quality.

NAE
∑M

x=1

∑N
y=1 (A (x, y)−B (x, y))∑M
x=1

∑N
y=1A (x, y)

It gives the normalized rate of
error; a lower NAE gives bet-
ter denoised images.

NCC
∑M

x=1

∑N
y=1 (A (x, y)×B (x, y))∑M
x=1

∑N
y=1A (x, y)2

It depicts the amount of cor-
relation between the clean
and the denoised image.

Assumption: A and B represent the clean and denoised images, respectively, and
M ×N is the size of the image.

Table 1.1: Quantitative performance metrics.

The main function of the metrics is not to achieve the improvement of PSNR
or any other metric. The main goal of image denoising is to generate noise-free
images, preserving high visual quality so as to satisfy the Human Visual System
(HVS). Studies in the literature show that the perfection of the human eye does
not allow to perceive slight differences in the orientations, scales and structure of
the images. Despite this, the HVS remains very sensitive in the recognition of
sharp contours, deformed faces and artefacts inside homogeneous regions. These
considerations among the different methods of reducing noise from images are im-
portant as visual analysis is always left to the end user, who is generally man and
consequently visual analysis remains the most used measurement metric in the
discussion of any type of noise reduction technique from images.
Presenting all the methods to remove noise from images is almost impossible. For
this reason, some of these methods are examined and some are subsequently cited
as a reference for the reader.
The methods are: SBF [16], RBF [159], WBF [159], NLM [69], bitonic filter
[96], Diffusion filter assortments (DF(A-B)) [158], Gaussian filter [8], Median
Filter [8, 14], Gaussian Field of Experts (GFOE) [160], Total variation min-
imisation [161], non-local version of general relative total variation (NLGRTV)
[162]. The different transform domain methods include Vi-hard [163], Vi-soft
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[164], SURELET [165], NSST [63, 166]. They are part of the [167] category of
Markov Random Fields (MRF) statistical methods.
As for dictionary learning methods and different sparse representations, there are
Nonlocally Centralized Sparse Representation (NCSR) [104], Locally Adaptive
Kernel Regression (LARK) [168], and deep neural networks (NN) [169] in experi-
mental analysis. Other representative methods also belong to this category, such
as LPGPCA [103], BM3D-SH3D [170], BM3D [90], BM3D-SAPCA [171], PGPCA
(Patch based Global PCA), PLPCA (Patch based local PCA), PHPCA (Patch
Based Hierarchical PCA) [172].
In the category of methods based on the hybrid domain, there are: GBFMT [173]
and NLFMT [174].

1.5 Applications of image denoising

The ever-increasing demand for information leads to the need for high-resolution
images. Sometimes, however, images are affected by the presence of informa-
tion that disturbs the image itself, a phenomenon known as noise, the reduction of
which from the image is the subject of interest and in-depth studies by researchers.
In fact, image noise reduction not only generates visually pleasing images but it
is important for the subsequent analysis of the image itself. This denoising pro-
cess involves various areas of interest, starting from medical imaging, biometrics,
remote sensing, HVS, military surveillance and infrared image denoising. The
principal areas of application for the denoising techniques are as follows:

• Medical image denoising.

• Underwater image denoising.

• Remote sensing-image denoising.

• SAR image denoising.

• Infrared image denoising.

Medical image denoising

In this context, the removal of noise from images is applied to those images ob-
tained from the outcome of magnetic resonance imaging (MRI), the objective of
which is to highlight the soft tissues of various organs of the body. The distur-
bances that may appear in such images can derive from various noise factors such
as interference due to the magnetic fields generated by the acquisition device itself,
from electromechanical components and in general from surrounding interference.
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Yang et al. in [175] propose an alternative to the removal of multi-scale MRI
noise by using wavelets, in which the noise is considered as Gaussian Noise. The
noise estimation deals with the Rician noise distribution and the result of the final
image, free of noise, is obtained by the inverse Radon transform. The evaluation
tests are done by a set of images from simulations and MR of the human brain.
Another technique, used to analyze the brain, is tomography, which is a radiodiag-
nostic technique that provides a series of layered images of the different tissues of
the body. It is subject to image degradation due to the intrinsic noise of interfer-
ence and disturbances deriving from the electromechanical components inside the
devices. In this scenario, numerous methods are useful to erase noise from images,
presented in [5]. Kumar et al. in [176] propose an approach able of eliminating
noise from high frequency coefficients in order to obtain the preservation of edges,
corners, textures and sharp edges by the Tetrolet transform. This technique shows
good performances in terms of MSE and PSNR, as well as in the noise removal
and in preserving general structural integrity.

Underwater image denoising

Laser image acquisition technologies are often considered within the marine envi-
ronment, in particular in underwater contexts where the presence of the distur-
bance is mainly due to the attenuation and propagation of laser waves in the water,
thus resulting in a consequent poor quality of the captured image. Studies by Jian
et al. in [177] analyze the use of denoising algorithms in underwater images by the
software MATLAB.

Remote sensing-image denoising

The images coming from satellite observations are generally affected by noise de-
riving mainly from the possible presence of atmospheric phenomena. Moreover,
there is also the noise attributable to the acquisition itself and the subsequent
transmission of the information. The main aim of noise removal is to make images
more suitable for subsequent analysis, thus identifying the high frequency noisy
components. Thanks to the intuition of directional correlation in spatial and trans-
form domain, it is possible to reduce noise from images. Sharmila et al. in [178]
propose a hybrid directional lifting scheme for denoising of satellite images. This
method uses both pixel classification and orientation estimation.

SAR image denoising

Images coming from radar acquisition are often affected by disturbances resulting
from interference, thus determining one of the most relevant problems of research
in the remote sensing sector. Liu et al. in [179] propose a new technique to
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remove noise from images based on sparse representation in shearlet domain and
continuous cycle spinning. The procedure consists of two phases. In the first one,
the noisy image is decomposed using the shearlet transform. Then an optimal
denoising model is built using cycle spinning theory in the sparse representational
domain. Tests performed using this technique reveal improvements both in terms
of visual results as well as PSNR.

Infrared image denoising

The human eye can only see a portion of the electromagnetic wavelength spectrum.
Recent technologies allow us to see beyond the human visible, making infrared
(IR) capable of penetrating various materials. Infrared radiation is used in night
vision devices, when there is not enough visible light and therefore used as night
vision technology also for military purposes. Infrared sensors convert the incoming
radiation into an image: this can be monochromatic (for example, hotter objects
will appear lighter), or a system of false colors can be used to represent different
temperatures.
Infrared image acquisition technology is used to capture the thermal radiation
that each object on Earth emits in a unique and different way from any other type
of object. But even this family of images is not free from Poisson noise, mainly
caused by low light conditions and atmospheric disturbances. Shen et al. in [180]
propose to perform the Anscombe transform in order to generalize the Poisson
distribution into Gaussian distribution and to denoise the infrared images. This
method consists of total variation regularization based improvisation in the wavelet
domain in order to remove heavy Poisson noise from low-light infrared images.

1.6 Variational models in image processing

Over the past twenty years, image processing has attracted the attention of many
scholars. It turns out to be a valid tool to reconstruct the geometry, topology, mod-
els and dynamics of the three-dimensional (3D) world from that of two-dimensional
(2D) images. Image processing finds wide sectors of use ranging from astronomy
to aerospace exploration, to the medical and molecular fields, to computer graph-
ics, to artificial vision, to telecommunications, to autonomous driving systems,
to video surveillance systems, biometric identification through the recognition of
fingerprints and facial identification useful for security purposes. More recent ap-
proaches suggest image processing techniques that are based on the variational
PDE (partial differential equation) method.
When dealing with an image subjected to variational processing, it can be consid-
ered as a function whose sampling corresponds to the discrete matrix form. There-
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fore it is possible to compare variational image processing with high-resolution
image processing. This sector is born from works by Perona-Malik [21], Rudin-
Osher-Fatemi (ROF) [25] and Mumfomrd-Shah [189], thus bringing the variational
processing of images to a sudden development.
To manage and process images efficiently, images need to be defined from a math-
ematical point of view and they have to be represented. In the case of Random
Fields Modeling, an image is modeled as the sampling of a random field. In statis-
tical mechanics, the Ising spin approach can model binary images. The images are
modeled by some Gibbs/Markovian random fields [181]. The statistical properties
of fields are generally established through a filtering technique and learning theory.
The random field modeling is the ideal approach to describe images of natural en-
vironments, such as trees and mountains. In the case of Wavelet Representation,
the images come from acquisitions provided by a set of micro sensors. Over the
last twenty years, it has been concluded that such acquisitions are well approxi-
mated by wavelets. This new technique to represent images and their multiscale
structures [122] has attracted much interest. The two examples of applications,
that have generated particular appreciation, are the JPEG2000 protocol for image
coding and the successful compression of the FBI fingerprint database. In the case
of Regularity Spaces, an image is considered in Sobolev space as this model works
well for homogeneous regions but it is not efficient in managing edges because it
tends to introduce noise. To overcome this problem, two well-known models are
introduced. The first is called the “object-edge”model of Mumford and Shah [182],
and the second is the BV image model of ROF [25]. The first model foresees that
an image consists of patches of disjoint homogeneous objects and that it has reg-
ular boundaries (characterized by the one-dimensional Hausdorff measure). The
second BV model, instead, assumes that an image has a limited total variation.
Models based on image regularity may be applicable to images with low texture
patterns and without rapidly oscillatory components.
In variational or “energy”based models, Euler-Lagrange equations are derived or
the gradient descent method is used in order to identify local or global minima
by non-linear PDEs. For some PDEs, the study uses the viscosity solution ap-
proach [183], while for many others further theoretical investigations remain open.
Compared to other approaches, the variational PDE method has meaningful ad-
vantages both in terms of the theoretical aspect and in the calculation. It directly
manages and processes visually important geometric features, such as gradients,
curvatures and level sets. It is also able to simulate several visually processes,
such as linear and nonlinear diffusions and the information transport mechanism.
Finally, as for the numerical analysis and PDEs, there is also a high amount of
works in literature, that are useful to construct numerical schemes.
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Chapter 2

Variational PDE models in image
processing

2.1 Problem statement

An image subjected to a variational processing process is depicted through a ma-
trix representation. Thanks to the most recent studies and those conducted with
resourcefulness in this context by Perona-Malik [21], ROF [25] and Mumfomrd-
Shah [189], the topic of variational image processing has obtained wide consensus
and approval.
To present the topic of variational denoising, it is advisable to consider the Euler-
Lagrange (EL) equations, just as to be able to talk about variational image pro-
cessing implies recalling the concepts of regulator based on TV and one based on
the mean curvature.
Define an image in domain Ω by z = z(x, y) in which the presence of the noise is
represented by the zero mean Gaussian noise η, such that

z = u+ η .

The denoising function for image restoration is defined as u = u(x, y) (see [25]).
Restoring u from z is classified as an inverse problem, in which Tikhonov regular-
ization can be applied in order to guarantee its uniqueness:

min
u
J(u) =

1

2

∫
Ω

(u− z)2 dx dy + αR(u) (2.1)

where α > 0 and R(u) represent the regulators of u.

27
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In the derivation of the EL equation for the ROF model [25], taking into account
that |∇u| =

√
u2
x + u2

y , the following semi-norm TV was proposed

min
u
J(u) =

1

2

∫
Ω

(u− z)2 dx dy + α

∫
Ω

|∇u| dx dy , (2.2)

in which the EL partial differential equation (PDE) for the ROF model is the
following TV equation

−α∇ · ∇u
|∇u|

+ (u− z) = 0 ,

which is discussed in [25].
In the derivation of the EL equation for the curvature model, the ROF model
above (2.2) identifies and protects edges in u, but when the image u as a whole
complex has a constant behavior at times, for uniform images you get a restored
quality that is not good. However, many alternatives have been proposed, one of
which is the mean curvature model of [190, 191] defined as follows

min
u
F (u) =

α

2

∫
Ω

k(u)2 dΩ +
1

2

∫
Ω

(u− z)2 dΩ (2.3)

and has the characteristic of being an effective method, as reported in [192] by
Brito and Chen, in which the average curvature is expressed as k(u) = ∇ · ∇u /
|∇u| .
Assuming the following values for the following parameters k = 0, ∇u · n = 0, we
have

α∇ · ∇k
|∇u|

− ∇ · ∇k · ∇u
|∇u|3

∇u + (u− z) = 0 .

This scenario arouses a lot of interest in the scientific community, which has pro-
duced a considerable quantity of papers published in this regard. Some of the most
representative ones are described below.
Thus there is the paper by Bonettini, Landi, Loli Piccolomini and Zanni which
frames the topic of image deblurring [193], which proposes a comparison to solve
a specific problem of deblurring astronomical images corrupted by Poisson noise.
The aim is to present a computational study on scaling techniques in gradient
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projection-type (GP-type) methods. Specifically, the imaging problem is formu-
lated as a minimization problem, where the study focuses on solving the deblur-
ring problem from Poisson data involving the unconstrained minimization of the
Kullback-Leibler (KL) divergence and the Tikhonov regularization, which is well
suited for the reconstruction of the smooth, due to the presence of diffusive ob-
jects often encountered in image acquisition using satellite devices. The GP-type
methods, that are considered, are formulated using a common iteration formula,
where the scaling matrix and the step length parameter characterize the different
algorithms. Within this formulation, both first-order and Newton-type methods
are analyzed. Numerical experiments show that suitable scaling strategies can
enable GP methods to rapidly approximate accurate reconstructions and thus are
useful for designing effective image deblurring algorithms. In this context, a stop-
ping criterion is proposed to avoid unnecessary computations while preserving the
reconstruction accuracy.
Yan, in [194], achieves the aim of providing an overview of the different con-
solidated techniques for image reconstruction, and in particular performs a con-
vergence analysis for Simultaneous Algebraic Reconstruction Technique (SART)
methods. Several methods for the derivation of SART and the connections between
SART and other methods are presented. Using these connections, the convergence
of SART is demonstrated in several ways. Schemes are thus reported, and they can
be traced back to the SART method, such as Landweber-type schemes, linearized
Bregman iteration for the primal, gradient descent for the dual and expectation
maximization. The main contribution is a convergence proof for Landweber iter-
ations. Several numerical experiments for computed tomography reconstruction
are provided to demonstrate the convergence results in practice.
In the field of image deblurring and denoising of multiplicative noise, Wang and
Ng present [195] a fast and efficient minimization method for image restoration
affected by multiplicative noise that makes them blurry. This type of problem has
attracted a lot of attention in recent years. The proposed algorithm uses the loga-
rithm to transform blurring and multiplicative noise problems into additive image
degradation problems, then uses the L1-norm to obtain a measure of the data-
fitting term and of the total variation in order to measure the regularization term.
To solve the constrained minimization problem, the Alternating Direction Method
of Multipliers (ADMM) is used. The set of constraints is first approximated and
subsequently replaced by a corresponding convex set in order to guarantee the
convergence of the proposed method. Numerous numerical tests are presented in
support, including also different types of blur kernels, to illustrate the excellent
performance that the proposed algorithm offers, unlike other existing methods in
terms of speed and PSNR.
As for image segmentation, Häuser and Steidl carried out a study inside paper
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[196]. It is well known that segmentation is the basis of many image pre-processing
processes, thus occupying an important role. In this regard, there are some works,
in which convex relaxation methods for image multi-labelling have been proposed.
Generally these models use the TV semi-norm as regularizing term, although it
is well known that the TV function is not optimal for the segmentation of tex-
tured regions. The objective is to demonstrate that, for the best manage of seg-
mentation of curved structures, it is sufficient to apply the Shearlet transform.
Neither the Shearlet transform nor the Curvelet transform are used as a regular-
izer in a segmentation model. Through numerical examples, it is shown that the
Shearlet-regularized model can improve segment curved textures compared to the
TV-regularized one. This approach is promising for image segmentation.
In the image reconstruction sector, Barendt and Modersitzki refer to [197], in
which the study conducted on Single Photon Emission Computed Tomography
(SPECT) allows to reconstruct the density of a radioactive marker within a pa-
tient from projections, relating an integral equation the unknown density of the
radioactive tracer with the observed signal (photon counting). The authors present
an algorithm to estimate both the tracer density and the attenuation coefficient.
Regarding tracer density estimation, the authors use an existing non-negatively
constrained iterative method while, for as the attenuation coefficient, it is treated
as a deformation of a “prototype”attenuation and use image registration to obtain
the estimate. The most current reconstruction models are addressed, in order to
be able to address the SPECT reconstruction process through a so-called atten-
uation prototype. A new variational model for SPECT reconstruction addressing
the multimodal matching problem is also presented.
On the topic of image surface restoration, Brito-Loeza and Chen dedicate their
study on [198], in which three recent models are described. In the context of
the most suitable variational models for the processing of planar images, the TV
model and the mean curvature model stand out. It is intuitive to understand that
in order to solve the 3D data minimization formulation, a considerable amount of
numerical calculations is required and how this measure can grow dramatically.
Although there is an ever-increasing demand to get computationally fast and effi-
cient algorithms, able of processing large quantities of high-resolution data, in this
area there is still room to conduct in-depth studies. Recently Tasdizen, Whitaker,
Burchard and Osher in [199] introduce a two-pass algorithm that allows obtaining
fast solutions for the total curvature model. Through a process of generalization
and appropriate modifications, the mean curvature model of Droske and Rumpf
[200] and the Gaussian curvature model of Elsey and Esedoḡlu [201] are analyzed
in order to obtain solutions similar to the aforementioned models. Finally, the
results of the tests and numerical experiments are reported so as to show the good
performance of the algorithms.
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Bredies, Dong and Hintermüller present [202] the topic of image denoising with
Total Generalized Variation (TGV) and, more precisely, the choice of parame-
ters to adopt to address the problem of image restoration, which can be solved
by finding the minimum of a cost function. This function is generally composed
of the data fitting and a regularization term. In the context of the TV regu-
larized model, authors have recently considered how to choose spatially adapted
regularization parameter, rather than choosing a fixed parameter, in order to ob-
tain better restoration results. It is well known that images, restored by the TV
models, have the staircasing effect and the TGV model was proposed in order to
reduce such effect. Furthermore, the case of how to select the spatially adapted
regularization parameter when TGV was used as the regularization term is also
addressed. Ultimately, the main contribution that the authors offer is to be able
to extend the parameter selection method from the TV model to the TGV model.
In the field of image segmentation, the study by Zhu, Kang and Biros refer to [191],
in which a new Geodesic-Active-Contour-based (GAC-based) variational model is
proposed to segment the right and left ventricles and the epicardium in short-axis
magnetic resonance (MR) images. This is the case of an application of real interest,
which represents a practical challenge in image segmentation. It is a difficult task
because the contrast of such data sets, in addition to not being of great quality,
is also easily affected by noise, also because in the right ventricle, the myocardial
wall is generally very thin and difficult to identify using the resolution of current
scanners MR. Level sets are proposed to be used to identify both the endocardial
wall and edge detection, and for the latter the detection functions have strict re-
strictions on the position of the initial edges. The aim of the author is to create
a new edge detection function that loose these restrictions. Numerical examples
are provided to illustrate the method and experimental results are presented to
validate the effectiveness of the proposed model.
As for image denoising of combined additive and multiplicative noise, we have the
work [203] by Chumchob, Chen and Brito-Loeza. They present an overview of
some results for the progress made in the removal of additive or multiplicative
noise, even if in the literature there are not often restoration models for the re-
moval of both additive and multiplicative noise. Then, some new algorithms to
remove the mixture of additive and multiplicative noise are covered. Taking into
account the works previously proposed by Rudin, Osher and Fatemi [25], and that
of Jin and Yang [204], a new model is born. It is a variational model for which
special non-linear multigrid schemes are provided and details are given on how to
implement this algorithm for the removal of additive or multiplicative noise from
digital images. The results of experimental tests using both realistic and synthetic
images are also considered.
Thanks to the sudden developments in hardware and software technologies involv-
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ing the imaging sector, these have increasingly attracted the attention and broad
consensus of many mathematicians and other researchers in the study of varia-
tional models in order to address emerging challenges over the last two decades.
For this reason, efficient models are developed for the correct automatic recogni-
tion, identification and reconstruction of the characteristics of images affected by
noise, so that they are used in the field of data analysis and in applications.

2.2 A variational model for restoration of satel-

lite optical images using synthetic aperture

radar

The images acquired through multispectral satellite systems have the characteris-
tic of possessing a high resolution and this allows the images themselves to contain
ever more defined details. Nowadays, thanks to the constant development of hard-
ware and software technology, it is possible that such acquisitions also take place
through the use of low-cost optical devices. However, these images are not free
from disturbances, which can derive not only from the acquisition system itself
but are often damaged also due to unfavorable weather conditions, such as rain,
clouds, fog and dust. Furthermore, situations often occur in which the measure-
ment of the degradation of the images acquired with optical systems is such that
it is not possible to count even on the availability of a single brightness value
within the regions subject to disturbance. The result of this fact is that it leads
some subdomains of such images to become absolutely invisible. Although there
are many approaches in the literature on the reconstruction of images affected
by noise, such as in the case in which color information is not available every-
where (see for example [205]-[209]), the approaches methods for exact restoration
of damaged optical images are no longer applicable in this case and it remains a
challenging and open task. Radar images, unlike observations made with the aid
of optical devices, do not depend on reflected sunlight and can be used at night
even in unfavorable weather conditions. In the specific case, where the attention
is focused on the vegetation, a radar system, instead of returning information on
the biophysical processes of the plant, contain information on the structure and
moisture content of the vegetation and the underlying soil. The union of the in-
formation obtained through SAR (Synthetic Aperture Radar) and optical images
appear to be a valid aid in the classification of the [210] land cover and in the
estimation of soil moisture, in order to remove the effects of the cover vegetable
from the backscatter coefficient of the [211]-[213] radar. Also, due to the different
nature of SAR images and optical images, there is a huge radiometric difference
between optical and synthetic aperture of radar images. Each object in nature
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is encoded with different wavelengths, and similarly different wavelengths encode
different properties of objects. For the same object, therefore, there are significant
differences in intensity between the SAR images and the optical satellite images.
The consequence induces to think that it is to possible recover with a high level
of precision those damaged regions within the optical images contaminated by the
clouds starting from the corresponding intensity regions of the SAR images. Op-
tical and SAR images of the same place, as in the case of more or less extensive
agricultural areas and of various shapes, have a lot of characteristics in common
(see, for example, [214]). Strongly inspired by this observation, a new variational
model for the correct restoration of the damaged multispectral optical satellite
images is proposed, through the use of the results obtained from SAR images of
the same regions. Let Ω ⊂ R2 be a bounded image domain with Lipschitz bound-
ary ∂Ω and let D ⊂ Ω be a Borel set with non empty interior and sufficiently
regular boundary and such that |Ω \D| > 0. Let D the damage region of a given
multi-band image ~u0 = [u1,0, u2,0, . . . , uM,0]t ∈ L2(Ω \ D;RM) where the optical
image ~u0 is corrupted by clouds. As previously said, the interest is directed to
the case in which there is no information on the original image ~u0 inside D. For
simplicity, a SAR image uSAR : Ω→ R of the same region is given, and this image
is well co-registered with ~u0 in Ω \D. The main objective is summarized in trying
to solve the problem of to reconstructing the intensities ui,0(x), i = 1, . . . ,M , of
the original multi-band image ~u0 through a variational model starting from the
knowledge of SAR image on the subset D (the damaged region) together with the
exact information of ~u0 on Ω \ D (the undamaged region). Strongly motivated
by recent studies in this area [215] (see also [216]-[220] for comparison), a new
strategy is proposed to address the optical image restoration challenge contami-
nated by disturbance. It is possible to proceed with the fusion between the zone
contaminated by noise of the optical image and the same corresponding area in
the SAR images. The variational approach is inspired by the recent article [215],
in which the authors consider the minimization of the following energy functional

u 7→ 1

2
‖ (−∆)

s
2 u‖2

L2(Ω) +
α

2
‖ (−∆)−

β
2 (u− g)‖2

L2(Ω) , (2.4)

with 0 < s < 1 and β ∈ [0, 1], where (−∆)s denotes the fractional power of the
Laplacian with zero Neumann boundary conditions. Then the first necessary and
sufficient optimality condition determines the unique minimizer u via

(−∆)s u+ α (−∆)−β (u− g) = 0 in Ω,

∂νu = 0 on ∂Ω,

which can be reduced to an linear elliptic partial differential equation that can
be efficiently solved using, for instance, the Fourier spectral method [221] or the
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Stinga-Torrea extension [222]. However, from the reconstruction point of view, it
is desirable that the regularity of the solution to (2.4) is high in places where u is
smooth or contains homogeneous features and that is low in places in Ω where edges
or discontinuities are in u. It is interesting to consider (2.4), where s : Ω→ [0, 1] is
not a constant. This entails that the choice of parameter s has a direct influence
on the global regularity of the solution to problem (2.4). However, the definition
of the fractional Laplacian in terms of the Caffarelli–Silvestre [223] or the Stinga–
Torrea [224] extension is well-known only for a constant s ∈ (0, 1), whereas such
a result remains open when s(x) ∈ (0, 1) for x ∈ Ω. Consequently, there is no

obvious way on how to define the operator correctly (−∆)s(x) and it looks an open
question. For further details refer to [215]. As opposed to the standard approach of
restoring damaged color images where the starting point is either the knowledge
of the gray level of the original color image ~u0 on a given open subset D of Ω
(the damaged region) together with the exact information of ~u0 on Ω \ D (the
undamaged region) or the grey level information in the damage region D ⊂ Ω
is modeled as a nonlinear distortion of the colors, the technique described deals
with the case where there is no information about ~u0 inside D but it is assumed
instead that a SAR image is provided uSAR : Ω → R of the same region. The
illustrated technique has the aim of the reconstruction by the proposed variational
model. Although the proposed minimization problems turn out to be well posed
and possess good approximation properties, their practical implementation for
satellite image restoration is not trivial and remains a complicated issue due to
non-convexity and the corresponding strict optimality conditions. The aim of what
is described here is to present “an approximation approach”which is based on the
principle of relaxation of extreme problems and their variational convergence. It is
proposed to proceed towards some relaxation of the original problem using a special
iterative algorithm. Thus, it is shown that, at each step of the iteration procedure,
a strictly convex optimization problem with a unique solution is obtained. It
is established that the sequence of approximations thus defined turns out to be
precompact in some Hausdorff topologies and that every convergent subsequence
leads to a weak solution of the original problem. The experimental activities
carried out in this study (see Section 2.2) confirm the effectiveness of the proposed
method and have also highlighted that there are appreciable visual performances
and a satisfactory quantitative precision in the field of agricultural images.

Numerical Experiments

This section reports the results of the numerical experiments, in the form of images,
relating to the proposed algorithm for the restoration of satellite multi-spectral
optical images affected by disturbance due to the presence of clouds. A series
of optical images and a radar image provided by two twin satellites, Sentinel-
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2A and Sentinel-2B, were used as input data. Each optical image is corrupted
by the presence of clouds with a different level of degradation (see Fig. 2.1, 2.3,
2.5, 2.7). The corresponding SAR image is shown in Fig. 2.9. The results of
restoration after 5 iterations of the proposed algorithm are shown in Fig. 2.2,

Figure 2.1: Optical image from
2021/040.

Figure 2.2: Result of its restoration.

Figure 2.3: Optical image from
2021/032.

Figure 2.4: Result of its restoration.



36 CHAPTER 2. VARIATIONAL PDE MODELS

Figure 2.5: Optical image from
2021/041.

Figure 2.6: Result of its restoration.

Figure 2.7: Optical image from
2021/0406.

Figure 2.8: Result of its restoration.

2.4, 2.6, 2.8 for η = 0.8, µ = 10, and λ = 20. As for the exponent α, it is

define by δ = a2
[
a2 + ‖Gσ‖2

C1(Ω−Ω)
2552|Ω|2

]−1

and a = 0.01. As can be seen

from the comparisons between the images affected by noise, due to the presence of
clouds, and the corresponding restored images obtained as a result of the technique
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Figure 2.9: The SAR image of the same territory.

presented, it is possible to note that the texture of the latter appears to be well
preserved. However, some details in the damaged areas are blurry.

2.3 A variational model for denoising and de-

blurring of non-smooth hyperspectral satel-

lite images

Thanks to increasingly in-depth knowledge in the remote sensing sector, these
have found wide application in many sectors, thus contributing, as in the case
of the agricultural sector, to the possibility of being able to carry out constant
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monitoring. This has led to systematic worldwide observations of the so-called
optical vegetation indices. Some indices, including NDVI (Normalized Difference
Vegetation Index) and IPVI (Infrared Percentage Vegetation Index) and others,
are indicators that provide information and allow the state of health of vegetation
and crops to be established. For example, thanks to timely monitoring, they are
able to establish whether crops need water or nutrients. From a physical point of
view, the sensors of the optical devices used in the remote sensing sector record
the so-called electromagnetic fingerprint that each object on Earth emits in re-
sponse to an electromagnetic radiation signal. The reflectance from each object
occurs in different wavelengths and these values are then processed to create a
separate image for each wavelength. In the images obtained from satellite, there
are reflectance values stored for different wavelengths in different layers, also called
spectral channels. Specifically, Santinel-2 satellites provide 13 spectral channels
with a pixel size ranging from 10 to 60 meters. Therefore, a hyperspectral image
defines in a completely simple way the number of wavelength channels of which
it is composed. So you can have images with as little as one channel to at least
three, corresponding to the three RGB channels, which are recorded by the sensor
to create a composite satellite image. By carrying out monitoring with regular
frequency in a pre-established period, it is possible to recover the complete time
series in the different wavelengths, which allows to obtain information with respect
to a vegetation index, useful to establish the state of the crops, in order to plan
any interventions especially during those periods when conditions on agricultural
land change dramatically (for example, during essential growth stages, the need to
irrigate the soil, the ripening period and others). However, despite the fact that
optical images have a high resolution and are easily acquired using low-cost de-
vices, satellite images, that represent the real world, can often suffer from different
types of noise, among which blurring and other artifacts mainly prevail atmo-
spheric factors that influence the radiation recovered by the sensors in different
spectral channels and in different ways. Due to this, such satellite images lose their
effectiveness in managing the monitoring of cultivated agricultural fields, and their
use can lead to erroneous results and conclusions. In a context like the one just de-
scribed, the problem, that has been examined, can be briefly described as follows.
There is a hyperspectral image ~u0 = [u1,0, u2,0, . . . , uM,0]T ∈ L1(Ω;RM) which is
affected by noise or blur and this makes the image itself devoid of important fea-
tures. Here, Ω ⊂ R2 is a bounded open domain with sufficiently smooth boundary
∂Ω. Therefore, the challenge is to recover the original image ~u = [u1, u2, . . . , uM ]T .
In fact, the hidden image portion occurs starting from the observed data ~u0. In
mathematical terms, this means that, for each spectral channel i = 1, . . . ,M , an
inverse problem must be solved, expressed in the following form

Tiui + w = ui,0 ,
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where Ti represents the linear blur operator that models the process by which
the i-th spectral channel of ~u is passed before observation, and w is the unknown
disturbance which influences the measurements. Due to the presence of the noise
and the fact that the blur operator Ti is often ill-conditioned or even non-invertible,
and that the value represented by w expresses the unknown noise that affects the
measurements, the recovery of starting from the measurements of ~u, ~u0 turns out to
be an ill-posed problem [225, 314]. Dealing with these kinds of ill-posed problems,
this implies that there are several ways to obtain an approximate solution. It is
reasonably possible to formulate the image blur problem taking into account the
process of image formation and acquisition, as well as any other previously available
possible information regarding the properties of the image to be restored. The most
used approach to represent the denoising problem on a multispectral image is to
treat it independently for each spectral channel, and express it in the form of a
variational problem as

u ∈ Argmin
v∈B2

{
J (v) = R(v) +

1

2λ
‖Tv − u0‖2

B1

}
, (2.5)

where B1, B2 are two Banach spaces on Ω, u0 ∈ B1 is the given image, λ > 0
outlines the optimization parameter, T ∈ L(B1, B1) is a bounded linear operator
and R : B2 → R is the regularizing parameter that smooths the image u and
represents a sort of a priori information on the minimizer u. Here, the term
‖Tu − u0‖2

B1
describes the so-called fidelity term of the approach which forces

the minimizer u to stay close to the given image u0 (how close depends on the
value which assumes λ). As for the choice of the T operator, it is generally set
with T = Id (i.e. the identity in B1) for image denoising problems, and T is
a symmetric kernel with a smaller support than the image u for the deblurring
problems. Determining the most appropriate values for the different parameters
is not trivial because they affect the quality of the desired image and also the
consistency with the data provided. These parameters concern the choice for an
adequate regularization R(v) of the Banach spaces B1, B2 and a convenient fidelity
term ‖Tv − u0‖2

B1
. In the literature, there is a wide choice for the choice of the

regularization term, so as to be able to guarantee that deals with a well-posed
denoising problem (2.5). This term can generally be represented as follows

R(v) =

∫
Ω

|Dv|p dx with 1 ≤ p ≤ 2 , (2.6)

where Dv stands for the generalized gradient. From this it follows that it is
possible to take advantages of isotropic diffusion (when p = 2) arising from the
minimization problem (2.5), from diffusion based on the total variation (p = 1)
and, more in general, by anisotropic diffusion (1 < p < 2).
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Numerical Experiments

In support of the algorithm presented for the denoising of hyperspectral satel-
lite images, this section reports the results of some numerical experiments tak-
ing into account the choice of the parameters Ti = Id for the three channels
i = R,G,B. Some Sentinel-2 images over the geographical area of Dnipro, Ukraine
(see Fig. 2.10) are used as input data, as then represent typical agricultural areas
with medium-sized fields of various shapes. To proceed with the numerical simu-
lations, the bilateral constraints 1≤γ0,i ≤ v(x) ≤ γ1,i are eliminated from the sets
Bi,p(·), ensuring that this condition is satisfied at each time step of the numerical
approximations. The approach used to reach the solution is based on a parabolic
equation in which time is passed as an evolution parameter, or equivalently, the
gradient descent method. Consequently, an iterative algorithm is chosen, so that
at the k-th step of the iterative process, it is possible to solve the following Cauchy-
Neumann problem

∂uk

∂t
= div

(
|∇uk|pk(x)−2∇uk

)
− µ T ∗i u

k

|Ti (uk)− u0,i|
, (t, x) ∈ (0,∞)× Ω , (2.7)

uk(0, x) = u0,i ∀x ∈ Ω , (2.8)

∂uk(t, ·)
∂n

= 0 on ∂Ω . (2.9)

As t increases, a noise-free image tends to be achieved upon reaching the k-th
iteration. The numerical scheme in two spatial dimensions is presented below.

xl = lh, yj = jh, l, j = 0, 1, . . . , N with Nh = 1,

tn = n∆t, n = 0, 1, . . . , unlj = uk(tn, xl, yj), u0
lj = u0,i(lh, jh).

Then, the numerical approximation to the problem (2.7)–(2.9), takes the form

un+1
lj = unlj +

∆t

h
∆x
−

 ∆x
+u

n
lj√(

∆x
+u

n
lj

)2
+
(
m
(
∆y

+u
n
lj,∆

y
−u

n
lj

))2
+ ε


+

∆t

h
∆x
−

 ∆y
+u

n
lj√(

∆y
+u

n
lj

)2
+
(
m
(
∆x

+u
n
lj,∆

x
−u

n
lj

))2
+ ε


− ∆tµ

T ∗i u
n
lj

|Tiunlj − u0
lj + ε|

, ∀ l, j = 1, . . . , N , (2.10)
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with boundary conditions

un0j = un1j, unNj = unN−1,j, unl0 = unl1, unlN = unl,N−1.

Here, ∆x
±ulj = ± (ul±1,j − ulj), ∆y

±ulj = ± (ul,j±1 − ulj), and

m(a, b) = minmod (a, b) =
sgn a+ sgn b

2
min (|a|, |b|) .

A step size restriction is imposed for stability by condition: ∆/h2 ≤ C. The values
for the simulations, we have ε = 0.01, σ = 0.5, a = 5, β = 2, γ0,i = 1, γ1,i = 255,
Ti = Id, i = 1, 2, 3. For the three-channel RGB satellite image, represented in the
left panel in Fig. 2.10, k = 5 iterations are conducted with a time step ∆t = 0.01
for each iteration, and the result of which is shown on the right panel of Fig. 2.10.
Useful for comparison, in the central panel of Fig. 2.10, the result of noise removal
using the ROF model is shown.

Figure 2.10: Example. Left panel: noisy satellite image. Middle panel: recon-
struction using Total Variation (TV) approach. Right panel: reconstruction using
the described approach.

2.4 A two-level variational model to predict daily

surface reflectance at Landsat high spatial

resolution and Modis temporal frequency

The advent of satellites built for remote sensing, mapping and systematic ob-
servation of the earth’s surface (e.g. Landsat, QuickBird, Envisat, IKONOS or
RapidEye, CryoSat satellites) have found various areas of use. Over the last 40
years, the Landsat satellite has found application in the study of the environment
and the natural and artificial changes that have occurred on the earth’s surface.
Landsat is widely used in many applications, such as mapping land cover changes,
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in the agricultural sector for monitoring crop conditions, estimating crop yield
and for many other purposes. The feature that makes Landsat ideal for vegetation
mapping is that it has medium resolution sensors. However, its use is limited due
to the period, equal to 16 days, i.e. the amount of time necessary for the subse-
quent observation of the same area, which makes it limited in its use for the study
of global biophysical processes, as the processes linked crop development evolves
faster than the period required for a new Landsat pass, and above all even more
rapidly during the growing season. In addition, there is also the real possibility
that the images contain noise due to the presence of clouds, where in some cases
the researchers estimated that they could obtain 2-3 cloud-free Landsat scenes
over the course of a year. This is obviously insufficient for many applications that
require denser temporal information, such as crop condition monitoring and phe-
nology studies [226, 227]. A possible alternative to satisfy practical applications is
to use MODIS (Moderate Resolution Imaging Spectroradiometer) data, albeit at
a coarse resolution but with a higher frequency, in order to have a greater quan-
tity of information. The characteristic of MODIS data is that it can be provided
with a daily repetition period and 500-m surface reflectance, and the repeat cy-
cle of Landsat is 16 days with Enhanced Thematic Mapper Plus (ETM+) 30-m
surface reflectance. The intuition is to be able to jointly use Landsat and MODIS
data to generate synthetic “daily”surface reflectance products with spatial resolu-
tion ETM+ [228]-[230]. The STARFM model (Spatial and Temporal Adaptive
Reflectance Fusion Model) is just one of these models which is based on the in-
tuition just described (see, for example, [226, 227], [231]-[233]). This model (as
well as many other generalizations) allows to produce images with daily surface
reflectance starting from the Landsat spatial resolution and the MODIS temporal
frequency, drawing inspiration from a deterministic weighting function calculated
from the spectral similarity. As far as performance is concerned, they essentially
depend on the characteristic patch size of the landscape and get slightly worse
if used on extremely heterogeneous fine-grained landscapes [226]. This approach
has the fundamental characteristic that provides the possibility of being able to
generate MODIS synthetic images, with a “daily”frequency and with an ETM+
spatial resolution composed of two phases. The first phase considers solving the
temporal interpolation problem to predict total spectral energy of a presumably
non-existent Landsat image for a given day. Subsequently, starting from the ge-
ometric information contained in the total spectral energy of this image, it is
proposed the reconstruction of the “daily”MODIS product having ETM+ spatial
resolution and constraining the geometry of all its high resolution spectral channels
to the geometry of the panchromatic image. The panchromatic image appears in
different shades of gray and is more suitable for identifying the shapes and contours
of topographical details. The variational approach can be summarized through the
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scheme shown in Fig. 2.11.

Figure 2.11: The scheme of spatiotemporal interpolation of the MODIS-like im-
ages.

Here, the scalar functions YH0 and YH1 stand for the total spectral energies of the
Landsat-like cloud-free images {H0, H1 : Ω→ Rm} with high resolution sample
grid SH on a given rectangle domain Ω ⊂ R2, and {X0, X1, . . . , XN : Ω→ Rn}
are the MODIS images with low resolution that are taken at time instances
{t0, t1, . . . , tN}, respectively. The problem examined is summarized as follows:
for every k = 0, . . . , N , using only the data H0 : SH → Rm, H1 : SH → Rm, and
Xk : SL → Rn, one must increase the resolution of the n band image Xk : SL → Rn

at ETM+ spatial resolution. Most image interpolation techniques are mainly based
on data and the corresponding acquisition devices (see [218]). It is often assumed
that the high spatial resolution image can be obtained as a result of a linear com-
bination of the spectral channels with known weights [234]. Furthermore, the
resolution loss is generally modeled as a linear operator consisting of a subsam-
pled convolution with known kernel (point spread function). In a practical context,
both hypotheses would entail a difficulty whereby it may not be easy to obtain a
measurement or estimate the weights and the convolution kernel, contrary to how
they can be justified in some applications. As an alternative to this, a space-time
interpolation of images similar to MODIS is formulated, as a two-level optimiza-
tion problem, and having two further sub-problems of which: temporal and spatial
interpolation.
In the first level, there is the temporal interpolation problem for the total spectral
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energy of Landsat images, which can be presented as a state constrained optimal
control problem for anisotropic convection-diffusion equation. The model for the
total spectral energy interpolation discussed here is significantly different from the
approach proposed by Horn & Schunck in [235], which is based on the optical flow
constraint, or from that proposed by Hinterberger & Scherzer in [236], and by
Chen & Lorenz in [237]. The [238] models proposed by Borzi et al. relating to the
problem of interpolation of image sequences is treated in terms of optimal con-
trol governed by the transport equation. The model discussed here considers the
drift-diffusion equation with the edge-weighted anisotropic diffusion operator, with
homogeneous Neumann boundary conditions, and two further types of controls,
the first relating to the optical flow field b and the second concerns the source
of the image intensity v. It is illustrated that, although there are rather weak
regularity hypotheses on the control variables, this optimal control problem is co-
herent and admits at least one solution. In this context, when it is possible to talk
about consistency it is just like in this case where the problem of optimal control
has a non-empty set of feasible solutions and the objective functional turns out to
be well defined on this set (see [239] for further details). The solution described
above can be considered as a suitable background for daily prediction of the total
spectral energy of Landsat images. In the second level, the problem of spatial in-
terpolation is considered in order to increase the resolution of multispectral images
acquired according to the MODIS mode, and their fusion with the total spectral
energy expected from high-resolution Landsat images. According to what has just
been said, it is possible to formulate a special constrained minimization problem,
in which the functional costs have a non-standard growth. Edge information re-
garding the restoration of MODIS images to the resolution provided by Landsat is
accumulated in both the variable exponent of the nonlinearity and the directional
gradients of the image, and it is derived from the solution of the optimal control
problem reported above. The proposed approach is based on the variational model
in the Sobolev-Orlicz space, with non-standard growth condition of the objective
functional and also on the assumption that, to a large extent, the topology of the
image in each spectral channel is contained in the topographic map of its spec-
tral energy. It is important to remember that this model is significantly different
from the variational model for P+XS image fusion, proposed in [240]. The above
approach is discussed in order to establish the completeness and consistency of
the corresponding variational problem, showing that this problem admits a sin-
gle solution. Consequently, some optimality conditions are also treated and for
this approach the results of numerical simulations with real satellite images are
reported.
The aim of the above is to study the accuracy of the space-time interpolation prob-
lem, following the proposed two-level variational model and to provide a rigorous
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mathematical explanation for it.

Numerical Experiments

This section reports the results obtained through numerical experiments relating
to the proposed algorithm for the problem of space-time interpolation of MODIS
multi-spectral images through their fusion with higher resolution Landsat images.
To carry out these tests, the data source provided as input is a collection of MODIS
images with resolution 500m/pixel (see Fig. 2.12) received from the Terra satellite
in the period from 13 July to 10 August 2021. The region of interest represents
a typical agricultural area of Australia, with fields having medium-sized sides and
various shapes. There are two images including the same geographical area with

July 13, 2021 July 13, 2021 July 13, 2021 July 13, 2021 July 13, 2021

X1 X2 X3 X4 X5

Figure 2.12: The collection of MODIS images with resolution 500m/pixel. The
real size of each image is 39× 39 pixels.

resolution 30m/pixel, obtained from acquisition via Landsat satellite at the times
T1 =′ July, 08′ and T2 =′ August, 25′. Each of these frames has dimensions equal
to 1000 × 1000 pixels. The corresponding total energies of these images are de-
picted in Fig. 2.13.
With the aim of proposing a solution to the optimal control problem, it is possible
to set γ = 1, λ = 10, and define the function Y ∗(t, x) in Q. Therefore, the optimal
control algorithm leads us to the following optimal triplet (b0, v0, Y 0), where b0 = 0
and the peak of the ratio signal-to-noise between images Y 0(T1, x) and YH1(x) is
equal to 36.41. In Fig. 2.14 the Y 0(t3, ·) and Y 0(t4, ·) screens of the optimal state
are shown. It is believed that the optimal control solution Y 0 ∈ C([0, T ];L2(Ω))
can be considered as an acceptable approximation of the evolution of the total
Landsat spectral energy in the interval of time [T0, T1].
The next step is to find the solutions to the constrained minimization problem
for the values k = 3 and k = 4. Taking into account the following parameters
µ = 5.0, λ = 1.0, η = 0.95 and using the bicubic interpolation of MODIS images
X3 and X4 (see Fig. 2.15) as initial condition for the optimality system, after 35
iterations with the step ∆t = 0.05, the following prediction of the daily MODIS
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YH1 YH2

Figure 2.13: The spectral energies of the Landsat images H0 and H1 with resolu-
tion 30m/pixel. The real size of each image is 1000× 1000 pixels.

Y 0(t3, ·) Y 0(t4, ·)

Figure 2.14: The screenshots of the optimal solution taken at the time instances
t3 and t4, respectively.

surface reflectance at Landsat resolution is obtained (see screenshots of I3 and I4

represented in Fig. 2.16).
Below there are some images in order to make a comparison of how close the
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Interpolated X3 Interpolated X4

Figure 2.15: The screenshots of the bicubic interpolation of MODIS images X3

and X4 taken at the time instances t3 and t4, respectively.

Spatiotemporal interpolation of X3 Spatiotemporal interpolation of X4

Figure 2.16: Result of spatiotemporal interpolation of the MODIS images X3 and
X4 following the proposed approach.

radiometric results are between the original image and the interpolated one. In
particular, Fig. 2.17 shows a graph of the ratios using the data represented in
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Fig. 2.16 and Fig. 2.15. The proposed approach allows capturing significant por-
tions of information from MODIS images to produce them with Landsat level of
accuracy.

YI3(x)/Y (t3, x) YI4(x)/Y 0(t4, x)
x ∈ Ω = [0, 1000]× [0, 1000]

Figure 2.17: Ratio of the spectral energies of the predicted MODIS images I3 and
I4 at the Landsat level of resolution to the approximated total energies Y 0(t3, ·)
and Y 0(t4, ·), respectively.

2.5 Contrast enhancement of color images

In the field of image processing by optical devices, it is possible to have problems
due to the presence of poor lighting, thus generating under-lighted images, or, on
the contrary, problems due to the presence of too much lighting which leads the im-
age to be over-lighted. This situation represents a difficulty that has already been
well known for a long time, and in the past this obstacle was managed through
manual processes, acting directly on the negative of the photographic film within
an environment called darkroom. Nowadays, this same technique occurs through
digital processes, which however require manual intervention by the user, which
can sometimes be tedious when this treatment is to be applied to many images.
Recently, several contrast enhancement techniques for digital images have been
presented. Some of these techniques resort to the use of multiple views or sensors
and are able to improve the contrast of the image in low light conditions [274, 275],
acting in an attempt to modify the gray level of objects not only in proximity of
the contours. Then, there are other techniques called sharpening, which remove
the blur and are based on Gaussian convolution [40] in order to obtain an enforce-
ment of the strong contours.
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Existing methods to address the problem of contrast enhancement of natural im-
ages, captured with digital devices, can be grouped into the following three groups:

• spectral methods;

• histogram methods;

• spatial methods.

Spectral methods. This group includes those methods that are based on
wavelets or homomorphic filtering. The method proposed by Laine et al. [241],
involves the use of the wavelet transform which is applied in the wavelet domain
with a non-linear operator applied to the wavelet coefficients, thus obtaining both
noise reduction and improvement. As for noise reduction, it is achieved by apply-
ing soft and/or hard thresholding of high frequency bands. In [10] however, the
homomorphic filtering is preceded by a logarithmic transformation, and is nothing
more than a high-pass filter that improves the sharpness of the image, even if it is
possible that there are some artefacts similar to those of Gibbs or an increase of
the noise.

Histogram methods. Various methods belong to this group and are presented
below. These methods have been the subject of in-depth studies and there is a
wide presence in the literature. The Histogram Specification (HS), to which many
of the following methods refer, takes a grayscale image as input and applies a
transformation to it in order to obtain an output image according to a previously
specified histogram. A special case of HS is Histogram Equalization, in which the
specified histogram is the uniform one. In [242] Mignotte proposes to perform HS
based on the first-order derivative distribution with the aim of strengthening the
edges. Sim et al. in [243] present a PDE to modify the histogram. This approach
has the dual advantage of improving both image contrast and at the same time
reducing noise. Sole et al. [244] propose to preserve shapes in the original image
based on HS and first and second-order derivatives. Wang et al. [245] present
an approach that uses an a priori value on the histogram, so as to maximize the
entropy of the output image produced. Arici et al. [246] propose a variational ap-
proach that makes a trade-off between the input image histogram and the uniform
one. In cases of discontinuity in the histogram, the addition of a smoothing term
is envisaged.
In some approaches, such as those to follow, a division the histogram specifica-
tion into sub-histogram specifications is applied. This is the case of Kim [247]
where the values of the original image are divided in order to equalize the two
sub-histograms. Chen et al. [248] propose to perform this division through the
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use of a recursive procedure. Sim et al. [249] adopt an algorithm whose division
is based on the median. Wadud et al. [250] prefer to divide the histogram into
several sub-histograms in order to obtain separate equalizations of the complete
histogram, so as to protect even the smallest characteristics of the input image.
Inspired by this same principle, Celik et al. [251] model the histogram as a set of
Gaussians. Other methods are adaptive, as the improvement occurs locally, and in
this regard, please refer to what is described in [252]-[255]. As regards the division
techniques, for further details it is advisable to refer to the contents in [256].
A common difficulty to all techniques that can be traced back to histograms is
that relating to the rigorous and meaningful ordering of pixel values. When this
difficulty disappears, HS can be performed in a simple way, as for example de-
scribed in [257]. Therefore, various methods have been implemented in order to
obtain meaningful orderings such as the local average ordering [258], the wavelet-
based ordering [259], the variational approach based on the minimization of a fully
smoothed `1-TV functional [257, 260] and its corresponding fast version discussed
in [261]. It is worth mentioning that HS can also be used on the color histogram,
such as on a color image with the desired contrast, using the variational framework,
as described in [262]. Nikolova et al. in [263, 264] propose a two-phase algorithm,
composed of an initial phase of a HS of the intensity image and subsequently fol-
lowed by a hue and range preserving color adjustment. For further tools in this
regard, please refer to [265].

Spatial methods. These methods are employed in the context of histogram
approaches that modify pixel values without considering spatial constraints. The
method proposed by Boccignone [266] resorts to the use of the anisotropic diffusion
equation of Perona and Malik [21] in a multi-scale framework. Many of the spatial
methods take into account the assumptions of the Human Visual System (HVS).
In this sector the Retinex model proposed by Land et al. in [267] found widespread
approval. Taking into account that two pixels, distant from each other but both
having the same intensity value, are perceived by a human being as two pixels with
different intensities, it is possible to clarify what has just been stated through the
example shown in the Fig. 2.18, which reports the experiments of the Checker
shadow illusion of Adelson [268]. Although the two squares A and B have the
same intensity value, their gray levels are perceived as different by the HVS. The
proposed method is based on this impediment, the objective of which is to obtain
an improvement in the contrast of the image by modifying the values, the darker
ones for the darker square A and the lighter ones for the darker square B become
lighter. The final result aims to achieve the objective of improving contrasts even
if the perceived intensity would be the same.
A method based on a perceptual hypothesis is the one proposed by Rizzi et al.



2.5. CONTRAST ENHANCEMENT OF COLOR IMAGES 51

(a) Checker shadow illusion of Adelson (b) Proof of illusion

Figure 2.18: Checker shadow illusion by Adelson.

[269], called Automatic Color Equalization (ACE). This approach is extended and
integrated with a variational model by Bertalmio et al. [284]. The method is
subsequently generalized for a larger class of functionals thanks to Palma-Amestoy
et al. [270] and implemented in [271]. The contribution of Provenzi et al. [272]
aims to reduce the computation time, proposing to work in the wavelet domain.
Some connections between these works and the Retinex model have been studied
and illustrated in [273].

Variational contrast enhancement of gray-scale and RGB images. In
this context, the method proposed by Pierre et al. [276] provides an enhancement
of the gray values in an image, as well as the following benefits:

• intuitive contrast level control,
which is obtained through the intuitive setting of a parameter;

• choice of spatial contrast scale,
which consists in the possibility of being able to choose a spatial scale defined
by the user based on its application, in order to obtain a reliable improve-
ment;

• slight histogram change,
as the proposed method does not strongly modify the histogram of the origi-
nal image, thus allowing the global illumination conditions to be safeguarded;
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• the tone of the original image is almost maintained,
the tone of the output image must be as close as possible to that of the input
image, and in fact the tone does not change with changes in lighting.

Numerical Experiments

This section reports the results obtained through numerical experiments relating
to the algorithm, which are conducted with the aid of MATLAB. These tests are
carried out on a sample of color images and compared with current methods.
The values chosen to carry out these tests are: λ = 100, µ = 1, α = 100, β = 500,
σ = 5.10−5, τ = 5.10−9 and a number of iterations equal to 103. As for the
polynomial approximation, Bernstein polynomials of degree 9 are used. The size
of the Gaussian kernel used for C depends on the size of the image. During the
experiments phase the chosen value is equal to min(M,N)/20. This dimension
manages the scale of the contrast enhancement.
By illustrating various images shown below in Fig. 2.19, it is possible to make a
visual comparison based on various equalization implementation methods: Gimp,
the algorithm of Nikolova et al. [261, 264] with implementation [265], the method
of Bertalmio et al. [284] and the one of Ferradans et al. [271], of Pierre et al. [276]
which produces good results in all these cases.
From each single image shown in the Fig. 2.19, it is possible to note that, for
the image Jupiter the Gimp, [284] and [271] methods modify the histogram thus
generating a peak corresponding to the background of the image and therefore
these methods are not effective for this type of images. [276] does not make any
changes to the histogram and therefore also leaves the background of the image
itself unchanged.
As for the second image where there is a Chandelier, the Gimp, [284] and [271]
methods modify the color of the ceiling due to the lack of preservation of the shade.
Instead, the [264] and [276] methods return an image with a hue that is almost
faithful to the original one.
In the third image showing the Sunrise, the results proposed by the various meth-
ods produce over-contrasted results, in particular near the sun. However, by ap-
plying [276] more satisfactory results are obtained as it is even possible to clearly
see the building in the center of the image.
The next image, the Iris, when treated with the Gimp methods, [271, 284] pro-
duce an image with a purple background due to the hue modification, while [264]
respects the key. Instead, the [276] algorithm manages to maintain the contrast
level and hue, and it is also able to highlight the visibility of the leaf veins.
Finally, analyzing the image relating to the Cathedral, it is possible to notice that
each method produces different but still improving results. It should be noted that
current methods focus on improving the details in the foreground, while [276] aims
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Original Gimp [264] [284] [271] [276]

Figure 2.19: Comparison of enhancement results with those obtained by the algo-
rithms of the Gimp histogram equalization, of Nikolova et al., of Bertalmio et al.,
of Ferradans et al. and Pierre et al. which produces good results in all these cases.

to strengthen the quality of the background. Likewise, the perception of lighting
is also different in different approaches. In fact, in all approaches you have the
sensation that the light source comes from behind the photographer, while [276]
preserves the sensation of light and shadows in the scene, thanks to the contrast
enhancement scale which allows you to recover various details.
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Chapter 3

Variational model with
nonstandard growth condition in
image restoration and contrast
enhancement

3.1 Introduction

A very promising approach to image quality enhancement is to reduce the influ-
ence of noise and improve the perceptibility of objects in the scene by increasing
the brightness difference between objects and their background. In recent years,
many contrast enhancement techniques have been proposed for digital images.
Some approaches allow to improve image contrast just in low light conditions
[274, 275]. Other methods, called sharpening, focus on enforcing strong contours
to remove the obtained blur, e.g., by Gaussian convolution [40]. However, this
kind of enhancement concerns only strong image contours while the contrast en-
hancement attempts to modify the grey level of objects not only in the contours
neighbourhood. In recent years, many different techniques have been proposed for
the reconstruction of noise-affected digital images and their contrast enhancement.
In [276], the authors focus on the problem of contrast enhancement of natural im-
ages captured with a digital camera, and give a sufficiently complete overview of
the existing methods with detailed analysis of all pros and cons.

In this chapter [277], we mainly focus on the development of a variational
approach for simultaneous contrast enhancement of color images and their denois-
ing. With that in mind, it is proposes a new variational model in Sobolev-Orlicz
spaces with non-standard growth conditions of the objective functional and there
is a discussion of its applications to the simultaneous fusion and denoising of each
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spectral channel for input color images. In contrast to [278], it is not provided the
color image restoration using saturation-value Total Variation, but instead, the
RGB representation of color images is considered. However, as follows from the
results of numerical simulations, the proposed approach does not strongly modify
the histogram of the original image. This enables the model to preserve the global
lighting sensation and to show that the hue of the main objects does not drasti-
cally change with the illumination. One of the most important advantages of this
approach is the fact that the proposed model allows to synthesize at a high level
of accuracy noise- and blur-free color images, that were captured in extremely low
light conditions. This situation is typical for most remote sensing problems. In-
deed, real-life satellite images frequently suffer from different types of noise, blur,
and other atmosphere artefacts that can affect the radiation recovered by the sen-
sors. As a result, such images lose their efficiency for the crop field monitoring
problems and their utilization can lead to erroneous results and inferences.

The characteristic feature of the proposed model is that there is a constrained
minimization problem with a special objective functional that lives in variable
Sobolev-Orlicz spaces. This functional contains a spatially variable exponent char-
acterizing the growth conditions and it can be seen as a replacement for the 1-norm
in TV regularization. Moreover, the variable exponent, which is associated with
non-standard growth, is unknown a priori and it depends on a particular function
that belongs to the domain of objective functional.

The idea of using a spatially varying exponent in a TV-like regularization
method for image denoising dates back as early as 1997 [217] and it was put into
practice in 2006 [220]. Both papers as well as some subsequent articles try to
tackle variants of the problem

J(u) = D(u) + λ

∫
Ω

|∇u(x)|p(∇u(x)) dx −→ inf, (3.1)

where the exponent depends directly on the image u, e.g.,

p(∇u) = 1 +
a2

a2 + |∇Gσ ∗ u|2
. (3.2)

Here, (Gσ ∗ v) (x) determines the convolution of function v with the 2-dimensional
Gaussian filter kernel Gσ.

It has been demonstrated that this model possesses some favourable proper-
ties, particularly when edge preservation and effective noise suppression are pri-
mary goals in image reconstruction. Furthermore, this model has been introduced
specifically to address the issue of staircasing [279], which refers to the regularizer’s
inclination towards piecewise constant functions. The appearance of the staircase
effect is a notable drawback of the classical TV model. However, the non-convex
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model (3.1) did not gain significant attention for a long period due to its high
numerical complexity and the absence of a rigorous mathematical substantiation
of its consistency. Only particular solutions to this problem have been derived
for a smoothed version of the integrand, using a weak notion of solution (see, for
instance, [280]).

A recently developed alternative variant is the TV-like method [281] (see also
[282, 283]), which computes the variable exponent p in an offline step and keeps
it as a fixed parameter in the final optimization problem This approach allows
the exponent to vary based on spatial location, enabling users to locally select
whether to preserve edges or smooth intensity variations. However, there are only
two natural types of imaging problems where this approach can be applied:

• single-channel imaging where first the exponent is computed from the given
data and then is applied as prior in the subsequent minimization problem;

• dual-channel imaging where the secondary channel provides the exponent
map that is used for regularization of the primary channel.

Thus, this circumstance imposes significant limitations from a practical point of
view, especially in the case of multi-spectral satellite noisy images, where different
channels can differ drastically.

The main purpose of this chapter is to describe a robust approach for the
simultaneous contrast enhancement and denoising of non-smooth multispectral
images using an energy functional with nonstandard growth, in particular a special
form of anisotropic diffusion tensor for the regularization term and a term which
is inspired by the variational model of Bertalmio et al. [284]. Following this
approach, the aim is to increase the perceptibility of objects in the scene and the
noise robustness of the proposed model albeit it makes such variational problems
completely non-smooth, non-convex, and, hence, significantly more difficult from
a minimization point of view.

It is proposed a variational problem for the energy functional with nonstandard
growth p(x), where the principle edge information for the contrast enhancement
is mainly accumulated. Namely, for the simultaneous denoising and contrast en-
hancement of color images, the aim is to solve the following constrained minimiza-
tion problems

Ji(f
0
i ) = inf

v∈Ξi
Ji(v), i = 1, 2, 3 , (3.3)

for each spectral channel of an input image separately, where the objective func-
tional is non-convex and takes the form

Ji(v) =

∫
Ω

|Rη∇v(x)|p(|∇v|) dx+Qi(v). (3.4)
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Here, Qi(v) stands for the fidelity term and its specific form is described in detail
in Section 3.3 together with the operator Rη. The principle point that should be
emphasized is the fact that the exponent p(x) is not predefined a priori using for
that the original image, but instead, it si taken as

p(∇u) = 1 +
a2

a2 + |∇u|2
. (3.5)

So, in contrast to the well-known approach, coming from the pioneering papers
[285, 23], the principle difference of the models (3.5) and (3.2) is that in (3.5) there
is not any spatial regularization of gradient ∇u. Because of this, the model (3.3)–
(3.4) becomes an ill-posed problem from the mathematical point of view and can
produce many unexpected phenomena. In particular, to the best knowledge, there
are no results of the existence and consistency of the optimization problem (3.3)–
(3.4). To overcome this problem, some regularization of the variable exponent p(x)
in the form like (3.2) is applied.

However, it is well-known that optimization problem (3.3)–(3.4) with the spa-
tially regularized gradient has several serious practical and theoretical difficulties.
The first one is that the spatial regularization of the gradient in the form (3.2) leads
to the loss of accuracy in the case when the signal is noisy, with white noise (see,
for instance, [23]). Then the noise introduces very large, in theory unbounded,
oscillations of the gradient ∇u. As a result, the conditional smoothing introduced
by the model does not help, since all these noise edges are kept.

The second drawback of the model with the regularized gradient is the fact that
the space-invariant Gaussian smoothing inside the divergent term tends to push
the edges in u away from their original locations. We refer to [286] where this issue
is studied in detail. This effect, known as edge dislocation, can be detrimental,
especially in the context of the boundary detection problem and its application to
remote sensing and monitoring.

In view of this, the main interest is to study the optimization problem (3.3)–
(3.4) without the space-invariant Gaussian smoothing of the variable exponent
p(x). In summary, the main contributions of the research activity are enumerated
as follows:

• The variational statement for the simultaneous contrast enhancement and
denoising of multispectral images in the form of minimization problem in
Sobolev-Orlicz spaces with non-standard growth conditions of the objective
functional.

• Rigorous substantiation of the well-posedness of the variational problem with
non-standard growth functional.

• The proof of existence results to the approximation variational problems.
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• The iterative algorithm for numerical implementations.

• Derivation of the first order necessary conditions for the original problem
and their substantiation.

• Numerical experiments to study the performance of the new approach.

The remainder of the chapter is organized as follows: In Section 3.2 there
are preliminaries and some auxiliaries results. In Section 3.3 a novel variational
problem for the denoising and contrast enhancement of non-smooth RGB images,
which can be viewed as an improved version of the variational model that has
been recently proposed in [287], is presented. Section 3.4 is devoted to the deriva-
tion of optimality conditions to the original problem and their substantiation. In
Section 3.5, there is the discussion of the possible ways for the relaxation of the
minimization problem and its approximation. Specifically, it is introduced a fam-
ily of special minimization problems and it is show that each of these problems
is solvable and their solutions are compact in an appropriate topology. Their ap-
proximating properties are discussed and convergence criterion of such sequence
to an optimal solution of the original problem is provided. Finally, for illustration,
some results of numerical experiments are in Section 3.6.

3.2 Preliminaries

Let us recall some useful notations. For vectors ξ ∈ R2 and η ∈ R2, (ξ, η) = ξtη
denotes the standard vector inner product in R2, where t stands for the transpose
operator. The norm |ξ| is the Euclidean norm given by |ξ| =

√
(ξ, ξ). Let Ω ⊂

R2 be a bounded open set with a Lipschitz boundary ∂Ω and nonzero Lebesgue
measure. For any subset E ⊂ Ω we denote by |E| its 2-dimensional Lebesgue
measure L2(E). Let E denote the closure of E, and ∂E stands for its boundary.
Let Ω ⊂ R2 be a bounded connected open set with a sufficiently smooth boundary
∂Ω.

3.2.1 Functional spaces

For the convenience of the reader, we collect here the basic facts on functional
spaces that will be used in the sequel. Let X denote a real Banach space with norm
‖ · ‖X , and let X ′ be its dual. Let 〈·, ·〉X′;X be the duality form on X ′ ×X. By ⇀

and
∗
⇀ we denote the weak and weak∗ convergence in normed spaces, respectively.

For given 1 ≤ p ≤ +∞, the space Lp(Ω;R2) is defined by

Lp(Ω;R2) =
{
f : Ω→ R2 : ‖f‖Lp(Ω;R2) < +∞

}
,
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where ‖f‖Lp(Ω;R2) =
(∫

Ω
|f(x)|p dx

)1/p
for 1 ≤ p < +∞. The inner product of two

functions f and g in Lp(Ω;R2) with p ∈ [1,∞) is given by

(f, g)Lp(Ω;R2) =

∫
Ω

(f(x), g(x)) dx =

∫
Ω

2∑
k=1

fk(x)gk(x) dx.

We denote by C∞c (R2) a locally convex space of all infinitely differentiable
functions with compact support in R2. We recall here some functional spaces that
will be used. We define the Banach space H1(Ω) as the closure of C∞c (R2) with
respect to the norm

‖y‖H1(Ω) =

(∫
Ω

(
y2 + |∇y|2

)
dx

)1/2

.

We denote by (H1(Ω))
′

the dual space of H1(Ω). Hereinafter, W 1,1(Ω) stands for
the Banach space of all functions u ∈ L1(Ω) with respect to the norm

‖u‖W 1,1(Ω) = ‖u‖L1(Ω) + ‖∇u‖L1(Ω)2 .

Given a real Banach space X, we will denote by C([0, T ];X) the space of all
continuous functions from [0, T ] into X. We recall that a function u : [0, T ]→ X is
said to be Lebesgue measurable if there exists a sequence {uk}k∈N of step functions
(i.e., uk =

∑nk
j=1 a

k
jχAkj for a finite number nk of Borel subsets Akj ⊂ [0, T ] and with

akj ∈ X) converging to u almost everywhere with respect to the Lebesgue measure
in [0, T ].

Then for 1 ≤ p < ∞, Lp(0, T ;X) is the space of all measurable functions
u : [0, T ]→ X such that

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖pX dt
) 1

p

<∞,

while L∞(0, T ;X) is the space of measurable functions such that

‖u‖L∞(0,T ;X) = sup
t∈[0,T ]

‖u(t)‖X <∞.

A full presentation of this topic can be found in [288].
Let us recall that, for 1 ≤ p ≤ ∞, Lp(0, T ;X) is a Banach space. Moreover, if

X is separable and 1 ≤ p <∞, then the dual space of Lp(0, T ;X) can be identified
with Lp

′
(0, T ;X ′).
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3.2.2 Basic facts on the Lebesgue and Sobolev spaces with
variable exponents

Let p : Ω → [p−, p+] ⊂ (1,+∞), with p± = const, be a given measurable func-
tion. Denote by Lp(·)(Ω) the set of all measurable functions f(x) on Ω such that∫

Ω
|f(x)|p(x) dx < ∞. Then Lp(·)(Ω) is a reflexive separable Banach space with

respect to the Luxemburg norm

‖f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Moreover, in this case the set C∞0 (Ω) is dense in Lp(·)(Ω). The relation between
the modular

∫
Ω
|f(x)|p(x) dx and the norm follows from the definition

min
{
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

}
≤
∫

Ω

|f(x)|p(x) dx ≤ max
{
‖f‖p

−

Lp(·)(Ω)
, ‖f‖p

+

Lp(·)(Ω)

}
.

(3.6)
If p(·) = const > 1 then these inequalities transform into equalities. The following
estimates are also well-known (see, for instance, [289, 290]): if f ∈ Lp(·)(Ω) then

‖f‖Lp− (Ω) ≤ (1 + |Ω|)1/p− ‖f‖Lp(·)(Ω), (3.7)

‖f‖Lp(·)(Ω) ≤ (1 + |Ω|)1/(p+)
′
‖f‖Lp+ (Ω), (p+)

′
=

p+

p+ − 1
, ∀ f ∈ Lp+

(Ω),

(3.8)

‖f‖p
−

Lp(·)(Ω)
− 1 ≤

∫
Ω

|f(x)|p(x) dx ≤ ‖f‖p
+

Lp(·)(Ω)
+ 1, ∀ f ∈ Lp(·)(Ω). (3.9)

The next result can be viewed as an analogous of the Hölder inequality in
Lebesgue spaces with variable exponents: If f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω) with

p(x) ∈ [p−, p+] ⊂ (1,+∞), p′(x) =
p(x)

p(x)− 1
,

then (f, g) ∈ L1(Ω) and∫
Ω

(f, g) dx ≤
(

1

p−
+

1

(p′)−

)
‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω) ≤ 2‖f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω).

(3.10)
Let p1(·) and p2(·) be measurable on Ω functions such that pi(x) ∈ [p−i , p

+
i ] ⊂

(1,+∞) a.e. in Ω. In case p1(x) ≥ p2(x) a.e. in Ω, the inclusion Lp1(·)(Ω) ⊂
Lp2(·)(Ω) is continuous and

‖u‖Lp2(·)(Ω) ≤ C‖u‖Lp1(·)(Ω), ∀u ∈ Lp1(·)(Ω) (3.11)
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with a constant C = C(|Ω|, p±1 , p±2 ).
The variable Sobolev space W 1,p(·)(Ω) is defined as the set of functions

W 1,p(·)(Ω) :=
{
u ∈ W 1,1(Ω) ∩ Lp(·)(Ω) : |∇u(x)|p(x) ∈ L1(Ω)

}
equipped with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω;RN ). (3.12)

Unlike classical Sobolev spaces, smooth functions are not necessarily dense in
W 1,p(·)(Ω). Therefore, we define H1,p(·)(Ω) as the closure of the set C∞(Ω) in
W 1,p(·)(Ω)-norm.

Let C log(Ω) be the set of functions continuous on Ω with the logarithmic mod-
ulus of continuity, i.e.

|p(x1)− p(x2)| ≤ ω(|x1 − x2|), (3.13)

where ω ≥ 0 satisfies the condition: lim sup
τ→0+

ω(τ) log
1

τ
= C < +∞, C = const. It is

well-known that for p ∈ C log(Ω) the set C∞(Ω) is dense in W 1,p(·)(Ω) and the space
W 1,p(·)(Ω) coincides with the closure of C∞(Ω) with respect to the norm (3.12),
i.e. in this case W 1,p(·)(Ω) = H1,p(·)(Ω). In particular, if there exists δ ∈ (0, 1] such
that p ∈ C0,δ(Ω), then the set C∞(Ω) is dense in W 1,p(·)(Ω). Indeed, since

lim
t→0
|t|δ log(

1

|t|
) = 0 with δ ∈ (0, 1],

it follows from the Hölder continuity of p(·) that

|p(x)− p(y)| ≤ C|x− y|δ ≤ ω(|x− y|) sup
x,y∈Ω

[
|x− y|δ log(|x− y|−1)

]
≤ C ′ω(|x− y|), ∀x, y ∈ Ω,

with ω(t) = C/ log(|t|−1).

Let p(·), q(·) ∈ C(Ω) be such that p(x) ∈ [p−, p+] ⊂ (1, 2] and q(x) < 2p(x)
2−p(x)

in

Ω. Then the embedding W 1,p(·)(Ω) ⊂ Lq(·)(Ω) is continuous and compact. More-
over, according to (3.11), we have a continuous embedding W 1,p(·)(Ω) ⊂ W 1,p−(Ω).

For a more detailed presentation of the theory of these spaces, we refer to the
monograph [289].

3.2.3 On the dual Sobolev space H−1(Ω)

Let H1
0 (Ω) be the standard Sobolev space, i.e. H1

0 (Ω) is the closure of C1
0(Ω) with

respect to the norm

‖u‖H1
0 (Ω) =

(∫
Ω

|∇u(x)|2 dx
) 1

2

.
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It is well-known that for any u∗ ∈ H−1(Ω) there can be found a vector-function
g = [g1, g2] in L2(Ω;R2) such that

〈u∗, u〉H−1(Ω);H1
0 (Ω) =

∫
Ω

(g,∇u)R2 dx =

∫
Ω

[
g1
∂u

∂x1

+ g2
∂u

∂x2

]
dx.

Therefore, it is clear now that

‖u∗‖H−1(Ω) ≤

√∫
Ω

(g2
1(x) + g2

2(x)) dx. (3.14)

On the other hand, due to the Lax-Milgram Theorem, the Dirichlet boundary
value problem

−∆y = u∗ in Ω, y = 0 on ∂Ω, (3.15)

has a unique solution y = (−∆)−1u∗ ∈ H1
0 (Ω) for each u∗ ∈ H−1(Ω). Moreover, in

view of the energy equality∫
Ω

(∇y,∇y)R2 dx = ‖∇y‖2
L2(Ω;R2) = ‖y‖2

H1
0 (Ω) = 〈u∗, y〉H−1(Ω);H1

0 (Ω) , (3.16)

which holds for the weak solution of Dirichlet problems (3.15), we can deduce the
following a priori estimate for the weak solution of Dirichlet problem (3.15)

‖y‖H1
0 (Ω) ≡ ‖(−∆)−1u∗‖H1

0 (Ω) ≡ ‖∇(−∆)−1u∗‖L2(Ω;R2) ≤ ‖u∗‖H−1(Ω).

Combining this result with (3.14), we get

‖∇(−∆)−1u∗‖L2(Ω;R2) ≤ ‖u∗‖H−1(Ω) ≤

√∫
Ω

(g2
1(x) + g2

2(x)) dx

by (3.16)
=

√∫
Ω

|∇y|2R2 dx = ‖∇y‖L2(Ω;R2) = ‖y‖H1
0 (Ω) = ‖∇(−∆)−1u∗‖L2(Ω;R2).

(3.17)

Hence, the norm in H−1(Ω) can be defined as follows

‖u∗‖H−1(Ω) = ‖∇(−∆)−1u∗‖L2(Ω;R2). (3.18)

3.2.4 Level sets, directional gradients, and texture indexes

Let u : Ω→ R be a given function. Then for each λ ∈ R we can define the upper
level set of u as follows

Zλ(u) = {u ≥ λ} := {x ∈ Ω : u(x) ≥ λ} .



64 CHAPTER 3. RESTORATION AND CONTRAST ENHANCEMENT

To describe this set, we assume that u ∈ W 1,1(Ω). It was proven in [291] that
if u ∈ W 1,1(Ω) then its upper level sets Zλ(u) are sets of finite perimeter. So,
the boundaries of level sets can be described by a countable family of Jordan
curves with finite length, i.e., by continuous maps from the circle into the plane
R2 without crossing points. As a result, at almost all points of almost all level
sets of u ∈ W 1,1(Ω) we may define a unit normal vector θ(x). This vector field
formally satisfies the following relations

(θ,∇u) = |∇u| and |θ| ≤ 1 a.e. in Ω.

In the sequel, we will refer to θ as the vector field of unit normals to the topographic
map of a function u.

If θ ∈ L∞(Ω,R2) is a vector field of unit normals to the topographic map of
some function u(·), then for any function v ∈ W 1,1(Ω) we can define the so-called
directional gradient of v following the rule (see [218, 219])

Rη∇v := ∇v − η2 (θ,∇v) θ, (3.19)

where η ∈ (0, 1) is a given threshold. Since, for each function v ∈ W 1,1(Ω), the
expression Rη∇v can be reduced to (1 − η2)∇v in those places of Ω where ∇v is
collinear to the unit normal θ, and to ∇v if ∇v is orthogonal to θ, we have the
following estimate

(1− η2)|∇v| ≤ |Rη∇v| ≤ |∇v| in Ω. (3.20)

In what follows, with each function u ∈ W 1,1(Ω), we associate the so-called
texture index p(|∇u|) using the rule (see [292, 293, 294] for comparison)

p(s) = 1 + δ +
a2(1− δ)
a2 + s2

, ∀ s ∈ [0,+∞), (3.21)

where 0 < δ � 1 is a given threshold. It is clear now that

p(|∇u|) ∈ [p−, p+] ⊂ (1, 2] almost everywhere in Ω with p− = 1 + δ and p+ = 2
(3.22)

for each u ∈ W 1,1(Ω).

3.3 Statement of the problem

In this section, we present a novel variational problem for the denoising and con-
trast enhancement of non-smooth RGB images which can be viewed as an improved
version of the variational model recently proposed in [287].
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Let f = [f1, f2, f3]t ∈ L2(Ω;R3) be an original color image. Let θ = θ(fi) =[
θ1
θ2

]
∈ L∞(Ω,R2) be a vector field of unit normals to the topographic map of the

spectral channel fi,

|θ(x)| ≤ 1 and (θ(x),∇fi(x)) = |∇fi(x)| a.e. in Ω. (3.23)

This vector field can be defined by the rule θ(x) = ∇U(t,x)
|∇U(t,x)| with t > 0 small enough,

where U(t, x) is a solution of the following initial-boundary value problem

∂U

∂t
= div

(
∇U

|∇U |+ κ

)
, t ∈ (0,+∞), x ∈ Ω, (3.24)

U(0, x) = fi(x), x ∈ Ω, (3.25)

∂U(t, x)

∂ν
= 0, t ∈ (0,+∞), x ∈ ∂Ω (3.26)

with a relaxed version of the 1D-Laplace operator in the principle part of (3.24).
Here, κ > 0 is a sufficiently small positive value.

Let η ∈ (0, 1) be a given threshold. Taking into account the definition of the
Directional Total Variation (see [218]), we define the linear operator Rη : R2 → R2

as follows
Rη∇v := ∇v − η2 (θ,∇v) θ, ∀ v ∈ W 1,1(Ω). (3.27)

Since Rη∇v reduces to (1 − η2)∇v in those regions where the gradient ∇v is co-
linear to θ, and to ∇v, where ∇v is orthogonal to θ, this operator does not enforce
gradients in the direction θ.

Remark 3.3.1. In the sequel, to reduce the number of parameters in the proposed
model, we will set δ = κ in (3.24) and (3.21), and η = 1− κ in (3.19).

We also introduce the following set

Ξi =

I ∈ H1,p(|∇I|)(Ω) ∩ L∞(Ω)

∣∣∣∣∣∣
γi,0 ≤ I(x) ≤ γi,1 a.e. in Ω,

γi,0 = infx∈Ω fi(x),
γi,1 = supx∈Ω fi(x),

 (3.28)

where p(·) is given by (3.21), and H1,p(|∇I|)(Ω) is the variable Sobolev space that
can be defined as follows

H1,p(|∇I|)(Ω) := cl‖·‖
W1,p(|∇I|)(Ω)

C∞0 (R2). (3.29)

Further, for a given gray-scale image I ∈ L2(Ω), we define its average local
contrast measure D(I) as follows (for comparison, we refer to [276])

D(I) =

∫
Ω

∫
Ω

W (x, y)

√
κ2 + |I(x)− I(y)|2 dxdy, (3.30)
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where κ > 0 is the same parameter as in (3.24), and W ∈ L2(Ω×Ω) is a symmetric
non-negative kernel such that∫

Ω

W (x, y) dx = 1, ∀ y ∈ Ω.

A typical example of this function is the Gaussian kernel,

W (x, y) =
1√
2πσ

exp

(
−|x− y|

2

2σ2

)
, σ > 0.

As a result, the proposed variational approach for the contrast enhancement
and denoising of color images can be stated as follows:

For each spectral channel fi, (i = 1, 2, 3), of a given image f =
[f1, f2, f3]t ∈ L2(Ω;R3), we generate a new one f 0

i ∈ L2(Ω) as a so-
lution of the following constrained minimization problem

Ji(f
0
i ) = inf

v∈Ξi
Ji(v), (3.31)

where

Ji(v) =

∫
Ω

|Rη∇v(x)|p(|∇v|) dx+
µ

2
‖v − fi‖2

H−1(Ω) +
λ

4
[D(v)− cD(fi)]

2 .

(3.32)
Here, λ > 0 and µ ∈ (0, 1) are tuning parameters. The parameter λ
manages the trade-off between the fidelity term µ

2
‖v − fi‖2

H−1(Ω) and

the contrast term λ
4

[D(v)− cD(fi)]
2. As for the multiplier c > 0, we

always suppose that c > 1 and it provides a control of the contrast
level expected for the result.

Before proceeding further, we provide some qualitative analysis of the vari-
ational problem (3.31)-(3.32). To begin with, we notice that, for each feasible
solution v ∈ Ξ, the following two-sides estimate

p+ = 2 ≥ p(|∇v|) > 1 + δ =: p−, for a.a. x ∈ Ω (3.33)

holds with 0 < δ � 1. Moreover, since η ∈ (0, 1) and η � 0, we see that

(1− η2)|∇v| ≤ |Rη∇v| ≤ |∇v| in Ω, (3.34)∫
Ω

|Rη∇v(x)|p(|∇v|) dx ≥
∫

Ω

(1− η2)p(|∇v|)|∇v(x)|p(|∇v|) dx

≥ (1− η2)2

∫
Ω

|∇v(x)|p(|∇v|) dx, ∀ v ∈ W 1,p(|∇v|)(Ω).

(3.35)
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As a result, ∀ v ∈ Ξi, we have

‖v‖p
−

W 1,p(|∇v|)(Ω)
=
(
‖v‖Lp(|∇v|)(Ω) + ‖∇v‖Lp(|∇v|)(Ω;R2)

)p−
≤ C

(
‖v‖p

−

Lp(|∇v|)(Ω)
+ ‖∇v‖p

−

Lp(|∇v|)(Ω;R2)

)
by (3.9)

≤ C

(∫
Ω

|v(x)|p(|∇v|) dx+

∫
Ω

|∇v(x)|p(|∇v|) dx+ 2

)
≤ C

(
|Ω|γ2

i,1 +

∫
Ω

|∇v(x)|p(|∇v|) dx+ 2

)
by (3.35)

≤ C

(
|Ω|γ2

i,1 + 2 +
1

(1− η2)2

∫
Ω

|Rη∇v(x)|p(|∇v|) dx
)

≤ C

(
|Ω|γ2

i,1 + 2 +
1

(1− η2)2
Ji(v)

)
. (3.36)

Thus, the first term in the cost functional (3.32) can be considered as a reg-
ularizing term. As for the second term in (3.32), we make use of the following
observation.

Remark 3.3.2. The model (3.32) is aimed not only at the contrast enhancement,
but also to remove the additive noise in the so-called structured images, i.e. in im-
ages where the portion of high oscillatory edges is rather significant. In most cases,
the satellite images with crop fields typically contain many high oscillatory edges
(boundaries of the crop locations). Moreover, the portion of noise in such images
can be different from channel to channel. Because of this, an important question
is to separate pure noise from high oscillatory edges in each spectral channel. To
handle this problem, Y. Meyer [295] suggested to replace the standard L2-fidelity
term µ

2
‖v − fi‖2

L2(Ω), which is a typical component in the standard denoising mod-
els, by a weaker norm. As a plausible option of such weakening, Lieu and Vese
[296] (see also Schönlieb [297]) have proposed to involve H−1(Ω)-norm instead of
‖ · ‖L2(Ω). Thus, from this point of view, it is plausible to interpret the second term
in (3.32) as the fidelity term.

Before we move on to the existence issues, we make use of the following result
concerning the lower semicontinuity property of the modular

∫
Ω
|f(x)|p(x) dx with

respect to the weak convergence in Lpk(·)(Ω). The proof of this assertion has
been mainly inspired by the elegant proof of Lemma 1 in [298] (see also [299,
Lemma 13.3] for comparison).

Proposition 3.3.1. Let {pk}k∈N ⊂ [p−, p+] be a given sequence such that

pk(x)→ p(x) almost everywhere in Ω as k →∞. (3.37)
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Let
{
vk ∈ W 1,pk(·)(Ω)

}
k∈N be a sequence such that

∇vk ⇀ ∇v weakly in L1(Ω;R2), (3.38)∥∥|∇vk(·)|pk(·)∥∥
L1(Ω)

≤ C for some positive constant C not depending on k,

(3.39)

and let Rη : R2 → R2 be the operator defined in (3.27) with some θ ∈ L∞(Ω,R2).
Then ∇v ∈ Lp(·)(Ω; ;R2) and

lim inf
k→∞

∫
Ω

|Rη∇vk(x)|pk(x) dx ≥
∫

Ω

|Rη∇v(x)|p(x) dx. (3.40)

Proof. By Young’s inequality we have for ξ, ζ ∈ R2 and 1 < p <∞,

(ξ, ζ) ≤ |ξ||ζ| ≤ |ξ|p +
|ζ|p′

p′pp′/p
,

1

p
+

1

p′
= 1. (3.41)

If now ζ is a function in L∞(Ω;R2) and we make p = pk in (3.41) and use the
assumption p− ≤ pk(x) ≤ p+ for all k ∈ N, then we derive∫

Ω

(
(Rη∇vk, ζ)− |ζ|p′k(x)

p′k(x)pk(x)p
′
k(x)/pk(x)

)
dx ≤

∫
Ω

|Rη∇vk|pk(x) dx. (3.42)

Using (3.27) and assumptions (3.37) and (3.38), we can pass to the limit in (3.42)
as k →∞. As a result, we have∫

Ω

(
(Rη∇v, ζ)− |ζ|p′(x)

p′(x)p(x)p′(x)/p(x)

)
dx ≤ lim inf

k→∞

∫
Ω

|Rη∇vk|pk(x) dx := L. (3.43)

Then we consider the following function:

ζ :=
Rη∇v
|Rη∇v|

p(x)|Rη∇v|
1

p′(x)−1
n , with |Rη∇v|n := max {|Rη∇v|, n} , n > 0.

Inserting this function ζ into (3.43), we get∫
Ω

(
|Rη∇v|p(x)|Rη∇v|

1
p′(x)−1
n − |Rη∇v|

p′(x)

p′(x)−1
n

p(x)

p′(x)

)
dx ≤ L.

This implies ∫
Ω

|Rη∇v|
1

p′(x)−1
+1

n dx ≤ L.
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Since 1
p′(x)−1

+ 1 = p(x), it follows that∫
Ω

|Rη∇v|p(x)
n dx ≤ L. (3.44)

To conclude the proof, it remains to notice that the announced inequality (3.40)
follows by letting n → ∞ in (3.44). As for the inclusion ∇v ∈ Lp(·)(Ω;R2) it is a
direct consequence of assumption (3.39) and estimate (3.34).

Before proceeding to the existence issues, we provide, in the next section, a
formal analysis of the optimality system for the problem (3.31)–(3.32).

3.4 Optimality conditions

Let f 0
i ∈ Ξi, with i = 1, 2, 3, be a point of local minimum in the problem (3.31)–

(3.32), i.e., there exists a positive value τ > 0 such that

Ji(f
0
i )− Ji(v) ≤ 0, ∀ v ∈ Ξ s.t. ‖v − f 0

i ‖W 1,p− (Ω) < τ. (3.45)

For simplicity, we assume that the two-side inequality

γi,1 < f 0
i (x) < γi,2

holds almost everywhere in Ω. Then condition (3.45) can be rewritten as follows:
for any smooth function ϕ ∈ C∞(Ω), the inequality

Ji(f
0
i )− Ji(f 0

i + σϕ) ≤ 0 for σ small enough (3.46)

holds. Hence, the scalar function

ψ(σ) := Ji(f
0
i + σϕ) =

∫
Ω

|Rη

(
∇f 0

i (x) + σ∇ϕ(x)
)
|p(|∇f0

i +σ∇ϕ|) dx

+
µ

2

∥∥f 0
i + σϕ− fi

∥∥2

H−1(Ω)
+
λ

4

[
D(f 0

i + σϕ)− cD(fi)
]2

has a minimum at σ = 0.
Thus, to characterize the given feasible solution f 0

i ∈ Ξi to optimization prob-
lem (3.31)–(3.32), we make use of the Ferma’s Theorem. To do so, we show that
the objective functional Ji(v) is Gâteaux differentiable at v = f 0

i , that is, there ex-

ists a linear bounded functional DGJi(f
0
i ) ∈

[
H1,p[∇f0

i ](Ω)
]′

= L
(
H1,p[∇f0

i ](Ω),R
)

such that

Ji
(
f 0
i + σh

)
= Ji

(
f 0
i

)
+ σDGJi(f

0
i )[h] + ri(h, σ), ∀h ∈ H1,p[∇f0

i ](Ω), (3.47)



70 CHAPTER 3. RESTORATION AND CONTRAST ENHANCEMENT

where |ri(h, σ)| = o(|σ|) as σ → 0. Then the condition 0 ∈ Argminψ(σ) can be
interpreted as

DGJi(f
0
i )[ϕ] = 0, ∀ϕ ∈ C∞(Ω). (3.48)

Keeping in mind the fact that the set of feasible solutions Ξi to the problem
(3.31)–(3.32) has an empty topological interior, we begin with the following aux-
iliary results, where F ′(u)[h] stands for the directional derivative of a functional
F : X → R at the point u ∈ X along a vector h ∈ X, i.e.,

F ′(u)[h] = lim
σ→0

F (u+ σh)− F (u)

σ
.

Proposition 3.4.1. Let f ∈ L2(Ω) be a given distribution and let

F1(u) =
1

2
‖u− f‖2

H−1(Ω), ∀u ∈ L2(Ω).

Then
F ′1(u)[h] =

(
(−∆)−1(u− f), h

)
L2(Ω)

, ∀h ∈ L2(Ω). (3.49)

Proof. The announced result immediately follows from the definition of the direc-
tional derivative and the following chain of transformations

F1(u+ σh)−F1(u)
by (3.18)

=
1

2
‖∇(−∆)−1(u+ σh− f)‖L2(Ω;R2)

− 1

2
‖∇(−∆)−1(u− f)‖L2(Ω;R2)

= σ
(
∇(−∆)−1(u− f),∇(−∆)−1h

)
L2(Ω;R2)

+ σ2 1

2
‖∇(−∆)−1h‖2

L2(Ω;R2)

= −σ
∫

Ω

div
[
∇(−∆)−1(u− f)

]
(−∆)−1h dx+ σ2 1

2
‖h‖2

H−1(Ω)

= σ

∫
Ω

(−∆)(−∆)−1(u− f)(−∆)−1h dx+ σ2 1

2
‖h‖2

H−1(Ω)

= σ
(
(−∆)−1(u− f), h

)
L2(Ω)

+ o(σ), ∀u ∈ L2(Ω).

Proposition 3.4.2. Let p : Ω → [p−, p+] ⊂ (1, 2], with p± = const, be a given
exponent and let

F̃2(u) =

∫
Ω

|∇u(x)|p(x) dx, ∀u ∈ W 1,p(·)(Ω).

Then, for each u ∈ W 1,p(·)(Ω), we have

F̃ ′2(u)[h] =

∫
Ω

p(x)
(
|∇u(x)|p(x)−2∇u(x),∇v(x)

)
dx, ∀h ∈ W 1,p(·)(Ω). (3.50)
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Proof. Let u, h ∈ W 1,p(·)(Ω) be given functions. We notice that

|∇u+ σ∇h|p − |∇u|p

σ
→ p

(
|∇u|p−2∇u,∇h

)
as σ → 0 almost everywhere in Ω. Furthermore, by convexity,

|ξ|p − |η|p ≤ 2p
(
|ξ|p−1 + |η|p−1

)
|ξ − η|,

we have∣∣∣ 1
σ

(
|∇u(x) + σ∇h(x)|p(x) − |∇u(x)|p(x)

)∣∣∣
≤ 2p(x)

(
|∇u(x) + σ∇h(x)|p(x)−1 + |∇u(x)|p(x)−1

)
|∇h(x)|

≤ const
(
|∇u(x)|p(x)−1 + |∇h(x)|p(x)−1

)
|∇h(x)|. (3.51)

Taking into account that∫
Ω

|∇u(x)|p(x)−1|∇v(x)| dx ≤ 2‖|∇u(x)|p(x)−1‖Lp′(·)(Ω)‖|∇h(x)|‖Lp(·)(Ω)

≤ 2‖|∇u(x)|p(x)−1‖Lp′(·)(Ω‖∇h(x)‖Lp(·)(Ω,R2),

and ∫
Ω

|∇h(x)|p(x) dx
by (3.9)

≤ ‖∇h‖2
Lp(·)(Ω,R2) + 1,

we see that the right hand side of inequality (3.51) is an L1(Ω)-function. Therefore,

lim
σ→0

F̃2(u+ σh)− F̃2(u)

σ
= lim

σ→0

∫
Ω

|∇u(x) + σ∇h(x)|p − |∇u(x)|p

σ
dx

=

∫
Ω

p(x)
(
|∇u(x)|p(x)−2∇u(x),∇h(x)

)
dx

by the Lebesgue-dominated convergence theorem. From this, the representation
(3.50) follows.

Proposition 3.4.3. Let p : Ω → [p−, p+] ⊂ (1, 2], with p± = const, be a given
exponent and let

F2(u) =

∫
Ω

|Rη∇u(x)|p(x) dx, ∀u ∈ W 1,p(·)(Ω),

where the linear operator Rη : R2 → R2 is defined by the rule (3.27). Then, for
each u ∈ W 1,p(·)(Ω), we have

F ′2(u)[h] =

∫
Ω

p(x)
(
|Rη∇u(x)|p(x)−2Rη∇u(x),∇h(x)

)
dx

−η2

∫
Ω

p(x)
(
|Rη∇u(x)|p(x)−2Rη∇u(x), θ(x)

)
(θ(x),∇h(x)) dx, ∀h ∈ W 1,p(·)(Ω).

(3.52)
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Proof. The representation (3.52) immediately follows from the definition of the
directional derivative and Proposition 3.4.2.

Proposition 3.4.4. Let u ∈ Ξi be a given feasible solution, let

p[∇u] := 1 + δ +
a2(1− δ)
a2 + |∇u|2

,

and let the functional F3 : W 1,1+δ(Ω)→ R be defined as follows,

F3(u) =

∫
Ω

|Rη∇v(x)|p[∇u] dx, ∀u ∈ W 1,1+δ(Ω),

where v ∈ W 1,p[∇u](Ω) is a given function. Then, for each v ∈ W 1,p[∇u](Ω) and for
all h ∈ W 1,1+δ(Ω), we have

F ′3(u)[h] = −
∫

Ω

|Rη∇v(x)|p[∇u] 2a
2(1− δ) log (|Rη∇v(x)|)

(a2 + |∇u|2)2 (∇u,∇h) dx. (3.53)

Proof. The representation (3.53) immediately follows from the definition of the
directional derivative.

Proposition 3.4.5. Let u ∈ Ξ be a feasible solution, and let

F4(u) =
λ

4
[D(u)− cD(fi)]

2 ,

where fi ∈ L2(Ω) is a given spectral channel, c = const > 1, and

D(u) =

∫
Ω

∫
Ω

W (x, y)

√
κ2 + |u(x)− u(y)|2 dxdy.

Then the directional derivative of F4 : L2(Ω) → R at the given point u along a
vector h ∈ L2(Ω) takes the form

F ′4(u)[h] = λ (D(u)− cD(If ))

∫
Ω

∫
Ω

W (x, y)
u(x)− u(y)√

κ2 + |u(x)− u(y)|2
dy

h(x) dx.

(3.54)
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Proof. The representation (3.54) immediately follows from definition of the direc-
tional derivative and the following chain of transformations

D(u+ σh)−D(u)

=

∫
Ω

∫
Ω

W (x, y)

(√
κ2 + |u(x)− u(y) + σ(h(x)− h(y))|2 −

√
κ2 + |u(x)− u(y)|2

)
dxdy

=

∫
Ω

∫
Ω

W (x, y)
|u(x)− u(y) + σ(h(x)− h(y))|2 − |u(x)− u(y)|2√

κ2 + |u(x)− u(y) + σ(h(x)− h(y))|2 +
√
κ2 + |u(x)− u(y)|2

dxdy

= σ

∫
Ω

∫
Ω

[W (x, y) +W (y, x)]
u(x)− u(y)√

κ2 + |u(x)− u(y)|2
dy

h(x) dy + o(σ2).

We are now able to show that the objective functional Ji(v) is Gâteaux differ-
entiable at v = f 0

i . With that in mind, we utilize the representation (3.32). As a
result, we see that

J ′i(f
0
i )[ϕ] =

∫
Ω

p(|∇f 0
i |)
(
|Rη∇f 0

i (x)|p(|∇f0
i |)−2Rη∇f 0

i (x),∇ϕ(x)
)
dx

− η2

∫
Ω

p(|∇f 0
i |)
(
|Rη∇f 0

i (x)|p(|∇f0
i |)−2Rη∇f 0

i (x), θ(x)
)

(θ(x),∇ϕ(x)) dx

−
∫

Ω

|Rη∇f 0
i (x)|p(|∇f0

i |)
2a2(1− δ) log (|Rη∇f 0

i (x)|)
(a2 + |∇f 0

i (x))|2)
2

(
∇f 0

i ,∇ϕ
)
dx

+ λ
(
D(f 0

i )− cD(fi)
) ∫

Ω

∫
Ω

W (x, y)
f 0
i (x)− f 0

i (y)√
κ2 + |f 0

i (x)− f 0
i (y)|2

dy

ϕ(x) dx

+

∫
Ω

[
(−∆)−1(f 0

i − fi)
]
ϕ(x) dx = 0, ∀ϕ ∈ C∞(Ω). (3.55)

Thus, J ′i(f
0
i ) : C∞(Ω)→ R is a linear functional.

Let us show that each term in (3.55) can be extended by continuity to the entire
Sobolev space H1,p(|∇f0

i |)(Ω). To this end, it is enough to establish the existence of
a constant M > 0 such that∣∣J ′i(f 0

i )[ϕ]
∣∣ ≤M‖ϕ‖

W 1,p(|∇f0
i
|)(Ω)

, ∀ϕ ∈ C∞(Ω). (3.56)

Indeed, rewriting (3.55) in the form

J ′i(f
0
i )[ϕ] = S1 + S2 + S3 + S4 + S5,
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where the one-to-one correspondence to (3.55) is preserved, we see that

|S1| ≤ ‖p‖L∞(Ω)

∫
Ω

(
|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i ,∇ϕ
)
dx

by (3.10)

≤ 2p+‖|Rη∇f 0
i |p(|∇f

0
i |)−2Rη∇f 0

i ‖Lp′(|∇f0
i
|)(Ω;R2)

‖∇ϕ‖Lp(|∇I0|)(Ω;R2)

by (3.9)

≤ 2p+

(
1 +

∫
Ω

|Rη∇f 0
i |p(|∇f

0
i |) dx

)1/(p′)−

‖ϕ‖
W 1,p(|∇f0

i
|)(Ω)

,

where p+ = 2, (p′)− = p+/(p+ − 1) = 2, and∫
Ω

|Rη∇f 0
i |p(|∇f

0
i |) dx

by (3.9)

≤ 1 + ‖∇f 0
i ‖

p+

Lp(|∇f
0
i
|)(Ω;R2)

≤ 1 + ‖f 0
i ‖2

W 1,p(|∇f0
i
|)(Ω)

< +∞

by the assumption f 0
i ∈ Ξi. Thus, there exists a constant M1 > 0 such that

|S1| ≤M1‖ϕ‖W 1,p(|∇f0
i
|)(Ω)

. (3.57)

Arguing similarly, it can be shown that a constant M2 > 0 exists such that

|S2| ≤M2‖ϕ‖W 1,p(|∇f0
i
|)(Ω)

. (3.58)

As for the third term in (3.55), we notice that

|∇f 0
i |2
| log (|∇f 0

i |) |
(a2 + |∇f 0

i |2)
2 ≤
| log (|∇f 0

i |) |
a2 + |∇f 0

i |2
< +∞ as |∇f 0

i | → ∞

by the L’Hôpital’s rule. Using similar arguments, we see that

|∇f 0
i |2
| log (|∇f 0

i |) |
(a2 + |∇f 0

i |2)
2 ≤

1

a4
|∇f 0

i |2| log
(
|∇f 0

i |
)
| < +∞ as |∇f 0

i | → 0.

Thus, we can deduce the existence of a constant M2 > 0 such that

|S2| ≤ 2a2(1− δ)

∥∥∥∥∥|Rη∇f 0
i |2
| log (|Rη∇f 0

i |) |
(a2 + |∇f 0

i |2)
2

∥∥∥∥∥
L∞(Ω)

×
∫

Ω

(
|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i ,∇ϕ
)
dx ≤M3‖ϕ‖W 1,p(|∇f0

i
|)(Ω)

. (3.59)

It remains to notice that in view of the obvious inclusions∫
Ω

W (·, y)
f 0
i (·)− f 0

i (y)√
κ2 + |f 0

i (·)− f 0
i (y)|2

dy ∈ L2(Ω),

[
(−∆)−1(f 0

i − fi)
]
∈ L2(Ω),



3.5. EXISTENCE ISSUES AND REGULARIZATION 75

the existence of constants M3 and M4 such that

|Sj| ≤Mj‖ϕ‖L2(Ω) ≤Mj‖ϕ‖W 1,p(|∇f0
i
|)(Ω)

, j = 4, 5, (3.60)

immediately follows from (3.55) and the Cauchy inequality.
Utilizing the estimates (3.57), (3.59), and (3.60), we finally arrive at the in-

equality (3.56) with M = max{M1,M2,M3,M4,M5}. Thus, the mapping ϕ 7→
J ′i(f

0
i )[ϕ] can be defined for all ϕ ∈ H1,p(|∇f0

i |)(Ω) using the density of C∞(Ω) in
H1,p(|∇f0

i |)(Ω) (see (3.29)) and the standard rule

DGJi(f
0
i )[ϕ] = lim

k→∞
DGJi(f

0
i )[ϕk],

where {ϕk}k∈N ⊂ C∞c (R2) and ϕk → ϕ strongly in H1,p(|∇f0
i |)(Ω). Hence, the

objective functional Ji(v) is Gâteaux differentiable at v = f 0
i , and

DGJi(f
0
i )[h] = J ′(f 0

i )[h], ∀h ∈ H1,p(|∇f0
i |)(Ω).

To get the final relations for optimality conditions, it remains to observe that
identity (3.55) implies the following equalities in the sense of distributions

− div
[
p(x)|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i

]
+η2 div

[
p(x)

(
|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i , θ
)
θ
]

+2a2(1− δ) div

[
|Rη∇f 0

i |p(|∇f
0
i |)

log (|Rη∇f 0
i |)

(a2 + |∇f 0
i |2)

2∇f
0
i

]

+λ
(
D(f 0

i )− cD(fi)
) ∫

Ω

W (x, y)
f 0
i (x)− f 0

i (y)√
κ2 + |f 0

i (x)− f 0
i (y)|2

dy

+µ(−∆)−1(f 0
i − fi) = 0, in Ω (3.61)(

|∇f 0
i |p(|∇f

0
i |)−2∇f 0

i , ν
)

= 0 on ∂Ω, (3.62)

where ν denotes the unit outward normal to the boundary ∂Ω.

3.5 Existence issues and regularization of the orig-

inal optimization problem

The main question we are going to discuss in this section is to find out whether the
problem (3.31)–(3.32) admits at least one solution. With that in mind, we make
use of the so-called indirect approach [300, 301]. The main idea of this approach
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is to show that the original minimization problem (3.31)–(3.32) can be efficiently
approximated by a special family of optimization problems of a similar structure
but with the spatial regularization of the exponent p(|∇u|) in the form

pε(|∇u|) = 1 + δ +
a2(1− δ)

a2 + |(∇Kε ∗ u)(x)|2
, (3.63)

where (∇Kε ∗ u) stands for the Steklov smoothing operator.
Let K : R2 → R be a positive compactly supported function such that

K ∈ C∞0 (R2),

∫
R2

K(x) dx = 1, and K(x) = K(−x), ∀x ∈ R2.

For any ε > 0, we set Kε(x) = ε−2K
(
x
ε

)
. Then the following properties of the

convolution

uε(x) := (Kε ∗ u)(x) =

∫
Ω

Kε(x− y)u(y) dy, ∀u ∈ L1(Ω),

are well-known [302]:

(i) uε ∈ C∞(Ω) for all ε > 0;

(ii) uε(x)→ u(x) almost everywhere in Ω;

(iii) If u ∈ Lp(Ω) with 1 ≤ p <∞, then uε → u in Lp(Ω).

We introduce the following family of approximating problems to the problem
(3.31)–(3.32):

Ji,ε(f
0
i,ε) = inf

v∈Ξi,ε
Ji,ε(v), i = 1, 2, 3, (3.64)

where ε is a small parameter which varies within a strictly decreasing sequence of
positive numbers converging to 0,

Ji,ε(v) =

∫
Ω

|Rη∇v(x)|pε(|∇v|) dx+
µ

2
‖v − fi‖2

H−1(Ω) +
λ

4
[D(v)− cD(fi)]

2 , (3.65)

Ξi,ε =

I ∈ H1,pε(|∇I|)(Ω) ∩ L∞(Ω)

∣∣∣∣∣∣
γi,0 ≤ I(x) ≤ γi,1 a.e. in Ω,

γi,0 = infx∈Ω fi(x),
γi,1 = supx∈Ω fi(x),

 (3.66)

and pε(|∇v|) is defined in (3.63).
Before proceeding further, we make use of a few technical results.
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Lemma 3.5.1. [287, Lemma 1] Let {vk}k∈N ⊂ L∞(Ω) be a sequence of measurable
functions such that vk(x)→ v(x) weakly-∗ in L∞(Ω) for some v ∈ L∞(Ω). Let{

pk = 1 + δ +
a2(1− δ)

a2 + |(∇Kε ∗ vk)(x)|2

}
k∈N

be the corresponding sequence of exponents. Then

pk,ε → pε = 1 + δ +
a2(1− δ)

a2 + |(∇Kε ∗ u)|2
uniformly in Ω as k →∞,

1 + δ +
a2(1− δ)

a2 + ‖Kε‖2
C1(Ω−Ω)

supk∈N ‖vk‖2
L1(Ω)

≤ pk,ε(x) ≤ 2, ∀x ∈ Ω, ∀ k ∈ N,

(3.67)

where
‖Kε‖C1(Ω−Ω) = max

z=x−y
x∈Ω,y∈Ω

[
|Kε(z)|+ |∇Kε(z)|

]
.

Lemma 3.5.2. [276, Proposition B.2] The mapping v 7→ λ
4

[D(v)− cD(fi)]
2 is

continuous from L2(Ω) endowed with thee strong topology to R with pointwise con-
vergence.

Proposition 3.5.1. [287] Let {pk,ε}k∈N be a sequence of exponents that satisfies

all preconditions of Lemma 3.5.1. If a bounded sequence
{
fk ∈ Lpk,ε(·)(Ω)

}
k∈N

converges weakly in L1+δ(Ω) to f , then f ∈ Lpε(·)(Ω), fk ⇀ f in variable Lpk,ε(·)(Ω).

We are now in a position to prove the existence of minimizers for the proposed
approximating problem (3.64)–(3.66).

Theorem 3.5.1. Let Ω be an open bounded and connected sub-domain of R2 with
a Lipschitz boundary. Let fi ∈ L2(Ω) be a given spectral channel of an image
arguably contaminated by additive Gaussian noise with zero mean. Then, for each
ε > 0, the minimization problem (3.64)–(3.66) admits at least one solution f 0

i,ε in

W 1,p−(Ω) ∩ L∞(Ω) such that I0
i,ε ∈ H1,p[∇f0

i,ε](Ω).

Proof. To begin with, let us notice that, for each ε > 0, the indicated minimization
problem is consistent, i.e. Ji,ε(u) < +∞ for any u ∈ Ξi,ε. Since Ξi,ε 6= ∅ and
0 ≤ Ji,ε(v) < +∞ for all v ∈ Ξi,ε, it follows that there exists a non-negative
value ζ ≥ 0 such that ζε = inf

v∈Ξi,ε
Ji,ε(v). Let {vεk}k∈N be a minimizing sequence for

(3.64)–(3.66), i.e.

{vεk}k∈N ⊂ Ξi,ε and lim
k→∞

Ji,ε (vεk) = ζε.
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Without lost of generality, we can suppose that Ji,ε (vεk) ≤ ζε + 1 for all k ∈ N.
From this and estimate (3.36), we deduce

‖vεk‖
p−

W
1,pε(|∇vε

k
|) ≤ C

(
|Ω|γ2

i,1 + 2 +
ζε + 1

(1− η2)2

)
, ∀ k ∈ N, (3.68)

‖vεk‖L∞(Ω) ≤ γi,1, ∀ k ∈ N. (3.69)

Hence, in view of (3.7) and (3.33), the sequence {vεk}k∈N is bounded in W 1,p−(Ω).
Therefore, there exist a subsequence of {vεk}k∈N, still denoted by the same index,

and a vector function f 0
i,ε ∈ W 1,p−(Ω) such that

vεk → f 0
i,ε strongly in Lq(Ω) for all q ∈ [1, (p−)∗) as k →∞, (3.70)

vεk
∗
⇀ f 0

i,ε weakly-∗ in L∞(Ω) as k →∞, (3.71)

vεk ⇀ f 0
i,ε weakly in W 1,p−(Ω) as k →∞, (3.72)

where, by Sobolev embedding theorem, (p−)∗ = 2p−

2−p− = 2+2δ
1−δ > 2.

In view of this and the smoothness of the kernel Kε, we see that the operator

Lp
−

(Ω;R2) 3 ∇v 7→ pε(|∇v|) ∈ C(Ω)

is compact (see Lemma 3.5.1). So, (3.71)–(3.72) imply that pε(|∇vεk|)→ pε(|∇f 0
i,ε|)

in C(Ω). Passing then to a subsequence if necessary, we have (see Propositions 3.3.1
and 3.5.1):

vεk(x)→ f 0
i,ε(x) a.e. in Ω. (3.73)

vεk ⇀ f 0
i,ε weakly in variable Lpε(|∇v

ε
k|)(Ω),

∇vεk ⇀ ∇f 0
i,ε weakly in variable Lpε(|∇v

ε
k|)(Ω;R2).

Hence, f 0
i,ε ∈ W 1,pε(|∇f0

i,ε|)(Ω).
Further we notice that, for each k ∈ N, γi,0 ≤ vεk(x) ≤ γi,1 a.a. in Ω. Then

it follows from (3.73) that the limit function f 0
i,ε(x) is also subjected to the same

restriction. Thus, f 0
i,ε ∈ W 1,pε(|∇f0

i,ε|)(Ω)∩L∞(Ω) is a feasible solution to minimiza-
tion problem (3.64)–(3.66).

It remains to show that f 0
i,ε is a minimizer of this problem. Indeed, taking into

account the properties (3.68), (3.72) and the fact that θ ∈ L∞(Ω,R2), we see that
the sequence{∣∣Rη∇vεk := ∇vεk − η2 (θ,∇vεk) θ

∣∣ ∈ Lpε(|∇vεk|)(Ω;R2)
}
k∈N

is bounded in variable space Lpε(|∇v
ε
k|)(Ω;R2) and weakly convergent to |Rη∇f 0

i,ε|
in Lp

−
(Ω;R2). Hence, by Proposition 3.3.1, the following lower semicontinuous
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property

lim inf
k→∞

∫
Ω

|Rη∇vεk(x)|pε(|∇vεk|) dx ≥
∫

Ω

|Rη∇f 0
i,ε(x)|pε(|∇f0

i,ε|) dx

holds. Combining this relation with the following ones

lim
k→∞
‖vεk − fi‖

2
H−1(Ω) =

∥∥f 0
i,ε − fi

∥∥2

H−1(Ω)
,

lim
k→∞

[D(vεk)− cD(fi)]
2 =

[
D(f 0

i,ε)− cD(fi)
]2
,

which are direct consequence of Lemma 3.5.2 and compactness of the embedding
L2(Ω) ⊂ H−1(Ω), we finally obtain

ζε = inf
v∈Ξi,ε

Ji,ε(v) = lim
k→∞

Ji,ε (vεk) = lim inf
k→∞

Ji,ε (vεk)

≥
∫

Ω

|Rη∇f 0
i,ε(x)|pε(|∇f0

i,ε|) dx+
µ

2

∥∥f 0
i,ε − fi

∥∥2

H−1(Ω)

+
λ

4

[
D(f 0

i,ε)− cD(fi)
]2

= Ji,ε(f
0
i,ε).

Thus, f 0
i,ε is a minimizer to the problem (3.64)–(3.66).

Taking this existence result into account, we pass to the study of approximation
properties of the problems (3.64)–(3.66). Namely, the main question we are going
to discuss further is whether we can establish the convergence of minima of (3.64)–
(3.66) to minima of (3.31)–(3.32) as ε tends to zero. In other words, we aim to show
that some optimal solutions to (3.31)–(3.32) can be approximated by the solutions
of (3.64)–(3.66). To this end, we make use of some results of the variational
convergence of minimization problems [303]-[307] and begin with some auxiliaries
(see also [308]-[312] for other aspects of this concept).

Lemma 3.5.3. Let {εk}k∈N be a sequence of positive numbers converging to zero
as k →∞. Let

{vk}k∈N and

{
pk := 1 + δ +

a2(1− δ)
a2 + |(∇Kεk ∗ vk)|

2

}
k∈N
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be sequences such that

vk ∈ Ξi,εk , ∀ k ∈ N, (3.74)

vk(x)→ v(x) a.e. in Ω, (3.75)

vk → v strongly in L2(Ω), (3.76)

∇vk ⇀ ∇v weakly in Lp
−

(Ω;R2), (3.77)∥∥|∇vk(·)|pk(·)∥∥
L1(Ω)

≤ C for some positive constant C not depending on k, (3.78)

pk(x)→ p(x) := 1 + δ +
a2(1− δ)
a2 + |∇v|2

a.e. in Ω. (3.79)

Then v ∈ Ξi and Ji(v) ≤ lim inf
k→∞

Ji,εk(vk), ∀ i = 1, 2, 3.. (3.80)

Proof. The following relations

lim
k→∞
‖vk − fi‖2

H−1(Ω) = ‖v − fi‖2
H−1(Ω) , (3.81)

lim
k→∞

[D(vk)− cD(fi)]
2 = [D(v)− cD(fi)]

2 (3.82)

are a direct consequence of Lemma 3.5.2, compactness of the embedding L2(Ω) ⊂
H−1(Ω), and condition (3.76). We also notice that, in view of representation

Rη∇vk := ∇vk − η2 (θ,∇vk) θ, ∀ k ∈ N,

Proposition 3.3.1 and the initial assumptions (3.77)–(3.79) lead to the conclusion:

∇v ∈ Lp(·)(Ω; ;R2) and lim inf
k→∞

∫
Ω

|Rη∇vk(x)|pk(x) dx ≥
∫

Ω

|Rη∇v(x)|p(x) dx.

As a result, combining the last inequality with (3.81)–(3.82), we arrive at the
announced relation (3.80)2.

It remains to show that v is a feasible solution to the problem (3.31)–(3.32),
i.e., v ∈ Ξi. To this end, we take into account the inclusion ∇v ∈ Lp(·)(Ω; ;R2)
established above and the fact that vk ∈ Ξi,εk for each k ∈ N. Then it follows from
(3.75) that γi,0 ≤ v(x) ≤ γi,1 almost everywhere in Ω, and, therefore, v ∈ Ξi.

Lemma 3.5.4. For each feasible solution v ∈ Ξi to the original problem (3.31)–
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(3.32), there can be found a sequence {vε}ε→0 such that

vε ∈ Ξi,ε, ∀ ε ∈ (0, ε0) with ε0 > 0 sufficiently small, (3.83)

ve(x)→ v(x) a.e. in Ω as ε→ 0, (3.84)

vε → v strongly in L2(Ω), (3.85)

∇vε → ∇v strongly in Lp
−

(Ω;R2), (3.86)∥∥|∇vε(·)|pε(·)∥∥L1(Ω)
≤ C for some positive constant C not depending on ε,

(3.87)

pε(x) := 1 + δ +
a2(1− δ)

a2 + |(∇Kε ∗ vε)|2
→ p(x) := 1 + δ +

a2(1− δ)
a2 + |∇v|2

a.e. in Ω,

(3.88)

Ji(v) ≥ lim sup
ε→0

Ji,ε(vε). (3.89)

Proof. Let v be an arbitrary feasible solution to the problem (3.31)–(3.32). We
define the sequence {vε}ε→0 as a smooth mollification of v with the kernel Kε, i.e.,

vε(x) := (Kε ∗ v)(x) =

∫
Ω

Kε(x− y)v(y) dy, ∀x ∈ Ω.

Then properties (3.84)–(3.86) are direct consequences of the Steklov smoothing
procedure (see (i)–(iii)). Moreover, in view of (3.84) and the fact that γi,0 ≤
v(x) ≤ γi,1 a.e. in Ω, we can suppose that the same restriction for vε

γi,0 ≤ vε(x) ≤ γi,1 a.e. in Ω (3.90)

holds true with ε > 0 small enough.
Since vε → v strongly in W 1,p−(Ω), it follows without loss of generality that

∇vε(x) → ∇v(x) almost everywhere in Ω. As a result, this implies the pointwise
convergence (3.88). Hence,

|Rη∇vε(x)|pε(x) → |Rη∇v(x)|p(x) a.e. in Ω.

From this and the fact that |Rη∇v(x)|p(x) ∈ L1(Ω), we deduce:

|Rη∇vε|pε(·) → |Rη∇v|p(·) strongly in L1(Ω). (3.91)

Thus,
∥∥|Rη∇vε(·)|pε(·)

∥∥
L1(Ω)

≤ C for some positive constant C not depending on ε.

Hence, in view of estimates (3.34), we get: ∇vε ∈ Lpε(·)(Ω; ;R2) for ε small enough.
From this and (3.90), the assertion (3.83) follows. Moreover, the following equality

lim
ε→0

∫
Ω

|Rη∇vε|pε(·) dx =

∫
Ω

|Rη∇v|p(·) dx (3.92)
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immediately follows from (3.91).
It remains to observe that

lim
k→∞
‖vk − fi‖2

H−1(Ω) = ‖v − fi‖2
H−1(Ω) , (3.93)

lim
k→∞

[D(vk)− cD(fi)]
2 = [D(v)− cD(fi)]

2 , (3.94)

by Lemma 3.5.2 and compactness of the embedding L2(Ω) ⊂ H−1(Ω). As a result,
we conclude from (3.92), (3.93), and (3.94) that, in fact, instead of the announced
inequality (3.89), we have Ji(v) = limε→0 Ji,ε(vε). The proof is complete.

We are now in a position to prove the main result of this section.

Theorem 3.5.2. Assume that the original minimization problem (3.31)–(3.32)
has a non-empty set of minimizers. Let

{
f 0
i,ε ∈ Ξi,ε

}
ε>0

be a sequence of solutions

to the corresponding minimization problems (3.64)–(3.66).

Let

{
pε := 1 + δ + a2(1−δ)

a2+|(∇Kε∗f0
i,ε)|2

}
ε>0

be the sequence of associated exponents.

Assume that the sequence {pε}ε>0 is compact with respect to the pointwise con-
vergence in Ω. Then there exists an element f 0

i ∈ Ξ such that, up to a subsequence,

f 0
i,ε(x)→ f 0

i (x) a.e. in Ω as ε→ 0, (3.95)

f 0
i,ε → f 0

i strongly in L2(Ω), (3.96)

∇f 0
i,ε ⇀ ∇f 0

i weakly in Lp
−

(Ω;R2), (3.97)∥∥|∇f 0
i,ε(·)|pε(·)

∥∥
L1(Ω)

≤ C for some positive constant C not depending on ε,

(3.98)

inf
v∈Ξi,ε

Ji(v) = Ji(f
0
i ) = lim

ε→0
Ji,ε(f

0
i,ε) = lim

ε→0
inf
v∈Ξi,ε

Ji,ε(vε). (3.99)

Proof. First, we observe that a given sequence of minimizers for approximating
problems (3.64)–(3.66) is compact with respect to the convergence (3.95)–(3.97).
Indeed, for an arbitrary test function ϕ ∈ C∞c (R2), we have:

ϕ ∈ H1,pε(·)(Ω), ∀ ε > 0.

Let’s assume that this function satisfies the pointwise constraints γi,0 ≤ ϕ(x) ≤ γi,1
in Ω. Then, ϕ ∈ Ξi,ε for all ε > 0, and, therefore, we can suppose that

Ji,ε(f
0
i,ε) = inf

v∈Ξi,ε
Ji,ε(vε) ≤ Ji,ε(ϕ) ≤ sup

ε>0
Ji,ε(ϕ) ≤ C < +∞ ∀ ε > 0.

Hence,

sup
ε>0

∫
Ω

|Rη∇f 0
i,ε(·)|pε(·) dx ≤ C and sup

ε>0
‖f 0

i,ε‖L2(Ω) ≤
√
‖Ω|γi,1. (3.100)



3.5. EXISTENCE ISSUES AND REGULARIZATION 83

Combining this issue with estimates (3.34), we see that the sequence
{
f 0
i,ε ∈ Ξi,ε

}
ε>0

is bounded in W 1,p−(Ω). Hence, there exist a subsequence
{
f 0
i,k ∈ Ξi,εk

}
k∈N of{

f 0
i,ε ∈ Ξi,ε

}
ε>0

, and a function f 0
i ∈ W 1,p−(Ω) such that

f 0
i,k → f 0

i strongly in Lq(Ω) for all q ∈ [1, (p−)∗),

f 0
i,k ⇀ f 0

i weakly in W 1,p−(Ω) as k →∞, (3.101)

where, by Sobolev embedding theorem, (p−)∗ = 2p−

2−p− = 2+2δ
1−δ > 2 + δ. From this,

the conditions (3.95)–(3.97) follow, whereas (3.98) is a consequence of (3.34) and
the boundedness property (3.100).

Thus, we may suppose that for the subsequence
{
f 0
i,k ∈ Ξεk

}
k∈N all precon-

ditions of Lemma 3.5.3 are fulfilled. Therefore, property (3.80) leads us to the
conclusion that f 0

i ∈ Ξi and

lim inf
k→∞

inf
v∈Ξi,ek

Ji,εk(v) = lim inf
k→∞

Ji,εk(f
0
i,k) ≥ Ji(f

0
i ) ≥ inf

v∈Ξi
Ji(v) = Ji(f

∗
i ), (3.102)

where f ∗i ∈ Ξ is a minimizer for (3.31)–(3.32).
Then Lemma 3.5.4 implies the existence of a realizing sequence

{
f ∗i,ε ∈ Ξi,ε

}
ε>0

such that f ∗i,ε → f ∗i as ε→ 0 in the sense of relations (3.84)–(3.88), and

Ji(f
∗
i ) ≥ lim sup

ε→0
Ji,ε(f

∗
i,ε).

Utilizing this fact, we have

inf
v∈Ξi

Ji(v) = Ji(f
∗
i ) ≥ lim sup

ε→0
Ji,ε(f

∗
i,ε) ≥ lim sup

ε→0
inf

v∈Ξi,ε
Ji,ε(v)

≥ lim sup
k→∞

inf
v ∈Ξi,εk

Ji,εk(v) = lim sup
k→∞

Ji,εk(f
0
i,k). (3.103)

From this and (3.102) we deduce that

lim inf
k→∞

Ji,εk(f
0
i,k) ≥ lim sup

k→∞
Ji,εk(f

0
i,k).

Hence, we can combine (3.102) and (3.103) to get

Ji(f
0
i ) = Ji(f

∗
i ) = inf

v∈Ξi
Ji(v) = lim

k→∞
inf

v ∈Ξi,εk

Ji,εk(v). (3.104)

Using these relations and the fact that the problem (3.31)–(3.32) is solvable,
we may suppose that f ∗i = f 0

i . Since equality (3.104) holds for all subsequences
of
{
f 0
i,ε

}
ε>0

, which are convergent in the sense of relations (3.95)–(3.97), it follows

that these limits coincide and, therefore, f 0
i is the limit of the whole sequence
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f 0
i,ε

}
ε>0

. Then, using the same argument for the sequence of minimizers as we

did for the subsequence
{
f 0
i,εk

}
k∈N, we finally obtain

lim inf
ε→0

inf
v∈Ξi,ε

Ji,ε(v) = lim inf
ε→0

Ji,ε(f
0
i,ε) ≥ Ji(f

0
i ) = inf

v∈Ξi
Ji(v)

≥ lim sup
ε→0

Ji,ε(f
∗
i,ε) ≥ lim sup

ε→0
inf

v∈Ξi,ε
Ji,ε(v)

= lim sup
ε→0

Ji,ε(f
0
i,ε),

and this concludes the proof.

Remark 3.5.1. It is worth to emphasize a few principle issues from Theorem 3.5.2.
The first one is that, in practice, the assumption concerning solvability of the orig-
inal optimization problem is not so restricted and, in principle, it can be omitted.
Indeed, any digital color image f = [f1, f2, f3]t is originally defined on some grid G.

So, each of its spectral channels fi

∣∣∣
G

can be associated with some real-valued ma-

trix. Hence, we can always suppose that the exponent p(|∇fi|)
∣∣∣
G

is the restriction

on the same grid of some Lipschitz-continuous function p(·) : Ω→ R. Then argu-
ing as in the proof of Theorem 3.5.1, the solvability of the problem (3.31)–(3.32)
can be easily established.

The second point, that should be emphasized here, is the assumption about the
compactness property of the sequence of associated exponents{
pε := 1 + δ + a2(1−δ)

a2+|(∇Kε∗f0
i,ε)|2

}
ε>0

with respect to the pointwise convergence in Ω.

Since this property is crucial in Theorem 3.5.2, we propose to consider it as an
easily realized in practice criterion for the verification of whether the approximating
sequence

{
f 0
i,ε ∈ Ξi,ε

}
ε>0

leads to some optimal solution of the original problem.

3.6 Numerical results

To illustrate the implementation of the proposed model (3.31)–(3.32) to the simul-
taneous denoising and contrast enhancement of color images, we make use of the
optimality conditions in the form of (3.62). In other words, we have dropped the
two-side constraints γi,0 ≤ v(x) ≤ γi,1 from the sets Ξi, and instead we control the
fulfilment of this two-side constraint at each step of the numerical approximations.

Since, in practical implementations, it is reasonable to define the solution of
the problem (3.31)–(3.32) using a gradient descent strategy, we can start with
some initial image f = [f1, f2, f3]t ∈ L2(Ω;R3) and pass to the following system
of three initial-boundary value problems for quasi-linear parabolic equations with
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Figure 3.1: Original image (left) and its smoothed version without contrasting
(µ = 0) (right).

Neumann boundary conditions

∂f 0
i

∂t
= div

[
p(x)|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i

]
− η2 div

[
p(x)

(
|Rη∇f 0

i |p(|∇f
0
i |)−2Rη∇f 0

i , θ
)
θ
]

− 2a2(1− δ) div

[
|Rη∇f 0

i |p(|∇f
0
i |)

log (|Rη∇f 0
i |)

(a2 + |∇f 0
i |2)

2∇f
0
i

]

− λ
(
D(f 0

i )− cD(fi)
) ∫

Ω

W (x, y)
f 0
i (x)− f 0

i (y)√
κ2 + |f 0

i (x)− f 0
i (y)|2

dy

− µ(−∆)−1(f 0
i − fi) = 0, in (0, T )× Ω, (3.105)(

|∇f 0
i |p(|∇f

0
i |)−2∇f 0

i , ν
)

= 0 on (0, T )× ∂Ω, (3.106)

f 0
i (0, ·) = fi(·), i = 1, 2, 3, in Ω. (3.107)

For numerical simulations, we set: δ = κ in (3.24) and (3.21), and η = 1−κ in
(3.19), κ = 0.001, λ = 0.1, and µ = 2. As for the noise estimator a > 0 in (3.21),



86 CHAPTER 3. RESTORATION AND CONTRAST ENHANCEMENT

Figure 3.2: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): c = 2 and window = 5, c = 2 and window = 7.

we use the choice of Black et al. [313], i.e.

a =
1.4826√

2
MAD(∇fi),

where MAD denotes the median absolute deviation of the corresponding spectral
channel fi of original image f = [f1, f2, f3]t that can be computed as

MAD(∇fi) = median
[∣∣∣|∇fi| −median (|∇fi|)

∣∣∣]
and median

(∣∣∣∇S̃i∣∣∣) represents the median over the band Si : GH → R to the

gradient amplitude.
To guarantee the stability of the proposed algorithm, we make use of the fol-

lowing condition

2

[
1

κ
+ λ+ µ

]
∆t < 1.

There are numerous approaches to solve quasi-linear partial differential equa-
tions (see the references [314, 315] for various techniques). Since we are deal-
ing with pixels in image processing, finite differences approaches and an explicit
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Figure 3.3: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): c = 10 and window = 5, c = 10 and window = 7.

scheme of the forward Euler method are arguably the best options. The number
of iterations for each spectral channel can be defined experimentally. We used
103-iterations. As for the size of the kernel W (x, y) used for D, this size manages
the scale of the contrast enhancement. In our experiments, we used it equal to
3, 5, 7, 15, albeit it can be related to the size of the input image.

The most expensive computation is the one of D and ∇D embedded in the
computation of the right-hand side of the system (3.105). For acceleration of
these computations, we can refer to [276], where the efficient Bernstein polynomials
approximation has been proposed.

As follows from the result of numerical simulations (see Fig. 3.3–3.9), pa-
rameters c, µ, λ, and the size of window for the kernel W (x, y) are crucial for
the contrast enhancement and these parameters have to be tuned in dependence
on the desired result. In particular, we observe that at a large scale (window)
and low contrast level c, the proposed model can produce an image with more
details, but with the same lighting sensation as the original one. To show how
the choice of the parameters c, µ, λ, and window affect the results of contrast
enhancement, we supplied all images in Fig. 3.1–3.9 by the histograms of their
luma components which represent the perceptual brightness of the color images
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Figure 3.4: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): original image, restored image with c = 20 and
window = 15.

I : Ω → R3. To this end, we used the following representation for the luma
YI(x) = αRIR(x) + αGIG(x) + αBIB(x) with

αR = 0.299, αG = 0.587, αB = 0.114.

Here, IR, IG, and IN stand for the intensities of a given image in R, G and B
spectral channels, respectively.

In particular, as follows from the obtained histograms, the proposed variational
model is sufficiently sensitive to the choice of the weight coefficient c, whereas the
size of window for the kernel W (x, y) affects the contrast enhancement in rather
a mild manner (see Fig. 3.2–3.3).
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Figure 3.5: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): original and restored with c = 10 and window = 7.
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Figure 3.6: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): original image, restored image with c = 10 and
window = 5.
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Figure 3.7: Influence of the contrast enhancement scale on the result (from the
left to the right): original, c = 10 and window = 5, c = 20 and window = 5.
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Figure 3.8: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): original image, restored image with c = 10 and
window = 5.
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Figure 3.9: Variants of contrast enhancement with the corresponding histograms
(from the left to the right): original image, restored image with c = 10 and
window = 5.
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Conclusions

In this thesis, a new variational model in Sobolev-Orlicz spaces with non-standard
growth conditions of the objective functional is proposed. In particular, some ap-
plications are discussed for the simultaneous contrast enhancement and denoising
of color images.
It is proved that increasing the average local contrast measure improves the per-
ceived contrast of the image. Sufficient conditions for the convergence of the
minimization algorithm are obtained. Finally, an iterative algorithm for practical
implementations is considered.
The contrast scale and level in the model are adjustable, so that the proposed
approach can be considered as fully adaptive. The enhancement method for color
images works directly on the RGB images without any pre- and/or post-processing.
Future research activities aim to the automatic adaptation of the parameters to
the content of the considered image, as well as to the development of numerical
schemes for the fast computation of restored images.
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[23] Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and
edge detection by nonlinear diffusion. SIAM J Numer Anal 29 (1). 182193. 29
(3). 845866 (1992)
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(2001). https://doi.org/10.1007/978-3-0348-8266-8 55

[133] Yao, X.B.: Image denoising research based on non-local sparse models with
low-rank matrix decomposition. Dissertation, Xidian University. (2014)

[134] Hou, Y., Zhao, C., Yang, D., Cheng, Y.: Comments on image denoising by
sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process.
20 (1). 268-270. (2011)

[135] Chen, Y.Y., Pock, T.: Trainable nonlinear reaction diffu-
sion: a flexible framework for fast and effective image restoration.
IEEE Trans Pattern Anal Mach Intell. 39 (6). 1256-1272. (2017).
https://doi.org/10.1109/TPAMI.2016.2596743



BIBLIOGRAPHY 109

[136] Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. Ab-
stracts of 2014 IEEE conference on computer vision and pattern recognition.
IEEE, Columbus. 2774-2781. (2014). https://doi.org/10.1109/CVPR.2014.349

[137] Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using
very deep convolutional networks. Abstracts of 2016 IEEE conference on com-
puter vision and pattern recognition. IEEE, Las Vegas. 1646-1654. (2016).
https://doi.org/10.1109/CVPR.2016.182

[138] Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural net-
work for dynamic scene deblurring. Abstracts of 2017 IEEE conference on
computer vision and pattern recognition. IEEE, Honolulu. 257-265. (2017).
https://doi.org/10.1109/CVPR.2017.35

[139] Jain, V., Seung, H.S.: Natural image denoising with convolutional networks.
Abstracts of the 21st international conference on neural information processing
systems. ACM, Vancouver. 769-776. (2008)

[140] Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and
composing robust features with denoising autoencoders. Abstracts of the 25th
international conference on machine learning. ACM, Helsinki. 1096-1103. (2008).
https://doi.org/10.1145/1390156.1390294

[141] Xie, J.Y., Xu, L.L., Chen, E.H.: Image denoising and inpainting with deep
neural networks. Abstracts of the 25th international conference on neural infor-
mation processing systems. Volume 1. ACM, Lake Tahoe. 341-349. (2012)

[142] Zhang, K., Zuo, W.M., Chen, Y.J., Meng, D.Y., Zhang, L.: Be-
yond a Gaussian denoiser: residual learning of deep CNN for im-
age denoising. IEEE Trans Image Process. 26 (7). 3142-3155. (2017).
https://doi.org/10.1109/TIP.2017.2662206

[143] Zhang, K., Zuo, W.M., Zhang, L.: FFDNet: toward a fast and flexible
solution for CNN-based image denoising. IEEE Trans Image Process. 27 (9).
4608-4622. (2018). https://doi.org/10.1109/TIP.2018.2839891

[144] Cruz, C., Foi, A., Katkovnik, V., Egiazarian, K.: Nonlocality-reinforced
convolutional neural networks for image denoising. IEEE Signal Process Lett.
25 (8). 1216-1220. (2018). https://doi.org/10.1109/LSP.2018.2850222

[145] Yang, H.Y., Wang, X.Y., Niu, P.P., Liu, Y.C.: Image denoising using non-
subsampled shearlet transform and twin support vector machines. Neural Netw.
57. 152-165. (2014)



110 BIBLIOGRAPHY

[146] Dogra, A., Agrawal, S., Goyal, B.: Efficient representation of texture details
in medical images by fusion of Ripplet and DDCT transformed images. Trop.
J. Pharm. Res. 15 (9). 1983-1993. (2016)

[147] Dogra, A., Goyal, B., Agrawal, S.: Bone vessel image fusion via generalized
Reisz wavelet transform using averaging fusion rule. J. Comput. Sci. 21. 371-378.
(2017)

[148] Dogra, A., Agrawal, S., Goyal, B., Khandelwal, N., Ahuja, C.K.: Color
and grey scale fusion of osseous and vascular information. J. Comput. Sci. 17.
103-114. (2016)

[149] Dogra, A., Agrawal, S., Khandelwal, N., Ahuja, C.: Osseous and vascular
information fusion using various spatial domain filters. Asian J. Res. Chem. 9
(7). 937. (2016)

[150] Goyal, B., Agrawal, S., Sohi, B.S., Dogra, A.: Noise reduction in MR brain
image via various transform domain schemes. Asian J. Res. Chem. 9 (7). 919.
(2016)

[151] Dogra, A., Goyal, B., Agrawal, S.: From multi-scale decomposition to non-
multi-scale decomposition methods: a comprehensive survey of image fusion
techniques and its applications. IEEE Access. 5. 16040-16067. (2017)

[152] Yadav, J., Dogra, A., Goyal, B., Agrawal, S.: A review on image fusion
methodologies and applications. Res. J. Pharm. Technol. 10 (4). 1239. (2017)

[153] Goyal, B., Dogra, A., Agrawal, S., Sohi, B.S.: Dual way residue noise thresh-
olding along with feature preservation. Pattern Recognit. Lett. 94. 194-201.
(2017)

[154] Dogra, A., Kadry, S., Goyal, B., Agrawal, S.: An efficient image integration
algorithm for night mode vision applications. MultimedIS Tools Appl. 1-18.
(2018)

[155] Dogra, A., Goyal, B., Agrawal, S.: Current and future orientation of anatom-
ical and functional imaging modality fusion. Biomed. Pharmacol. J. 10 (4).
1661-1663. (2017)

[156] Dogra, A., Patterh, M.S.: CT and MRI brain images registration for clinical
applications. J. Cancer Sci. Ther. 6. 018-026. (2014)

[157] Dogra, A., Bhalla, P.: CT and MRI brain images matching using ridgeness
correlation. Biomed. Pharmacol. J. 7 (2). 20. (2014)



BIBLIOGRAPHY 111

[158] Kumar, R.: (2010). https://in.mathworks.com/matlabcentral/fileexchange/28112-
diffusion-filtering-for-image-denoising

[159] Chaudhury, K.N., Rithwik, K.: Image denoising using optimally weighted
bilateral filters: a sure and fast approach. Image Processing (ICIP). IEEE In-
ternational Conference. 108-112. (2015)

[160] Weiss, Y., Freeman, W.T.: What makes a good model of natural images?
IEEE Conference on Computer Vision and Pattern Recognition. 1-8. June.
(2007)

[161] Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An intro-
duction to total variation for image analysis. Theor. Found. Numer. Methods
Sparse Recov. 9. 263-340. 227. (2010)

[162] Liu, Q., Xiong, B., Zhang, M.: Adaptive sparse norm and nonlocal total
variation methods for image smoothing. Math. Probl. Eng. (2014)

[163] Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via
wavelet shrinkage. J. Am. Stat. Assoc. 90 (432). 12001224. (1995)

[164] Donoho, D.L., Johnstone, I.M.: Threshold selection for wavelet shrinkage of
noisy data. Proceedings of 16th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 1. A24-A25. (1994)

[165] Luisier, F., Blu, T., Unser, M.: A new sure approach to image denoising:
interscale orthonormal wavelet thresholding, IEEE Trans. Image Process. 16 (3).
593-606. (2007)

[166] Easley, G., Labate, D., Lim, W.Q.: Sparse directional image representations
using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25 (1).
25-46. (2008)

[167] Rangarajan, A., Chellappa, R.: Markov random field models in image pro-
cessing. M.A. Arbib (Ed.). The Handbook of Brain Theory and Neural Networks.
564-567. (1995)

[168] Takeda, H., Farsiu, S., Milanfar, P.: Deblurring using regularized locally
adaptive kernel regression. IEEE Trans. Image Process. 17 (4). 550-563. (2008)

[169] Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neu-
ral networks compete with BM3D? IEEE Conference on Computer Vision and
Pattern Recognition. 2392-2399. (2012)



112 BIBLIOGRAPHY

[170] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Joint image sharpening
and denoising by 3D transform-domain collaborative filtering. Proc. Int. TICSP
Workshop Spectral Meth. Multirate Signal Process., SMMSP. Citeseer. (2007)

[171] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising
with shape-adaptive principal component analysis. SPARS’09-Signal Processing
with Adaptive Sparse Structured Representations. (2009)

[172] Deledalle, C.A., Salmon, J., Dalalyan, A.S.: Image denoising with patch
based PCA: local versus global. BMVC. 81. 425-455. (2011)

[173] Kumar, B.S.: Image denoising based on gaussian/bilateral filter and its
method noise thresholding. Signal Image Video Process. 6 (7). 1159-1172. (2013)

[174] Kumar, B.S.: Image denoising based on non-local means filter and its method
noise thresholding, Signal Image Video Process. 7 (6). 1211-1227. (2013)

[175] Yang, X., Fei, B.: A wavelet multiscale denoising algorithm for magnetic
resonance (MR) images. Meas. Sci. Technol. 22 (2). 025803. (2011)

[176] Kumar, M., Diwakar, M.: CT image denoising using locally adaptive shrink-
age rule in tetrolet domain. J. King Saud Univ. Comput. Inf. Sci. 30 (1). 41-50.
(2018)

[177] Jian, S., Wen, W.: Study on underwater image denoising algorithm based on
wavelet transform. 806. 012006. DOI:10.1088/1742-6596/806/1/012006. (2017)

[178] Sharmila, T.S., Ramar, K.: Efficient analysis of hybrid directional lifting
technique for satellite image denoising. Signal Image Video Process. 8 (7). 1399-
1404. (2014)

[179] Liu, S., Liu, M., Li, P., Zhao, J., Zhu, Z., Wang, X.: SAR image denoising
via sparse representation in shearlet domain based on continuous cycle spinning.
IEEE Trans. Geosci. Remote Sens. 55 (5). 2985-2992. (2017)

[180] Shen, Y., Chen, Y., Liu, Q., Lou, S., Yu, W., Wang, X., Chen, H.: Improved
anscombe transformation and total variation for denoising of lowlight infrared
images. Infrared Phys Technol. 93. 192-198. (2018)

[181] Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6.
721-41. (1984)



BIBLIOGRAPHY 113

[182] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth func-
tions and associated variational problems. Comm. Pure Applied. Math. 42. 577-
685. (1989)

[183] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of
second order partial linear differential equations, Bull. Amer. Math. Soc. (N.S.)
27. 1-67. (1992)

[184] Manjón, J.V., Coupe, P.: MRI denoising using deep learning. Patch-Based
Techniques in Medical Imaging: 4th International Workshop. Patch-MI 2018.
Held in Conjunction with MICCAI 2018. Granada, Spain. September 20, 2018.
Proceedings 4. 12-19. Springer International Publishing

[185] Gondara, L., Wang, K.: Mida: Multiple imputation using denoising autoen-
coders. Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia
Conference, PAKDD 2018, Melbourne, VIC, Australia. June 3-6, 2018, Proceed-
ings, Part III 22. 260-272. Springer International Publishing

[186] Tassano, M., Delon, J., Veit, T.: Dvdnet: A fast network for deep video
denoising. IEEE International Conference on Image Processing (ICIP). 1805-
1809. (2019)

[187] Davy, A., Ehret, T., Morel, J.M., Arias, P., Facciolo, G.: A non-local CNN
for video denoising. IEEE International Conference on Image Processing (ICIP).
2409-2413. (2019)

[188] Liu, P., Basha, E., Li, M.D., Xiao, Y., Sanelli, Y., Fang, R.: Deep evolution-
ary networks with expedited genetic algorithms for medical image denoising.
Med Image Anal. 54. 306-315. (2019)

[189] Mumford, D., Shah, J.: Optimal approximation by piecewise smooth func-
tions and associated variational problems. Commun. Pure Appl. Math. 42.
577685. (1989)

[190] Lysaker, M., Osher, S., Tai, X.C.: Noise removal using smoothed normals
and surface fitting. IEEE Trans. Image Proc. 13 (10). 3451457. (2004)

[191] Zhu, W., Chan, T.F.: Image denoising using mean curvature. SIAM J. Imag-
ing Sci. 5. 1-32. (2012)

[192] Brito, C., Chen, K.: Multigrid algorithm for high order denoising. SIAMJ.
ImagingSci. 3 (3). 363389. (2010)



114 BIBLIOGRAPHY

[193] Bonettini, S., Landi, G., Loli Piccolomini, E., Zanni, L.: Scaling techniques
for gradient projection-type methods in astronomical image deblurring. Int. J.
Comput. Math.. 90 (1). 929. (2013)

[194] Yan, M.: Convergence analysis of SART: Optimization and statistics. Int. J.
Comput. Math.. 90 (1). 3047. (2013)

[195] Wang, F., Ng, M.K.: A fast minimization method for blur and multiplicative
noise removal. Int. J. Comput. Math.. 90 (1). 4861. (2013)
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