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Abstract—The accurate segmentation and modeling of bones
play a crucial role in diagnosis and surgical planning in ortho-
pedics. Traditional methods face challenges in capturing the fine
details and complex structures present in cone-beam computed
tomography (CBCT) scans. This paper introduces a novel deep
learning-based workflow to precisely segment bone in CBCT
scans of complex areas such as extremities, the Single Bone
Modeler (SBM). It involves three main steps: bone segmentation,
separation and 3D modeling. To achieve highly accurate bone
segmentation, a dedicated U-Net architecture is developed and
compared to a SegNet. Furthermore, we compare two different
training strategies axial training and multi-planar training, when
dealing with CBCT data. The separation of bones is performed
through a watershed algorithm, and the structure of interest
is subsequently modeled in 3D. The efficacy of proposed deep
learning approaches is assessed, and outcomes are compared to
benchmark techniques using two metrics: Jaccard Index (JI)
and Dice Coefficient (DC). Results demonstrate the superior
performance in bone segmentation of the proposed U-Net trained
with Multi-Planar training, achieving a JI of 0.941 ± 0.031 and
a DC of 0.970 ± 0.015. The entire workflow is further evaluated
for its capacity to isolate specific bone, showcasing significant
improvement over benchmark methods. In conclusion, the SBM
enhances the precision of bone segmentation in high-resolution
CBCT scans. The results suggest the potential for reliable
and efficient extremity bone segmentation, with implications for
improved applications in orthopedics.

Index Terms—Deep learning, segmentation, cone-beam CT,
surgical planning, U-Net, multi-planar training, extremity seg-
mentation, single bone modeler

I. INTRODUCTION

In contemporary medical practices, cone-beam computed to-
mography (CBCT) has become integral to oral and maxillofa-
cial surgery and is showing promising expansion into orthope-
dics. CBCT offers advantages such as high-resolution imaging
of hard tissues, cost-effectiveness, lower radiation exposure
and a more compact size. These factors make CBCT effective
in emergency departments and surgical rooms, especially for
diagnosis and surgical planning [1], [2]. Accurate automatic
segmentation of extremities, including hand, feet, ankle and
foot, can be valuable in handling anatomical intricacies in
diagnosis, pre-planning and post-planning phases. Extremities,
unlike long bones, exhibit low contrast, weak bone boundaries,
varying densities of cancellous tissue and narrow inter-bone

spacing, making bone segmentation a challenging task. More-
over, extremities like the foot and ankle, hand and wrist consist
of numerous small, asymmetrical-shaped structures and densi-
ties. Image processing solutions must be designed to facilitate
and expedite this work, minimizing manual interaction [3].
This paper proposes a deep learning-based approach to address
these challenges and improve accurate bone segmentation in
extremities.

Previous works by Klein et al. [4], Krawczyk et al. [5],
and Nougachi et al. [6] demonstrated the feasibility of using
deep learning techniques for the segmentation of bones in
conventional CT scans. These studies highlighted the efficacy
of neural networks in automatically delineating bone struc-
tures, aiding in various medical applications. However, when
transitioning to CBCT pixel values may fluctuate because
of artifacts such as shading, cupping and beam-hardening.
In CBCT, grayscale values are directly associated with X-
ray attenuation and lack the standardization provided by
Hounsfield Unit (HU) calibration in conventional CT scans.
This difference introduces nuances and variations in image
intensity characteristics, leading to challenges in the segmen-
tation process.

To the best of our knowledge, no study has been conducted
that applies deep learning methodologies to extremity segmen-
tation in CBCT. This paper introduces Single Bone Modeler
(SBM), a novel workflow to separate and model individual
bones in complex anatomical structures such as extremities.
This work focuses primarily on the development of an accurate
segmentation module, employing a deep learning approach.

II. MATERIALS AND METHODS

The Single Bone Modeler (SBM) comprises three primary
steps, as illustrated in fig. 1. Initially, bones undergo segmen-
tation and are separated from the surrounding soft tissues.
Subsequently, each bone is isolated through the application of
the watershed algorithm. Finally, the isolated bone is modeled
in three dimensions.

A. Deep learning-based bone segmentation

The core part of the Single Bone Modeler lies in accurate
bone segmentation, which utilizes deep learning techniques.



Fig. 1. The Single Bone Modeler workflow comprises three main steps: bone
segmentation, bone separation, and modeling.

An in-house annotated dataset of CBCT scans was created
for training and evaluating the proposed deep-learning model.
Extremity anatomical preparations were scanned using the
commercial machine See Factor CT3 (Imaginalis, Florence,
Italy). Scan reconstruction was performed using the Feldkamp,
Davis, and Kress (FDK) algorithm [7]. The volumetric data
has an isotropic resolution of 0.2 mm and dimensions of
512 × 512 × 512 pixels. A total of 20 CBCT scans were
included in the study. Ground truth labels were generated
by masking the scans using the software 3D Slicer. Each
scan was acquired with varying acquisition parameters (kV
and mA). For each volume, a different threshold was applied
to isolate cancellous tissues. Further, segmentation refinement
was performed manually using the 3D Brush tool. This tedious
process resulted in a precise binary mask where hard tissues
were designated as the foreground.

Bone segmentation was treated as a binary segmentation
task. We developed and trained two different segmentation
architectures: U-Net and SegNet. The U-Net [8] has a contract-
ing path followed by an expansive path. The downstream part
of the network is responsible for capturing high-level features
and reducing spatial dimensions. It consists of five levels,
each containing three convolutional blocks. The upstream part
of the network is responsible for upsampling and combining
high-level features from the downsampled levels. It starts from
the last downsampled level and iteratively applies transposed
convolution followed by concatenation with the corresponding
skip connections from the downsampled path. The activation
function is a sigmoid, suitable for binary segmentation tasks.

The second network is a SegNet [9]. It has an encoder-
decoder architecture characterized by a symmetrical contract-
ing and expanding structure. In contrast to U-Net, which
employs skip connections, SegNet achieves upsampling by
utilizing pooling indices. These indices store the locations of
max pooling during the downsampling phase. The encoder part
is composed by three sets of convolutional layers. Max pooling
is applied after each set of convolutional layers, and the
pooling indices are saved. In the decoder part max-unpooling
with the saved pooling indices is applied to upsample the
feature maps.. The final output is a sigmoid activation function,
suitable for binary segmentation tasks. Both the U-Net and
SegNet architectures were implemented in Python using the
TensorFlow and Keras libraries.

The training was done on a workstation equipped with
GeForce RTX 2070 SUPER (NVIDIA, Santa Clara, Califor-

nia).
In the domain of bone segmentation, there is an imbal-

ance between the amounts of foreground and background.
To address this imbalance, we employ a combined approach
utilizing cross-entropy and dice loss as proposed by Klein et al.
[4]. The Adam optimizer [10], with an initial learning rate of
10−3 was used. The networks undergo training for 250 epochs
with a batch size of 16, incorporating learning rate decay and
early stopping methods as callbacks in the network. To reduce
overfitting, we implemented data augmentation, including a ±
15° rotation, a random horizontal flip and adjustments to the
brightness range.

The dataset was organized by volumes to ensure that each
slice from a specific volume was either in the training set or the
test set, preventing data leakage. This contributes to preserving
the data independence across the training and test sets, which
is necessary for a trustworthy model evaluation and accurate
generalization of the model’s performance on unknown data.
In particular, fourteen volumes, comprising seven feet and
seven hands, were used for training the models. Four additional
volumes, two feet and two hands, were dedicated to testing
purposes and excluded from the training phase. Furthermore,
two volumes (one foot and one hand) were set aside as a
validation set. This validation set is distinct from both the
training and test sets and was used during model training to
prevent over-fitting. Each volume has been normalized relative
to the maximum gray level of the volume itself.

Two different training strategies were assessed and com-
pared during the training process. The first strategy is the
conventional 2D training approach widely employed for train-
ing medical image volumes, referred to as axial training. We
use axial slices of 512× 512 pixels as inputs. To harness the
isotropic voxel nature of cone-beam CT, we experimented with
an alternative method that we called Multi-Planar training
(MPT). This approach involves using images obtained from all
three views, axial sagittal and frontal, thereby providing the
opportunity to triple the number of slices while maintaining
the same number of CBCT scans used in the training phase.

To quantitatively assess the performance of the first stage
of our SBM and facilitate comparison, we compared the
predictions of deep learning networks to the ground truth by
calculating the Dice coefficient (DC) and the Jaccard index
(JI). Moreover, to assess the quality of bone segmentation and
the performance of deep learning in this binary segmentation
task, we compared the results obtained with the developed
networks with a thresholding method and with a graph-cut
algorithm proposed by Boykov et al. [11] and implemented as
described by Tiribilli et al. [12].

B. Bone separation and modeling

The segmented bones were separated using a watershed
algorithm, that isolated individual bones within the anatom-
ical region under study. The algorithm executed a distance
transform over the binary mask, then a threshold was applied
to find markers of each object. These markers served as seeds
for the watershed algorithm, which filled each bone with a



TABLE I
COMPARISONS OF PERFORMANCE METRICS

Thresholding Graph-cut U-Net AT 1 U-Net MPT 2 SegNet AT1 SegNet MPT2

Jaccard Index 0.663 ± 0.089 0.794 ± 0.048 0.917 ± 0.058 0.941 ± 0.031 0.903 ± 0.120 0.932 ± 0.018
Dice Coefficient 0.792 ± 0.110 0.885 ± 0.120 0.957 ± 0.015 0.970 ± 0.015 0.948 ± 0.018 0.964 ± 0.003
1 Axial training 2 Multi Planar training

Fig. 2. Segmentation of bone over an anatomical preparation of a human foot. Comparison between thresholding, graph-cut and the proposed method that
achieves best results in terms of JI and DC, U-Net trained with MPT.

different label. Subsequently, through a graphical interface, the
user selected a bone of interest and generated a 3D mesh using
the marching cubes algorithm [13].

To assess the ability to isolate a single bone, six bones of
interest from the hand and foot were chosen and separated
using our method. We evaluated the efficacy of the novel SBM
by utilizing a threshold, a graph-cut, and the proposed deep
learning technique as the segmentation module. We compared
the results in terms of Dice coefficient.

III. RESULTS

Quantitative and qualitative assessments are conducted on
the dedicated test dataset, comparing the two networks’ per-
formances against ground truth annotations using JI and DC.

U-Net, SegNet, conventional thresholding and graph-cut are
compared in order to verify the efficacy of the deep learning
algorithms in bone segmentation. Metrics are calculated for
each of the four volumes under test and then mean and stan-
dard deviation are computed and reported in table I. Results
indicate that Multi-Planar Training (MPT) performs best in
both architectures. The U-Net trained with MPT achieved the

Fig. 3. Performances of the presented workflow over six bony structures.
Comparison of segmentation performed with thresholding, grap-cut and the
proposed U-Net.

best results, with a JI of 0.941 ± 0.031 and a DC of 0.970 ±
0.015.

Qualitative results are shown in fig 2. The proposed net-
work, as well as the thresholding and graph-cut approaches,
work well for cortical bone. The primary challenges emerge
when attempting to segment spongy bone and bone marrow.



Due to their lower density, the gray level values of these
tissues closely resemble those of soft tissue. As predicted, a
thresholding-based approach struggles to segment these tissues
effectively. Moreover, this approach is not suitable due to the
pixel intensity instability of CBCT. The mentioned problems
are partly solved by the graph-cut approach, as it does not rely
only on gray-level values. As expected, the best performances
are achieved with deep learning approaches. Also qualitative
results confirm the superior performance of the proposed
U-Net trained with MPT in handling complex anatomical
structures, emphasizing its practical advantages in extremity
segmentation.

The capacity of the suggested approach to isolate a single
bone in the proposed SBM workflow was then assessed. Fig. 3
shows the performance comparison in terms of DC employing
a threshold, graph-cut, and U-Net trained with MPT as the
segmentation module.

In the segmentation of all assessed single bones, we find
that the deep learning strategy greatly outperforms both the
graph-cut and thresholding methods in terms of individual
bone isolation. The best results are achieved in the proximal
phalanges.

IV. CONCLUSIONS

In conclusion, our study introduces a novel workflow,
the Single Bone Modeler which leverages deep learning
techniques for precise extremity bone segmentation in high-
resolution CBCT. We compared a U-Net and a SegNet that
we developed and trained from scratch using an in-house
dataset. We used the Adam optimizer, learning rate decay
and data augmentation to prevent overfitting. Furthermore, we
analyzed the effects of two different training methods, axial
and the MPT, on the segmentation results. We evaluated the
performance of deep learning approaches using two metrics
DC and JI and compared the results with a simple thresholding
and graph-cut. U-Net trained with MPT achieves the best
results in the segmentation module. Moreover, we evaluated
the entire SBM workflow by applying it to six different
anatomical parts. The results of our study demonstrate that the
deep learning approach, employing the proposed U-Net trained
with MPT significantly enhances the isolation of individual
bones in extremity bone segmentation when compared to
traditional methods such as graph-cut and thresholding.

The enhanced precision achieved with deep learning mod-
els signifies the potential for more reliable and efficient
extremity bone segmentation in diagnosis, pre-planning and
post-planning phases. Moreover, our results support the use
of CBCT technology in orthopedics, which leads to lower
radiation exposure, cost-effectiveness and its use in emergency
rooms due to its small size.

It is feasible to apply SBM to additional anatomical regions
such as vertebrae, shoulders, knees, etc. because the network
is trained for binary segmentation rather than to offer a label
for each unique bone. We plan to extend our project to identify
and label bones developing an instance segmentation network.
However, it is important to note that for each application on

a new target, a new labeled dataset and new network training
are required. Given the accurate segmentation results achieved
with this method, another potential future application consists
of the segmentation and modeling of complex fractures.
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