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Abstract
We study the differential and topological structures of the set of real logarithms of any semi-
simple non-singular matrix and of the set of real skew-symmetric logarithms of any special
orthogonal matrix.
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Introduction

The aim of this work is to study the differential and topological properties of the set of real
logarithms of any semi-simple matrix and of the set of real skew-symmetric logarithms of
any special orthogonal matrix. As far as we know, such studies have never been done before.
More generally, there are not many papers studying the real logarithms of a matrix from a
theoretical point of view. The best known is an old paper by Culver ([2]), in which, among
other things, the author proves that a non-singular square matrix M has a real logarithm if
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and only if each of its Jordan blocks corresponding to a negative eigenvalue occurs an even
number of times. Furthermore, Culver provides the necessary and sufficient conditions, in
terms of Jordan blocks of M , for the real logarithm of M to be unique and the set of real
logarithms of M to be countable. A simpler exposition of some of these results can be found
in [13].

In the first preliminary Section we fix the notations and, in particular, we define the main
homogeneous spaces involved in the structure theorems of the sets of real logarithms and
skew-symmetric logarithms.

In Sect. 2 we study the set Log(M) of the real logarithms of a given semi-simple matrix.
The main result of this Section is Theorem 2.5, which states that Log(M) is a countable
disjoint union of differentiable submanifolds of M(n,R); these are all diffeomorphic to
suitable homogeneous spaces, which depend on the eigenvalues of the matrices constituting
each of these submanifolds. In Sect. 2,we also define and study the set ofgeneralized principal
real logarithms of a given semi-simple matrix M (see Theorem 2.8). In general, we say that
a logarithm X of a matrix M is generalized principal, if every eigenvalue of X has imaginary
part in [−π, π]. Our definition of generalized principal logarithm is more general than the
usual definition of principal logarithm (see [8, Thm.1.31 p.20]). Indeed, generalized principal
logarithms are also defined for matrices with negative eigenvalues, even if, in this case, they
are not unique.

In Sect. 3, we prove analogous Theorems for the set Logso(n)(Q) of skew-symmetric
logarithms (Theorem 3.4) and for the set of generalized principal skew-symmetric logarithms
of any special orthogonal matrix Q (Theorem 3.7). For a study of the set of generalized
principal skew-symmetric logarithms of a given special orthogonal matrix, we also refer to
[4, Sect. 3].

In Sect. 4 we determine, in the simplest cases, some of the homotopy groups of homoge-
neous spaces involved in the Theorems of Sects. 2 and 3.

Finally, in Sect. 5 we prove that all components of the sets Log(M) and Logso(n)(Q) are
simply connected and that their second homotopy group is a free abelian group, whose rank
depends on the eigenvalues of the matrices constituting these components (see Theorems 5.1
and 5.2).

We point out that the techniques used in this paper are similar to those used in [5] to study
the set of real square roots of suitable non-singular matrices.

1 Preliminary facts

Notations 1.1 a) In this paper, for any integer n ≥ 1, we denote

– M(n,R): the R-vector space of real square matrices of order n;
– GL(n,R) (and GL+(n,R)): the multiplicative group of non-singular real matrices of

order n (with positive determinant);
– O(n) (and SO(n)): the multiplicative group of real orthogonal matrices of order n (with

determinant 1);
– so(n): the Lie algebra of real skew-symmetric matrices of order n;
– M(n,C): the C-vector space of complex square matrices of order n;
– GL(n,C): the multiplicative group of non-singular complex matrices of order n;
– U (n): the multiplicative group of complex unitary matrices of order n;

We denote by In the identity matrix of order n, by On the null matrix of order n and by i
the imaginary unit. We write

⊔
j X j to emphasize the union of mutually disjoint sets X j ;
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Real logarithms of semi-simple... 651

furthermore we denote by |S| the cardinality of any given finite set S and by δ(i, j) the usual
Kronecker delta defined by δ(i, j) = 1 if i = j , and 0 otherwise.

b) For every A ∈ M(n,C), tr(A) is its trace, AT is its transpose, A∗ := A
T

is its transpose
conjugate, det(A) is its determinant and, provided that det(A) �= 0, A−1 is its inverse;

furthermore exp(A) := ∑+∞
i=0

Ai

i ! denotes the exponential of A.

If C ∈ GL(n,R), we denote by AdC the map from M(n,R) onto itself, defined by
AdC : X �→ AdC (X) := C XC−1. Note that the maps AdC and exp commute.

For every θ ∈ R, we denote Eθ :=
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)

and E := Eπ/2 =
(
0 −1
1 0

)

; hence

Eθ = cos(θ)I2 + sin(θ)E.
It is easy to check that exp(δE) = Eδ , for every δ ∈ R, and from this we get
(	) exp(α I2 + δE) = eα Eδ , for every α, δ ∈ R.
If B1, . . . , Bm are square matrices (of various orders), then B1 ⊕ . . .⊕ Bm denotes the block
square matrix with B1, . . . , Bm on its diagonal. If B is a square matrix then B⊕m denotes
B⊕· · ·⊕B (m times). It is easy to check that exp(B1⊕. . .⊕Bm) = exp(B1)⊕. . .⊕exp(Bm),
for every B1, . . . , Bm.
If S1, . . . ,Sm are sets of square matrices, then S1 ⊕ · · · ⊕ Sm denotes the set of all matrices
B1 ⊕ · · · ⊕ Bm with B j ∈ S j for every j .
To give a full generality to the results of this paper (and to their proofs), it is necessary
to establish agreements on the notations that we will use: if s is a non-negative integer
parameter, when we write a term as

∑s
i=1 (· · · ), ⊕s

i=1 (· · · ) or
∏s

i=1 (· · · ), we mean
that, if s = 0, this sum, this direct sum or this product does not appear in the related formula.
Similar considerations hold for

∑
i∈I (· · · ) and

⊕
i∈I (· · · ), whenever the set I is empty.

We also assign a meaning to the matrices of order zero I0 , O0 and to the groups of order
zero SO(0), O(0), GL(0,R), GL+(0,R), defining them all equal to a single (phantom)
point Q which, conventionally, satisfies the following conditions: λQ = Q, for any λ ∈ C;
Q ⊕ B = B ⊕ Q = B, for any complex square matrix B; Q ⊕ S = S ⊕ Q = S, for
any set S of complex square matrices. The eigenvalues of zero multiplicity of a given matrix
X ∈ M(n,C) are all the complex numbers which are not eigenvalues of X. Finally, a free
abelian group G of rank zero means that G is reduced to the identity element.
For all other notations and information on matrices, not explicitly mentioned here, we refer
to [9] and to [8].

Remarks-Definitions 1.2 a) The mapping ρ1 : C → M(2,R) defined by ρ1(z) =
Re(z)I2 + I m(z)E, is a monomorphism of R-algebras such that ρ1(z) = ρ1(z)T and
ρ1(z) ∈ GL(2,R) as soon as z �= 0. More generally, for any h ≥ 1, we define the
decomplexification mapping ρh : M(h,C) → M(2h,R), which maps the h ×h complex
matrix Z = (zi j ) to the (2 h)× (2 h) block real matrix (ρ1(zi j )), having h2 square blocks
of order 2. We have tr(ρh(Z)) = 2Re(tr(Z))), det(ρh(Z)) = | det(Z)|2 and, moreover,
ρh is a monomorphism of R-algebras, whose restriction to GL(h,C) is a monomor-
phism of Lie groups from GL(h,C) into GL(2h,R). Since ρh(Z∗) = ρh(Z)T , the
restriction of the monomorphism ρh to U (h) maps U (h) into SO(2 h) and ρh(U (h)) =
ρh(GL(h,C)) ∩ SO(2 h) = ρh(GL(h,C)) ∩ O(2 h). To simplify the notations and in
absence of ambiguity, from now on, we omit to write the symbol ρh, so, for instance, we
can consider M(h,C) as an R-subalgebra of M(2 h,R), GL(h,C) and U (h) as closed
subgroups of GL(2 h,R) and SO(2 h), respectively.

b) For every matrix B ∈ M(n,R) we denote CB := {X ∈ GL(n,R) : B X = X B}. It is
easy to prove that CB is a closed subgroup of GL(n,R); hence CB is an embedded Lie
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subgroup of GL(n,R) (see, for instance, [17, Thm.3.21]). We also denote by σ(B) the
set of distinct complex eigenvalues of B.

Lemma 1.3 Let D = ⊕t
j=1 D j ∈ M(n,R), where each D j is a semi-simple real square

matrix of order n j (with
∑t

j=1 n j = n) and assume σ(D j ) ∩ σ(Dh) = ∅, whenever j �= h.

Then we have CD = ⊕t
j=1 CD j .

Proof Any matrix A ∈ CD can be written in blocks as A = (Ai j ), where Ai j is an ni × n j

real matrix, for i, j = 1, . . . , t . The condition AD = D A implies Ai j D j = Di Ai j , for every
1 ≤ i, j ≤ t . Fix i, j ∈ {1, . . . , t}with i �= j . Since D j is semi-simple, there is a basis ofCn j ,
called {v1 , · · · , vn j }, consisting of eigenvectors of D j ; hence, if v belongs to this basis, there
exists λ ∈ σ(D j ) such that D j (v) = λv, and therefore we get Di Ai j (v) = Ai j D j (v) =
λAi j (v). From the assumptions, λ /∈ σ(Di ), and so we conclude that Ai j (v) = 0, for
every v ∈ {v1 , . . . , vn j }; hence Ai j is the null matrix. Therefore we have A = ⊕t

j=1 A j j

where A j j ∈ GL(n j ,R) and A j j D j = D j A j j , for every j = 1, · · · , t , so we obtain
CD ⊆ ⊕t

j=1 CD j . Since the reverse inclusion is trivial, the statement has been proved. ��
Using similar elementary arguments, it is easy to prove the following:

Lemma 1.4 If 0 < θ < π, consider the matrix E⊕m
θ ∈ GL(2m,R) (m ≥ 1). We have

CE⊕m
θ

= GL(m,C) ⊂ GL(2m,R) (remember Remarks–Definitions 1.2 (a)).

Remarks-Definitions 1.5 a) It is known that every closed subgroup H of a Lie group G is
also a Lie group and that the set of left cosets G/H has a unique structure of differentiable
manifold (of dimension equal to dimR G −dimR H) such that the projection G → G/H
is differentiable and the natural action of G on G/H is transitive; moreover, G is a
principal fiber bundle over G/H with group H (see, for instance, [17, pp.120 -124]).

b) In the next Sections we will have to deal with the following homogeneous spaces:

	̂(ν1,...,νs ) = GL(ν,C)
( ⊕s

j=1 GL(ν j ,C)
) , 	(ν1,...,νs ) = U (ν)

( ⊕s
j=1 U (ν j )

) ,

�̂(ζ ;ν1,...,νs ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GL+(ζ + 2ν,R)

GL+(ζ,R) ⊕ ( ⊕s
j=1 GL(ν j ,C)

) i f ζ ≥ 1

GL+(2ν,R)
( ⊕s

j=1 GL(ν j ,C)
) i f ζ = 0

,

�(ζ ;ν1,...,νs ) =

⎧
⎪⎪⎨

⎪⎪⎩

SO(ζ + 2ν)

SO(ζ ) ⊕ ( ⊕s
j=1 U (ν j )

) i f ζ ≥ 1

SO(2ν)
( ⊕s

j=1 U (ν j )
) i f ζ = 0

, where ζ, ν1, . . . , νs are

integers such that ζ ≥ 0, ν1, . . . , νs ≥ 1 (s ≥ 1) and ν = ∑s
j=1 ν j . It is useful to

define the spaces �̂(ζ ;ν1,...,νs ) and �(ζ ;ν1,...,νs ) even when s = 0 (i.e. when the multi-index
(ζ ; ν1, . . . , νs) reduces to (ζ )) and ζ ≥ 0, setting them, in all these cases, equal to a
single point. Consequently, note that �(ζ ;ν1,...,νs ) reduces to a single point if and only if
either s = 0, ζ ≥ 0 or s = 1, ν1 = ν = 1, ζ = 0, while the space �̂(ζ ;ν1,...,νs ) is a
point if and only if s = 0, ζ ≥ 0. Also note that both spaces 	(ν1,...,νs ) and 	̂(ν1,...,νs )

are single points if and only if s = 1 (for every ν = ν1 ≥ 1).
c) All the spaces we have defined in (b) are connected differentiable manifolds; more-

over �(ζ ;ν1,...,νs ) and 	(ν1,...,νs ) are also compact. Their dimensions are the following:
dimR �̂(ζ ;ν1,...,νs ) = 4ν(ν + ζ ) − 2

∑s
j=1 ν2j , dimR 	̂(ν1,...,νs ) = 2ν2 − 2

∑s
j=1 ν2j ,
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dimR �(ζ ;ν1,...,νs ) = ν(2ν + 2ζ − 1) − ∑s
j=1 ν2j , dimR 	(ν1,...,νs ) = ν2 − ∑s

j=1 ν2j .

We also observe that �(0,ν), �̂(0,ν),	(ν1 ,ν2 ), 	̂(ν1 ,ν2 ) are symmetric spaces, for every
ν, ν1 , ν2 ≥ 1. Moreover, it can be easily seen that �(0,2) is diffeomorphic to the 2-
dimensional sphere S2.

d) Note that, if ζ ≥ 1, the homogeneous spaces
GL(ζ + 2ν,R)

GL(ζ,R) ⊕ ( ⊕s
j=1 GL(ν j ,C)

) and

O(ζ + 2ν)

O(ζ ) ⊕ ( ⊕s
j=1 U (ν j )

) are diffeomorphic to �̂(ζ ;ν1,...,νs ) and �(ζ ;ν1,...,νs ), respectively

(and so they are connected), while, for ζ = 0, the spaces
GL(2ν,R)

( ⊕s
j=1 GL(ν j ,C)

) and

O(2ν)
(⊕s

j=1 U (ν j )
) have two connected components both diffeomorphic to �̂(0;ν1,...,νs ) and

�(0;ν1,...,νs ), respectively; hence we can say that
GL(ζ + 2ν,R)

GL(ζ,R) ⊕ ( ⊕s
j=1 GL(ν j ,C)

) and

O(ζ + 2ν)

O(ζ ) ⊕ ( ⊕s
j=1 U (ν j )

) have 2δ
(ζ,0) connected components (if ζ + s ≥ 1).

Definition 1.6 Let M ∈ M(n,R). We say that X ∈ M(n,R) is a real logarithm of M , if
exp(X) = M ; we denote by Log(M) := {X ∈ M(n,R) : exp(X) = M} the set of real
logarithms of M . Moreover, if M is special orthogonal, we denote by Logso(n)(M) :=
Log(M) ∩ so(n), the set of real skew-symmetric logarithms of M .

Remark 1.7 It is known that exp(X) ∈ GL+(n,R), for every X ∈ M(n,R); hence no matrix
with non-positive determinant has real logarithms.Moreover, also the following fact is known
(see, for instance, [2, Thm.1] or [8, Thm.1.23]):
M ∈ GL+(n,R) has at least one real logarithm if and only if it has an even number of Jordan
blocks of each size, for every negative eigenvalue.
In particular, if M ∈ GL+(n,R) is semi-simple, then it has at least one real logarithm if and
only if each of its (possible) negative eigenvalues has even multiplicity.

Remark 1.8 Let G be a Lie group acting smoothly on a differentiable manifold X . The orbit
of each x ∈ X is an immersed submanifold of X , diffeomorphic to the homogeneous space
G

Gx
, where Gx is the isotropy subgroup of G at x .

Furthermore, if G is compact, all orbits are embedded submanifolds of X (see [14]).

2 Real logarithms of semi-simple non-singular matrices

Let M be any semi-simple real square matrix of order n; by Remark 1.7, if we want Log(M)

to be non-empty, we must assume that the matrix M is non-singular, with all (possible)
negative eigenvalues of even multiplicity.

Aim of this section is to study Log(M), for any M satisfying these assumptions.

Lemma 2.1 Let A ∈ M(n,R). Then A is semi-simple if and only if exp(A) is semi-simple.

Proof One implication is trivial. For the other, assume that exp(A) is semi-simple. By the
additive Jordan-Chevalley decomposition, there exist a semi-simple matrix S and a nilpotent
matrix N of index k ≥ 1, such that A = S+ N with SN = N S (see, for instance, [10, Ch.VI]

123



654 D. Pertici

and also [3]). Since N and S commute, we have exp(A) = exp(S) exp(N ), with exp(S) semi-
simple and exp(N ) unipotent; so, by the uniqueness of the multiplicative Jordan-Chevalley

decomposition, we get exp(A) = exp(S) and exp(N ) = ∑k−1
i=0

Ni

i ! = In . Since the minimal

polynomial of N has degree k, this last equation implies k = 1, i.e. N = On , so A is
semi-simple. ��

Remarks-Definitions 2.2 a) Let M be a semi-simple non-singular real matrix, having every
(possible) negative eigenvalue of even multiplicity, and denote its eigenvalues as follows:
� the distinct positive eigenvalues are: λ1 < λ2 < . . . < λp , with (positive) multiplici-
ties h1 , h2 , . . . , h p respectively (p ≥ 0);
� the distinct non-real eigenvalues are: ρ

(1,1) exp(±iθ1), . . . , ρ(1,a1 )
exp(±iθ1),

ρ
(2,1) exp(±iθ2), . . . , ρ(2,a2 )

exp(±iθ2) up to ρ
(r,1) exp(±iθr ), . . . , ρ(r,ar )

exp(±iθr ),
where ρ

(l,t) exp(±iθl ) both have (positive) multiplicity m
(l,t) , for every l, t , and where

0 < θ1 < θ2 < . . . < θr < π , al ≥ 1, 0 < ρ
(l,1) < ρ

(l,2) < . . . < ρ
(l,al )

, for every
l = 1, . . . , r (r ≥ 0);
� the distinct negative eigenvalues are: −w1 > −w2 > . . . > −wq , with (even
positive) multiplicities 2k1 , 2k2 , . . . , 2kq respectively (q ≥ 0). Note that

∑p
i=1 hi +

2
∑r

l=1
∑al

t=1 m
(l,t) + 2

∑q
j=1 k j = n. We also denote by 2A = 2

∑r
l=1 al the number

of distinct non-real eigenvalues of M. We point out that one or two of the indices p, r , q
can be zero. For instance, the index p vanishes when the matrix M has no positive eigen-
values. In this case, the numbers λi , hi are not defined and it is understood that the term∑p

i=1 hi (or any term of the same type), does not appear in the previous (or in a similar)
equality, according to Notations 1.1 (b). Analogous remarks hold when r or q are zero.

b) Let M be as in (a) and let Y ∈ M(n,R) denote a real logarithm of M. By Lemma 2.1, Y is
semi-simple and its eigenvalues are (complex) logarithms of the eigenvalues of M. Hence
there exist two finite sets, {η

(i,x)
, τ

(l,t,z) , σ( j,y)
} ⊂ Z and {u

(i,x)
, bi , μ(l,t,z) , d

(l,t) , v( j,y)
, c j } ⊂

N, such that the distinct eigenvalues of Y are precisely the following:
� ln(λi )±2πη

(i,x)
i, for x = 0, 1, . . . , bi , with 0 = η

(i,0) < η
(i,1) < . . . < η

(i,bi )
, where,

if bi ≥ 1 and x = 1, . . . , bi , the eigenvalues ln(λi ) ± 2πη
(i,x)

i both have multiplicity
u

(i,x)
≥ 1, while, for x = 0, the multiplicity of ln(λi ) is gi := hi , if bi = 0, and

gi := hi − 2
∑bi

x=1 u
(i,x)

≥ 0, if bi ≥ 1, for every i = 1, . . . , p;
� ln(ρ

(l,t) ) ± (θl + 2πτ
(l,t,z) )i, both with multiplicity μ

(l,t,z) ≥ 1, for z = 1, . . . , d
(l,t) ,

where τ
(l,t,1) < . . . < τ

(l,t,d
(l,t) )

and
∑ d

(l,t)
z=1 μ

(l,t,z) = m
(l,t) for every t = 1, . . . , al and

l = 1, . . . , r;
� ln(w j ) ± (π + 2πσ

( j,y)
)i , both with multiplicity v

( j,y)
≥ 1, for y = 1, . . . , c j , where

v
( j,1) < . . . < v

( j,c j )
and

∑c j
y=1 v

( j,y)
= k j , for every j = 1, . . . , q.

c) Let M, Y (and their eigenvalues) be as in (a) and (b), respectively.
In order to simplify notations and statements, we define the following sets:
I := {i : 1 ≤ i ≤ p, bi ≥ 1}, Î := {i : 1 ≤ i ≤ p, bi = 0},
J := {i ∈ I : gi = 0} = {i : 1 ≤ i ≤ p, gi = 0}, Ĵ := {i ∈ I : gi = 2},
K := {i ∈ I : gi = 0, bi = u

(i,1) = 1}, L := { j : 1 ≤ j ≤ q, c j = v
( j,1) = 1},

and the following multi-indices:
η := (0, η

(1,1) , . . . , η(1,b1 )
; . . . ; 0, η

(p,1) , . . . , η(p,bp )
);

u := (g1 , u
(1,1) , . . . , u

(1,b1 )
; . . . ; gp , u

(p,1) , . . . , u
(p,bp )

);
τ := (τ

(1,1,1) , . . . , τ(1,1,d
(1,1) )

; . . . ; τ
(r,ar ,1) , . . . , τ(r,ar ,d

(r,ar )
)
);
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μ := (μ
(1,1,1) , . . . , μ(1,1,d

(1,1) )
; . . . ; μ

(r,ar ,1) , . . . , μ(r,ar ,d
(r,ar )

)
);

σ := (σ
(1,1) , . . . , σ(1,c1 )

; . . . ; σ
(q,1) , . . . , σ

(q,cq )
);

v := (v
(1,1) , . . . , v(1,c1 )

; . . . ; v
(q,1) , . . . , v

(q,cq )
).

If the set of multi-indices (η, u, τ, μ, σ, v) satisfies the conditions stated in (b), we say
that it is admissible with respect to the matrixM or simply M-admissible. Note that some
multi-indices between η, u, τ, μ, σ, v are necessarily empty when p, r or q vanish. For
instance, if p = 0, then η = u = ∅, and something similar holds when the integer
r or the integer q is zero. There is always a countable infinity of M-admissible sets of
multi-indices, unless the eigenvalues of M are real, positive and simple. In this case,
there exists a unique M-admissible set of multi-indices corresponding to the values
τ = μ = σ = v = ∅, η = (0, 0, . . . , 0), u = (1, 1, . . . , 1). We denote by L(M)

(η,τ,σ )

(u,μ,v)

the subset of Log(M) of all real logarithms of M whose eigenvalues agree with the
eigenvalues of the matrix Y (with the same multiplicities). We say that the eigenvalues of Y
(each with its multiplicity) are the eigenvalues (with relatedmultiplicities) ofL(M)

(η,τ,σ )

(u,μ,v).
Note also that, unless the eigenvalues of M are all real, positive and simple, we have

Log(M) =
⊔

L(M)
(η,τ,σ )

(u,μ,v)

where the countable disjoint union is taken over all M-admissible sets of multi-indices
(η, u, τ, μ, σ, v), while, if the eigenvalues of M are all real, positive and simple, then
Log(M) agrees with the set L(M)

(η,τ,σ )

(u,μ,v), where τ = μ = σ = v = ∅, and η =
(0, 0, . . . , 0), u = (1, 1, . . . , 1). It is not difficult to prove that every L(M)

(η,τ,σ )

(u,μ,v) is
an open and closed topological subspace of Log(M), and therefore, every connected
component of L(M)

(η,τ,σ )

(u,μ,v) is also a connected component of Log(M).
d) If the semi-simple matrices M and Y (and their eigenvalues) are as in (a) and (b), the

real Jordan forms, JM of M and J̃ of Y , can be written, respectively, as follows:

(�) JM :=
[

⊕
i∈I λi Ihi

]

⊕
[

⊕
i∈ Î λi Ihi

]

⊕
[

⊕r
l=1

⊕al
t=1 ρ

(l,t) E
⊕m

(l,t)
θl

]

⊕
[

⊕q
j=1(−w j )I2k j

]

;

(��)J̃ :=
[

⊕
i∈I

(

(ln(λi )Igi
) ⊕ ( ⊕bi

x=1(ln(λi )I2u
(i,x)

+ (2πη
(i,x)

)E⊕u
(i,x) )

)
)]

⊕
[
⊕

i∈ Î ln(λi )Ihi

]

⊕
[
⊕r

l=1
⊕al

t=1

⊕ d
(l,t)

z=1

(

ln(ρ
(l,t) )I2μ

(l,t,z)
+(θl +2πτ

(l,t,z) )E⊕μ
(l,t,z)

)]

⊕
[

⊕q
j=1

⊕c j
y=1

(

ln(w j )I2v
( j,y)

+ (π + 2πσ
( j,y)

)E⊕v
( j,y)

)]

.

By [9, Cor.3.4.1.10, p.203], we know that there exist two matrices C, T ∈ GL(n,R)

such that M = CJM C−1 and Y = T J̃ T −1. Since J̃ is a real Jordan form common to
all matrices of L(M)

(η,τ,σ )

(u,μ,v), we say that J̃ is a real Jordan form of L(M)
(η,τ,σ )

(u,μ,v). Taking

into account Notations 1.1 (	), it is easy to check that we have exp(J̃ ) = JM . Also note
that this equality implies CJ̃ ⊆ CJM .

Proposition 2.3 Let M be a semi-simple non-singular real matrix, whose eigenvalues are as
in Remarks-Definitions 2.2 (a) and fix C ∈ GL(n,R) such that M = CJM C−1, where JM

is the matrix defined by (�). Choose any M-admissible set of multi-indices (η, u, τ, μ, σ, v)

as in Remarks–Definitions 2.2 (b),(c), and denote by J̃ the real Jordan form of L(M)
(η,τ,σ )

(u,μ,v)

defined by (��).
Then we have L(M)

(η,τ,σ )

(u,μ,v) = {C X J̃ X−1C−1 : X ∈ CJM } = AdC

(L(JM )
(η,τ,σ )

(u,μ,v)

)
.
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Moreover, L(M)
(η,τ,σ )

(u,μ,v) is a closed embedded submanifold of M(n,R), diffeomorphic to

the homogeneous space
CJM

CJ̃
.

Proof If Y ∈ L(M)
(η,τ,σ )

(u,μ,v), then Y = T J̃ T −1, for some T ∈ GL(n,R), and

exp(Y ) = T exp(J̃ )T −1 = TJM T −1 = M = CJM C−1. Hence C−1T ∈ CJM , and so
T = C X , for some X ∈ CJM . Conversely, if Y = C X J̃ X−1C−1, with X ∈ CJM , we

have exp(Y ) = C XJM X−1C−1 = M , and so Y ∈ L(M)
(η,τ,σ )

(u,μ,v). Therefore L(M)
(η,τ,σ )

(u,μ,v) =
{C X J̃ X−1C−1 : X ∈ CJM }. The second equality of the statement follows directly from the
definition of the mapping AdC .

Since AdC is a diffeomorphism of M(n,R), it suffices to prove that the set

L(JM )
(η,τ,σ )

(u,μ,v) = {X J̃ X−1 : X ∈ CJM } has the properties stated for L(M)
(η,τ,σ )

(u,μ,v).
The map: (B, Z) �→ AdB (Z) defines an action of the Lie group CJM on M(n,R). The

orbit of J̃ is the set L(JM )
(η,τ,σ )

(u,μ,v). By Remark 1.8, this set is an immersed submanifold of

M(n,R), diffeomorphic to the homogeneous space
CJM

CJ̃
, since CJ̃ is the isotropy subgroup

of the action.
The setL(JM )

(η,τ,σ )

(u,μ,v) is closed in M(n,R). Indeed, if {Yi }i∈N is a sequence inL(JM )
(η,τ,σ )

(u,μ,v)

converging to Y ∈ M(n,R), then exp(Y ) = JM , and the characteristic polynomial of Y is
the same characteristic polynomial of all matrices Yi (constant with respect to i ∈ N). Hence
Y ∈ L(JM )

(η,τ,σ )

(u,μ,v); therefore this last set is closed and it is an embedded submanifold of
M(n,R) (see, for instance, [12, Thm.p. 65]). ��

Lemma 2.4 Let JM and J̃ the matrices of Remarks–Definitions 2.2 (d) defined by (�) and
(��), respectively. Then the Lie groups consisting of the non-singular matrices commuting
with JM and J̃ are the following:

CJM =
[

⊕
i∈I GL(hi ,R)

]

⊕
[

⊕
i∈ Î GL(hi ,R)

]

⊕
[

⊕r
l=1

⊕al
t=1 GL(m

(l,t) ,C)

]

⊕
[

⊕q
j=1 GL(2k j ,R)

]

;

CJ̃ =
[

⊕
i∈I

(

GL(gi ,R) ⊕ ( ⊕bi
x=1 GL(u

(i,x)
,C)

)
)]

⊕
[

⊕
i∈ Î GL(hi ,R)

]

⊕
[

⊕r
l=1

⊕al
t=1

⊕ d
(l,t)

z=1 GL(μ
(l,t,z) ,C)

]

⊕
[

⊕q
j=1

⊕c j
y=1 GL(v

( j,y)
,C)

]

.

Proof The statement follows directly from Lemmas 1.3 and 1.4. ��

Theorem 2.5 Let M be a semi-simple non-singular real matrix, whose eigenvalues are as in
Remarks–Definitions 2.2 (a). Choose any M-admissible set of multi-indices (η, u, τ, μ, σ, v)

and let J = {i : 1 ≤ i ≤ p, gi = 0}; then L(M)
(η,τ,σ )

(u,μ,v) is a manifold with 2(|J |+q)

connected components, each of which is diffeomorphic to

[
∏

i∈I �̂(gi ;u(i,1) ,..., u
(i,bi )

)

]

×
[

∏r
l=1

∏al
t=1 	̂(μ

(l,t,1) ,..., μ
(l,t,d

(l,t) )
)

]

×
[

∏q
j=1 �̂(0;v

( j,1) ,..., v
( j,c j )

)

]

.

Proof From Proposition 2.3 and Lemma 2.4, it follows that L(M)
(η,τ,σ )

(u,μ,v) is a manifold dif-
feomorphic to the following product of homogeneous spaces:
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[
∏

i∈I
GL(hi ,R)

GL(gi ,R) ⊕ ( ⊕bi
x=1 GL(u

(i,x)
,C)

)

]

×
[

∏r
l=1

∏al
t=1

GL(m
(l,t) ,C)

( ⊕d
(l,t)

z=1 GL(μ
(l,t,z) ,C)

)

]

×
[

∏q
j=1

GL(2k j ,R)
( ⊕c j

y=1 GL(v
( j,y)

,C)
)

]

; hence, recalling Remarks-Definitions 1.5 (d), we obtain

the statement of the Theorem. ��
Remark 2.6 Let M be a semi-simple non-singular real matrix, whose negative eigenvalues
have even multiplicity. By Remarks–Definitions 2.2 (c), Theorem 2.5 and Remarks–
Definitions 1.5 (b), Log(M) is a finite set if and only if the eigenvalues of M are all real,
positive and simple, and in this case, it consists of a single point (see [2, Thm.2]). Otherwise,
the set Log(M) is countably infinite if and only if every manifold L(M)

(η,τ,σ )

(u,μ,v) has zero
dimension, and so, taking into account Theorem 2.5 and Remarks-Definitions 1.5 (b),(c), we
get that the set Log(M) is countably infinite if and only if all eigenvalues of M are simple
and no eigenvalue of M is negative, as in [2, Cor. p. 1151].

Definition 2.7 Let M ∈ M(n,R). We say that a matrix X ∈ M(n,R) is a generalized
principal real logarithm of M , if exp(X) = M and every eigenvalue of X has imaginary part
in [−π, π]. Note that this definition is more general than the usual definition of principal
logarithm (see, for instance, [8, Thm.1.31 p.20]).

We denote byPLog(M) the set of all generalized principal real logarithms of M . Of course
this set can be empty, but this does not happen if the matrix M is non-singular, semi-simple
and all its negative eigenvalues have even multiplicity.

Theorem 2.8 Let M be a semi-simple non-singular real matrix, having exactly q distinct
negative eigenvalues (q ≥ 0), of multiplicity 2k1 , . . . , 2kq , respectively.
If q ≥ 1, the set PLog(M) is a manifold with 2q connected components, each of which is
diffeomorphic to the symmetric space

∏q
j=1 �̂(0;k j )

.
If M has no negative eigenvalues, then the set PLog(M) is a single point.

Proof Using the same notations as in Remarks–Definition 2.2, and denoting by O any multi-
index whose entries are all zero, we have PLog(M) = L(M)

(η,τ,σ )

(u,μ,v), where η = O , τ = O ,
σ = O , u = (h1; . . . ; h p ) μ = (m

(1,1) ; . . . ; m
(r,ar )

), v = (k1; . . . ; kq ). Therefore, by
Theorem 2.5, the manifold PLog(M) has 2q connected components, which are, if q ≥ 1, all
diffeomorphic to

∏q
j=1 �̂(0;k j )

. If q = 0 then PLog(M) consists of a single point (as in [8,

Thm.1.31]), since all sets �̂(hi )
and 	̂(m

(l,t) )
reduce to a point. ��

3 Real skew-symmetric logarithms of special orthogonal matrices

Notations 3.1 In this Section we assume n ≥ 2. Let Q ∈ SO(n). The eigenvalues of Q have
unitary modulus, so the real Jordan form of Q can be written as follows:

(∗) ĴQ = Ih ⊕ E
⊕m1
θ1

⊕ . . . ⊕ E
⊕mr
θr

⊕ (−I2k )

where h, r , k ≥ 0, h + 2m1 + . . . + 2mr + 2k = n, 0 < θ1 < θ2 < . . . < θr < π;
so the eigenvalues of Q are: 1 with multiplicity h ≥ 0, exp(±iθ1) both with multiplicity
m1 , . . ., up to exp(±iθr ) both with multiplicity mr (m j ≥ 1, for every j , if r > 0), and −1
with multiplicity 2k ≥ 0. Note that, also in this case, the integers h, r , k can vanish; so we
assume, in this Section, the same agreements stated in Notations 1.1 (b). Also note that, if
n is odd, h is also odd, so 1 is necessarily an eigenvalue of Q. It is known that there exists
K ∈ O(n) such that Q = K ĴQ K T (see, for instance, [9, Cor.2.5.11 p.137]).
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Remarks-Definitions 3.2 a) Let Q be a matrix of SO(n) as in Notations 3.1, and choose any
real skew-symmetric logarithm W of Q. The eigenvalues of W are complex logarithms
of the eigenvalues of Q, so, as in Remarks–Definitions 2.2, there exist two finite sets,
{ηi , τ

(l,t) , σ j } ⊂ Z and {ui , b, μ
(l,t) , dl , v j , c} ⊂ N, such that the eigenvalues of W

can be written as follows:
� ±2πηi i, for i = 0, 1, . . . , b with 0 = η0 < η1 < . . . < ηb , where, if b ≥ 1 and
i = 1, . . . , b the eigenvalues ±2πηi i both have multiplicity ui ≥ 1, while, for i = 0,
the eigenvalue 0 has multiplicity g := h − 2

∑b
i=1 ui ≥ 0 if b ≥ 1, and g := h, if

b = 0;
� ±(θl + 2πτ

(l,t) )i both with multiplicity μ
(l,t) ≥ 1, for every t = 1, . . . , dl , where

τ
(l,1) < τ

(l,2) < . . . < τ
(l,dl )

and
∑dl

t=1 μ
(l,t) = ml for every l = 1, . . . , r;

� ±(π + 2πσ j )i both with multiplicity v j ≥ 1, for every j = 1, . . . , c where
σ1 < . . . < σc and

∑c
j=1 v j = k.

As in Sect.2, to simplify the notations, we define the following multi-indices:
η := (0, η1 , . . . , ηb ); u := (g, u1 , . . . , ub );
τ := (τ

(1,1) , . . . , τ(1,d1 )
; . . . ; τ

(r,1) , . . . , τ(r,dr )
);

μ := (μ
(1,1) , . . . , μ(1,d1 )

; . . . ;μ
(r,1) , . . . , μ(r,dr )

);
σ := (σ1 , . . . , σc ); v := (v1 , . . . , vc ).

The set of multi-indices (η, u, τ, μ, σ, v) is Q-admissible (see Remarks–Definitions 2.2).
Note that, since n ≥ 2, there is a countable infinity of Q-admissible sets of multi-indices,
for every Q ∈ SO(n). Also note that −1 is an eigenvalue of Q of multiplicity 2 if and
only if c = v1 = 1, for every Q-admissible set of multi-indices.

b) Let W be as in (a). The assumptions on the eigenvalues of W are equivalent to
saying that there is a real Jordan form Ĵ of W of the following type:

(∗∗) Ĵ =
[

Og ⊕ ( ⊕b
i=1(2πηi E⊕ui )

)
]

⊕
[

⊕r
l=1

⊕al
t=1(θl + 2πτ

(l,t) )E⊕μ
(l,t)

]

⊕
[

⊕c
j=1(π + 2πσ j )E⊕v j

]

.

Since the matrix W is skew-symmetric, there exists a matrix Z ∈ O(n) such that W =
Z Ĵ Z T (see again [9, Cor.2.5.11 p.136]). Note that Ĵ is also skew-symmetric.

c) If the set of multi-indices (η, u, τ, μ, σ, v) is Q-admissible, we denote byLso(n)(Q)
(η,τ,σ )

(u,μ,v)

= so(n)∩L(Q)
(η,τ,σ )

(u,μ,v) the set of real skew-symmetric logarithms of Q whose real Jordan

form is the matrix Ĵ defined by (∗∗). As in Remarks-Definitions 2.2 (c),(d), we say that
Ĵ is a real Jordan form of Lso(n)(Q)

(η,τ,σ )

(u,μ,v) and that the eigenvalues of Ĵ (with their

multiplicities) are the eigenvalues (with related multiplicities) of Lso(n)(Q)
(η,τ,σ )

(u,μ,v). It is
clear that

Logso(n)(Q) =
⊔

Lso(n)(Q)
(η,τ,σ )

(u,μ,v)

where the countable disjoint union is taken over all Q-admissible sets of multi-indices
(η, u, τ, μ, σ, v). As in Remarks–Definitions 2.2 (c), Lso(n)(Q)

(η,τ,σ )

(u,μ,v) is an open and
closed topological subspace of Logso(n)(Q); so we get that each connected component

of Lso(n)(Q)
(η,τ,σ )

(u,μ,v) is also a connected component of Logso(n)(Q).

Proposition 3.3 Let Q ∈ SO(n); assume its real Jordan form ĴQ is as in Notations 3.1
(∗) and fix K ∈ O(n) such that Q = K ĴQ K T . Choose any Q-admissible set of multi-
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indices (η, u, τ, μ, σ, v) and let Ĵ be the real Jordan form of Lso(n)(Q)
(η,τ,σ )

(u,μ,v) defined in
Remarks–Definitions 3.2 (∗∗). Then we have
Lso(n)(Q)

(η,τ,σ )

(u,μ,v) = {K X Ĵ X T K T : X ∈ CĴQ
∩ O(n)} = AdK (Lso(n)(ĴQ)

(η,τ,σ )

(u,μ,v)).

Moreover Lso(n)(Q)
(η,τ,σ )

(u,μ,v) is a compact submanifold of so(n), diffeomorphic to the homo-

geneous space
CĴQ

∩ O(n)

CĴ ∩ O(n)
.

Proof LetW ∈ Lso(n)(Q)
(η,τ,σ )

(u,μ,v).Weknow that there exists Z ∈ O(n) such thatW = Z Ĵ Z T .

By Notations 1.1 (	), we get exp(Ĵ ) = ĴQ . Since exp (W ) = Q, we have Z ĴQ Z T =
K ĴQ K T , so we get Z = K X , with X ∈ CĴQ

∩ O(n). Conversely, if W = K X Ĵ X T K T ,

with X ∈ CĴQ
∩ O(n), then W ∈ so(n) and exp(W ) = K X ĴQ X T K T = Q. Hence

Lso(n)(Q)
(η,τ,σ )

(u,μ,v) = {K X Ĵ X T K T : X ∈ CĴQ
∩ O(n)} = AdK ({X Ĵ X T : X ∈ CĴQ

∩
O(n)}) = AdK (Lso(n)(ĴQ)

(η,τ,σ )

(u,μ,v)). Since AdK is a diffeomorphism of so(n) which maps

Lso(n)(ĴQ)
(η,τ,σ )

(u,μ,v) onto Lso(n)(Q)
(η,τ,σ )

(u,μ,v), it suffices to prove the final part of the Theorem

for Lso(n)(ĴQ)
(η,τ,σ )

(u,μ,v). The compact Lie group CĴQ
∩ O(n) acts on so(n) through the map:

(A, Y ) �→ AdA (Y ); Lso(n)(ĴQ)
(η,τ,σ )

(u,μ,v) is the orbit of Ĵ , while the isotropy subgroup at Ĵ is

CĴ ∩ O(n); hence, by Remark 1.8, Lso(n)(ĴQ)
(η,τ,σ )

(u,μ,v) (and therefore also Lso(n)(Q)
(η,τ,σ )

(u,μ,v))

is a compact submanifold of so(n) diffeomorphic to
CĴQ

∩ O(n)

CĴ ∩ O(n)
. This completes the proof.

��

Theorem 3.4 Let Q ∈ SO(n); assume its real Jordan form ĴQ is as in Notations 3.1 (∗) and
choose any Q-admissible set of multi-indices (η, u, τ, μ, σ, v). Then

a) Lso(n)(Q)
(η,τ,σ )

(u,μ,v) is a compact homogeneous submanifold of so(n), whose connected
components are all diffeomorphic to the product

�(g;u1 ,...,ub ) ×
[

∏r
l=1 	(μ

(l,1) ,...,μ(l,dl )
)

]

× �(0;v1 ,...,vc );

b) the manifold Lso(n)(Q)
(η,τ,σ )

(u,μ,v) is connected if and only if either Q has no real eigenvalues

or −1 is not an eigenvalue of Q and 0 is an eigenvalue ofLso(n)(Q)
(η,τ,σ )

(u,μ,v); this manifold
has two connected components if and only if either 1 is an eigenvalue of Q, −1 is not an
eigenvalue of Q and 0 is not an eigenvalue of Lso(n)(Q)

(η,τ,σ )

(u,μ,v), or −1 is an eigenvalue

of Q and 0 is an eigenvalue of Lso(n)(Q)
(η,τ,σ )

(u,μ,v), or 1 is not an eigenvalue of Q and

−1 is an eigenvalue of Q; Lso(n)(Q)
(η,τ,σ )

(u,μ,v) has four connected components if and only

if 1 and −1 are both eigenvalues of Q and 0 is not an eigenvalue of Lso(n)(Q)
(η,τ,σ )

(u,μ,v).

Proof From Lemmas 1.3 and 1.4, we get
CĴQ

∩ O(n) = {GL(h,R) ⊕ ( ⊕r
l=1 GL(ml ,C)

) ⊕ GL(2k,R)} ∩ O(n) = O(h) ⊕
( ⊕r

l=1 U (ml )
) ⊕ O(2k) and CĴ ∩ O(n) =

{
GL(g,R) ⊕ ( ⊕b

i=1 GL(ui ,C
) ⊕ ( ⊕r

l=1
⊕dl

t=1 G(μ
(l,t) ,C)

) ⊕ ( ⊕c
j=1 GL(v j ,C)

)} ∩
O(n) = O(g) ⊕ ( ⊕b

i=1 U (ui )
) ⊕ ( ⊕r

l=1
⊕dl

t=1 U (μ
(l,t) )

) ⊕ (
⊕c

j=1 U (v j )).
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Therefore the homogeneous space
CĴQ

∩ O(n)

CĴ ∩ O(n)
is diffeomorphic to the product

[ O(h)

O(g) ⊕ ( ⊕b
i=1 U (ui )

)

]

×
[ ∏r

l=1

U (ml )
( ⊕dl

t=1 U (μ
(l,t) )

)

]

×
[ O(2k)

( ⊕c
j=1 U (v j )

)

]

.

(Wehave assumed,without losing generality, that h, k ≥ 1.) ByProposition 3.3 andRemarks-
Definitions 1.5 (d), we get the statement (a), while (b) still follows, by means of simple
arguments, from Remarks-Definitions 1.5 (d). ��
Remark 3.5 a) Now, keeping in mind Notations 3.1 and Remarks–Definitions 3.2 (a), if the

set of multi-indices (η, u, τ, μ, σ, v) is Q-admissible and the order n of Q is odd, then
0 is necessarily an eigenvalue of Lso(n)(Q)

(η,τ,σ )

(u,μ,v).
b) If Q ∈ SO(n) (n ≥ 2), the set of real skew-symmetric logarithms of Q is never finite

and it is countably infinite if and only if, for every Q-admissible set of multi-indices
(η, u, τ, μ, σ, v), the manifold Lso(n)(Q)

(η,τ,σ )

(u,μ,v) has zero dimension. By Theorem 3.4
and Remarks–Definitions 1.5 (b), (c), it follows that Logso(n)(Q) is countably infinite if
and only if all non-real eigenvalues of Q are simple and the multiplicity of 1 and −1 as
(possible) eigenvalues of Q is less than or equal to 2.

Definition 3.6 Let Q ∈ SO(n). As in Definition 2.7, we say that X ∈ so(n) is a generalized
principal skew-symmetric logarithm of Q, if exp(X) = Q and each eigenvalue of X has
imaginary part in [−π, π]. We denote by PLogso(n)(Q) the set of generalized principal
skew-symmetric logarithms of Q.

Theorem 3.7 Let Q ∈ SO(n). If −1 is not an eigenvalue of Q, then the set PLogso(n)(Q)

consists of a single point, while, if −1 is an eigenvalue of Q of multiplicity 2k ≥ 2, then
PLogso(n)(Q) is a compact submanifold of so(n), diffeomorphic to the homogeneous space
O(2k)

U (k)
. In this last case, PLogso(n)(Q) has two connected components, each of which is

diffeomorphic to the symmetric space �(0;k).

Proof The set PLogso(n)(Q) agrees with Lso(n)(Q)
(η,τ,σ )

(u,μ,v), where η = O , τ = O , σ =
O , u = (h), μ = (m1; . . . ; mr ), v = (k), so the statement follows from the proof of
Theorem 3.4, taking into account Remarks–Definitions 1.5 (b), (c), (d). ��

4 Remarks on the homotopy groups of some homogeneous spaces

As we have seen, the homogeneous spaces defined in Remarks–Definitions 1.5 describe the
structure of the set of real logarithms of an arbitrary matrix. For this reason, in this section
we will study some of their topological properties. We start with some general properties
concerning homogeneous spaces.

Remark 4.1 Let G be a connected Lie group with identity e and let H be any connected
closed subgroup of G. Denoting by G/H the related homogeneous space and by {e} = H
the equivalence class of e in the quotient G/H , it is known that we have the following
homotopy exact sequence, induced by the fibration on the quotient (see [16, p.90]):

. . .
δ−→ πi (H)

ψ−→ πi (G)
ξ−→ πi (G/H)

δ−→ . . .
ξ−→ π2(G/H)

δ−→ π1(H)
ψ−→

π1(G)
ξ−→ π1(G/H) → 0.
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In this sequence, the homotopy groups are based at the point e for G and H and at the point
{e} for G/H ; the mappings ψ and ξ are, respectively, the homomorphisms induced by the
natural inclusion: H → G and by the projection of G onto the quotient G/H , while the
mappings δ are the connecting homomorphisms.

Lemma 4.2 Let G ′, H, H ′ be connected closed subgroups of a connected Lie group G, such
that H ′ ⊂ G ′ ∩ H. Suppose G ′ is a deformation retract of G and H ′ is a deformation retract
of H. Then πi (G/H) ∼= πi (G ′/H ′), for every i ≥ 1.

Proof From the assumptions, it follows that the natural inclusion: G ′ → G is a bun-
dle morphism, i.e. there exist a (natural) inclusion map: G ′/H ′ → G/H such that

the diagram

G ′ −−−−→ G
⏐
⏐
�

⏐
⏐
�

G ′/H ′ −−−−→ G/H

commutes. Then, for every i ≥ 2, we get the fol-

lowing commutative diagram, where the rows are exact sequences (see [16, p.90]):

· · · πi (H ′) ψ ′
−−−−→ πi (G ′) ξ ′

−−−−→ πi (G ′/H ′) δ′−−−−→ πi−1(H ′) ψ ′
−−−−→ πi−1(G ′) . . .

⏐
⏐
� fi

⏐
⏐
� ji

⏐
⏐
�li

⏐
⏐
� fi−1

⏐
⏐
� ji−1

· · · πi (H)
ψ−−−−→ πi (G)

ξ−−−−→ πi (G/H)
δ−−−−→ πi−1(H)

ψ−−−−→ πi−1(G) · · ·
Here the maps fi , ji and li are the homomorphisms induced by the natural inclusions.

Since all groups are connected, if we define, as usual, π0(G) = π0(G ′) = π0(H) = π0(H ′)
= {0}, the previous commutative diagram remains valid also for i = 1. Furthermore, since G ′
and H ′ are deformation retracts of G and H , respectively, all maps fr , jr are isomorphisms,
therefore, by the classical Five-Lemma (see, for instance, [7, p. 129], where the proof also
works for non-abelian groups), all maps li are also isomorphisms, for every i ≥ 1. This
concludes the proof. ��
Proposition 4.3 Let ζ, ν1, . . . , νs be integers such that ζ ≥ 0 and ν j ≥ 1, for j =
1, . . . , s (s ≥ 1). Then, for every i ≥ 1, we have
πi (�̂(ζ ;ν1,...,νs ))

∼= πi (�(ζ ;ν1,...,νs )) and πi (	̂(ν1,...,νs ))
∼= πi (	(ν1,...,νs )).

Proof It is well-known that SO(n) is a deformation retract of GL+(n,R). Indeed, if
X ∈ GL+(n,R), by polar decomposition (see [9, Thm.7.3.1 p. 449]), we can write
X = (X X T )1/2

(
(X X T )−1/2·X)

, where (X X T )1/2 is a positive definite symmetric realmatrix
of order n and

(
(X X T )−1/2 · X

) ∈ SO(n). Denoting by log((X X T )1/2) the unique symmetric
real logarithm of the positive definite matrix (X X T )1/2, by j : SO(n) → GL+(n,R) the
natural inclusion, and by r̂ : GL+(n,R) → SO(n) the retraction: X �→ (

(X X T )−1/2 · X
)
,

we define H(X , t) = exp
(
t · log((X X T )1/2)

)(
(X X T )−1/2 · X

)
, for every X ∈ GL+(n,R)

and t ∈ [0, 1]. H is a C∞ homotopy between j ◦ r̂ and the identity map of GL+(n,R), so
SO(n) is a deformation retract of GL+(n,R). Similarly, it can be proved thatU (n) is a defor-
mation retract of GL(n,C),

( ⊕s
j=1 U (ν j )

)
is a deformation retract of

( ⊕s
j=1 GL(ν j ,C)

)
,

and SO(ζ ) ⊕ ( ⊕s
j=1 U (ν j )

)
is a deformation retract of

GL+(ζ,R) ⊕ ( ⊕s
j=1 GL(ν j ,C)

)
; so the Proposition follows from Lemma 4.2. ��

Remark 4.4 The spaces �(0;1), �(ζ) and 	(ν) reduce to a single point (remember Remarks–
Definitions 1.5 (b)), so their homotopy groups are trivial.

We also recall that the so-called stable homotopy groups of the symmetric spaces

�(0,ν) = SO(2ν)

U (ν)
have been computed by R. Bott in his fundamental work [1], while results
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about unstable homotopy groups of �(0,ν) have been obtained by various other authors (see,
for instance, [6, 15] and [11]). Among the known results, we will use the following:

Proposition 4.5 The manifold �(0,ν) is simply connected and π2(�(0,ν)) ∼= Z for every ν ≥ 2.

We will study some other cases in the next Propositions of this Section.

Proposition 4.6 Let ζ, ν1, . . . , νs be integers such that ζ ≥ 0, ν1, . . . , νs ≥ 1 (s ≥ 1), and
assume either ζ ≥ 1 or s ≥ 2. Then

a) �(ζ ;ν1,...,νs ) is simply connected;
b) π2(�(ζ ;ν1,...,νs )) is isomorphic to Z

s , if ζ �= 2, while π2(�(2;ν1,...,νs )) is isomorphic to
Z

s+1;
c) if ν1 = . . . = νs = 1 and ζ = 0, 1, 2, then πi (�(ζ ;1,...,1)) is isomorphic to

πi (SO(ζ + 2s)), for every i ≥ 3.

Proof The assumptions about ζ and s imply that ζ + 2ν ≥ 3, where ν := ∑s
j=1 ν j ; then

π1(SO(ζ + 2ν)) is a cyclic group of order two. Furthermore, since
π2(SO(ζ + 2ν)) = {0}, the final part of the homotopy exact sequence reduces to:

0 → π2(�(ζ ;ν1,...,νs ))
δ−→ π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

) ψ−→ π1(SO(ζ + 2ν))
ξ−→

π1(�(ζ ;ν1,...,νs )) → 0. In this sequence the homomorphism ψ is induced by the inclusion

determined by the decomplexification mapping. Now we set φ1 = 0, φ j = ∑ j−1
r=1 νr , for

j = 2, . . . , s, and we define, for j = 1, . . . , s, the following loops:
α j : t �→ Iζ ⊕ Iφ j

⊕ (e2π t i) ⊕ I
(ν−φ j −1) ∈ SO(ζ ) ⊕ ( ⊕s

h=1 U (νh )
)
,

β j : t �→ I
(2φ j +ζ )

⊕
(
cos(2π t) − sin(2π t)
sin(2π t) cos(2π t)

)
⊕ I2(ν−φ j −1) ∈ SO(ζ + 2ν), for every t ∈

[0, 1]. Hence, denoting by [α j ] and [β j ] the equivalence classes of the loops α j and β j in
π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
and π1(SO(ζ + 2ν)), respectively, we have ψ([α j ]) = [β j ],

for every j = 1, . . . , s. The mapping ψ is surjective, since [β1] is the generator (of order
two) of π1(SO(ζ + 2ν)); so, by the exactness of the previous sequence, π1(�(ζ ;ν1,...,νs )) is
the trivial group and therefore (a) is proved.
Moreover, all loops β j are homotopic to loop β1. Indeed, if Q j is a (special orthog-
onal) permutation matrix such that Q jβ1(t)QT

j = β j (t) (for every t ∈ [0, 1]) and
γ : [0, 1] → SO(ζ + 2ν) is a continuous path joining I

(ζ+2ν)
and Q j , then the mapping

H defined by H(t, s) = γ (s)β1(t)γ (s)T (with t, s ∈ [0, 1]) is a homotopy between the
loops β1 and β j . Therefore ψ([α j ]) = [β j ] = [β1], for j = 1, . . . , s.
If ζ = 0, 1, the fundamental group π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
is a free abelian group of

rank s and its generators are the homotopy classes of the loops α j , for j = 1, . . . , s, and we
have ψ(

∑s
j=1 n j [α j ]) = (

∑s
j=1 n j )[β1], for every n1, . . . , ns ∈ Z.

Furthermore, kerψ = {∑s
j=1 n j [α j ] : ∑s

j=1 n j is even} is a free abelian group, whose

rank is less than or equal to s = rank
(
π1(SO(ζ ) ⊕ (

⊕s
h=1 U (νh )))

)
. Since the elements

2[α1], . . . , 2[αs] ∈ kerψ are linearly independent over Z, it follows that rank(kerψ) = s,
and so, π2(�(ζ ;ν1,...,νs ))

∼= kerψ ∼= Z
s .

If ζ ≥ 2, we denote by ω : [0, 1] → SO(ζ )⊕ ( ⊕s
h=1 U (νh )

)
and ω̃ : [0, 1] → SO(ζ +2ν)

the loops defined, respectively, as follows:

ω(t) =
(
cos(2π t) − sin(2π t)
sin(2π t) cos(2π t)

)
⊕ I

(ζ−2) ⊕ Iν and ω̃(t) =
(
cos(2π t) − sin(2π t)
sin(2π t) cos(2π t)

)
⊕ I

(2ν+ζ−2) , for

every t ∈ [0, 1]. Since ψ([ω]) = [ω̃], as in the previous case we get
ψ([ω]) = [β1]. Furthermore, the elements [ω], [α1], . . . , [αs] are independent generators
of π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
.
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If ζ = 2, all these elements have infinite order and π1
(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
is a free

abelian group of rank s + 1. Therefore
kerψ = {n0[ω] + ∑s

j=1 n j [α j ] : ∑s
j=0 n j is even} is a free abelian group of rank ≤ s + 1;

since 2[ω], 2[α1], . . . , 2[αs] are Z-linearly independent elements of kerψ , we conclude that
rank(kerψ) = s + 1, and so π2(�(2;ν1,...,νs ))

∼= kerψ ∼= Z
s+1.

If ζ ≥ 3, we have π1
(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

) ∼= Z2 ⊕ Z
s and hence

rank
(
π1(SO(ζ ) ⊕ (

⊕s
h=1 U (νh )))

) = s. As before, 2[α1], . . . , 2[αs] are Z-linearly inde-
pendent elements of kerψ ⊂ π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
. Therefore

s ≤ rank(kerψ)≤ rank
(
π1(SO(ζ )⊕(

⊕s
h=1 U (νh )))

) = s, and so rank(kerψ)= s. Note that
kerψ is a torsion-free finitely generated abelian group. Indeed, [ω] is the unique non-trivial
torsion element of the group π1

(
SO(ζ ) ⊕ (

⊕s
h=1 U (νh ))

)
and [ω] /∈ kerψ . Hence kerψ is

a free abelian group of rank s, and therefore
π2(�(ζ ;ν1,...,νs ))

∼= kerψ ∼= Z
s . So the proof of (b) is complete.

Finally, if ν j = 1, for every j = 1, . . . , s, and ζ = 0, 1, 2, since we have
πr (U (1)) = πr (SO(1)) = πr (SO(2)) = {0}, for every r ≥ 2, the sequence:

0 → πi (SO(ζ + 2 s))
ξ−→ πi (�(ζ ;1,...,1)) → 0 is exact, for i ≥ 3; so (c) holds. ��

Proposition 4.7 Let ν1, . . . , νs be positive integers (s ≥ 1). Then

a) 	(ν1,...,νs ) is simply connected;
b) π2(	(ν1,...,νs )) is a free abelian group of rank s − 1
c) if ν1 = . . . = νs = 1, then πi (	(1,...,1)) is isomorphic to πi (U (s)), for every i ≥ 3. In

particular, if s ≥ 2, the group π3(	(1,...,1)) is isomorphic to Z.

Proof We set ν := ∑s
j=1 ν j . Taking into account that π2(U (ν)) = {0} and arguing as in

Proposition 4.6, we obtain (a). Then we have the following short exact sequence:

0 → π2(	(ν1,...,νs ))
δ−→ π1(

⊕s
j=1 U (ν j ))

ψ−→ π1(U (ν)) → 0.
The group π2(	(ν1,...,νs )) is free abelian, since it is a subgroup of the free abelian group
π1(

⊕s
j=1 U (ν j )) ∼= Z

s . Furthermore, the previous short exact sequence splits, because
π1(U (ν)) ∼= Z is a free abelian group. We can therefore conclude that
π2(	(ν1,...,νs ))

∼= Z
s−1, and so (b) holds.

Since πr (U (1)) = {0}, for every r ≥ 2, the exactness of the sequence

0 → πi (U (s))
ξ−→ πi (	(1,...,1)) → 0 implies πi (	(1,...,1)) ∼= πi (U (s)), for i ≥ 3. The last

statement of (c) follows from the fact that π3(U (s)) ∼= Z, for all s ≥ 2. ��
Remark 4.8 Using the Kronecker delta and taking into account Proposition 4.3, it is possible
to summarizeRemark 4.4 andPropositions, 4.5, 4.6 (b), 4.7 (b), by saying thatπ2(�̂(ζ ;ν1,...,νs ))

and π2(�(ζ ;ν1,...,νs )) are free abelian groups of rank
s − δ(ζ,0)δ(s,1)δ(ν1 ,1) + δ(ζ,2)(1 − δ(s,0)) (for ζ, s ≥ 0, ζ + s ≥ 1), while π2(	̂(ν1,...,νs ))

and π2(	(ν1,...,νs )) are free abelian groups of rank s − 1, for every s ≥ 1 . Furthermore, all
these homogeneous spaces are simply connected.

5 Some topological properties ofLog(M) andLogso(n)(Q)

Theorem 5.1 Let M be a semi-simple non-singular real matrix, whose eigenvalues are as in
Remarks–Definitions 2.2 (a), denote by 2A the number of distinct non-real eigenvalues of M,
choose any M-admissible set of multi-indices (η, u, τ, μ, σ, v), and define the sets Ĵ , K , L
as in Remarks–Definitions 2.2 (c).

If C is an arbitrary connected component of L(M)
(η,τ,σ )

(u,μ,v), then
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a) C is simply connected and π2(C) is a free abelian group whose rank is
∑p

i=1 bi − |K | + | Ĵ | + ∑r
l=1

∑al
t=1 d

(l,t) − A + ∑q
j=1 c j − |L|;

b) assume that all non-real eigenvalues of L(M)
(η,τ,σ )

(u,μ,v) are simple; then the rank of π2(C)

is
1

2

(
n −∑p

i=1 gi

) − |K | + | Ĵ | − A − |L|; if, in addition, the multiplicity of all real

eigenvalues of L(M)
(η,τ,σ )

(u,μ,v) is less than or equal to 2, then, for every α ≥ 3, πα(C) is
isomorphic to the direct sum[

⊕p
i=1 πα

(
SO(hi )

)
]

⊕
[

⊕r
l=1

⊕al
t=1 πα

(
U (m

(l,t) )
)
]

⊕
[

⊕q
j=1 πα

(
SO(2k j )

)
]

.

c) If W is any connected component of PLog(M), then W is simply connected and π2(W)

is a free abelian group of rank B, where B is the number of distinct negative eigenvalues
of M, the multiplicity of which is greater than or equal to 4.

Proof By Theorem 2.5 and Remark 4.8, the component C is simply connected and the rank
of the free abelian group π2(C) is
∑

i∈I

(
bi − δ(gi ,0)

δ(bi ,1)
δ(u

(i,1) ,1)
+ δ(gi ,2)

(1 − δ(bi ,0)
)
) + ∑r

l=1
∑al

t=1 d
(l,t) − ∑r

l=1 al +
∑q

j=1

(
c j − δ(c j ,1)

δ(v
( j,1) ,1)

) = ∑p
i=1 bi − |K | + | Ĵ | + ∑r

l=1
∑al

t=1 d
(l,t) − A +

∑q
j=1 c j − |L|

where I is the set defined in Remarks–Definitions 2.2 (c). This proves (a).
For part (b),wenote that the conditionon thenon-real eigenvalues ofL(M)

(η,τ,σ )

(u,μ,v) is equivalent
to u

(i,x)
= μ

(l,t,z) = v
( j,y)

= 1, for any possible choice of indices i, x, l, t, z, j, y, so, under
this condition, we have
(•) hi = gi + 2bi , m

(l,t) = d
(l,t) , k j = c j , for all possible indices i, l, t, j .

Hence
∑p

i=1 bi + ∑r
l=1

∑al
t=1 d

(l,t) + ∑q
j=1 c j = ∑p

i=1
(hi − gi )

2
+ ∑r

l=1
∑al

t=1 m
(l,t) +

∑q
j=1 k j = 1

2

(
n − ∑p

i=1 gi

)
. From this and (a), we get the asserted formula for the

rank of π2(C). If, in addition, the condition on the real eigenvalues holds, we have gi ≤ 2,
for i = 1, . . . , p, so the statement about πα(C) (α ≥ 3) follows from Theorem 2.5 and
Propositions 4.3, 4.6 (c), 4.7 (c), taking into account the equalities (•) and the fact that, if
i /∈ I , then πα(SO(hi )) = πα(SO(gi )) = {0}, for every α ≥ 3.
Part (c) follows from (a), since, in this case, the set I is empty, d

(l,t) = c j = 1, for all
possible indices l, t, j , L = { j : 1 ≤ j ≤ q, k j = 1} and B = q − |L|. ��
Theorem 5.2 Let Q ∈ SO(n); assume its real Jordan form ĴQ is as in Notations 3.1 (∗) and
choose any Q-admissible set of multi-indices (η, u, τ, μ, σ, v). Denote by B an arbitrary
connected component of Lso(n)(Q)

(η,τ,σ )

(u,μ,v). Then

a) B is simply connected and π2(B) is a free abelian group whose rank is
b − δ(g,0)δ(b,1)δ(u1 ,1) + δ(g,2)(1 − δ(b,0)) + ∑r

l=1 dl − r + c − δ(c,1)δ(v1 ,1);
b) assume that all non-real eigenvalues ofLso(n)(Q)

(η,τ,σ )

(u,μ,v) are simple and that the multiplic-

ity of 0 as eigenvalue ofLso(n)(Q)
(η,τ,σ )

(u,μ,v) is less than or equal to 2; then, for every α ≥ 3,

πα(B) is isomorphic to the direct sum πα

(
SO(h)

)⊕
[

⊕r
l=1 πα

(
U (ml )

)
]

⊕πα

(
SO(2k)

)
.

c) If Z is any connected component of PLogso(n)(Q), then
� Z is a single point, if either −1 is not an eigenvalue of Q or it is an eigenvalue of
Q of multiplicity 2;
� Z is diffeomorphic to a 2-dimensional sphere, if −1 is an eigenvalue of Q of
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multiplicity 4;
� Z is simply connected and π2(C) is an infinite cyclic group, if −1 is an eigenvalue of
Q of multiplicity greater than or equal to 6.

Proof Part (a) easily follows from Theorem 3.4 (a) and Remark 4.8. Part (b) follows from
Theorem 3.4 (a) and Propositions 4.6 (c), 4.7 (c), since, in this case, we have g = h − 2b ≤
2, c = k and ml = dl , for every l = 1, . . . , r . Part (c) follows from Theorem 3.7 and
Proposition 4.5, also remembering that �(0,2) ∼= S2. ��
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