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Abstract
In this article we address the issue of uniqueness for differential and algebraic operator
Riccati equations, under a distinctive set of assumptions on their unbounded coefficients. The
class of boundary control systems characterized by these assumptions encompasses diverse
significant physical interactions, all modeled by systems of coupled hyperbolic–parabolic
partial differential equations. The proofs of uniqueness provided tackle and overcome the
obstacles raised by the peculiar regularity properties of the composite dynamics. These results
supplement the theories of the finite and infinite time horizon linear–quadratic problem
devised by the authors jointly with I. Lasiecka, as the unique solution to the Riccati equation
enters the closed-loop form of the optimal control.

Keywords Riccati equations · Coupled PDE systems · Linear–quadratic regulator problem ·
Boundary control · Closed loop equation

Mathematics Subject Classification 49N10 · 93C20 · 35M33

1 Introduction

Well-posedness of Riccati equations is a fundamental questionwithin control theory of partial
differential equations (PDE).While the issues of existence and uniqueness for the correspond-
ing solutions are both natural to be addressed and significant in themselves, when seen in
the context of linear–quadratic optimal control uniqueness proves particularly relevant, not
exclusively from a theoretical perspective. This is because it brings about in a univocal man-
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ner the (optimal cost, or Riccati) operator which occurs in the feedback representation of the
optimal control, thereby allowing its synthesis.

In the present work focus is on the differential and algebraic Riccati equations arising
from optimal control problemswith quadratic functionals for the class of infinite dimensional
abstract control systems dealt with in our earlier works [2, 4], joint with Lasiecka. The basic
characteristics of these linear systems—which read as y′(t) = Ay(t) + Bu(t), t ∈ [0, T ),
according to a standard notation—are the following: the free dynamics operator A is the
infinitesimal generator of a C0-semigroup {eAt }t≥0 on the state space Y , while the control
operator B is unbounded, meaning that B maps continuously the control spaceU into a larger
functional space thanY , that is the extrapolation space [D(A∗)]′; see theAssumptions 2.1. It is
well known that the latter is an intrinsic feature of differential systems describing evolutionary
PDE with boundary (and also point) control; see, e.g., [8, 21].

We require more specifically that several assumptions on the dynamics operator coeffi-
cients (A and B) are fulfilled, recorded as Assumptions 2.3 in Sect. 2. These are regularity
properties that pertain to the adjoint of the kernel eAt B, with respective PDE counterparts. It
is worth emphasizing here that not only the aforesaid control-theoretic properties do not pre-
scribe analyticity of the semigroup eAt , in accordance with the fact that the class of systems
under consideration—introduced by these authors with Lasiecka in [2]—is inspired by and
tailored on systems of coupled hyperbolic–parabolic PDE, subjected to boundary/interface
control. They are also more general than the full singular estimates (SE)1 for eAt B which
are known to be equally effective—even in the absence of analiticity of eAt—for the study
of the quadratic optimal control problem on both a finite and infinite time horizon, as proved
in [16, 17, 19, 20]. See also [22, 24, 31].

Another distinguishing feature of the coefficients of the Riccati equations under study,
whose algebraic form is

(Px, Az)Y + (Ax, Pz)Y − (B∗Px, B∗Pz)U + (Rx, Rz)Z = 0 , x, z ∈ D(A) ,

is that the requirement on the observation operator R—that is iiib) of the Assumptions 2.3—
may allow R to be the identity, thereby including the integral of the full quadratic energy of
the physical system among the viable cost functionals; see the Remarks 2.4.

Working within the functional-analytic framework described above, a theory for both the
finite and infinite time horizon LQ-problem has been devised in [2, 4], the latter under the
Assumptions 2.8 (replacing Assumptions 2.3). The strenght of these theories is confirmed
by the boundary regularity results—of independent value—that have been established for
the solutions to significant PDE systems comprising hyperbolic and parabolic components.
Indeed, the novel class introduced in [2] has proven successful in attaining solvability of the
quadratic optimal control problems associated with a diverse range of physical interactions
such as mechanical–thermal, acoustic–structure, fluid–elasticity ones; see [3, 10, 13, 14]
(time interval of finite lenght), [4, 11] and the recent [1] (infinite time horizon).

We recall that since in [2, 4] we followed an established variational approach, by using
the optimality conditions a bounded operator—to wit, P(t) or P , depending on T < +∞
or T = +∞—is constructed in terms of the optimal state and only subsequently shown to
satisfy the corresponding Riccati equations. For this reason the works [2, 4] provide existence
for Riccati equations, but not uniqueness.

1 We recall that in the present context with SE we mean that eAt B ∈ L(U , Y ) in a right neighbourhood I of
t = 0, and in particular that ‖eAt B‖L(U ,Y ) = O(t−γ ) holds true for some γ ∈ (0, 1) and any t ∈ I . This

explains the adjective “singular”. In the PDE realm the membership alone eAt B ∈ L(U , Y ) amounts to an
enhanced interior regularity of the solutions to the IBVP with homogeneous boundary data and ‘rough’ initial
data.
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The goal of this work is to prove uniqueness results for both the differential and algebraic
Riccati equations (in short, DRE and ARE, from now on), thereby completing the complex of
findings of [2, 4], respectively. These results—our main results—are stated as Theorems 2.6
and 2.10. Uniqueness holds in appropriate (respective) classes of linear bounded operators,
which are consistent with the distinctive property of the gain operator (B∗P(t) or B∗P in
the quadratic term of the DRE or ARE) emerged in [2, 4]; see the statements S4. and A4. in
Theorems 2.5 and 2.9, respectively.

We feel it is important to emphasize that evenwhen following avenues previously pursued
in the past literature, our proofs of uniqueness need to face novel challenges. This is due in
the first place to the specific assumptions on the dynamics operator coefficients (A, B).
These are notably weaker than the ones which characterize the parabolic class (as well as
its generalization), more elaborate than the admissibility condition (also termed “abstract
trace regularity”) which is satisfied in the case of significant hyperbolic PDE with boundary
control, while the hypothesis on R essentially demands that the operator R∗R preserves
regularity. And yet, a careful use of the hypotheses allows us to provide a clean and direct
(first) proof of Theorem 2.5; see Sect. 3.

However, since the finite lenght of the interval [0, T ] is central to the aforementioned
proof, in order to attain uniqueness for the ARE as stated in Theorem 2.9 we pursue an
alternative line of argument which is borrowed from classical control theory, but it is used in
a nonstandard fashion in the present work; see Sect. 4. This path turns out to be effective for
both the DRE and ARE, thereby bringing about a second proof of Theorem 2.5. An outline
of the paper is found in Sect. 1.2.

1.1 A glimpse of composite systems of PDE relevant to the context

Before introducing the optimal control problem formulation under the Assumptions 2.3 (or
Assumptions 2.8, for the infinite time horizon case), we revisit twoPDE illustrations of initial-
boundary value problems (IBVP) which fall within the functional-analytic framework. Our
objective here is to give a flavour of the boundary control problems that the Assumptions 2.3
may mirror, as well as of the considerable task that checking their validity entails. We keep
the focus on the main facts—from a PDE perspective—and refer the reader to earlier work
for all details. (The reading of this section can be postponed, if one aims at focusing on the
core topic of the present study.)

1.1.1 A PDEmodel of acoustic–structure interaction

We consider a PDE system which describes the interaction between the acoustic waves in
a three-dimensional domain � (the acoustic chamber) and the vibrations of a flexible flat
portion of the chamber’s boundary, say �0; �1 is the so called hardwall. Thus, let� ⊂ R

3 be
a bounded domain, with smooth boundary ∂� =: � = �0 ∪ �1, where �i ⊂ R

2, i = 0, 1,
are open, simply connected and disjoint. As thermal effects are also taken into consideration,
the PDE system comprises a wave equation for the acoustic velocity potential z = z(t, x),
x ∈ �, and a thermoelastic system for the pair of the plate’s vertical displacement and the
temperature (w(t, x), θ(t, x)), t ∈ (0, T ), x ∈ �0.

The wave equation is supplemented with Neumann boundary condition (BC), while the
thermoelastic system (is supplemented)with clampedBC and is subject toDirichlet boundary
control. Thus, the IBVP is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt = �z in (0, T ) × �

∂z
∂ν̃

+ d1z = 0 on (0, T ) × �1 =: 	1

∂z
∂ν̃

= wt on (0, T ) × �0 =: 	0

wt t − ρ�wt t + �2w + �θ + zt = 0 in	0

θt − �θ − �wt = 0 in	0

w = ∂w
∂ν

= 0 , θ = g on (0, T ) × ∂�0

z(0, ·) = z0, zt (0, ·) = z1 in�

w(0, ·) = w0, wt (0, ·) = w1; θ(0, ·) = θ0 in�0;

(1.1)

T may be finite or infinite. The symbols ν̃ and ν above denote the outward unit normals
to � and to the curve ∂�0, respectively; d1 and ρ are positive constants (ρ is proportional
to the thickness of the plate). We note that since ρ > 0, the (uncoupled) fourth order plate
equation is a Kirchhoff equation, which is known to be of hyperbolic type. Therefore, the
overall system comprises three evolutionary PDE, two hyperbolic equations and a parabolic
one.

The natural (finite energy) state space for the PDE problem (1.1) is

Y = H1(�) × L2(�) × H2
0 (�0) × H1

0 (�0) × L2(�0) .

Take U = L2(∂�0) as the control space, U := L2(0,∞;U ) as the space of admissible
controls.

That the IBVP (1.1) can be reformulated as the Cauchy problem (2.1) (having set y(t) :=
y(t, ·) ≡ (z(t, ·), zt (t, ·), w(t, ·), wt (t, ·), θ(t, ·)), u(t) = u(t, ·), y0 := (z0, z1, w0, w1, θ0),
and with the operators A and B explicitly identified, is the outcome of the analysis carried out
formerly in [25, Theorem1.1] and later in [9, 10]. In particular, [25] contains two fundamental
results regarding the uncontrolled problem, namely, the semigroup generation and exponen-
tial stability, whereas the works [9, 10] tackle the IBVP with nonhomogeneous boundary
data (i.e. control actions, in that context as well as here).

Optimal control problems arise naturally, motivated by the goal of reducing the noise
within the chamber and/or the vibrations of the elastic wall. Unlike

• the archetypical PDE model of acoustic–structure interactions studied in [5]—where the
flexible wall is modeled via a (damped) Euler–Bernoulli equation, in the absence of
thermal effects, and the control action affects the mechanical component—, as well as

• the same PDE system in (1.1) under hinged—rather than clamped— mechanical BC, or
subject to Neumann (thermal) boundary control,

the operator eAt B does not yield a singular estimate. Indeed, the analysis carried out in the
twoworks [9, 10] revealed that this coupled dynamics inherits the very same control-theoretic
properties possessed by the thermoelastic system alone, proved earlier in the works [3, 12].

The decomposition of the operator B∗eA∗· demanded by the Assumptions 2.3, along with
the complex of regularity (in time and space) estimates for either component, together with
the key hypothesis iiib) on B∗eA∗·A∗ε , amount to respective properties of the boundary traces
∂θ
∂ν

and ∂θt
∂ν

on ∂�0, for the solutions (z, zt , w,wt , θ) of the uncontrolled problem (i.e. the
IBVP with homogeneous boundary data). The full statement of the obtained results is found
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in [10, Theorem 2.3] (for the finite time horizon problem); the infinite time horizon problem
has been discussed briefly (and resolved) in the recent [1, Section3.2].

Remark 1.1 We remark that a key finding for the proof of Theorem 2.3 in [10] is the excep-
tional regularity of certain boundary traces of the mechanical component: to wit, the estimate

∃CT > 0 :
∫ T

0
‖�w‖2L2(∂�0)

dt ≤ CT ‖y0‖2Y , y0 ∈ Y , (1.2)

holds true; see [10, Proposition 3.2]. We note that

• the regularity result (1.2), i.e. �w|∂�0 ∈ L2(0, T ; L2(∂�0)), plainly does not follow
from the interior regularity w ∈ H2(�0) of finite energy solutions, via well-known trace
theory;

• its proof, carried out by using energy/multiplier methods, owes much to [6] while it
additionally exploits the regularity theory of hyperbolic equations with nonhomogeneous
Neumann boundary data; see the estimate (3.9) in [10], and the proper bibliographical
references therein (with [29] providing the most general result).

• Lastly, the theory of interpolation spaces is the tool which eventually enables to attain
iiib) of the Assumptions 2.3.

1.1.2 A PDEmodel of fluid–elasticity interaction

For fluid–structure interaction (FSI) it is meant the coupling of physical phenom-
ena/evolutions that appear in the distinct fields of fluidodynamics and structural mechanics.
Thus themathematical modeling of FSI gives rise to composite systems of PDEwhich exhibit
dynamics of different type—with respective typical characteristics—, most often parabolic
and hyperbolic (indeed, relative to fluid and structure, respectively).

As a second illustration we introduce the linearization of a recognized PDE model for
the interaction of an elastic body fully immersed in a fluid. For context, we mention that the
PDE problem we consider here goes at least as far back as J.-L. Lions’ work; the reader is
referred to the study [7] of 2007 for some background, literature review (till then), and an
insight into the mathematical challenges overcome therein to prove the well-posedness for
the true nonlinear problem (in a natural functional setting).

The open, bounded and smooth domain representing the fluid–solid region is denoted by
� ⊂ R

d , d = 2, 3, with � f and �s the (open and smooth) domains occupied by the fluid
and the solid, respectively; then � is the interior of � f ∪ �s . The interaction occurs at the
solid boundary ∂�s =: �s—the interface—, which is assumed fixed. (This feature finds a
physical justification in the fact that the motion of the solid is considered as entirely due to
infinitesimal displacements—fast, though.) Finally, � f is the outer boundary of� f , namely,
� f = ∂� f \�s .

The dynamics of the fluid and the solid are described by the equations of Stokes flow in
the vector-valued variable u (the fluid velocity field) and scalar variable p (the pressure),
plus the Lamé system of dynamic elasticity in the variablew, respectively. The mathematical
formulation of the boundary control problem is as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − div ε(u) + ∇ p = 0 in Q f := (0, T ) × � f

div u = 0 in Q f

wt t − div σ(w) = 0 in Qs := (0, T ) × �s

u = 0 on 	 f := (0, T ) × � f

ε(u) · ν = σ(w) · ν + pν + g on 	s := (0, T ) × �s

wt = u on 	s

u(0, ·) = u0 in � f

w(0, ·) = w0 , wt (0, ·) = w1 in �s ,

(1.3)

where σ and ε denote the elastic stress tensor and the strain tensor, respectively, that are

εi j (w) = 1

2

(∂wi

∂x j
+ ∂w j

∂xi

)
, σi j (w) = λ

3∑

k=1

εkk(w)δi j + 2μεi j (w) ,

λ, μ are the Lamé constants and δi j is the Kronecker symbol. We note that ν = ν(x) is
the outward unit normal for the fluid region � f ; accordingly, it is pointing towards the
interior of the solid region �s . The control function acting on the interface is denoted by the
letter g in place of u (in order to avoid abuse of notation); the class of admissible controls
U = L2(0, T ; L2(�s)).

As the study of the IBVP (1.3)—geared towards attaining the complex of regularity results
for the solutions to the uncontrolled problem that allow to infer solvability of the associated
quadratic optimal control problems—is long and technical (and presented in full elsewhere),
we refer the reader to the analysis in [11, 13, 14]. We point out that once the IBVP is shown
to correspond to the Cauchy problem (2.1) (with u replaced by g) in a natural energy space
Y , with the operator A and B explicitly identified, then the decomposition of the operator
B∗eA∗· demanded by the Assumptions 2.3, along with the complex of regularity (in time and
space) estimates for either component, as well as the key hypothesis iiib) for B∗eA∗·A∗ε ,
amount to respective properties of the normal traces ∂u

∂ν
and ∂ut

∂ν
of the thermal variable on

∂�0, for solutions (u, w,wt ) of the IBVP with homogeneous boundary data.
Then, we remark that

• the sought boundary regularity results for the fluid velocity field are established combin-
ing carefully the parabolic regularity of the fluid variable with the enhanced regularity of
the normal component σ(w) · ν of the stress tensor on the interface, valid for semigroup
solutions;

• however, unlike the case of the previous acoustic–structure interaction, the proof of the
(exceptional) boundary regularity of the hyperbolic component—which owes much to
the analysis performed in the works [7, 23], yet it requires the development of two novel
lemmas (cf. [14, Lemmas 2.3 and 2.4]) that are problem-specific—cannot dispense with
the tools of microlocal analysis;

• once again, interpolation is utilized to eventually conclude that iiib) of the Assump-
tions 2.3 holds true, with the interpolation spaces between fractional Sobolev spaces and
dual spaces (of fractional Sobolev spaces) computed thanks to [26, Theorem 12.5].

The study of the infinite time horizon quadratic optimal control problem has been carried
out in [11], on a PDE model that is (1.3) stabilized via a boundary feedback. In that case,
multiplier/energy methods (plus semigroup theory and interpolation) suffice, instead.
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1.2 An outline of the paper

In the next Sect. 2we state our uniqueness results, that are Theorems 2.6 and 2.10, after having
recalled the underlying framework (shaped by the Assumptions 2.3 and 2.8) along with the
core findings of the theories of the finite and infinite time horizon LQ-problem devised in [2,
4], respectively. The Sect. 2.3 contains a mini-guide to the mathematical proofs.

In Sect. 3 we present a first proof of Theorem 2.6. This proof follows a line of argument
more akin to those used in the past to establish uniqueness for the DRE in the parabolic and
hyperbolic cases. It is preceded by Lemma 3.1, which establishes two integral forms of the
differential Riccati equation. An integral form of the algebraic Riccati equation is derived as
well in Lemma 3.2, for subsequent use.

In Sect. 4 we develop a different line of argument culminating with the proof of Theo-
rem 2.10 on uniqueness for the ARE. As the very same approach can be pursued for the DRE
as well, we provide a second distinct proof of Theorem 2.6. A preliminary major step that
is carried out is the derivation of two independent results, one of which establishes a funda-
mental identity while the other one discusses a built closed loop equation, for any solution
to the ARE (or DRE) within the proper class Q (QT , respectively). These are Lemmas 4.1
and 4.2 for the DRE, Lemmas 4.3 and 4.4 for the ARE.

In Appendix A we gather several regularity results (some old, some new) which are used
throughout the paper.

2 Abstract framework, main results

2.1 The LQ problem: abstract dynamics and setting

Let Y and U be two separable Hilbert spaces, the state and control space, respectively. We
consider the abstract (linear) control system y′ = Ay + Bu and the corresponding Cauchy
problems

{
y′(t) = Ay(t) + Bu(t) , 0 ≤ t < T

y(0) = y0 ∈ Y ,
(2.1)

under the following basic Assumptions.

Assumption 2.1 (Basic Assumptions) Let Y , U be separable complex Hilbert spaces.

• The closed linear operator A : D(A) ⊂ Y → Y is the infinitesimal generator of a strongly
continuous semigroup {eAt }t≥0 on Y ;

• B ∈ L(U , [D(A∗)]′).
The basic assumptions on the operators A and B which characterize the abstract dynamics

in (2.1) reflect two intrinsic features stemming from coupled systems of hyperbolic–parabolic
PDEs with nonhomogeneous boundary data, to wit,

i. the control operator B will not be bounded from the control spaceU into the state space
Y , and

ii. the semigroup eAt typically will be neither analytic nor a group.

We recall that the first property is shared by PDE systems subject to point control in the
interior of the domain; a wealth of illustrations are found in [8, 18, 21].
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Thus, given y0 ∈ Y , the Cauchy problem (2.1) possesses a unique mild solution given by

y(t) = eAt y0 +
∫ t

0
eA(t−s)Bu(s) ds , t ∈ [0, T ) , (2.2)

where

L : u(·) −→ (Lu)(t) :=
∫ t

0
eA(t−s)Bu(s) ds

is the input-to-state mapping, that is the operator which associates to any control function
u(·) the solution to the Cauchy problem (2.1) with y0 = 0, and (2.2) makes sense at least in
the extrapolation space [D(A∗)]′; see [21, § 0.3, p. 6, and Remark 7.1.2, p. 646].
We will use the notation L throughout the paper. We point out here the definition (A.1) of
the operator Ls , which will occur later; the symbol L0, in place of L , is avoided for the sake
of simplicity.

To the state equation (2.1) we associate the quadratic functional

J (u) =
∫ T

0

(‖Ry(t)‖2Z + ‖u(t)‖2U
)
dt , (2.3)

where Z is a third separable Hilbert space—the so called observation space (possibly, Z ≡
Y )—and at the outset the observation operator R simply satisfies

R ∈ L(Y , Z) . (2.4)

The formulation of the optimal control problem under study is classical. The adjectives finite
or infinite time horizon problem refer to the cases T < +∞ or T = +∞, respectively.

Problem 2.2 (The optimal control problem) Given y0 ∈ Y , seek a control function
u ∈ L2(0, T ;U ) which minimizes the cost functional (2.3), where y(·) = y(· ; y0, u) is
the solution to (2.1) corresponding to the control function u(·) (and with initial state y0)
given by (2.2).

It is well known that aiming at solving Problem 2.2, certain principal facts need to be
ascertained, beside the existence of a unique optimal pair (û(·, s; y0), ŷ(·, s; y0)) (which
can be easily inferred via convex optimization arguments). Namely,

– that the optimal control û(t) admits a (pointwise in time) feedback representation, in
terms of the optimal state ŷ(t);

– that the optimal cost operator P(t) (P , when T = +∞) solves the corresponding Differ-
ential (Algebraic) Riccati equation; thus, the issue of well-posedness of the DRE (ARE)
arises, requiring

– that a meaning is given to the gain operator B∗P(t) (B∗P) on the state space Y (by
means of extensions, or—and this will be the case here—, as a bounded operator on a
dense subset of Y ).

2.2 Theoretical results: finite and infinite time horizon problems

We begin by recalling the theory of the LQ-problem on a finite time interval developed in [2].
This theory pertains to the class of control systems—introduced in the very same [2]—whose
dynamics, control and observation operators are subject to the following assumptions.
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Assumption 2.3 (Finite time horizon case) Let Y , U and Z be separable complex Hilbert
spaces, and let T > 0 be given. The pair (A, B) (which describes the state equation (2.1))
fulfils Assumptions 2.1, with the additional property A−1 ∈ L(Y ), while the observation
operator R [which occurs in the cost functional (2.3)] satisfies the basic condition (2.4).

The operator B∗eA∗t can be decomposed as

B∗eA∗t x = F(t)x + G(t)x , 0 ≤ t ≤ T , x ∈ D(A∗) , (2.5)

where F(t) : Y −→ U and G(t) : D(A∗) −→ U , t > 0, are bounded linear operators
satisfying the following assumptions:

(i) there exist constants γ ∈ (0, 1) and N > 0 such that

‖F(t)‖L(Y ,U ) ≤ N t−γ , 0 < t ≤ T ; (2.6)

(ii) the operator G(·) belongs to L(Y , L p(0, T ;U )) for all p ∈ [1,∞);
(iii) there exists ε > 0 such that:

(a) the operator G(·)A∗−ε belongs to L(Y ,C([0, T ];U )), with

sup
t∈[0,T ]

‖G(t)A∗−ε‖L(Y ,U ) < ∞ ;

(b) the operator R∗R belongs to L(D(Aε),D(A∗ε)), i.e.

‖A∗εR∗RA−ε‖L(Y ) ≤ c < ∞ ;
(c) there exists q ∈ (1, 2) (depending, in general, on ε) such that the map x �−→

B∗eA∗t A∗εx has an extension which belongs to L(Y , Lq(0, T ;U )).

Remark 2.4 1. We note that it is assumed at the very outset that 0 ∈ ρ(A), i.e. the dynamics
operator A is boundedly invertible on Y . This property happens to hold true for an ample
variety of coupled systems of hyperbolic–parabolic PDE, such as thermoelastic systems
as well as models of acoustic- and fluid–structure interaction. This allows in particular
to define the fractional powers (−A)α , α ∈ (0, 1); see [30, § 1.15.1–2], [27, 28]. (We
note that in order to make the notation lighter, we wrote—and shall write throughout—
Aα in place of (−A)α .)

2. We remark that the class of control systems shapedby theAssumptions 2.3 ismoregeneral
than the one characterized by singular estimates (SE, recalled in the Introduction) for
the operator eAt B. This unless G(t) ≡ 0 in the decomposition (2.5) of B∗et A∗

, in which
case B∗et A∗

reduces to the component F(t) that indeed yields the estimate (2.6).
3. We may assert that the term G(t)x embodies both the parabolic and the hyperbolic com-

ponents, via the coupling. Its enhanced regularity mirrors the combination of parabolic
regularity with the peculiar (exceptional) regularity of the hyperbolic boundary traces.
An enlightening comparison with earlier classes studied in the literature is found in [2,
Section 2.1]; see also [4, pp. 1827–1828].

4. The requirement iiib) essentially demands that the operator R∗R somewhat maintains
regularity.We note, in particular, that when the fractional powersD(Aε) can be computed
as interpolation spaces [D(A), Y ]1−ε—which happens e.g. if et A is a s.c. contraction
semigroup, precisely the case of the PDEproblems discussed in Sect. 1.1—, thenD(A) ≡
D(A∗) implies D(Aε) ≡ D(A∗ε), at least for sufficiently small ε. In this circumstance,
R = I is a viable observation operator.
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Under the listed Assumptions 2.3, a full solution to the optimal control Problem 2.2, as
detailed by the complex of statements S1.–S6. collected in Theorem 2.5 below, was obtained
in [2]. Despite the lack of continuity (in time) of the optimal control û(·) (see S1. below)—a
novelty over the parabolic or hyperbolic theories—, and the fact that the gain operator B∗P(t)
is bounded only on a suitable dense subset of Y (contained in D(A), though; cf. S4.), all the
sought properties (the aforementioned “principal facts”) are achieved.

Theorem 2.5 (Finite time horizon theory; cf. [2], Theorem 2.3) With reference to the control
problem (2.1)–(2.3), under the Assumptions 2.3, the following statements are valid for each
s ∈ [0, T ).

S1. For each x ∈ Y the optimal pair (û(·, s; x), ŷ(·, s; x)) satisfies
ŷ(·, s; x) ∈ C([s, T ]; Y ), û(·, s; x) ∈

⋂

1≤p<∞
L p(s, T ;U ).

S2. The linear bounded (on Y ) operator �(t, s), defined by

�(t, s)x = ŷ(t, s; x) = eA(t−s)x + [Lsû(·, s; x)](t) , s ≤ t ≤ T , x ∈ Y , (2.7)

is an evolution operator, i.e.

�(t, t) = IY , �(t, s) = �(t, σ )�(σ, s) for s ≤ σ ≤ t ≤ T .

S3. For each t ∈ [0, T ] the operator P(t) ∈ L(Y ), defined by

P(t)x =
∫ T

t
eA

∗(τ−t)R∗R�(τ, t)x dτ , x ∈ Y , (2.8)

is self-adjoint and positive; it belongs to L(Y ,C([0, T ]; Y )) and is such that

(P(s)x, x)Y = Js(û(·, s; x), ŷ(·, s; x)) ∀s ∈ [0, T ] .
S4. The gain operator B∗P(·) belongs to L(D(Aε),C([0, T ];U )) and the optimal pair

satisfies for s ≤ t ≤ T

û(t, s; x) = −B∗P(t)ŷ(t, s; x) ∀x ∈ Y . (2.9)

S5. The operator �(t, s) defined in (2.7) satisfies for s < t ≤ T :

∂�

∂s
(t, s)x = −�(t, s)(A − BB∗P(s))x ∈ L1/γ (s, T ; [D(A∗ε

)]′)

for all x ∈ D(A), and

∂�

∂t
(t, s)x = (A − BB∗P(t))�(t, s)x ∈ C([s, T ], [D(A∗)]′)

for all x ∈ D(Aε).
S6. The operator P(t) defined by (2.8) satisfies the following (differential) Riccati equation

in [0, T ):
⎧
⎪⎨

⎪⎩

d
dt (P(t)x, y)Y + (P(t)x, Ay)Y + (Ax, P(t)y)Y + (Rx, Ry)Z

−(B∗P(t)x, B∗P(t)y)U = 0 ∀ x, y ∈ D(A)

P(T ) = 0 .

(2.10)
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The assertion S6. in Theorem 2.5 shows the existence of at least one solution to the DRE
(2.10) corresponding to problem (2.1)–(2.3). The question as to whether the optimal cost
operator P(·) (defined in (2.8)) is actually the unique solution to the DRE—at least within
an appropriate class of operators—, is an issue which was not dealt with in the paper [2].
Thus, in order to render the finite time horizon theory devised in [2] complete, we complement
assertion S6. of Theorem 2.5 with the (novel) achievement of uniqueness, thereby concluding
the proof of well-posedness of the DRE.

As we will see, uniqueness is meant within a suitable class—that is class QT in (2.11)
below—of linear, bounded, self-adjoint operators also meeting an additional requirement,
which is consistent with the regularity property displayed by the gain operator in assertion
S4. above.

Theorem 2.6 (Uniqueness for the DRE) With reference to the control problem (2.1)–(2.3),
let the Assumptions 2.3 hold. Then, the differential Riccati equation (2.10) has a unique
solution within the class

QT = {
Q ∈ C([0, T ];L(Y )) : Q(t) = Q(t)∗ ≥ 0 , Q(T ) = 0 ,

B∗Q(·) ∈ L(D(Aε),C([0, T ];U ))
}
.

(2.11)

The optimal cost operator P(·) defined by (2.8) is consequently that solution.
Remark 2.7 (A technical point) The findings of the work [2], summarized as Theorem 2.5
above, were actually established under the weaker regularity assumption

iiic)’ there exists q ∈ (1, 2) such that the map x �−→ B∗eA∗t R∗RAεx has an extension
which belongs to L(Y , Lq(0, T ;U )),

rather than iiic). Indeed, iiic)’ of the Assumptions 2.3, combined with iiib), implies iiic), as
already pointed out in [2, p. 1401] (with a reversed notation, though).

However, on one side the present iiic)—more precisely, the boundary regularity result
that (case by case) the control-theoretic condition iiic) translates to—has been shown over
the years to hold true in the case of distinct PDE systems studied in the aforementioned
references [3, 10, 11, 13, 14]. On the other side, uniqueness of solutions to the Riccati
equations appears to be in need of it: both within the first proof of Theorem 2.5 given in
the next section (specifically to perform the estimates which bring about (3.7)), and also to
show Lemma 4.2, instrumental to the distinct proof of the same result proposed in Sect. 4.
Furthermore, the stronger (A.3)—which is central to the proof of Lemma 4.4 relevant to the
infinite time horizon case—is based upon iiic) of Assumptions 2.3.

In the infinite time horizon case, i.e. when T = +∞ in (2.3), the hypotheses on both the
semigroup eAt and the component F(t) (in the decomposition of the operator B∗eA∗t ) are
strenghtened, assuming their exponential decay as t → +∞; see (2.12) and (2.13) below,
respectively. For the sake of completeness and the reader’s convenience, the hypotheses
pertaining to the infinite time horizon are wholly recorded below.

Assumption 2.8 (Infinite time horizon case) Let Y , U and Z be separable complex Hilbert
spaces, and let the basic Assumptions 2.1 be valid, with the additional property that the C0-
semigroup eAt is exponentially stable on Y , t ≥ 0; namely, there exist constants M ≥ 1 and
ω > 0 such that

‖eAt‖L(Y ) ≤ M e−ωt ∀t ≥ 0 . (2.12)

Then in particular, A−1 ∈ L(Y ).
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The operator B∗eA∗t admits the decomposition (2.5), where F(t) : Y −→ U , t ≥ 0, is a
bounded linear operator such that

i)’ there exist constants γ ∈ (0, 1) and N , η > 0 such that

‖F(t)‖L(Y ,U ) ≤ N t−γ e−ηt ∀t > 0 , (2.13)

while ii)–iiia)–iiib)–iiic) of the Assumptions 2.3 on the (linear, bounded) component
G(t) : D(A∗) −→ U , t ≥ 0, hold true for some T > 0.

We note that the functional (2.3) with T = +∞ makes sense at least for u ≡ 0. This
again in view of the exponential stability of the semigroup eAt ((2.12) of Assumptions 2.8),
which combined with (2.4) ensures Ry(·, y0; 0) ∈ L2(0,∞; Y ).
(The analysis carried out in the present paper easily extends to more general quadratic func-
tionals, like

J (u) =
∫ ∞

0

(‖Ry(t)‖2Z + ‖R̃u(t)‖2U
)
dt ,

provided R̃ is a coercive operator inU . We take R̃ = I just for the sake of simplicity and yet
without loss of generality.)

Theorem 2.9 (Infinite time horizon theory; cf. [4], Theorem 1.5) Under the Assumptions 2.8,
the following statements are valid.

A1. For any y0 ∈ Y there exists a unique optimal pair (û(·), ŷ(·)) for Problem (2.1)–(2.3),
which satisfies the following regularity properties

û ∈
⋂

2≤p<∞
L p(0,∞;U ) ,

ŷ ∈ Cb([0,∞); Y ) ∩ [ ⋂

2≤p<∞
L p(0,∞; Y )

]
.

A2. The family of operators �(t), t ≥ 0, defined by

�(t)y0 := ŷ(t) = y(t, y0; û) (2.14)

is a C0-semigroup on Y , t ≥ 0, which is exponentially stable.
A3. The operator P ∈ L(Y ) defined by

Px :=
∫ ∞

0
eA

∗t R∗R�(t)x dt, x ∈ Y , (2.15)

is the optimal cost operator; P is (self-adjoint and) non-negative.
A4. The following (pointwise in time) feedback representation of the optimal control is valid

for any initial state y0 ∈ Y :

û(t) = −B∗P ŷ(t) for a.e. t ∈ (0,∞),

where the gain operator satisfies B∗P ∈ L(D(Aε),U ) (that is, it is just densely defined
on Y and yet it is bounded on D(Aε)).

A5. The infinitesimal generator AP of the (optimal state) semigroup �(t) defined in (2.14)
coincides with the operator A(I − A−1BB∗P); more precisely,

AP ≡ A(I − A−1BB∗P) ,

D(AP ) ⊂ {
x ∈ Y : x − A−1B B∗Px ∈ D(A)

}
.
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A6. The operator eAt B, defined in U and a priori with values in [D(A∗)]′, is such that

eδ·eA·B ∈ L(U , L p(0,∞; [D(A∗ε
)]′) ∀p ∈ [1, 1/γ ) (2.16)

for all δ ∈ [0, ω ∧ η); almost the very same regularity is inherited by the operator
�(t)B:

eδ·�(·)B ∈ L(U , L p(0,∞; [D(A∗ε
)]′) ∀p ∈ [1, 1/γ ) ,

with δ > 0 sufficiently small.
A7. The optimal cost operator P defined in (2.15) is a solution to the algebraic Riccati

equation (ARE) corresponding to Problem (2.1)–(2.3), that is

(Px, Az)Y + (Ax, Pz)Y − (B∗Px, B∗Pz)U
+ (Rx, Rz)Z = 0 , x, z ∈ D(A) .

(2.17)

The ARE can be rewritten as

(A∗Px, z)Y + (x, A∗Pz)Y − (B∗Px, B∗Pz)U + (Rx, Rz)Z = 0 ,

when x, z ∈ D(AP ).

In order to render the infinite time horizon theory devised in [4] complete, we complement
assertion A7. of Theorem 2.9 about existence of solutions to the ARE (2.17) corresponding
to Problem (2.1)–(2.3), with the achievement of uniqueness, thereby concluding the proof
of well-posedness of the ARE. Just as in the finite time horizon case, the (linear, bounded,
self-adjoint) operators that belong to the classQ in (2.18) are characterized by a requirement
that is consistent with the regularity property displayed by the gain operator in assertion A4.
of Theorem 2.9.

Theorem 2.10 (Uniqueness for the ARE) Consider the optimal control problem (2.1)–(2.3),
with T = +∞, under the Assumptions 2.8. Then, the algebraic Riccati equation (2.17) has
a unique solution P within the class Q defined as follows:

Q := {
Q ∈ L(Y ) : Q = Q∗ ≥ 0 , B∗Q ∈ L(D(Aε),U )

}
. (2.18)

The optimal cost operator P defined by (2.15) is consequently that solution.

2.3 An insight into themathematical proofs

We provide two proofs of Theorem 2.6, that establishes uniqueness for the DRE (2.10). This
result is relevant for the optimal control problem on a finite time horizon (i.e. Problem 2.2
with T < +∞), under the Assumptions 2.3.

The first proof, given in Sect. 3, follows the method employed in [21, Vol. I, Theo-
rem 1.5.3.3; Vol. II, Theorems 8.3.7.1], up to a certain point. The basic rationale is standard:
one proceeds by contradiction, assuming there exists another solution P1(t) to the DRE,
besides the optimal cost operator P(t) which is known to solve the DRE, as from S6. of
Theorem 2.5. On the basis of the integral form of the DRE—in the present case two forms,
derived in Lemma 3.1—, one finds that the difference Q(t) = P1(t)− P(t) solves a suitable
integral equation. It is in the estimates performed afterwards, that the paths diverge, with
iiic) of the Assumptions 2.3 playing a major role here, together with the class of operators
P(t) and P1(t) belong to. The proofs carried out in the aforementioned results instead take
advantage of either the enhanced regularity of the analytic semigroup eAt that describes the
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free dynamics, or the additional regularity assumed e.g. on the operator R∗ReAt B (or on
other combinations of R with eAt and/or B).

It is unlikely that the method of proof described above could be adjusted in order to
establish uniqueness for the ARE, relevant for Problem 2.2 with T = +∞. This owing to
the argument employed when T < +∞: Q(t) is shown to be zero on some subinterval of
[0, T ], with the soughtafter goal attained in a finite number of steps.

Other methods of proof are certainly worth to be explored. One might attempt to proceed
along the lines of the proof of [21, Vol. I, Theorem 2.4.5], despite the absence of analyticity
of the semigroup eAt , as well as of the optimal state semigroup �(t). If this were the case, a
preliminary analysis which appears unavoidable would pertain to issues connected to a given
solution P1 to the ARE (a priori, distinct from the optimal cost operator P): in particular,
the possible generation of a C0-semigroup on Y by the operator A − BB∗P1, in turn to be
suitably defined. We choose a different path, instead.

In order to prove Theorem 2.10, we borrow from the dynamic programming approach to
the LQ-problem a key element in attaining that the optimal control admits a (pointwise in
time) feedback representation. This element is fulfilled by the so called fundamental identity.
In a direct approach, the fundamental identity builds a bridge between the nonlinear Riccati
equation– whose well-posedness is studied in a first step, independently from the minimiza-
tion problem, as recalled above—and the actual closed loop form of the optimal control. The
latter goal (i.e. the feedback representation of the optimal control) was already attained in [2,
4]; see the statements S4. of in Theorem 2.5 and A4. of Theorem 2.9, respectively. And yet,
the identities we establish in Lemmas 4.1 and 4.3 constitute a major (and technically nontriv-
ial) step in our analysis, allowing to achieve uniqueness for both differential and algebraic
Riccati equations, respectively. Theorems 2.6 and 2.10 are thus established, via methods of
proof which are akin to each other.

3 A first proof of uniqueness for the DRE

In this Sectionwederive integral formsof both the differential and algebraicRiccati equations,
and present a first proof of Theorem 2.6.

3.1 Finite time interval, differential Riccati equations

In this subsection we make reference to the optimal control problem (2.1)–(2.3), with T <

+∞. We address the issue of uniqueness of solutions to the Cauchy problem (2.10) for the
Riccati equation corresponding to problem (2.1)–(2.3), under the Assumptions 2.3.

We begin by relating the differential form (2.10) of the Riccati equation to an integral
form of it, which in turn can be further interpreted.

Lemma 3.1 (Integral forms of the Riccati equation) Let QT be the class defined in (2.11),
and let Q(·) ∈ QT be a solution to the DRE (2.10). Then the following assertions hold true.

1. Q(·) solves the integral Riccati equation (in short, IRE), that is

(
Q(t)eA(t−s)x, eA(t−s)y

)

Y = (Q(s)x, y)Y −
∫ t

s

(
ReA(r−s)x, ReA(r−s)y

)

Z dr

+
∫ t

s

(
B∗Q(r)eA(r−s)x, B∗Q(r)eA(r−s)y

)

U dr ,

(3.1)
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with 0 ≤ s ≤ t ≤ T and x, y ∈ D(Aε).
2. B∗Q(·)eA(·−s) ∈ L(Y , L2(s, T ;U )).
3. The IRE (3.1) can be rewritten in the form

(
eA

∗(t−s)Q(t)eA(t−s)x, y
)

Y = (Q(s)x, y)Y −
∫ t

s

(
eA

∗(r−s)R∗ReA(r−s)x, y
)

Y dr

+
∫ t

s

(
eA

∗(r−s)Q(r)BB∗Q(r)eA(r−s)x, y
)

Y dr ,

(3.2)

valid for any x, y ∈ Y and with 0 ≤ s ≤ t ≤ T .

Proof 1. Let x, y ∈ D(A): then eA·x , eA·y are differentiable, and therefore, using (2.10),
there exists

d

dr

(
Q(r)eA(r−s)x, eA(r−s)y

)

Y

= −(
Q(r)eA(r−s)x, AeA(r−s)y

)

Y − (
AeA(r−s)x, Q(r)eA(r−s)y

)

Y

− (
ReA(r−s)x, ReA(r−s)y

)

Z + (
B∗Q(r)eA(r−s)x, B∗Q(r)eA(r−s)y

)

U

+ (
Q(r)AeA(r−s)x, eA(r−s)y

)

Y + (
Q(r)eA(r−s)x, AeA(r−s)y

)

Y

= −(
ReA(r−s)x, ReA(r−s)y

)

Z + (
B∗Q(r)eA(r−s)x, B∗Q(r)eA(r−s)y

)

U .

Integrating the above identity in r ∈ [s, t], one readily obtains the IRE (3.1), valid
for x, y ∈ D(A). In view of Lemma A.5, the validity of the IRE is extended to all
x, y ∈ D(Aε) by density.

2. By taking now in (3.1) t = T , x = y ∈ D(Aε), since P(T ) = 0 we establish
∫ T

s

∥
∥B∗P(r)eA(r−s)x

∥
∥2
U dr ≤

∫ T

s

∥
∥ReA(r−s)x

∥
∥2
Z dr ≤ C‖x‖2Y

by density.
3. The equivalent form (3.2) of the IRE follows in view of 2. and by density. ��
A first proof of Theorem 2.6 We follow the proof of Theorem 1.5.3.3 in [21], up to a point.
The subsequent arguments and estimates are driven by the distinctive assumptions on the
adjoint of the kernel eAt B, as well as by the different class of regularity the solutions to the
DRE are sought.

We know already that the optimal cost operator P(·) defined by (2.8) solves (the Cauchy
problem (2.10) for) the differential Riccati equation, as well as that P ∈ QT . Assume there
exists another operator inQT , say P1(·), which solves (2.10), and set Q(t) := P1(t) − P(t),
t ∈ [0, T ]; we aim to prove that Q(t) ≡ 0. By construction Q(·) ∈ QT . By Lemma 3.1,
both P1(·) and P(·) satisfy the IRE (3.1). Then, taking in particular t = T , we find that Q(s)
satisfies

(Q(s)x, y)Y = −
∫ T

s
(B∗Q(r)eA(r−s)x, B∗P1(r)eA(r−s)y)U dr

−
∫ T

s
(B∗P(r)eA(r−s)x, B∗Q(r)eA(r−s)y)U dr ,

(3.3)

for any x, y ∈ D(Aε). To render the computations cleaner, set V (r) := B∗Q(r) (that r
belongs to [s, T ] is omitted here and below, as clear from the context). Because Q(·) ∈ QT ,
it holds V (r)∗ ∈ L(U , [D(Aε)]′), along with

‖V (r)∗‖L(U ,[D(Aε )]′) = ‖V (r)‖L(D(Aε ),U ) ≤ ‖V (·)‖L(D(Aε ),C([s,T ];U ) =: c .
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We see that
∣
∣〈V (r)∗w, y〉[D(Aε )]′,D(Aε )

∣
∣ ≤ c ‖w‖U‖y‖D(Aε )

consequently, as well as that A∗−εV (r)∗ ∈ L(U , Y ), with
∣
∣
(
A∗−εV (r)∗w, x

)

Y

∣
∣ = ∣

∣〈V (r)∗w, A−εx〉[D(Aε )]′,D(Aε )

∣
∣ ≤ c ‖w‖U‖x‖Y .

The same observations apply to [B∗P1(r)]∗ and [B∗P(r)]∗, bringing about analogous esti-
mates.

We may now rewrite (3.3) as

(Q(s)x, y)Y = −
∫ T

s
(eA

∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)x, Aε y)Y dr

−
∫ T

s
(eA

∗(r−s)A∗−εV (r)∗B∗P(r)eA(r−s)x, Aε y)Y dr ,

which tells us that

A∗ε

∫ T

s

[
eA

∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P(r)eA(r−s)

]
x dr ,

a priori an element of [D(Aε)]′, in fact coincides with −Q(s)x ∈ Y by the very definition
of adjoint operator. We deduce

Q(s)x = −A∗ε

∫ T

s

[
eA

∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P(r)eA(r−s)

]
x dr ,

(3.4)

valid for every x ∈ D(Aε), where, as pointed out above, the right hand side is an element of
Y . As x ∈ D(Aε), B∗Q(s)x is meaningful, and we are allowed to apply B∗ to both sides of
(3.4), thus obtaining

V (s)x = −B∗A∗ε

∫ T

s

[
eA

∗(r−s)A∗−ε[B∗P1(r)]∗V (r)eA(r−s)

+ eA
∗(r−s)A∗−εV (r)∗B∗P(r)eA(r−s)

]
x dr .

(3.5)

It is here where iiic) of Assumptions 2.3, that is

∃ q ∈ (1, 2) , C = C(T ) > 0 : ‖B∗eA∗(·−s)A∗εx‖Lq (s,T ;U ) ≤ C ‖x‖Y ∀x ∈ Y ,

becomes crucially important: indeed, it yields as well

‖[B∗eA∗(·−s)A∗ε]∗g(·)‖Y ≤ C ‖g‖Lq′
(s,T ;U )

(q ′ denotes the conjugate exponent of q), so that in particular

‖[B∗eA∗(·−s)A∗ε]∗w‖Y ≤ C (T − s)1/q
′ ‖w‖U ∀w ∈ U . (3.6)
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We return to (3.5), and highlight a few blocks within its right hand side, as follows:

V (s)x = −
∫ T

s

[
B∗eA∗(r−s)A∗ε] A∗−ε[B∗P1(r)]∗V (r)eA(r−s)x dr

−
∫ T

s

[
B∗eA∗(r−s)A∗ε]A∗−εV (r)∗B∗P(r)eA(r−s)x dr ;

multiply next both members by w ∈ U , to find

(V (s)x, w)U = −
∫ T

s

(
V (r)eA(r−s)x, [B∗P1(r)A−ε] [B∗eA∗(r−s)A∗ε]∗

w
)

U dr

−
∫ T

s

(
B∗P(r)eA(r−s)x, [V (r)A−ε] [B∗eA∗(r−s)A∗ε]∗

w
)

U dr .

We now proceed to estimate either summand in the right hand side, making use of (3.6); this
leads to

|(V (s)x, w)U |
≤ M ‖V (·)‖L(D(Aε ),C([s,T ];U ))‖x‖D(Aε )‖B∗P1(·)‖L(D(Aε ),C([s,T ];U ))‖w‖U (T − s)1/q

′

+ M ‖B∗P(·)‖L(D(Aε ),C([s,T ];U ))‖x‖D(Aε )‖V (·)‖L(D(Aε ),C([s,T ];U ))‖w‖U (T − s)1/q
′
.

Therefore, there exists a positive constant C (depending on P and P1) such that
∣
∣(V (s)x, w)U

∣
∣ ≤ C ‖V (·)‖L(D(Aε ),C([s,T ];U ))(T − s)1/q

′ ‖w‖U‖x‖D(Aε ) ,

which establishes

‖V (s)‖L(D(Aε ),U ) ≤ C ‖V (·)‖L(D(Aε ),C([s,T ];U ))(T − s)1/q
′
, (3.7)

for any s ∈ [0, T ).
The argument is now pretty standard: set s0 such that (T − s0)1/q

′
< 1/C ; since the

estimate (3.7) holds true in particular for any s ∈ [s0, T ), we have

‖V (·)‖L(D(Aε ),C([s0,T ];U )) ≤ C (T − s0)
1/q ′ ‖V (·)‖L(D(Aε ),C([s0,T ];U ))

which is impossible unless V (·) ≡ 0 on [s0, T ]. Iterating the same argument, in a finite
number of steps we obtain V (s) ≡ 0 on [0, T ]. This in turn implies, by (3.3),

(Q(s)x, y)Y = 0 ∀s ∈ [0, T ] , ∀x, y ∈ D(Aε) ;
by densitywe obtain (Q(s)x = 0 for any x ∈ Y first, and then) Q(·) ≡ 0, that is P1(·) ≡ P(·),
as desired. ��

3.2 Infinite time interval. Preparatory material

We turn now our attention to the optimal control problem (2.1)–(2.3), with T = +∞, and to
the ARE. The following Lemma contributes to the preparatory material for the forthcoming
analysis in Sect. 4, that follows a different line of argument than the one utilized to prove
uniqueness for the DRE. Since an integral form of the AREwill provemore effective (than its
algebraic form) to accomplish our goal— just like the integral forms of theDRE inLemma 3.1
provide fundamental tools for both proofs of Theorem 2.6—, we derive the said integral form
of theARE here. Its proof is not difficult, yet it is explicitly given for the reader’s convenience.
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1628 P. Acquistapace, F. Bucci

Lemma 3.2 (Integral form of the ARE) LetQ be the class defined in (2.18), and let P1 ∈ Q
be a solution to the algebraic Riccati equation (2.17). Then, P1 solves the following integral
form of the ARE valid for all x, y ∈ D(Aε):

(
P1e

A(t−s)x, eA(t−s)y
)

Y = (P1x, y)Y +
∫ t

s

(
B∗P1eA(r−s)x, B∗P1eA(r−s)y

)

U dr

−
∫ t

s

(
ReA(r−s)x, ReA(r−s)y

)

Z dr ,

(3.8)

with 0 ≤ s ≤ t .

Proof Let P1 ∈ Qbe a solution to theARE(2.17), thatwe record for the reader’s convenience:

(P1x, Ay)Y + (Ax, P1y)Y − (B∗P1x, B∗P1y)U + (Rx, Ry)Z = 0 , x, y ∈ D(A) .

With eA(t−s)x , eA(t−s)y ∈ D(A) in place of x, y, and with 0 ≤ s ≤ t , the equation becomes

(P1e
A(t−s)x, AeA(t−s)y)Y + (AeA(t−s)x, P1e

A(t−s)y)Y

− (B∗P1eA(t−s)x, B∗P1eA(t−s)y)U + (ReA(t−s)x, ReA(t−s)y)Z = 0 ,

that is nothing but

d

dt

(
P1e

A(t−s)x, eA(t−s)y
)

Y = (
B∗P1eA(t−s)x, B∗P1eA(t−s)y

)

U

− (
ReA(t−s)x, ReA(t−s)y

)

Z , x, y ∈ D(A) .

(3.9)

Integrating both sides of (3.9) between s and t we attain (3.8), initially for any x, y ∈ D(A).
Its validity is then extended to all x, y ∈ D(Aε) by density, since P1 ∈ Q. ��

While the integral form (3.8) of the ARE will constitute the starting point for the proof
of Theorem 2.10, it is important to emphasize the central role of the distinguishing (and
improved) regularity properties of the operator B∗eA∗·A∗ε .We refer the reader toAppendixA,
where we collected and highlighted several instrumental results, with the aim of displaying
their statements in a clear sequence and framework. See, more specifically, Proposition A.6
therein.

4 A unifiedmethod of proof of uniqueness for both DRE and ARE

In this Section we provide a second proof of Theorem 2.6 and then show Theorem 2.10,
thereby settling the question of uniqueness for the differential and algebraic Riccati equations
corresponding to the optimal control problem (2.2)–(2.3). We recall from Sect. 2.3 that a
crucial intermediate step to achieve either goal is an identity which is classical in control
theory.

4.1 Finite time interval, differential Riccati equations

In this subsection we focus on the optimal control problem (2.1)–(2.3), with T < +∞, along
with the corresponding Riccati equation. In approaching the second proof of Theorem 2.6,
we start by showing the above-mentioned fundamental identity. Despite being a standard
element in classical optimal control theory, the identity should not be taken for granted in the
absence of evident beneficial regularity properties of the kernel eAt B—such as analiticity
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Uniqueness for Riccati equations with application... 1629

of the semigroup or more generally singular estimates. Achieving the said equality requires
that the Assumptions 2.3 are fully exploited. The delicate, careful computations are carried
out in the following Lemma.

Lemma 4.1 (Fundamental identity) Let Q ∈ QT be a solution to the integral Riccati equation
(3.1). With u ∈ L2(s, T ;U ) and x ∈ D(Aε), let y(·) be the semigroup solution to the state
equation in (2.1) corresponding to u(·), with y(s) = x, that is

y(t) = eA(t−s)x +
∫ t

s
eA(t−r)Bu(r) dr = eA(t−s)x + Lsu(t) , t ∈ [s, T ] .

Then, the following identity is valid: for t ∈ [s, T ]

(Q(t)y(t), y(t))Y − (Q(s)x, x)Y = −
∫ t

s

[‖Ry(r)‖2Z + ‖u(r)‖2U
]
dr

+
∫ t

s
‖u(r) + B∗Q(r)y(r)‖2U dr .

(4.1)

Proof Assume initially that u ∈ L∞(s, T ;U ). We examine the right hand side of the identity
(4.1). For the first term we have

−
∫ t

s
‖Ry(r)‖2Z dr = −

∫ t

s

∥
∥ReA(r−s)x

∥
∥2
Z dr −

∫ t

s

∥
∥RLsu(r)

∥
∥2
Z dr

− 2Re
∫ t

s

(
ReA(r−s)x, RLsu(r)

)

Z dr =:
3∑

j=1

R j .

We note that each summand R j makes sense, just considering the space regularity originally
singled out in [2] and here recalled in Proposition A.1; more specifically, u ∈ L∞(s, T ;U )

implies Lsu ∈ C([s, T ]; Y ) by its fourth assertion. We consider next the remainder

−
∫ t

s
‖u(r)‖2U dr +

∫ t

s
‖u(r) + B∗Q(r)y(r)‖2U dr .

Computing the square in the second integral, discarding additive inverses and replacing again
the expression of y(r), we get

−
∫ t

s
‖u(r)‖2U dr +

∫ t

s
‖u(r) + B∗Q(r)y(r)‖2U dr

= 2Re
∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)

U dr + 2Re
∫ t

s

(
B∗Q(r)Lsu(r), u(r)

)

U dr

+
∫ t

s

∥
∥B∗Q(r)eA(r−s)x

∥
∥2
U dr + 2Re

∫ t

s
(B∗Q(r)eA(r−s)x, B∗Q(r)Lsu(r)

)

U dr

+
∫ t

s

∥
∥B∗Q(r)Lsu(r)

∥
∥2
U dr =:

5∑

j=1

C j .

That each summand C j makes sense as well is justified by the following observa-
tions: B∗Q(·)eA(·−s)x ∈ L2(s, T ;U ) because of item 2. of Lemma 3.1; in addition,
since L∞(s, T ;U ) ⊂ Lq ′

(s, T ;U ), Lemma A.2 yields the improved regularity Lsu ∈
C([s, T ];D(Aε)), which in turn implies B∗Q(·)Lsu(·) ∈ C([s, T ];U ), as shown in
Lemma A.5.
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By using the original form (3.1) of the integral Riccati equation (IRE), with x = y, we
find that

R1 + C3 = −
∫ t

s
‖ReA(r−s)x‖2Z dr +

∫ t

s

∥
∥B∗Q(r)eA(r−s)x

∥
∥2
U dr

= (
Q(t)eA(t−s)x, eA(t−s)x

)

Y − (Q(s)x, x)Y .

(4.2)

Next,

R3 + C4 + C1 = −2Re
∫ t

s

(
ReA(r−s)x, RLsu(r)

)

Z dr

+ 2Re
∫ t

s

(
B∗Q(r)eA(r−s)x, B∗Q(r)Lsu(r)

)

U dr

+ 2Re
∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)

U dr

= −2Re
∫ t

s

(
R∗ReA(r−s)x,

∫ r

s
eA(r−σ)Bu(σ ) dσ

)

Y
dr

+ 2Re
∫ t

s

〈
Q(r)BB∗Q(r)eA(r−s)x,

∫ r

s
eA(r−σ)Bu(σ ) dσ

〉

[D(Aε )]′,D(Aε )
dr

+ 2Re
∫ t

s

(
B∗Q(r)eA(r−s)x, u(r)

)

U dr ,

where the duality in the penultimate term is based on the membership Q(·) ∈ QT [along
with the estimate (A.2)] which yields Q(r)B ∈ L(U , [D(Aε)]′), combined as before with
Lsu ∈ C([s, T ];D(Aε)). The above leads to

R3 + C4 + C1 = −2Re
∫ t

s

∫ r

s

(
B∗eA∗(r−σ)R∗ReA(r−s)x, u(σ )

)

U dσ dr

+ 2Re
∫ t

s

∫ r

s

(
B∗eA∗(r−σ)Q(r)BB∗Q(r)eA(r−s)x, u(σ )

)

U dσdr

+ 2Re
∫ t

s
(B∗Q(σ )eA(σ−s)x, u(σ )

)

U dσ ,

which can be rewritten, exchanging the order of integration, as follows:

R3 + C4 + C1 = − 2Re
∫ t

s

(
B∗{

∫ t

σ

eA
∗(r−σ)R∗R

[
eA(r−s)x

]
dr

−
∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)

[
eA(σ−s)x

]
dr

− Q(σ )
[
eA(σ−s)x

]}
, u(σ )

)

U
dσ .

(4.3)

Let us focus on the expression inside the curly bracket. Because Q(·) solves the IRE (3.1),
as well as its second form (3.2) valid for any pair x, y ∈ Y , then the following identity—a
strong form of the IRE, when Q(·) is unknown—holds true:

eA
∗(t−σ)Q(t)eA(t−σ)z = Q(σ )z −

∫ t

σ

eA
∗(r−σ)R∗Rz dr

+
∫ t

σ

eA
∗(r−σ)Q(r)BB∗Q(r)eA(r−σ)z dr , 0 ≤ σ ≤ t ≤ T , z ∈ Y .
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Thus, returning to (4.3) with this information and setting in particular z = eA(σ−s)x , we find
that R3 + C4 + C1 simply reads as follows:

R3 + C4 + C1 = −2Re
∫ t

s

(
B∗eA∗(t−σ)Q(t)eA(t−s)x, u(σ )

)

U dσ

= −2Re
(
Q(t)eA(t−s)x, Lsu(t)

)

Y .

(4.4)

We examine next the sum

R2 + C5 = −
∫ t

s
‖RLsu(r)‖2Z dr +

∫ t

s

∥
∥B∗Q(r)Lsu(r)

∥
∥2
U dr ,

where, again, since u ∈ L∞(s, T ;U ) ⊂ Lq ′
(s, T ;U ), we know from Lemma A.2 that

Lsu ∈ C([s, T ];D(Aε)). Consequently, one gets

R2 + C5 = −
∫ t

s

〈[
R∗R − Q(r)BB∗Q(r)

]
Lsu(r), Lsu(r)

〉

[D(Aε )]′,D(Aε )
dr

= −Re
∫ t

s

(
A∗−ε[R∗R − Q(r)BB∗Q(r)

]
A−ε

∫ r

s
AεeA(r−λ)Bu(λ) dλ,

∫ r

s
AεeA(r−μ)Bu(μ) dμ

)

Y
dr .

(4.5)

It is important to emphasize that in going from the duality to the inner product in (4.5), two
facts have been crucially used, besides Q(·) ∈ QT : the hypothesis (2.3) on the observation
operator R (that is iiib) of theAssumptions 2.3), and once again, LemmaA.2. Further handling
of the right hand side of (4.5) leads to the triple integral

R2 + C5 = −Re
∫ t

s
I (r , s) dr ,

having set

I (r , s) =
∫ r

s

∫ r

s

(
B∗eA∗(r−μ)

[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(μ)

)

U dλ dμ .

Let us focus on the inner double integral I (r , s). We note that this integral pertains to a
symmetric function of (λ, μ), and hence the integral over the square [s, r ] × [s, r ] can be
replaced by twice the integral over the triangle

{(λ, μ) : s ≤ μ ≤ λ ≤ r} .

It follows that

I (r , s) = 2
∫ r

s
dλ

∫ λ

s
dμ

(
B∗eA∗(r−μ)

[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(μ)

)

U

= 2
∫ r

s

[ ∫ λ

s

(
B∗eA∗(λ−μ) eA

∗(r−λ)
[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), u(μ)

)

U dμ
]
dλ

= 2
∫ r

s

(
eA

∗(r−λ)
[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ),

∫ λ

s
eA(λ−μ)Bu(μ) dμ

)

Y dλ

= 2
∫ r

s

(
eA

∗(r−λ)
[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)

Y dλ .
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Inserting the expression of I (r , s) obtained above in the outer integral yields

R2 + C5

= −2Re
∫ t

s

∫ r

s

(
eA

∗(r−λ)
[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)

Y dλ dr ;

next we exchange the order of integration and also move the first argument of the inner
product, to achieve

R2 + C5

= −2Re
∫ t

s

∫ t

λ

(
eA

∗(r−λ)
[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Bu(λ), Lsu(λ)

)

Y dr dλ

= −2Re
∫ t

s

∫ t

λ

(
u(λ), B∗eA∗(r−λ)

[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)Lsu(λ)

)

Y dr dλ

= −2Re
∫ t

s

(
u(λ), B∗

∫ t

λ

eA
∗(r−λ)

[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ) Lsu(λ) dr

)

U dλ .

(4.6)

It is apparent that the second form (3.2) of the IRE (with λ in place of s)—in fact, a
strong form of it— provides once more the tool, just like in deriving (4.4) from (4.3). With
z = Lsu(λ), replace the integral

∫ t

λ

eA
∗(r−λ)

[
R∗R − Q(r)BB∗Q(r)

]
eA(r−λ)z dr

by [Q(λ) − eA
∗(t−λ)Q(t)eA(t−λ)]z, to find

R2 + C5 = −2Re
∫ t

s

(
u(λ), B∗[Q(λ) − eA

∗(t−λ)Q(t)eA(t−λ)
]
Lsu(λ)

)

U dλ

= −2Re
∫ t

s

(
B∗[Q(λ) − eA

∗(t−λ)Q(t)eA(t−λ)
]
Lsu(λ), u(λ)

)

U dλ .

(4.7)

Thus, adding C2 to (4.7), we see that a useful simplification occurs, as detailed below:

R2 + C5 + C2 = −2Re
∫ t

s

(
B∗Q(λ)Lsu(λ), u(λ)

)

U dλ

+ 2Re
∫ t

s

(
B∗eA∗(t−λ)Q(t)eA(t−λ)Lsu(λ), u(λ)

)

U dλ

+ 2Re
∫ t

s

(
B∗Q(r)Lsu(r), u(r)

)

U dr

= 2Re
∫ t

s

∫ λ

s

(
Q(t)eA(t−σ)Bu(σ ), eA(t−λ)Bu(λ)

)

Y dσ dλ .

Owing to the simmetry of the latter integrand in (σ, λ), we may replace twice the integral
over the triangle {(λ, σ ) : s ≤ λ ≤ σ ≤ t} by the integral over the square [s, t] × [s, t], and
finally get

R2 + C5 + C2 = Re
∫ t

s

∫ t

s

(
Q(t)eA(t−σ)Bu(σ ), eA(t−λ)Bu(λ)

)

Y dλ dσ

= Re
(
Q(t)Lsu(t), Lsu(t)

)

Y = (
Q(t)Lsu(t), Lsu(t)

)

Y .

(4.8)
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Combining (4.8) with (4.2) and (4.4), we finally obtain

3∑

i=1

Ri +
5∑

j=1

C j = (
Q(t)eA(t−s)x, eA(t−s)x

)

Y − (Q(s)x, x)Y

+ 2Re(Q(t)eA(t−s)x, Lsu(t))Y + (Q(t)Lsu(t), Lsu(t))Y

= (Q(t)y(t), y(t))Y − (Q(s)x, x)Y ,

which establishes the fundamental identity (4.1) in the case u ∈ L∞(s, T ;U ). Finally, the
identity extends to u ∈ L2(s, T ;U ) by density, which concludes the proof of Lemma 4.1. ��

We next introduce an integral equation that involves a given operator solution Q(t) to the
Riccati equation corresponding to optimal control problem (2.1)–(2.3). Once uniqueness for
the DRE (2.10) is established, so that Q(t) must coincide with the Riccati operator P(t),
then it will be clear that the said integral equation ((4.9) below) is nothing but the well known
closed-loop equation, of central importance for the synthesis of the optimal control. (This
justifies the use of the term “closed-loop equation” for (4.9).)

As we shall see, the following Lemma 4.2 and (the independent) Lemma 4.1 constitute
the core elements for the proof of Theorem 2.6.

Lemma 4.2 Let ε be as in iii) of Assumptions 2.3. Let Q ∈ QT , whereQT is the class defined
by (2.11). Then, for every x ∈ D(Aε), the closed loop equation

y(t) = eAt x −
∫ t

0
eA(t−s)BB∗Q(σ )y(σ ) dσ , t ∈ [0, T ] , (4.9)

has a unique solution in the space

X =
{
y ∈ C([0, T ];D(Aε)) : sup

t∈[0,T ]
(
e−r t‖y(t)‖D(Aε)) < ∞

}
(4.10)

endowed with the norm

‖y‖X ,r = sup
t∈[0,T ]

e−r t‖y(t)‖D(Aε ) , y ∈ X ,

provided r > 0 is chosen sufficiently large.

Proof With x ∈ D(Aε), we set E(t) = eAt x . By semigroup theory we know that E(·) ∈
C([0, T ];D(Aε)); even more, since eAt is exponentially stable, it holds E(·) ∈ X provided
r is sufficiently large. As the integral equation (4.9) has the clear form

y(t) + [
LB∗Q(·)y(·)](t) = E(t) , t ∈ [0, T ] ,

we appeal to a classical argument of functional analysis: we will prove that LB∗Q(·) is a
contraction mapping in X , having chosen r sufficiently large. This will in turn imply that
I + LB∗Q(·) is invertible in X , thus providing the sought unique solution to (4.9).

For each y ∈ X , z ∈ D(A∗ε), t ∈ [0, T ], we have by Lemma A.5
∣
∣(e−r t L B∗Q(·)y(·), A∗εz)Y

∣
∣

=
∣
∣
∣

∫ t

0
e−r(t−s) (

B∗Q(s)e−rs y(s), B∗eA∗(t−s)A∗εz
)

U ds
∣
∣
∣

≤
∫ t

0
e−r(t−s)‖B∗Q(·)e−r ·y(·)‖C([0,T ];U )

∥
∥B∗e(t−s)A∗

A∗εz
∥
∥
U ds
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≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε )),C([0,T ];U )) ‖y‖X ,r

∫ t

0
e−rσ ‖B∗eA∗σ A∗εz‖U dσ

≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε )),C([0,T ];U )) ‖y‖X ,r

[ ∫ t

0
e−rσq ′

dσ
]1/q ′

‖B∗e·A∗
A∗εz‖Lq (0,T ;U )

≤ ‖B∗Q(·)‖L(C([0,T ];D(Aε )),C([0,T ];U ))

1

(rq ′)1/q ′ ‖B∗eA∗·A∗ε‖L(Y ,Lq (0,T ;U )) ‖z‖Y ‖y‖X ,r .

We note that in going from the antepenultimate to the penultimate estimate we used iiic) of
the Assumptions 2.3. Therefore, there exist positive constants c, c′ such that

∥
∥e−r t [L B∗Q(·)y(·)](t)∥∥D(Aε )

≤ c

(rq ′)1/q ′ ‖y‖X ,r ≤ c′

r1/q ′ ‖y‖X ,r ,

so that by taking a sufficiently large r we see that LB∗Q(·) is a contraction mapping in X .
The conclusion of the Lemma follows. ��

Uniqueness for the DRE is now a consequence of Lemmas 4.1 and 4.2, its proof following
a somewhat familiar path.

Proof of Theorem 2.6 For the optimal pair (ŷ, û) corresponding to the initial state x ∈ Y it
holds

(P(s)x, x)Y = J (û) =
∫ T

s

(
‖Rŷ(r)‖2Z + ‖û(r)‖2U

)
dr , 0 ≤ s ≤ T ,

where P(·) is the Riccati operator defined in (2.8), i.e.

P(t)x =
∫ T

t
eA

∗(r−t)R∗R�(r , t)x dr , x ∈ Y ,

while �(r , t) denotes the evolution operator

�(r , t)x = eA(r−t)x + Lt û(r) , r ∈ [t, T ] .
Let Q(·) ∈ QT be another solution to the DRE (2.10): by Lemma 3.1 Q(·) solves the IRE

(3.1) as well; then, with u ∈ L2(s, T ;U ) and x ∈ D(Aε), the identity (4.1) holds true by
Lemma 4.1. With t = T , since Q(T ) = 0, from (4.1) we see that

(Q(s)x, x)Y =
∫ T

s

[‖Ry(r)‖2Z + ‖u(r)‖2U
]
dr −

∫ T

s
‖u(r) + B∗Q(r)y(r)‖2U dr

≤
∫ T

s

[‖Ry(r)‖2Z + ‖u(r)‖2U
]
dr = J (u) .

In particular, when u = û, we establish

(Q(s)x, x)Y ≤ J (û) = (P(s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aε) . (4.11)

Conversely, let y(·) be the solution to the closed-loop equation (4.9) corresponding to
x ∈ D(Aε), guaranteed by Lemma 4.2, and let u(·) = −B∗Q(·)y(·). By construction
u ∈ L2(s, T ;U ), and the fundamental identity becomes

(Q(s)x, x)Y =
∫ t

s

(
‖Ry(r)‖2Z + ‖u(r)‖2U

)
dr + (Q(t)y(t), y(t))Y ,

which in turn gives, for t = T ,

(Q(s)x, x)Y = J (u) ≥ J (û) = (P(s)x, x)Y ∀s ∈ [0, T ] , ∀x ∈ D(Aε) . (4.12)
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The inequality (4.12), combined with (4.11), establishes—via the usual polarization (first)
and density (next) arguments—Q(s) ≡ P(s) on [0, T ], as desired. ��

4.2 Infinite time interval, algebraic Riccati equations

In this Section we prove our second main result, that is Theorem 2.10, which pertains to
uniqueness for the algebraic Riccati equation (2.17), under the standing Assumptions 2.8.
Instrumental results are the counterparts of Lemmas 4.1 and 4.2, along with the integral form
(3.8) of the ARE, already obtained in Sect. 3; see Lemma 3.2 therein.

The first Lemma is the infinite time horizon version of the fundamental identity established
in Lemma 4.1.

Lemma 4.3 (Fundamental identity (T = +∞)) Recall the class Q defined in (2.18). Let
Q ∈ Q be a solution to the integral Riccati equation (3.8). With u ∈ L2

loc(0,∞;U ) and
x ∈ D(Aε), let y(·) be the semigroup solution to the state equation (2.1) corresponding to
u(·), with initial state x, given by (2.2). Then, the following identity holds true, for any t ≥ 0:

(Qy(t), y(t))Y − (Qx, x)Y

= −
∫ t

0

(
‖Ry(s)‖2Z + ‖u(s)‖2U

)
ds +

∫ t

0

∥
∥u(s) + B∗Qy(s)

∥
∥2
U ds .

(4.13)

Proof It suffices to proceed along the lines of the proof of Lemma 4.1, replacing the interval
[s, t] by [0, t] and assuming initially u ∈ L∞

loc(0,∞;U ); the proof is actually slightly simpler,
since here Q is independent of t . The details are omitted for the sake of conciseness. ��

The next Lemma is the infinite time horizon version of Lemma 4.2, dealing with an
integral equation which—once uniquenss for the ARE is ascertained—will turn out to be the
closed-loop equation.

Lemma 4.4 Let ε be as in the Assumptions 2.8. Recall the class Q defined by (2.18), and let
Q ∈ Q. For every x ∈ D(Aε) and a suitably large r > 0 there exists a unique solution y(·)
to the closed loop equation

y(t) = eAt x −
∫ t

0
eA(t−s)BB∗Qy(s) ds , t > 0 , (4.14)

in the space

X = {
y ∈ C([0,∞);D(Aε)) : sup

t≥0
e−r t‖y(t)‖D(Aε ) < ∞}

(4.15)

endowed with the norm

‖y‖X ,r = sup
t>0

e−r t‖y(t)‖D(Aε ) ∀y ∈ X , r > 0 .

Proof The argument is pretty much the same employed in the proof of Lemma 4.2. A techni-
cally decisive (distinct) element here comes from the extended (and enhanced) regularity in
time of the operator B∗eA∗·A∗ε over the half line [0,∞), which is guaranteed by [4, Propo-
sition 3.2], recalled here as Proposition A.6. The computation is included for the reader’s
convenience.

Let x ∈ D(Aε) be given. By setting E(t) = eAt x , and recalling the input-to-state map L ,
the integral equation (4.14) reads as

([I + LB∗Q]y(·))(t) = E(t), in short. For any function
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y(·) ∈ X and any z ∈ D(A∗ε), we have

|(e−r t L B∗Qy(t), A∗εz)Y =
∣
∣
∣
∣

∫ t

0
e−r(t−s)(B∗Qy(s)e−rs, B∗eA∗(t−s)A∗εz)Y ds

∣
∣
∣
∣

≤
∫ t

0
e−r(t−s)‖B∗Q‖L(D(Aε ),U )‖y‖X ,r e

−δ(t−s) ‖eδ(t−s)B∗eA∗(t−s)A∗εz‖U ds

≤ ‖B∗Q‖L(D(Aε ),U )‖y‖X ,r

( ∫ t

0
e−(r+δ)(t−s)q ′

ds
)1/q ′

·

·
( ∫ t

0
‖eδ(t−s)B∗eA∗(t−s)A∗εz‖qU ds

)1/q

≤ 1

[(r + δ)q ′]1/q ′ ‖B∗Q‖L(D(Aε ),U ) ‖eδ·B∗eA∗·A∗ε‖L(Y ,Lq (0,∞;U )) ‖y‖X ,r ‖z‖Y ,

where δ belongs to the interval (0, ω ∧ η) (ω and η being like in the Assumptions 2.8). The
above estimate implies readily that there exists a constant C > 0 such that

‖LB∗Qy‖X ,r ≤ C

(r + δ)1/q
′ ‖y‖X ,r‖eδ·B∗eA∗·A∗ε‖L(Y ,Lq (0,∞;U ))

so that

‖LB∗Qy‖X ,r ≤ 1

2
‖y‖X ,r ,

provided r is sufficiently large. The conclusive argument is standard. ��
Proof of Theorem 2.10 Let y0 ∈ Y , and let (ŷ, û) the optimal pair of the optimal control
problem (2.1)–(2.3) (with T = +∞), corresponding to the initial state y0. Recall that

(Py0, y0)Y = J (û) =
∫ ∞

0
‖Rŷ(s)‖2Z ds +

∫ ∞

0
‖û(s)‖2U ds ,

where the (optimal cost) operator P is defined in terms of the optimal state semigroup �(t)
via (2.15). In addition, P belongs to the class Q and solves the ARE (2.17); consequently,
by Lemma 3.2 P solves the integral form (3.8) of the ARE.

Let now Q ∈ Q be another solution to the ARE. By Lemma 4.3, we know that for any
given y0 ∈ D(Aε), and any admissible control u(·), the identity (4.13) holds true (with x
replaced by y0), where y(·) is the solution to the state equation corresponding to the control
u and the initial state y0. Consequently,

(Qy0, y0)Y ≤ (Qy(t), y(t))Y + J (u) ∀u ∈ L2
loc(0,∞;U ) , ∀t > 0 ;

by choosing in particular the admissible pair (yT , uT ) defined as follows,

uT = û · χ[0,T ] , yT (t) =
{
ŷ(t) if t ≤ T

eAt y0 + eA(t−T )Lû(T ) if t > T ,

we find (Qy0, y0)Y ≤ (QyT (t), yT (t))Y + J (uT ), valid for arbitrary t ≥ T > 0. By letting
t → +∞ in the previous inequality, one obtains readily

(Qy0, y0)Y ≤ J (uT ) ∀y0 ∈ D(Aε) ∀T > 0 , (4.16)

in view of the fact that the semigroup eAt decays exponentially; so ‖yT (t)‖Y −→ 0, as
t → +∞.
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Observe now that

J (uT ) =
∫ ∞

0
‖RyT (s)‖2Z ds +

∫ ∞

0
‖uT (s)‖2U ds

=
∫ T

0
‖Rŷ(s)‖2Z ds +

∫ ∞

T

∥
∥R

(
esA y0 + e(s−T )ALû(T )

)∥
∥2 ds +

∫ T

0
‖û(s)‖2U ds ,

so that J (uT ) −→ J (û), as T → +∞. Keeping this in mind, return to (4.16) and let
T → +∞ to find

(Qy0, y0)Y ≤ J (û) = (Py0, y0)Y ∀y0 ∈ D(Aε) . (4.17)

On the other hand, given y0 ∈ D(Aε) (and still with Q ∈ Q another solution to the
ARE), let y(·) be the solution to the closed loop equation guaranteed by Lemma 4.4; by
construction y ∈ L2

loc(0,∞; Y ). Take now the control u(·) = −B∗Qy(·), which belongs to
L2
loc(0,∞;U ). Then, the identity (4.13) holds true for any positive t , that is

(4.18)

As t → +∞, this shows that Ry ∈ L2(0,∞; Z), u ∈ L2(0,∞;U ), as well as
(Qy0, y0)Y ≥ J (u). By minimality we find

(Qy0, y0)Y ≥ J (u) ≥ J (û) = (Py0, y0)Y ∀y0 ∈ D(Aε) . (4.19)

On the basis of (4.17) and (4.19), a standard polarization (first) and density (next) argument
confirms that Q = P , thereby concluding the proof of Theorem 2.10. ��
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Appendix A. Instrumental results

In this appendix we gather several results (some old, some new) which single out certain
regularity properties—in time and space—of

• the input-to-state map L ,
• the operator B∗Q(·), when Q(t) ∈ QT ,
• the operator B∗eA∗t A∗ε and its adjoint.

All of them stem from the Assumptions 2.3 or 2.8 on the (dynamics and control) operators
A and B. The role played by the assertions of the novel Lemma A.2 and Lemma A.5 in the
proofs of our uniqueness results is absolutely critical.
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Initially, it is useful to recall from [2, 4] the basic regularity properties of the input-to-state
map L . The first result pertains to the finite time horizon problem. The reader is referred to
[2, Appendix B] for the details of the computations leading to the various statements in the
following Proposition.

Proposition A.1 ([2], Proposition B.3) Let Ls be the operator defined by

Ls : u(·) −→ (Lsu)(t) :=
∫ t

s
eA(t−r Bu(r) dr , 0 ≤ s ≤ t ≤ T . (A.1)

Under the Assumptions 2.3, the following regularity results hold true.

(1) If p = 1, then Ls ∈ L(L1(s, T ;U ), L1/γ (s, T ; [D(A∗ε)]′);
(2) if 1 < p < 1

1−γ
, then Ls ∈ L(L p(s, T ;U ), Lr (s, T ; Y )), with r = p

1−(1−γ )p ;

(3) if p = 1
1−γ

, then Ls ∈ L(L p(s, T ;U ), Lr (s, T ; Y )) for all r ∈ [1,∞);

(4) if p > 1
1−γ

, then Ls ∈ L(L p(s, T ;U ),C([s, T ]; Y )).

Moreover, in all cases the norm of Ls does not depend on s.

The space regularity in the last assertion can be actually enhanced. To be more precise, Ls

maps control functions u(·) which belong to Lq ′
(s, T ;U ) into functions which take values

in D(Aε) (q ′ being the conjugate exponent of q in the Assumptions 2.3). We highlight this
property— appparently left out of the work [2]—as a separate result, since it will be used
throughout in the paper. The proof is omitted, as it is akin to (and somewhat simpler than)
the one carried out to establish assertion (v) of the subsequent Proposition A.3.

Lemma A.2 Let ε and q be as in (iii) of the Assumptions 2.3. Then, for the operator Ls defined
in (A.1) we have

Ls ∈ L(Lq ′
(s, T ;U ),C([s, T ];D(Aε))) .

A counterpart of Proposition A.1 specific for the infinite time horizon problemwas proved
in [4, Proposition 3.6]. The collection of findings on the regularity of the input-to-state map
L is recorded here for the reader’s convenience.

Proposition A.3 ([4], Proposition 3.6) Let L be the operator defined by

L : u(·) −→ (Lu)(t) :=
∫ t

0
eA(t−r Bu(r) dr , t ≥ 0 .

Under the Assumptions 2.8, the following regularity results hold true.

(i) L ∈ L(L1(0,∞;U ), Lr (0,∞; [D(A∗ε)]′), for any r ∈ [1, 1/γ );
(ii) L ∈ L(L p(0,∞;U ), Lr (0,∞; Y )), for any p ∈ (1, 1/(1− γ )) and any r ∈ [p, p/(1−

(1 − γ )p)];
(iii) L ∈ L(L

1
1−γ (0,∞;U ), Lr (0,∞; Y )), for any r ∈ [1/(1 − γ ),∞);

(iv) L ∈ L(L p(0,∞;U ), Lr (0,∞; Y ) ∩ Cb([0,∞); Y )), for any p ∈ (1/(1 − γ ),∞) and
any r ∈ [p,∞);

(v) L ∈ L(Lr (0,∞;U ),Cb([0,∞);D(Aε)), for any r ∈ [q ′,∞].
Because they occur in the present work, besides being central to the analysis of [4], we

need to recall the L p-spaces with weights. Set

L p
g (0,∞; X) := {

f : (0,∞) −→ X , g(·) f (·) ∈ L p(0,∞; X)
}
,
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where g : (0,∞) −→ R is a given (weight) function. We will use more specifically the
exponential weights g(t) = eδt , along with the following (simplified) notation:

L p
δ (0,∞; X) := {

f : (0,∞) −→ X , eδ· f (·) ∈ L p(0,∞; X)
}
.

Remark A.4 As pointed out in [4, Remark 3.8], all the regularity results provided by the
statements contained in the Propositions A.1 and A.3 extend readily to natural analogues
involving L p

δ spaces (rather than L p ones), maintaining the respective summability exponents
p.

We now move on to a result which clarifies the regularity of the operator B∗Q(·), Q(t) ∈
QT , when acting upon functions (with values in D(Aε)) rather than on vectors—namely, on
elements of the space D(Aε).

Lemma A.5 Let ε be as in (iii) of the Assumptions 2.3. If Q(·) ∈ QT and f ∈
C([0, T ];D(Aε)), then

B∗Q(·) f (·) ∈ C([0, T ];U ) .

Proof We proceed along the lines of the proof of [2, Lemma A.3]. Let Q(·) ∈ QT and let
t0 ∈ [0, T ]. By the definition of QT , there exists c1 > 0 such that

‖B∗Q(t)z‖U ≤ c1‖z‖D(Aε ) ∀t ∈ [0, T ] , ∀z ∈ D(Aε) . (A.2)

Since f (t0) ∈ D(Aε), then B∗Q(·) f (t0) ∈ C([0, T ];U ). Then

‖B∗Q(t) f (t) − B∗Q(t0) f (t0)‖U
≤ ‖B∗Q(t)[ f (t) − f (t0)]‖U + ‖B∗Q(t) f (t0) − B∗Q(t0) f (t0)‖U
≤ c1‖ f (t) − f (t0)‖D(Aε ) + ‖[B∗Q(t) − B∗Q(t0)] f (t0)‖U = o(1) , t −→ t0 .

��

Essential as well in this work, and more specifically in the proof of Theorem 2.10, is
a stronger property of the operator B∗eA∗·A∗ε , namely, (A.3) below, which holds true for
appropriate δ, under the Assumptions 2.8. Originally devised in [4], this result reveals that
once the validity of iiic) of Assumptions 2.3 is ascertained on some bounded interval [0, T ],
then the very same regularity estimate extends to the half line, along with an enhanced
summability of the function B∗eA∗·A∗εx , x ∈ Y . The key to this is the exponential stability
of the semigroup, i.e. (2.12); see [4, Proposition 3.2].

Proposition A.6 ([4], Proposition 3.2) Let ω, η and ε like in the Assumptions 2.8. For each
δ ∈ (0, ω ∧ η) the map

t −→ eδt B∗eA∗t A∗ε

has an extension which belongs to L(Y , Lq(0,∞;U )). In short,

B∗eA∗·A∗ε ∈ L(Y , Lq
δ (0,∞;U )) . (A.3)

We conclude providing a result that takes a more in-depth glance at the regularity of the
operator B∗eA∗t A∗ε and its adjoint.
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Lemma A.7 Under the Assumptions 2.8, the following regularity results are valid, for any
δ ∈ (0, ω ∧ η):

a) eδ·AεeA·B ∈ L(Lq ′
(0,∞;U ), Y ) ,

b) eδ·B∗eA∗·A∗−ε ∈ L(Lr (0,∞; Y ),U ) ∀r >
1

1 − γ
.

(A.4)

The respective actions of the operators in (A.4) are made explicit by (A.5) and (A.6).

Proof The regularity results in (A.4) are, in essence, dual properties of the regularity result in
Proposition A.6 and of assertion A6. in Theorem 2.9, respectively. To infer (a), we introduce
the notation S for the mapping from Y into Lq(0,∞;U ) defined by

Y � z −→ [Sz](t) := eδt B∗eA∗t A∗εz , t > 0 .

For any z ∈ Y and any h ∈ Lq ′
(0,∞;U ), it must be S∗ ∈ L(Lq ′

(0,∞;U ), Y ) and more
precisely,

〈S∗h, z〉Y = 〈h, Sz〉Lq′
(0,∞;U ),Lq (0,∞;U )

=
∫ ∞

0

〈
h(t), eδt B∗eA∗t A∗εz

〉

U dt

=
〈 ∫ ∞

0
eδt AεeAt Bh(t) dt, z

〉

Y
.

Therefore,

S∗h =
∫ ∞

0
eδt AεeAt Bh(t) dt , h ∈ Lq ′

(0,∞; Y ) . (A.5)

To achieve (b) of (A.4), we recall instead the assertion A6. in Theorem 2.9, which further
tells us that

eδ·A−εeA·B ∈ L(U , L p(0,∞; Y )) , for any psuch that 1 ≤ p <
1

γ
.

Similarly as above, we introduce the notation T for the mapping from U into L p(0,∞; Y )

defined by

U � w −→ [Tw](t) := eδt A−εeAt Bw , t > 0 ;
by construction, T ∗ ∈ L(L p′

(0,∞; Y ),U ) for all p′ > 1/(1 − γ ). More precisely, for any
w ∈ U and any g ∈ L p′

(0,∞; Y ) we have

〈T ∗g, w〉U = 〈g, Tw〉L p′ (0,∞;Y ),L p(0,∞;Y )
=

∫ ∞

0

〈
g(t), eδt A−εeAt Bw

〉

Y dt

=
〈 ∫ ∞

0
eδt B∗eA∗t A∗−εg(t) dt, w

〉

U
,

which establishes

T ∗g =
∫ ∞

0
eδt B∗eA∗t A∗−εg(t) dt . ∀g ∈ L p′

(0,∞; Y ) . (A.6)

The integrals in (A.5) and (A.6) are the sought respective representations of the adjoint
operators in (A.4). ��
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