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Abstract
In this paper, we consider the optimization problem of minimizing a continuously
differentiable function subject to both convex constraints and sparsity constraints. By
exploiting a mixed-integer reformulation from the literature, we define a necessary
optimality condition based on a tailored neighborhood that allows to take into account
potential changes of the support set. We then propose an algorithmic framework to
tackle the considered class of problems and prove its convergence to points satisfying
the newly introduced concept of stationarity. We further show that, by suitably choos-
ing the neighborhood, other well-known optimality conditions from the literature can
be recovered at the limit points of the sequence produced by the algorithm. Finally, we
analyze the computational impact of the neighborhood size within our framework and
in the comparison with some state-of-the-art algorithms, namely, the Penalty Decom-
position method and the Greedy Sparse-Simplex method. The algorithms have been
tested using a benchmark related to sparse logistic regression problems.
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1 Introduction

In this paper, we consider smooth continuous optimization problems with sparsity
constraints, i.e., problems where the number of nonzero components of solutions are
upper-bounded by a certain threshold. This class of problems has a wide range of
applications, from subset selection in regression [28] and the compressed sensing
technique used in signal processing [15] to portfolio optimization [10, 29]. Such a
problem can be reformulated into equivalent different mixed-integer problems and is
known to be NP-hard [10, 30, 31].

For the cases where the objective function is convex, exact methods (see, e.g., [9,
10, 31, 32]), typically based on branch-and-bound or branch-and-cut strategies, have
been proposed in the literature to solve these problems up to certified global optimality.
In recent works [7, 8], numerical strategies have been devised that make methods of
this kind computationally sustainable even at a quite large scale.

On the other hand, the approaches proposed in the literature for the solution of this
problem in the general case include:methods that handle suitable reformulations of the
problem based on orthogonality constraints (see, e.g., [12–14, 16]); penalty decompo-
sition methods, where penalty subproblems are solved by a block coordinate descent
method [23, 26]; methods that identify points satisfying tailored optimality conditions
related to the problem [3, 4]; heuristics like evolutionary algorithms [1], particle swarm
methods [11, 18], genetic algorithms, tabu search and simulated annealing [17], and
also neural networks [21].

We observe sparsity-constrained problems are generally hard to solve because both
the objective function and the feasible set (due to the combinatorial nature of the
sparsity constraint) are nonconvex. The inherently combinatorial flavor of the given
problem makes the definition of proper optimality conditions and, consequently, the
development of algorithms that generate points satisfying those conditions a challeng-
ing task. A number of ways to address these issues are proposed in the literature (see,
e.g., [3, 4, 14, 23, 26]). However, some of the optimality conditions proposed do not
fully take into account the combinatorial nature of the problem, whereas some of the
corresponding algorithms [3, 26] require to exactly solve a sequence of nonconvex
subproblems and this may be practically prohibitive. Moreover, due to the theoretical
tools involved in the analysis, it is anyway not easy to relate the different approaches
with each other.

In this paper, we hence give a unifying view on this matter. More specifically,
we consider the mixed-integer reformulation of the problem proposed in [14] and
use it to define a suitable optimality condition. This condition is then embedded into
an algorithmic framework aimed at finding points satisfying the resulting optimality
criterion. The algorithm combines inexact minimizations with a strategy that explores
tailored neighborhoods of a given feasible point. Those features make it easy to handle
the nonconvexity in both the objective function and the feasible set also froma practical
point of view. We prove the convergence of the algorithmic scheme, establishing that
its limit points satisfy the specific optimality condition. We then show that different
conditions proposed in the literature (see, e.g., [3, 14, 26]) can be easily derived from
ours. We finally perform some numerical tests on sparse logistic regression in order
to show that the devised method is also computationally viable.
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The paper is organized as follows: in Sect. 2, we provide basic definitions and pre-
liminary results related to optimality conditions of problem (1). In Sect. 3, we describe
our proposed algorithmic framework and show (Sect. 3.1) the convergence analysis
without constraint qualifications. In Sect. 4, we analyze the asymptotic convergence
properties of the algorithm when constraint qualifications hold. Finally, we report
numerical experiments in Sect. 5 and give some concluding remarks in Sect. 6. We
also provide in Sect. 1 some insights on the relationship between classical stationarity
conditions for convex problems with and without constraints qualifications.

2 Basic Definitions and Preliminary Results

We consider the following sparsity-constrained problem:

min
x

f (x) s.t. ‖x‖0 ≤ s, x ∈ X , (1)

where f : R
n → R is a continuously differentiable function, ‖x‖0 denotes the

cardinality of the vector x , X ⊆ R
n is a closed and convex set, and s < n is a

properly chosen integer value. We further use X to indicate the overall feasible set
X ∩ {x ∈ R

n | ‖x‖0 ≤ s}.
Even though problem (1) is a continuous optimization problem, it has an intrin-

sic combinatorial nature and in applications the interest often lies in finding a good,
possibly globally optimal configuration of active variables. Being 1 a continuous prob-
lem, x∗ ∈ X is a local minimizer if there exists an open ball B(x∗, ε) such that
f (x∗) = min{ f (x) | x ∈ X ∩B(x∗, ε)}. In some works from the literature (e.g., [14,
26]) necessary conditions of local optimality have been proposed. However, for this
particular problem every local minimizer for a fixed active set of s variables is a local
minimizer of the given problem. Hence the number of local minimizers grows as fast
as
(n
s

)
and is thus of low practical usefulness.

In [3, 4], the authors propose necessary conditions for global optimality that go
beyond the concept of local minimum described above, thus allowing to consider
possible changes to the structure of the support set, and reducing the pool of optimal
candidates. However, these conditions are either tailored to the “unconstrained case”,
or limited tomoderate changes in the support, or involve hard operations, such as exact
minimizations or projections onto nonconvex sets.

In order to introduce a general and affordable necessary optimality condition that
also takes into account the combinatorial nature of the problem, we consider in our
analysis the equivalent reformulation of problem (1) described in [14]:

min
x,y

f (x)

s.t. e	y ≥ n − s, xi yi = 0 ∀ i = 1, . . . , n,

x ∈ X , y ∈ {0, 1}n .
(2)
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From here onwards, we will use the following notation:

Y =
{
y | y ∈ {0, 1}n, e	y ≥ n − s

}
, X (y) = {x ∈ X | xi yi = 0 ∀ i = 1, . . . , n}.

We further define the support set of a vector z and its complement by

I1(z) = {i | zi �= 0}, I0(z) = {i | zi = 0}.

Moreover, we recall the concept of super support set [4].

Definition 2.1 Let z ∈ X be a feasible solution of problem (1). A set J ⊆ {1, . . . , n}
is referred to as a super support set for z if it is such that I1(z) ⊆ J and |J | = s. We
denote the set of all super support sets at z by J (z).

A super support set substantially identifies a subset of components of z that could be
moved jointly without breaking the cardinality constraint. Clearly, if z has full support,
then the only super support set for z is I1(z) itself.

We denote by zI the subvector of z identified by the components contained in
an index set I . We also denote by �C the orthogonal projection operator over the
closed convex set C . We notice that given a feasible point (x, y) of problem (2), the
components I0(y) give an active subspace for x , i.e., those components identify the
subspace where the nonzero components of x lay. We thus have that I1(x) ⊆ I0(y).
In order to suitably manage the mixed-integer structure of problem (2), inspired by
[24, 27], we need to introduce the notion of discrete neighborhood mapping, which is
a point-to-set mapping defined as follows.

Definition 2.2 LetN : X (y)×Y → 2X (y)×Y be a point-to-set mapping. We say that
N is a discrete neighborhood mapping if for any (x̄, ȳ) ∈ X (ȳ) × Y we have:

– (x̄, ȳ) ∈ N (x̄, ȳ);
– |N (x̄, ȳ)| < ∞.

Basically, given a feasible point (x̄, ȳ), a discrete neighborhood mapping N defines
a discrete neighborhood N (x̄, ȳ), which is a finite set of feasible points that contains
(x̄, ȳ) itself. Of course, in order for the concept of neighborhood to be practically
meaningful, the points in it should be close, to some extent, to the point (x̄ , ȳ); however,
the formalization of this feature will be deferred to the definition of each specific
discrete neighborhood mapping.

Note that the discrete neighborhood mapping is the rule for generating the discrete
neighborhood of any feasible point.

Now, a notion of local optimality for problem (2), depending on the considered
discrete neighborhood, can be introduced.

Definition 2.3 A point (x�, y�) ∈ X (y�) × Y is a local minimizer of problem 2 with
respect to the discrete neighborhood N (x�, y�) if there exists an ε > 0 such that for
all (x̂, ŷ) ∈ N (x�, y�) it holds f (x�) ≤ f (x) ∀ x ∈ B(x̂, ε) ∩ X (ŷ).

Note that in the above definition the continuous nature of the problem, expressed
by the variables x , is taken into account by means of the standard ball B(x̂, ε). The
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given definition clearly depends on the choice of the discrete neighborhood. A larger
neighborhood N (x∗, y∗) should give a better local minimizer, but the computational
effort needed to locate the solution may increase.

Inspired by the definition of local optimality for problem (2), we introduce a neces-
sary optimality condition for problem that depends on a given discrete neighborhood
mappingN , and allows to take into account possible, beneficial changes of the support,
thus properly capturing, from an applied point of view, the essence of the problem.
Such a condition relies on the use of stationary points related to continuous problems
obtained by fixing the binary variables in problem (2), i.e., for a fixed ȳ ∈ Y ,

min
x

f (x) s.t. x ∈ X (ȳ). (3)

Definition 2.4 (N -stationarity) A point (x�, y�) ∈ X (y�) × Y is a stationary point
with respect to the discrete neighborhood N (x�, y�) if

(i) the point x� is a stationary point of the continuous problem

min
x

f (x) s.t. x ∈ X (y�);

(ii) every (x̂, ŷ) ∈ N (x�, y�) satisfies f (x̂) ≥ f (x�) and if f (x̂) = f (x�), the point
x̂ is a stationary point of the continuous problem

min
x

f (x) s.t. x ∈ X (ŷ).

It is easy to see that the following result holds.

Theorem 2.1 Let x� be a minimum point of problem (1). Then there exists a point
y� ∈ Y such that (x�, y�) ∈ X (y�) × Y and is a stationary point with respect to a
discrete neighborhood N (x�, y�).

We will show later in this work that the definition ofN -stationarity allows to retrieve
in a unified view most of the known optimality conditions, if a suitable neighborhood
N is employed. In Definition 2.4 we generically refer to stationary points of problem
(3), namely, to points satisfying suitable optimality conditions. Then, concerning the
assumptions on the feasible set X (ȳ), we distinguish the two cases: (i) no constraint
qualifications holds; (ii) constraint qualifications are satisfied and the usualKKT theory
can be applied.

In case (i), we will refer to the following definition (cfr. [6]) of stationary point of
problem (3).

Definition 2.5 Given ȳ ∈ Y and x̄ ∈ X (ȳ), we say that x̄ is a stationary point of
problem (3) if and only if

x̄ = �X (ȳ) [x̄ − ∇ f (x̄)] .

We notice that X (ȳ) is a convex set when X is convex, then the condition given above
is a classic stationarity condition for the problem (3). Case (ii) will be considered later.
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Aswe have seen, the definition of discrete neighborhood for problem (2) is general.
Now, we introduce a specific discrete neighborhood mapping that can be implemented
at a reasonable computational cost, and will also help us to relate our analysis to
the other theoretical tools available in the literature. In order to better motivate the
introduction of the general definition of discrete neighborhood,wewill present another
example of point-to-set mapping in Sect. 3.

Consider a set I ⊆ {1, . . . , n} and a function HI : Rn → R
n defined as

(HI (x))h =
{
0, if h ∈ I
xh otherwise.

This function basically sets to zero all the components with indices in I of a given
vector x . As said before, we introduce an example of discrete neighborhood mapping
for problem (2) and based on the above function.

Definition 2.6 Let dH : {0, 1}n × {0, 1}n → N denote the Hamming distance. More-
over, let �(y, ŷ) = {i | yi �= ŷi }. Then, given ρ ∈ N, the discrete neighborhood
mapping Nρ is defined as

Nρ(x, y) = {
(x̂, ŷ) | ŷ ∈ Y,X (ŷ) �= ∅, dH (ŷ, y) ≤ ρ, x̂ = �X (ŷ)(H�(y,ŷ)(x))

}
.

(4)

Basically, the discrete neighborhood mapping Nρ is such that the discrete neighbor-
hood Nρ(x, y) contains points (x̂, ŷ) with at most ρ components of ŷ differing from
y; x̂ is obtained by zeroing components of x as needed to maintain feasibility w.r.t. the
complementarity constraints and then by projecting the result onto the (convex) active
feasible set X(ŷ). In other words, this particular definition of discrete neighborhood
allows to take into account the potential “change of status” of up to ρ variables in the
vector ŷ defining an active subspace.

Example 2.1 Consider the problem (2) with X = R
3, n = 3 and s = 2 and let ρ = 2.

Let (x, y) be a feasible point defined as follows

(x, y) =
⎛

⎝
1
2
0

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠ .

The neighborhood Nρ(x, y) is given by

N2(x, y) =
⎧
⎨

⎩

⎛

⎝
1
2
0

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
2
0

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
0
2
0

⎞

⎠

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
0
0
0

⎞

⎠

⎛

⎝
1
1
1

⎞

⎠

⎫
⎬

⎭
.

3 Algorithmic Framework

Here, we discuss an algorithmic framework for the solution of problem (1) that exploits
the reformulation given in problem (2). The proposed approach is somehow related to
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classic methods for mixed variable programming proposed in the literature (see, e.g.,
[24, 27]).

The approach aims at finding points satisfying the newly defined N -stationarity
condition. The algorithm combines inexact minimizations with a strategy that explores
discrete neighborhoods of a given feasible point. Those features make it easy to handle
the nonconvexity in both the objective function and the feasible set also froma practical
point of view.

Roughly speaking, the approach, at each iteration k, computes a discrete neighbor-
hood N (

xk, yk
)
of the current point

(
xk, yk

)
, and performs local exploratory moves

around the points of the neighborhood with respect to the continuous variables.
Specifically, the continuous exploration move consists of a local search performed

by anArmijo-type line search along the projected gradient direction,where the feasible
setX (y) for the continuous variables is induced by the binary variables y that implicitly
define an active set. The procedure is formalized in Algorithm 1.

Algorithm 1: Projected-Gradient Line Search (PGLS)

1 Input: y ∈ Y, x ∈ X (y), γ ∈ (0, 1
2 ), δ ∈ (0, 1), α = 1.

2 Set x̂ = �X (y) [x − ∇ f (x)]
3 Set d = x̂ − x

4 while f (x + αd) > f (x) + γα∇ f (x)	d do
5 set α = δα

6 Set x̃ = x + αd;
7 return x̃

The proposed framework, whichwe refer to as SparseNeighborhood Search (SNS),
is formally defined in Algorithm 2, where it is assumed that a discrete neighborhood
mapping N is employed. In brief, the instructions of our algorithmic framework are
carried out as follows:

(i) starting from the current iterate
(
xk, yk

)
, the PGLS is performed to obtain the

point x̃ k (see step 3);
(ii) any point

(
x̂ k, ŷk

) ∈ N (
x̃ k, yk

)
that is not significantlyworse (in terms of objec-

tive function value) than the current candidate, is considered in the neighborhood
exploration, i.e., a local continuous search around x̂ k is performed (see step 4
and while cycle - steps 6–18);

(iii) the local search is given by multiple steps of PGLS and is stopped when the
point is approximately stationary (steps 6–18);

(iv) we skip to the next iteration as soon as a point providing a sufficient decrease
of the objective value is found (successful iteration, see steps 11– 15) or when
there is no point left to analyze in the neighborhood;

(v) in the latter case, the success of the iteration will be established by the decrease
in the objective value attained by x̃ k (see steps 19– 25).

Remark 3.1 The value of parameter μk controls the approximation degree of station-
arity considered to stop, at step 16, local optimizations in the exploration phase. In
the definition of Algorithm 2, the value of μk decreases at each iteration, asymptoti-
cally going to zero, so that the accuracy of the exploration phase gradually increases.
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However, the value of μk does not have an impact in the convergence analysis, as
long as it remains strictly positive; convergence can indeed be established thanks to
the properties of the PGLS. The analysis in Sect. 3.1 for example is not impacted if
the value μ is kept fixed, as we did in our numerical experiments.

Algorithm 2: Sparse Neighborhood Search (SNS)

1 Input: y0 ∈ Y, x0 ∈ X (y0), ξ ≥ 0, θ ∈ (0, 1), η0 > 0, μ0 > 0, δ ∈ (0, 1), discrete
neighborhood mapping N .

2 for k = 0, 1, . . . do
3 Compute x̃k = PGLS(xk , yk )

4 Define Wk = {(x, y) ∈ N (x̃k , yk ) | f (x) ≤ f (x̃k ) + ξ}
5 Set success = False
6 while Wk �= ∅ and success = False do
7 select (x ′, y′) ∈ Wk

8 Set z1 = x ′
9 for j = 1, 2, . . . do

10 Compute z j+1 = PGLS(z j , y′)
11 if f (z j+1) ≤ f (x̃k ) − ηk then
12 Set (xk+1, yk+1) = (z j+1, y′)
13 Set ηk+1 = ηk
14 Set success = True
15 break

16 if
∥∥
∥z j − �X (y′)

[
z j − ∇ f (z j )

]∥∥
∥ ≤ μk then

17 Set Wk = Wk \ {(x ′, y′)}
18 break

19 if success = False then
20 Set (xk+1, yk+1) = (x̃k , yk )

21 if f (xk+1) ≤ f (xk ) − ηk then
22 Set ηk+1 = ηk
23 success = True

24 else
25 Set ηk+1 = θηk

26 Set μk+1 = δμk

27 Output: The sequence {(xk , yk )}
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3.1 Convergence Analysis

In this section, we prove a set of results concerning the properties of the sequences pro-
duced by Algorithm 2. Note that in this section we employ the concept of stationarity
(24). First, we state some suitable assumptions.

Assumption 3.1 The gradient ∇ f (x) is Lipschitz-continuous, i.e., there exists a con-
stant L > 0 such that ‖∇ f (x) − ∇ f (x̄)‖ ≤ L ‖x − x̄‖ for all x, x̄ ∈ R

n .

Assumption 3.2 Given y0 ∈ Y , x0 ∈ X (y0) and a scalar ξ > 0, the level set
L (x0, y0) = {

(x, y) ∈ X (y) × Y | f (x) ≤ f
(
x0
)+ ξ

}
is compact.

First, note that when we deal with both continuous and integer variables, the usual
notion of convergence to a point needs to be tweaked. In particular, we have the
following definition.

Definition 3.1 A sequence {(xk, yk)} converges to a point (x̄, ȳ) if for any ε > 0 there
exists an index kε such that for all k ≥ kε we have that yk = ȳ and ‖xk − x̄‖ < ε.

To ensure convergence to meaningful points, we need a “continuity” assumption
on the discrete neighborhood mapping N we exploit.

Assumption 3.3 Let
{(
xk, yk

)}
be a sequence converging to (x̄, ȳ). Then, for any

(x̂, ŷ) ∈ N (x̄, ȳ), there exists a sequence {(x̂ k, ŷk)} converging to (x̂, ŷ) such that(
x̂ k, ŷk

) ∈ N (
xk, yk

)
.

The assumption above requires the lower semicontinuity of the point-to-set mapping
N (see, e.g., [5]). Note that this assumption is necessary to ensure property (ii) of
N -stationarity given in Definition 2.4.

First we show that the neighborhood Nρ considered in Definition 2.6 satisfies
Assumption 3.3. To this aim we separately analyze the cases X = R

n and X ⊂ R
n .

Then we will present another example of neighborhood satisfying Assumption 3.3.

Proposition 3.1 The point-to-set mapNρ given in Definition 2.6 satisfies Assumption
3.3 when X = R

n.

Proof Let
{
xk, yk

}
be a sequence convergent to {x̄, ȳ}. Then, for any ε > 0, there

exists kε such that yk = ȳ and ‖xk − x̄‖ ≤ ε for all k > kε . Let (x̂, ŷ) ∈ Nρ(x̄, ȳ).
For k sufficiently large, since yk = ȳ, we have {y | y ∈ Y, dH

(
y, yk

) ≤ ρ} = {y |
y ∈ Y, dH (y, ȳ) ≤ ρ}, hence ŷ ∈ {y | dH (y, yk) ≤ ρ} for all k. Let us then consider
the sequence {x̂ k, ŷk} where ŷk = ŷ and x̂ k = H�(yk ,ŷ)(x

k). We can observe that
(x̂ k, ŷk) ∈ Nρ(xk, yk). Now, let j ∈ {1, . . . , n}. The set�(yk, ŷk) = �(ȳ, ŷ) = � is
constant for k sufficiently large.Noting that, being X = R

n ,�X (ŷ)(H�(x)) = H�(x),
we have for j /∈ �

lim
k→∞ x̂ kj = lim

k→∞ xkj = x̄ j = x̂ j .

On the other hand, if j ∈ �, x̂ kj = 0 and x̂ j = 0. Hence limk→∞ x̂ k = x̂ and we thus
get the thesis. ��
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The result still holds in the case X ⊂ R
n .

Proposition 3.2 Let {(xk, yk)} be a sequence converging to (x̄, ȳ). Then, the point-to-
set map Nρ(x, y) defined in Definition 2.6 satisfies Assumption 3.3.

Proof The proof follows exactly as in Proposition 3.1, recalling the continuity of the
projection operator �X (ŷ). ��

Before presenting another example of discrete neighborhood mapping and turning
to the convergence analysis of the algorithm, we prove a further useful preliminary
result concerning the discrete neighborhood mapping Nρ .

Lemma 3.1 Let y ∈ Y and x ∈ X (y) with δ = ‖x‖0. Let us consider the set

N̄ (x) = {(x̂, ŷ) | ŷ ∈ {0, 1}n, x̂ = x, e	 ŷ = n − s, I0(ŷ) ⊇ I1(x) }.

We have that N̄ (x) ⊆ Nρ(x, y), when ρ ≥ 2(s − δ).

Proof Let (x̂, ŷ) be any point in N̄ (x). From the feasibility of (x, y) we have

δ ≤ |I0(y)| ≤ s n − s ≤ |I1(y)| ≤ n − δ. (5)

Moreover, from the definition of N̄ (x), we have |I0(ŷ)| = s and |I1(ŷ)| = n − s.
Now, it is easy to see that

dH (y, ŷ) = n − |I0(y) ∩ I0(ŷ)| − |I1(y) ∩ I1(ŷ)|. (6)

We can note that, since I0(y) ⊇ I1(x) and I0(ŷ) ⊇ I1(x), it has to be I0(y) ∩ I0(ŷ) ⊇
I1(x). Therefore

|I0(y) ∩ I0(ŷ)| ≥ |I1(x)| = δ. (7)

We can now turn to I1(y) ∩ I1(ŷ). Since the latter set can be equivalently written, by
De Morgan’s law, as {1, . . . , n} \ (I0(y) ∪ I0(ŷ)), we can obtain

|I1(y) ∩ I1(ŷ)| = |{1, . . . , n} \ (I0(y) ∪ I0(ŷ))|
= n − |I0(y) ∪ I0(ŷ)|
= n − (|I0(y)| + |I0(ŷ)| − |I0(y) ∩ I0(ŷ)|)
= n − |I0(y)| − s + |I0(y) ∩ I0(ŷ)|
≥ n − s − s + δ

= n − 2s + δ,

where the second last inequality comes from (5) and (7). Putting everything together
back in (6), we get dH (y, ŷ) ≤ n − δ − n + 2 s − δ = 2(s − δ). Taking into account
that ρ ≥ 2(s − δ) in the definition of Nρ(x, y), we obtain (x̂, ŷ) ∈ Nρ(x, y), thus
getting the desired result. ��
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Another example of discrete neighborhood mapping satisfying Assumption 3.3 is
reported below and is inspired by the coordinate descent type algorithms proposed
in [3, 4]. The basic idea of these coordinate methods is that of updating the support
at each iteration by one or two variables. In particular, the methods perform in some
cases the swap between pairs of variables.

Example 3.1 An n × n permutation matrix  is a square matrix obtained from the
n × n identity matrix by a permutation of rows. Let us assume that we are dealing
with a convex set X that is type-1 symmetric according to [4], i.e., any permutation
of variables preserves feasibility. Formally, for any point x ∈ X and any permutation
matrix , we have x ∈ X . Feasible sets of this kind include very relevant cases,
such as the entire Euclidean space, the unit simplex, p-balls and boxes.
Now, let us denote by H a permutation matrix obtained by interchanging only two
rows of the identity, say i and j . The point x̂ = Hx is such that

x̂i = x j , x̂ j = xi , x̂h = xh for h �= i, j,

so that ‖x̂‖0 = ‖x‖0. With symmetric sets, not only swap operations are guaranteed
to maintain feasibility, but also have a semantic meaning as variables are on equal
scales. We are thus motivated to define a set � = {H1, H2, . . . , Hp} of permutation
matrices obtained by interchanging two rows. Note that the maximum cardinality p
of � is n(n−1)

2 . We can finally define the discrete neighborhoodN�(x, y) as follows:

N�(x, y) =
{(

x̂ l , ŷl
)

| x̂ l = Hlx, ŷl = Hl y, l = 1, . . . , p} ∪ {(x, y)
}

,

i.e.,N�(x, y) is obtained by swapping pairs of variables (both continuous and binary).
Since all points in N�(x, y) are feasible and (x, y) ∈ N�(x, y), this mapping indeed
satisfies all the properties required by Definition 2.2.

Proposition 3.3 The point-to-set map N�(x, y) defined in Example 3.1 satisfies
Assumption 3.3.

Proof If {(xk, yk)} converges to (x̄, ȳ), then for any ε > 0 there exists an index kε

such that for all k ≥ kε we have that yk = ȳ and ‖xk − x̄‖ < ε. Let (x̂, ŷ) ∈ N�(x̄, ȳ),
i.e., for some l ∈ {1, . . . , p} we have x̂ = Hl x̄ and ŷ = Hl ȳ. Let {(x̂ k, ŷk)} be the
sequence such that (x̂ k, ŷk) = (Hlxk, Hl yk) for all k. Note that (x̂ k, ŷk) ∈ N�(xk, yk)
for all k since Hl ∈ �.

For k sufficiently large we have yk = ȳ. This implies that ŷk = Hl yk = Hl ȳ = ŷ.
Moreover we can write

lim
k→∞ x̂ k = lim

k→∞ Hlx
k = Hl x̄ = x̂,

and hence we may conclude that (x̂ k, ŷk) ∈ N�(xk, yk) and {(x̂ k, ŷk)} converges to
(x̂, ŷ). ��

We can now focus on the algorithms. First, we give a definition that is useful for
the analysis.
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Definition 3.2 A function σ : R+ → R+ is a forcing function if, for any sequence
{tk}, tk ∈ [0,+∞), we have that lim

k→∞ σ(tk) = 0 implies lim
k→∞ tk = 0.

Then, we prove a property of Algorithm 1 that will play an important role in the
convergence analysis of Algorithm 2.

Proposition 3.4 Given a feasible point (x, y) ∈ X (y) × Y , Algorithm 1 produces a
feasible point (x̃, y) such that f (x̃) ≤ f (x) − σ

(∥∥x − �X (y) [x − ∇ f (x)]
∥
∥) .

Proof By definition, d = x̂ − x , where x̂ = �X (y) [x − ∇ f (x)]. By the properties
of the projection operator, we can write (x − ∇ f (x) − x̂)	(x − x̂) ≤ 0, which, with
simple manipulations, implies that

∇ f (x)	d ≤ −‖d‖2 = − ∥∥x − �X (y) [x − ∇ f (x)]
∥∥2 . (8)

By the instructions of the algorithm, either α = 1 or α < 1.
If α = 1, then x̃ = x + d satisfies

f (x̃) ≤ f (x) + γ∇ f (x)	d ≤ f (x) − γ
∥∥x − �X (y) [x − ∇ f (x)]

∥∥2 . (9)

If α < 1, we must have that

f (x + αd) ≤ f (x) + γα∇ f (x)	d, (10)

f
(
x + α

δ
d
)

> f (x) + γ
α

δ
∇ f (x)	d. (11)

Applying the mean value theorem to equation (11), we get

∇ f
(
x + θ

α

δ
d
)	

d > γ∇ f (x)	d,

where θ ∈ (0, 1). Adding and subtracting ∇ f (x)	d, and rearranging, we get

(1 − γ )∇ f (x)	d >
[
∇ f (x) − ∇ f

(
x + θ

α

δ
d
)]	

d.

By the Lipschitz-continuity of ∇ f (x), we can write

[
∇ f (x) − ∇ f

(
x + θ

α

δ
d
)]	

d ≥ −L
α

δ
‖d‖2 ,

which means that

(1 − γ )∇ f (x)	d > −L
α

δ
‖d‖2 .

Rearranging, we get

δ

L
(1 − γ )∇ f (x)	d > −α ‖d‖2 .
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This last inequality, together with (8), yields

δ

L
(1 − γ )∇ f (x)	d > α∇ f (x)	d,

and substituting in equation (10) we finally get

f (x̃) < f (x) + γ
δ

L
(1 − γ )∇ f (x)	d

≤ f (x) − γ
δ

L
(1 − γ )

∥
∥x − �X (y) [x − ∇ f (x)]

∥
∥2 .

This last inequality, together with (9), implies that

f (x̃) ≤ f (x) − σ
(∥∥x − �X (y) [x − ∇ f (x)]

∥∥)

where

σ (t) = γ min

{
1,

δ

L
(1 − γ )

}
t2.

��
We can now state a couple of preliminary theoretical results. We first show that

Algorithm 2 is well-posed.

Proposition 3.5 For each iteration k, the loop between steps 9 and 18 of Algorithm 2
terminates in a finite number of steps.

Proof Suppose by contradiction that Steps 9-18 generate an infinite loop, so that an
infinite sequence of points {z j } is produced for which

∥∥
∥z j − �X (y′)

[
z j − ∇ f (z j )

]∥∥
∥ > μk > 0 ∀ j . (12)

By Proposition 3.4, for each j we have that

f (z j+1) − f (z j ) ≤ −σ
(∥∥∥z j − �X (y′)

[
z j − ∇ f (x j )

]∥∥∥
)

, (13)

where σ (·) ≥ 0. The sequence { f (z j )} is therefore nonincreasing.Moreover, equation
(13) implies that

∣∣
∣ f (z j+1) − f (z j )

∣∣
∣ ≥ σ

(∥∥
∥z j − �X (y′)

[
z j − ∇ f (z j )

]∥∥
∥
)

. (14)

By Assumption 3.2, { f (x j )} is lower bounded. Therefore, recalling that { f (z j )} is
nonincreasing, we get that { f (z j )} converges, which implies that

∣∣∣ f (z j+1) − f (z j )
∣∣∣ → 0.
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By (14), we get that σ
(∥∥z j − �X (y′)

[
z j − ∇ f (z j )

]∥∥) → 0, and, by the properties of
σ (·), we finally get that ∥∥z j − �X (y′)

[
z j − ∇ f (z j )

]∥∥ → 0, and this contradicts (12).
��

We now define a set of indices that will be useful in the convergence analysis:

Ku = {k | ηk < ηk−1}, (15)

that is the set of indices related to the points generated at unsuccessful iterations
(see Steps 19– 25 of Algorithm 2). The next proposition shows some properties of
the sequences generated by the algorithm, which will play an important role in the
subsequent analysis.

Proposition 3.6 Let {(xk, yk)}, {μk} and {ηk} be the sequences produced by Algorithm
2. Then:

(i) the sequence { f (xk)} is nonincreasing and convergent;
(ii) the sequence {(xk, yk)} is bounded;
(iii) the set Ku defined in (15) is infinite;
(iv) limk→∞ μk = 0;
(v) limk→∞ ηk = 0;
(vi) limk→∞

∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥ = 0.

Proof (i) The instructions of the algorithm and Proposition 3.4 imply that { f (xk)}
is nonincreasing, and Assumption 3.2 implies that { f (xk)} is lower bounded.
Hence, { f (xk)} converges.

(ii) The instructions of the algorithm imply that each point
(
xk, yk

)
belongs to the

level set L (x0, y0), which is compact by Assumption 3.2. Therefore, {(xk, yk)}
is bounded.

(iii) Suppose that Ku is finite. Then there exists k̄ > 0 such that all iterates satisfying
k > k̄ are successful, i.e., f (xk) ≤ f (xk−1)−ηk−1, and ηk = ηk−1 = η > 0 for
all k ≥ k̄. Since η > 0, this implies that { f (xk)} diverges to−∞, in contradiction
with (i).

(iv) Since, for all k, μk+1 = δμk , where δ ∈ (0, 1), the claim holds.
(v) If k ∈ Ku , then ηk = θηk−1, where θ ∈ (0, 1). Since Ku is infinite and ηk = ηk−1

if k /∈ Ku , the claim holds.
(vi) By Proposition 3.4, we have that

f (x̃ k) − f (xk) ≤ −σ
(∥∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥∥
)

.

By the instructions of the algorithm, f (xk+1) ≤ f (x̃ k), and so we can write

f (xk+1) − f (xk) ≤ −σ
(∥∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥∥
)

,

i.e.,
∣∣∣ f (xk+1) − f (xk)

∣∣∣ ≥ σ
(∥∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥∥
)

.
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Since { f (xk)} converges, we get that σ (∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥) → 0.
By the properties of σ (·), we get that ∥∥xk − �X (yk)

[
xk − ∇ f (xk)

]∥∥ → 0.
��

Before stating the main theorem of this section, it is useful to summarize some
theoretical properties of the subsequence {(xk, yk)}Ku . As the proof shows, the next
proposition follows easily from the theoretical results we have shown above.

Proposition 3.7 Let {(xk, yk)} be the sequence of iterates generated by Algorithm 2,
and let Ku be defined as in (15). Then:

(i) {(xk, yk)}Ku admits accumulation points;
(ii) for any accumulation point (x∗, y∗) of the sequence {(xk, yk)}Ku , every point

(x̂, ŷ) ∈ N (x∗, y∗) is an accumulation point of a sequence {(x̂ k, ŷk)}Ku where
(x̂ k, ŷk) ∈ N (xk, yk).

Proof (i) By Proposition 3.6, (ii), {(xk, yk)} is bounded. Therefore, {(xk, yk)}Ku is
also bounded, and so it admits accumulation points.

(ii) Assumption 3.3 implies that every (x̂, ŷ) ∈ N (x∗, y∗) is an accumulation point
of a sequence {(x̂ k, ŷk)}Ku , where (x̂ k, ŷk) ∈ N (xk, yk).

��
We can now prove the main theoretical result of this section.

Theorem 3.1 Let {(xk, yk)} be the sequence generated by Algorithm 2. Every accumu-
lation point (x∗, y∗) of {(xk, yk)}Ku is a stationary point w.r.t N (x∗, y∗) of problem
(2).

Proof Let (x∗, y∗) be an accumulation point of {(xk, yk)}Ku . We must show that
conditions (i)-(iii) of Definition 2.4 are satisfied.

(i) From the instructions of Algorithm2 the iterates (xk, yk) belong to the set
L(x0, y0), which is closed from Assumption 3.2. Any limit point (x∗, y∗)
belongs to L(x0, y0) and is thus feasible for problem (2).

(ii) The result follows from Proposition 3.6, (vi).
(iii) Considering the way the set Ku is defined in (15), we can observe that for all

k ∈ Ku we have xk = x̃ k−1, yk = yk−1. We can thus denote

N k = N (xk, yk) = N (x̃ k−1, yk−1).

Since k ∈ Ku , for all (x̂ k, ŷk) ∈ N k either the test at step 11 failed or the point
was not included inWk−1 and hence f (x̂ k) > f (x̃ k−1)−ηk−1 = f (xk)−ηk−1.

Since the sequence { f (xk)} is nonincreasing (Proposition 3.6, (i)), we can write
f (x∗) ≤ f (xk) < f (x̂ k) + ηk−1. for all (x̂ k, ŷk) ∈ N k . Taking limits, we
get from Proposition 3.6, (v), Assumption 3.3, and by the continuity of f that
f (x∗) ≤ f (x̂) for all (x̂, ŷ) ∈ N (x∗, y∗).
Now, note that (i) of Proposition 3.6 ensures the existence of f ∗ ∈ R satisfying

lim
k→∞ f (xk) = f (x∗) = f ∗. (16)
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Consider any (x̂, ŷ) ∈ N (x∗, y∗) such that

f (x̂) = f ∗. (17)

Proposition 3.7 implies that the point (x̂, ŷ) is an accumulation point of a
sequence {(x̂ k, ŷk)}Ku , where (x̂ k, ŷk) ∈ N k . Therefore, by (16) and (17) we
get, for k sufficiently large, f (x̂ k) < f (xk) + ξ = f (x̃ k−1) + ξ. Thus, for such
values of k, we have

(x̂ k, ŷk) ∈ Wk−1 = {(x, y) ∈ N k | f (x) ≤ f (x̃ k−1) + ξ}.

Steps 9-18 produce the points z2k−1, . . . , z
j∗k−1
k−1 (where j∗k−1 is the finite number

of iterations of steps 9-18 until the test at step 16 is passed), which, by the
instructions at Step 10 and by Proposition 3.4, satisfy

f (x̂ k) ≥ f (z2k−1) ≥ . . . ≥ f (z
j∗k−1
k−1 ). (18)

Again, since k ∈ Ku , the test at step 11 is not passed at iteration k − 1, and we
can write

f (z
j∗k−1
k−1 ) > f (x̃ k−1) − ηk−1 = f (xk) − ηk−1. (19)

Moreover, as the sequence {(x̂ k, ŷk)}Ku converges to the point (x̂, ŷ), by (16),
(17), (18), (19), and by (v) of Proposition 3.6, we obtain

f ∗ = lim
k→∞,k∈Ku

f (x̂ k) = lim
k→∞,k∈Ku

f (z2k−1) = lim
k→∞,k∈Ku

f (xk) = f ∗.

By Proposition 3.4, we have that

f (z2k−1) ≤ f (x̂ k) − σ
(∥∥∥x̂ k − �X (ŷk)

[
x̂ k − ∇ f (x̂ k)

]∥∥∥
)

,

which can be rewritten as
∣∣∣ f (z2k−1) − f (x̂ k)

∣∣∣ ≥ σ
(∥∥∥x̂ k − �X (ŷk )

[
x̂ k − ∇ f (x̂ k)

]∥∥∥
)

.

Taking limits for k → ∞, k ∈ Ku , we get
∥∥x̂ − �X (ŷ)

[
x̂ − ∇ f (x̂)

]∥∥ = 0, and
the claim finally holds.

��
The above theorem states that, if any discrete neighborhood mappingN satisfying

the continuity Assumption 3.3 is employed, then all limit points of the sequence Ku

produced by the SNS algorithm areN -stationary. Now, we show that a suitable choice
of the neighborhood to be usedwithinAlgorithm2allows to obtain convergence toward
points satisfying relevant optimality conditions from the literature. In [4], the concept
of basic feasibility (BF) introduced in [3] is extended to problem (1):
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Definition 3.3 A feasible point x∗ of problem (1) is referred to as basic feasible if, for
every super support set J ∈ J (x∗), letting yJ ∈ {0, 1}n such that yi = 0 if i ∈ J and
yi = 1 otherwise, there exists L > 0 such that:

x∗ = �X (yJ )(x
∗ + d), di =

{
− 1

L ∇i f (x∗) if i ∈ J

0 otherwise.

Note that BF stationarity requires that, for any yJ defining a super support set,
x∗ = �X (yJ )[x∗ + d], where dJ = − 1

L ∇J f (x∗) and dJ̄ = 0, whereas the condition
in Definition 2.5 requires x∗ = �X (yJ )[x∗ − ∇ f (x∗)]. In fact, in the case of our
problem the two conditions are equivalent, as we show below.

Lemma 3.2 Let y ∈ Y and x∗ ∈ X (y). Then x∗ satisfies

x∗ = �X (y)(x
∗ + d),

where dI0(y) = − 1
L ∇I0(y) f (x

∗) and dI1(y) = 0, if and only if it satisfies

x∗ = �X (y)(x
∗ − ∇ f (x∗)).

Proof By the definition of projection, we have for all z ∈ R
n that

�X (y)(z) = argmin
(xI0(y),xI1(y))∈X

xI1(y)=0

∥∥∥∥
xI0(y) − zI0(y)
xI1(y) − zI1(y)

∥∥∥∥

2

=
⎡

⎣
argmin

xI0(y):(xI0(y),0)∈X
‖xI0(y) − zI0(y)‖2

0

⎤

⎦ .

Hence, we have

�X (y)(x
∗ − ∇ f (x∗)) =

⎡

⎣
argmin

xI0(y):(xI0(y),0)∈X
‖xI0(y) − (x∗

I0(y)
− ∇I0(y) f (x

∗))‖2

0

⎤

⎦

and

�X (y)(x
∗ + d) =

⎡

⎣
argmin

xI0(y):(xI0(y),0)∈X
‖xI0(y) − (x∗

I0(y)
− 1

L ∇I0(y) f (x
∗))‖2

0

⎤

⎦ .

To prove the statement, it is sufficient to show that if

x∗
I0(y) = argmin

xI0(y):(xI0(y),0)∈X

∥
∥∥∥xI0(y) − (x∗

I0(y) − 1

L
∇I0(y) f (x

∗))
∥
∥∥∥

2
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for some L > 0, then

x∗
I0(y) = argmin

xI0(y):(xI0(y),0)∈X

∥∥∥∥xI0(y) − (x∗
I0(y) − 1

L2
∇I0(y) f (x

∗))
∥∥∥∥

2

for all L2 > 0. Thus, let us assume by contradiction that there exists L2 > 0, L2 �= L ,
such that

x̂ I0(y) = argmin
xI0(y):(xI0(y),0)∈X

∥
∥∥∥xI0(y) − (x∗

I0(y) − 1

L2
∇I0(y) f (x

∗))
∥
∥∥∥

2

,

with x̂ I0(y) �= x∗
I0(y)

. By the properties of the projection operator over a convex set,
we get:

(
x∗
I0(y) −

(
x∗
I0(y) − 1

L
∇I0(y) f (x

∗)
))	

(x∗
I0(y) − xI0(y)) ≤ 0 ∀ xI0(y) : (xI0(y), 0) ∈ X

and

(
x̂ I0(y) −

(
x∗
I0(y) − 1

L2
∇I0(y) f (x∗)

))	

(x̂ I0(y) − xI0(y)) ≤ 0 ∀ xI0(y) : (xI0(y), 0) ∈ X .

From the first of the above equations we then obtain

∇I0(y) f (x
∗)	(x∗

I0(y) − x̂ I0(y)) ≤ 0,

whereas from the second we can write

(
x̂ I0(y) −

(
x∗
I0(y) − 1

L2
∇I0(y) f (x∗)

))	
(x̂ I0(y) − x∗

I0(y)) ≤ 0,

and then

‖x̂ I0(y) − x∗
I0(y)‖2 ≤ 1

L2
∇I0(y) f (x

∗)	(x∗
I0(y) − x̂ I0(y)) ≤ 0,

which is absurd. ��
We can show that, by using the discrete neighborhood mapping Nρ , with a suffi-

ciently large value of ρ, the SNS procedure described in Algorithm 2 converges to
basic feasible solutions.
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Theorem 3.2 Let {(xk, yk)} be the sequence of iterates generated by Algorithm 2
equipped with Nρ as discrete neighborhood mapping and A∗ the set of the accumu-
lation points of the sequence {(xk, yk)}Ku . If ρ ≥ 2(s − δ∗), in the definition of Nρ ,
and δ∗ = min{‖x∗‖0 | (x∗, y∗) ∈ A∗}, then given a point (x∗, y∗) ∈ A∗, x∗ is basic
feasible for problem (1).

Proof Let J ∈ J (x∗) and consider the vector ŷ such that ŷ j = 1 ∀ j /∈ J and zero
otherwise. As |J | = s, we have e	 ŷ = n − s. Moreover, I1(x∗) ⊆ I0(ŷ), thus,
using Lemma 3.1, we have (x∗, ŷ) ∈ N̄ (x∗) ⊆ Nρ(x∗, y∗). By taking into account
Theorem 3.1, we finally get that (x∗, y∗) is anNρ-stationary point of problem (2) and
that x∗ is also a stationary point of

min f (x) s.t. x ∈ X (ŷ),

that is, x∗ = �X (ŷ)(x
∗ − ∇ f (x∗)). Then, by Lemma 3.2, recalling that ŷi = 0 if and

only if i ∈ J , we obtain that x∗ is basic feasible. ��

Remark 3.2 Due to the non-availability of the δ∗ value, Theorem 3.2 may at a first
glance appear as an ex post result. However, by taking into account that δ∗ ≥ 0, we
know a priori that the BF property will hold at limit points if we set ρ = 2s. We shall
also note that in most cases δ∗ will be not so far from s, hence small values of ρ should
typically be enough to enforce the basic feasibility of solutions.

4 Convergence Results under Constraint Qualifications

Continuing with the discussion started at the end of the previous section, we show that,
under constraint qualifications andby choosing suitable neighborhoods, it is possible to
state convergence results similar to those considered in important works of the related
literature [14, 26]. Here, we assume that X = {x ∈ R

n | g(x) ≤ 0, h(x) = 0}, where
hi , i = 1, . . . , p are affine functions and gi , i = 1, . . . ,m, are convex functions. First
we state the following assumption which implicitly involves constraint qualifications.

Assumption 4.1 Given ȳ ∈ Y and x̄ ∈ X (ȳ), we have that x̄ is a stationary point of
problem (3) if and only if there exist multipliers λ ∈ R

m , μ ∈ R
p and γ ∈ R

n such
that

∇ f (x̄) +
m∑

i=1

λi∇gi (x̄) +
p∑

i=1

μi∇hi (x̄) +
n∑

i=1

γi ei = 0,

λi ≥ 0, λi gi (x̄) = 0, ∀i = 1, . . . ,m,

γi = 0, ∀ i such that ȳi = 0.
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The above assumption states that x̄ is a stationary point of problem (3) if and only if
it is a KKT point of the following problem

min
x

f (x)

s.t. hi (x) = 0, ∀i = 1, . . . , p,

gi (x) ≤ 0, ∀i = 1, . . . ,m,

xi ȳi = 0, ∀i = 1, . . . , n,

which can be equivalently rewritten as follows

min
x

f (x)

s.t. hi (x) = 0, ∀i = 1, . . . , p,

gi (x) ≤ 0, ∀i = 1, . . . ,m,

xi = 0, ∀i ∈ I1(ȳ).

Remark 4.1 As shown in Appendix A, Assumption 4.1 holds when, e.g., the func-
tions gi are strongly convex with constant μi > 0, for i = 1, . . . ,m, the functions
h j , for j = 1, . . . , p are affine, and some Cardinality Constraint-Constraint Qual-
ification (CC-CQ) is satisfied. For instance, a standard CC-CQ is the Cardinality
Constraint-Linear Independence Constraint Qualification (CC-LICQ), requiring the
linear independence of gradients

∇gi (x̄) for all i : gi (x̄) = 0,

∇hi (x̄) for all i = 1, . . . , p,

ei for all i ∈ I1(ȳ).

From Theorem 3.1 and Assumption 4.1 we get the following result.

Theorem 4.1 Let {(xk, yk)} be the sequence generated by Algorithm 2. Every accu-
mulation point (x∗, y∗) of the sequence of unsuccessful iterates {(xk, yk)}Ku is such
that there exist multipliers λ ∈ R

m, μ ∈ R
p and γ ∈ R

n satisfying the following
equation:

∇ f (x∗) +
m∑

i=1

λi∇gi (x
∗) +

p∑

i=1

μi∇hi (x
∗) +

n∑

i=1

γi ei = 0,

λi ≥ 0, λi gi (x∗) = 0, ∀i = 1, . . . ,m,

γi = 0, ∀ i ∈ I0(y∗).

(20)

Remark 4.2 Condition (20) is the S-stationarity concept introduced in [14]. Basically,
the limit points of the sequence {(xk, yk)}Ku produced by Algorithm 2 are always
guaranteed to be S-stationary. This implies, by the results in [14], that x∗ is also
Mordukhovich-stationary for problem (1). In fact, under Assumption 4.1, it is easy to
see thatN -stationarity is a stronger condition than M-stationarity, from points (i)-(ii)
of Definition 2.4.
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In order to state stronger convergence results, we can to use the discrete neighbor-
hood mapping Nρ with a sufficiently large value of ρ in the algorithm.

Theorem 4.2 Let {(xk, yk)} be the sequence generated by Algorithm2 equipped with
the discrete neighborhood mapping Nρ and A� the set of the accumulation points of
the sequence {(xk, yk)}Ku of unsuccessful iterates. If ρ ≥ 2(s − δ�), in the definition
of Nρ , and δ� = min{‖x�‖0 | (x�, y�) ∈ A�}, then given a point (x�, y�) ∈ A� and
for every super support set J ∈ J (x�), we have that there exist multipliers λ ∈ R

m,
μ ∈ R

p and γ ∈ R
n such that

∇ f (x�) +
m∑

i=1

λi∇gi (x
�) +

p∑

i=1

μi∇hi (x
�) +

n∑

i=1

γi ei = 0,

λi ≥ 0, λi gi (x�) = 0, ∀i = 1, . . . ,m,

γi = 0, ∀ i ∈ J ,

(21)

i.e., x� satisfies strong Lu-Zhang conditions for problem (1).

Proof Let J ∈ J (x�) and consider the vector ŷ such that ŷ j = 1 ∀ j /∈ J and
zero otherwise. We have I1(x�) ⊆ I0(ŷ) and, as |J | = s, e	 ŷ = n − s. Hence,
(x�, ŷ) ∈ N̄ (x�) ⊆ Nρ(x�, y�), where we used Lemma 3.1. By taking into account
Theorem 3.1, we finally get that (x�, y�) is anNρ-stationary point of problem (2) and
that x∗ is also a stationary point of

min f (x) s.t. x ∈ X (ŷ).

Then, by Assumption 4.1, recalling that ŷi = 0 if and only if i ∈ J , we obtain that
(21) holds. ��
Remark 4.3 Condition (21) is the necessary optimality condition first defined in [26].
It is actually interesting to note that the PD algorithm proposed in the referenced work
is not guaranteed to converge to a point satisfying such a condition for every super
support set (this only happens when the limit point has full support). In the general
case, the PD method indeed generates points satisfying (21) for at least one super
support set. Our SNS algorithm would have the same exact convergence results if we
used the neighborhood

N (xk, yk) = {(x, y) | x = xk, e	y = n − s, yi x
k
i = 0 ∀ i}.

The above neighborhood basically checks all the super support sets at the current iterate
xk , but it does not satisfy the continuity Assumption 3.3, hence failing to guarantee
that condition (21) is satisfied by all super support sets at the limit point.

5 Numerical Experiments

From a computational point of view, we are particularly interested in studying two
relevant aspects. Specifically, here we want to:
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Table 1 List of datasets used for experiments on sparse logistic regression

Dataset N n Abbreviation

Heart (Statlog) 270 25 heart

Breast Cancer Wisconsin (Prognostic) 194 33 breast

QSAR Biodegradation 1055 41 biodeg

SPECTF Heart 267 44 spectf

Spambase 4601 57 spam

Adult a2a 2265 123 a2a

– analyze the benefits and the costs of increasing the size of the neighborhood;
– assess the performance of the proposed approach, compared to the Greedy Sparse-
Simplex (GSS) method proposed in [3] and the Penalty Decomposition (PD)
approach [26].

To these aims, we considered the problem of sparse logistic regression, where the
objective function is continuously differentiable and convex, but the solution of the
problem for a fixed support set requires the adoption of an iterative method. Note that
we preferred to consider a problemwithout other constraints in addition to the sparsity
one, in order to simplify the analysis of the behavior of the proposed algorithm.

The problem of sparse logistic regression [22] has important applications, for
instance, in machine learning [2, 33]. Given a dataset having N samples {z1, . . . , zN },
with n features and N corresponding labels {t1, . . . , tN } belonging to {−1, 1}, the
problem of sparse maximum likelihood estimation of a logistic regression model can
be formulated as follows

min
w

L(w) =
N∑

i=1

log
(
1 + exp

(
−ti (w

	zi )
))

s.t. ‖w‖0 ≤ s. (22)

The benchmark for this experiment is made up of problems of the form (22),
obtained as described hereafter. We employed 6 binary classification datasets, listed
in Table 1. All the datasets are from the UCI Machine Learning Repository [20]. For
each dataset, we removed data points with missing variables; moreover, we one-hot
encoded the categorical variables and standardized the other ones to zero mean and
unit standard deviation. For every dataset, we chose different values of s, as specified
later in this section.

Algorithms SNS, PD and GSS have been implemented in Python 3.7, mainly
exploiting libraries numpy and scipy. The convex subproblems of both PD and
GSS have been solved up to global optimality by using the L-BFGS algorithm (in the
implementation from [25], provided by scipy). We also employed L-BFGS for the
local optimization steps in SNS. All algorithms start from the feasible initial point
x0 = 0 ∈ R

n . For the PD algorithm, we set the starting penalty parameter to 1 and its
growth rate to 1.05. The algorithm stops when ‖xk − yk‖ < 0.0001, as suggested in
[26]. AS for the GSS, we stop the algorithm as soon as ‖xk+1 − xk‖ ≤ 0.0001.
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(a) objective value (b) time

Fig. 1 Performance profiles for the considered algorithms on 18 sparse logistic regression problems

Concerning our proposed Algorithm2, the parameters have been set as follows:

ξ = 103, θ = 0.5, η0 = 10−5.

For what concerns μ0 and δ, we actually keep the value of μ fixed to 10−6. We again
employ the stopping criterion ‖xk+1 − xk‖ ≤ 0.0001.

For all the algorithms, we have also set a time limit of 104 seconds. All the experi-
ments have been carried out on an Intel(R)XeonE5-2430 v2@2.50GHzCPUmachine
with 6 physical cores (12 threads) and 16 GB RAM.

As benchmark for our experiments, we considered 18 problems, obtained from the
6 datasets in Table 1 and setting s to 3, 5 and 8 in (22). For SNS and GSS we consider
the computational time employed to find the best solution. We take into account four
versions of Algorithm 2, with neighborhood radius ρ ∈ {1, 2, 3, 4}.

In Fig. 1 the performance profiles [19] w.r.t. the objective function values and the
runtimes (intended as the time to find the best solution) attained by the different
algorithms are shown. We do not report the runtime profile of SNS(1) since it is much
faster than all the other methods and thus would dominate the plot, making it poorly
informative. We can however note that unfortunately its speed is outweighed by the
very poor quality of the solutions.

We can observe that increasing the size of the neighborhood consistently leads to
higher quality solutions, even though the computational cost grows. We can see that
SNS (with a sufficiently large neighborhood) has better performances than the other
algorithms known from the literature; in particular, while the neighborhood radius
ρ = 1 only allows to perform forward selection, with poor outcomes, ρ ≥ 2 makes
swap operations possible, with a significant impact on the exploration capabilities. The
GSS has worse quality performance than SNS(2), which is reasonable, since its move
set is actually smaller and optimization is always carried out w.r.t. a single variable
and not the entire active set. However, it also proved to be slower than the SNS, mostly
because of two reasons: it always tries all feasible moves, not necessarily accepting the
first one that provides an objective decrease, and it requires many more iterations to
converge, since it considers one variable at a time. Finally, the PD method appears not
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to be competitive from both points of view: it is slow at converging to a feasible point
and it has substantially no global optimization features that could guide to globally
good solutions.

It is interesting to remark how considering larger neighborhoods appears to be
particularly useful in problems where the sparsity constraint is less strict and thus
combinatorially more challenging. As an example, we show the runtime-objective
tradeoff for the breast, spam and a2a problems for s = 3 and s = 8 in Fig. 2.
We can observe that for s = 3, SNS finds good, similar solutions for either ρ = 2, 3
or 4, with a similar computational cost. On the other hand, as s grows to 8, using
ρ = 4 allows to significantly improve the quality of the solution without a significant
increase in terms of runtime.

6 Conclusions

In this paper we have analyzed sparsity-constrained optimization problems. For
this class of problems, we have defined a necessary optimality condition, namely,
N -stationarity, exploiting the concept of discrete neighborhood associated with a
well-known mixed integer equivalent reformulation, that allows to take into account
potentially advantageous changes on the set of active variables.

We have afterwards proposed an algorithmic framework to tackle the family of
problems under analysis. Our SNSmethod alternates continuous local search steps and
neighborhood exploration steps; the algorithm is then proved to produce a sequence of
iterates whose cluster points areN -stationary. Moreover, we proved that, by suitably
employing a tailored neighborhood, the limit points also satisfy other optimality con-
ditions from the literature, based on both gradient projection and Lagrangemultipliers,
thus providing stronger optimality guarantees than other state-of-the-art approaches.

Finally, we studied the features and the benefits of our proposed procedure from
a computational perspective. Specifically, we compared the performance of the SNS
as the size of the neighborhood increases, observing that using wider neighborhoods
consistently provides higher quality solutions with a reasonable increase of the com-
putational cost, especially when the required cardinality is not that small. Moreover,
when comparing SNSwith the Penalty Decompositionmethod and theGreedy Sparse-
Simplexmethod, we observed that our approach has higher exploration capability, thus
getting a nice match between theory and practice, and it is affordable in terms of com-
putational cost, being even faster than the other considered methods.
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(a) breast - s = 3 (b) breast - s = 8

(c) spam - s = 3 (d) spam - s = 8

(e) a2a - s = 3 (f) a2a - s = 8

Fig. 2 Quality/cost trade-off for the algorithms on sparse logistic regression problems from datasets
breast, spam and a2a
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AOn the Relationship Between Stationarity Conditions and
KKT Conditions

Consider the continuous optimization problem

min
x

f (x) s.t. x ∈ X , (23)

where X = {x ∈ R
n | h(x) = 0, g(x) ≤ 0} is a convex set (hi , i = 1, . . . , p are

affine functions, gi , i = 1, . . . ,m, are convex functions). We assume f and g to be
continuously differentiable; h is differentiable, being affine.

Definition A.1 A point x∗ ∈ X is a stationary point for problem (23) if, for any
direction d feasible at x∗, we have ∇ f (x∗)	d ≥ 0.

It can be shown that a point x∗ is stationary for problem (23) if and only if

x∗ = �X [x∗ − ∇ f (x∗)], (24)

where �X denotes as usual the orthogonal projection operator. Stationarity is a nec-
essary condition of optimality for problem (23). It is possible to show that a point
satisfying the KKT conditions is always a stationary point. Vice versa is true by
stronger assumptions on the set of feasible directions.

Proposition A.1 Let x∗ ∈ X satisfy KKT conditions for problem (23). Then, x∗ is
stationary for problem (23).

Proof Assume x∗ satisfies KKT conditions with multipliers λ and μ. Let d be any
feasible direction at x∗. Since X is convex, we know that:

∇hi (x
∗)	d = 0 ∀i = 1, . . . , p, (25)

∇gi (x
∗)	d ≤ 0 ∀i : gi (x∗) = 0. (26)
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Moreover, from KKT conditions we know that

λi = 0 ∀ i : gi (x∗) < 0. (27)

We know that

∇ f (x∗) +
m∑

i=1

λi∇gi (x
∗) +

m∑

i=1

μi∇hi (x
∗) = 0,

hence

(

∇ f (x∗) +
m∑

i=1

λi∇gi (x
∗) +

p∑

i=1

μi∇hi (x
∗) = 0

)	
d = 0,

and then

∇ f (x∗)	d +
m∑

i=1

λi∇gi (x
∗)	d +

m∑

i=1

μi∇hi (x
∗)	d = 0.

From equations (25) and (27), we get

∇ f (x∗)	d +
∑

i :gi (x∗)=0

λi∇gi (x
∗)	d = 0,

thus, recalling (26) and λ ≥ 0,

∇ f (x∗)	d = −
∑

i :gi (x∗)=0

λi∇gi (x
∗)	d ≥ 0.

Since d is an arbitrary feasible direction, we get the thesis. ��
Proposition A.2 Let x∗ ∈ X be a stationary point for problem (23). Assume that one
of the following conditions holds:

(i) the set of feasible directions D(x∗) is such that

D(x∗) = {d ∈ R
n | ∇gi (x

∗)	d ≤ 0 ∀i : gi (x∗) = 0,∇hi (x
∗)	d = 0 ∀i = 1, . . . , p}

(ii) the set of feasible directions D(x∗) is such that

D(x∗) = {d ∈ R
n | ∇gi (x

∗)	d < 0 ∀i : gi (x∗) = 0,∇hi (x
∗)	d = 0 ∀i = 1, . . . , p}

and a constraint qualification holds.

Then, x∗ is a KKT point.
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Proof We prove the two cases separately:

(i) Let x∗ be a stationary point. Then, there does not exist a direction d ∈ D(x∗)
such that ∇ f (x∗)	d < 0. This implies that the system

∇ f (x∗)	d <, 0
∇gi (x∗)	d ≤ 0 i : gi (x∗) = 0,
∇hi (x∗)	d ≤ 0 i = 1, . . . , p,

−∇hi (x∗)	d ≤ 0 i = 1, . . . , p,

does not admit solution. By Farkas’ Lemma we get the thesis.
(ii) Let x∗ be a stationary point. Then, there does not exist a direction d ∈ D(x∗)

such that ∇ f (x∗)	d < 0. This implies that the system

∇ f (x∗)	d < 0, ∇gi (x
∗)	d < 0 ∀ i : gi (x∗) = 0,

∇hi (x
∗)	d = 0 ∀ i = 1, . . . , p,

does not admit solution. ByMotzkin’s theorem, we get that x∗ satisfies the Fritz-
John conditions and hence, by assuming a constraint qualification, the thesis is
proved. ��

Condition (i) of Proposition A.2 holds if the functions g and h are affine.
Condition (ii) of Proposition A.2 holds by assuming that the convex functions gi ,

for i = 1, . . . ,m are such that

gi (x + td) ≥ gi (x) + t∇gi (x)
	d + 1

2
γ t2‖d‖2 (28)

with γ > 0. Indeed, in this case it is easy to see that a direction d is a feasible direction
at x∗ if and only if

∇gi (x
∗)	d < 0 i : gi (x∗) = 0 ∇h j (x

∗)	d = 0 i = 1, . . . , p.

Condition (28) is satisfied by assuming that the functions gi are twice continuously
differentiable and the Hessian matrix is positive definite.

Condition (28) holds also for continuously differentiable functions gi assuming
that they are strongly convex with constant ci > 0, i.e., that for i = 1, . . . ,m it holds

gi (y) ≥ gi (x) + ∇gi (x)
	(y − x) + ci

2
‖y − x‖2, ∀ x, y.
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