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Abstract: Road pavement monitoring represents the starting point for the pavement maintenance
process. To quickly fix a damaged road, relevant authorities need a high-efficiency methodology
that allows them to obtain data describing the current conditions of a road network. In urban areas,
large-scale monitoring campaigns may be more expensive and not fast enough to describe how
pavement degradation has evolved over time. Furthermore, at low speeds, many technologies are
inadequate for monitoring the streets. In such a context, employing black-box-equipped vehicles
to perform a routine inspection could be an excellent starting point. However, the vibration-based
methodologies used to detect road anomalies are strongly affected by the speed of the monitoring
vehicles. This study uses a statistical method to analyze the effects of speed on road pavement
conditions at different severity levels, through data recorded by taxi vehicles. Likewise, the study
introduces a process to overcome the speed effect in the measurements. The process relies on a
machine learning approach to define the decision boundaries to predict the severity level of the road
surface condition based on two recorded parameters only: speed and pavement deterioration index.
The methodology has succeeded in predicting the correct damage severity level in more than 80% of
the dataset, through a user-friendly real-time method.

Keywords: road pavement monitoring; vibration-based methodology; speed effect

1. Introduction

Road networks extend for thousands and thousands of kilometers and very often
provide a snapshot of the income level of the country where they are located. Distressed
and/or perfect pavement surfaces provide immediate insight into the budget invested in
road maintenance by Road Agencies (RAs). The progressive increase in road pavement
distress is a natural phenomenon, and as people age, so do the roads. As time passes,
however, they must be promptly “treated” to slow down the aging process and maintain an
acceptable and safe condition for all road users. Low friction levels, roughness, permanent
deformations, and potholes are different types of distresses generally visible on the pave-
ment surface. The more the level of distress severity increases, the more these phenomena
are visible and could affect driving comfort and traffic safety.

As mentioned, age is one of the most important variables affecting road distress
evolution in terms of severity and decay speed. The cost of maintenance intervention and
pavement restoration accordingly increase.

Therefore, an RA needs low-cost management plans to detect the most distressed sites
and quickly arrange appropriate interventions that mitigate and repair the road pavement
anomalies before they become dangerous for traffic.

The common Pavement Management System (PSM) is based on a monitoring system
capable of describing the road surface quality. This process is normally conducted by
inspections, which, however, represent a time-consuming and subjective approach that
directly exposes administration personnel to the risk of traffic. Sometimes, the monitor-
ing phase is conducted by high-performance devices that allow the RA to survey the
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entire road pavement structure, both in terms of ride comfort and structural performance.
The extensive use of this methodology, very accurate and based on a combination of im-
age and sensor data processing, can also be very expensive. Therefore, an alternative
low-cost monitoring method needs to be identified, certified, and used, especially for
routine monitoring.

Lekshmipathy et al. (2020) [1] define the vibration-based methods as the most effective
in the daily monitoring of road network conditions. If appropriately integrated with both
more accurate monitoring methods such as the vision-based methods for local monitoring
and distress trends, the mentioned methodologies offer the best solution in terms of repair
and maintenance interventions to be performed in accordance with the detected pavement
surface distress level.

The Global Pave Box (GPB) technique proposed by Meocci et al. (2021) [2], which
has been tested on several road sections within the Florence Municipality [3,4], could
represent a good solution in the daily collection of pavement surface data. However, the
vibration-based method, as defined in scientific literature, is strongly dependent on the
speed of the equipped vehicles [5,6]. Consequently, the data recorded are affected by
bias and can sometimes not be used due to the difference in vehicle speed during the
monitoring process.

In this context, the need to both perfect the methodology proposed in 2021 by Meocci
et al. [1] and make it reliable and immediately applicable at the same time has arisen. The
possibility of using a crowdsourcing approach directly applicable to the road network has
therefore become the main objective of this study. In these terms, both the definition of the
influence in the proposed methodology of the monitoring speed and the effect of speed
values on the descriptive indicators of the road surface condition are investigated. At the
same time, the research proposes a simple methodology to overcome the issue, making a
road section immediately classifiable by only two parameters: monitoring speed and the
distress index (GPB index).

The analysis carried out also defines the limitations of the process proposed.

2. State of the Art

Starting in the last decade, many studies have been conducted on the possibility of
assessing road pavement conditions by employing a sensor (such as a black box, accelerom-
eter, or smartphone) to be used inside cars.

The premise is that when a vehicle circulates on a distressed road surface (e.g., charac-
terized by potholes, cracking, and unmaintained manholes), it produces more vibrations
compared to a perfectly maintained road pavement surface [5]. This is the principle used
both for the evaluation of standardized index evaluation, such as the IRI index [7–10], and
also with reference to non-standardized procedures and indices [11–16].

In 2008, Eriksson et al. investigated the possibility of detecting road surface distress
using the Pothole Patrol (P2) system, an application that uses taxis equipped with mobile
sensors (accelerometers and GPS sensors) and the associated algorithms to define road
surface conditions according to vibration data [17].

Similar techniques named Road Condition Monitoring with Three-axis Accelerometers
and GPS Sensors (RCM-TAGPS) were used and developed by Chen et al. in 2011. In this
case, a three-axis accelerometer and a GPS-sensor-equipped vehicle were used to collect
high-frequency data. The data recorded were analyzed by a Power Spectral Density to
evaluate the roughness of the road [18].

In the same years, similar studies were conducted using the accelerometer and the
sensor inside the smartphone. For example, Mohan et al. (2008) proposed the Nericell
system, an application that records traffic and road conditions using data recorded by
the sensors on smartphones that users carry with them when they drive a car [19]. Other
studies investigated the road surface status with GPS-equipped smartphones and inertial
sensors: accelerometer and gyroscope or other specific applications developed to monitor
the road with the smartphone [20–24].
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In Sri Lanka, they developed a crowdsourcing method, called Bus Net, capable of
improving environmental surveying and providing information about road pavement
conditions [25].

In recent years, this topic has been extensively debated, with the consideration of new
data analysis techniques such as Machine Learning and Artificial Intelligence [12,26–29].
Martinelli et al. processed the real data collected by sensors located on car dashboards
and floorboards, employing decoding algorithms machines. These propose a plausible
technology capable of detecting any kind of road surface distress and ranking it according
to a data clusterization based on the coefficient of variation and entropy [12].

Shtayat et al. used two multiclassification Learning Model Machines (Random Forest
and Decision Tree) to classify and automatically detect different kinds of pavement dis-
tresses. Moreover, their research with a Support Vector Machine algorithm developed a
binary model for the same classification and detection purposes [26].

Other authors instead compared different methods to define the pros and cons. For ex-
ample, Kim et al. analyzed pothole detection with vibration, vision, and 3D reconstruction
methods [30]. Dib et al. instead compared deep learning techniques and non-deep learning
techniques for detecting damaged road surfaces [31].

Ferjani instead stated that there are several systems based on the data collected by
sensors inside the cars, especially with reference to accelerometers present in smartphones,
but these methods require great attention in the dataset elaboration to provide accurate and
reliable results that also include, for example, information regarding time-, frequency-, and
wavelet-domain signal features. In his study, the problem was addressed using machine
learning models to detect and classify the road anomalies [27].

As described in the review conducted by Coenen et al. in 2017 [32], a delay in the
diffusion of the vibration-based methods was recorded due to complex data analysis
affected by multiple variables. It was accordingly impossible to offer the market a reliable
approach [27] when compared with a vision-based technique that is more expensive but
more popular in the Road Surveying Market.

Sensor features, such as vehicle model, kind of indicator used to check a road surface
condition, and survey speed, are only a few of the main variables affecting the vibration
process. In particular, the latter is more effective in the case of a crowdsourcing approach
used for data collection.

Acceleration values and the different speed performed in different road contexts, but
also in the same context, for example, the urban road network can be very different.

In past studies, the speed effect on the quality of the vibration-based methodology was
both analyzed and sometimes eliminated by normalization procedures. When a vehicle
runs over a road distress area, e.g., such as a pothole or an unmaintained manhole, at
different speeds, the amplitude of the vertical acceleration collected can change, first in
amplitude but also in frequency due to the different effects of the vibration induced by road
surface on the vehicle itself. A few approaches to solve the problem propose modelling
of that effect; for example, using a theoretical model including road profile, tires, and
suspension. In the study conducted by Alessandroni et al., it was demonstrated that the
speed effect on the acceleration in the vehicle cabin was identified by a gamma function [33].

Fox et al. evaluated the direct effects of speed on road distress detection, proving that
high speed increases the level of difficulty in ranking road pavement conditions [34].

Many approaches consider speed as included in different ranges and not as a con-
tinuous function. Sebestyen et al. and Sinharay et al., for example, normalized the result
obtained according to speed ranges [35,36]. The same approach was proposed in [9], where
the authors normalized the RMS of the signal by the variance of the signal itself (vertical
acceleration), as proposed in other studies conducted by Zeng et al. [37] and Chou et al. [38].

Seraj et al., on the other hand, processed smartphone data according to time domain,
frequency domain, and wavelet transformation. They also proposed an efficient method-
ology to reduce speed effects’ influence in detection and classification of road pavement
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distress, by amplifying the segment of the signal caused by the distress in accordance with
vehicle speed [39].

In any case, the most popular approach proposed different algorithms for different
speeds [19,24,39–41], effectively making the proposed systems very difficult to apply in
the different road context because the difference in variable and procedure are strongly
dependent on the road type (e.g., rural or urban), either in reference to standard indicators
(e.g., IRI) or by means of specific indicators [42–44]. The same results appear in reference to
the classification of distress carried out using a machine learning approach.

At first, the research to which this article refers was conducted forcing the vehicles’
speed in the range defined by the literature review as the most frequent speed in urban
areas, e.g., which range from 30 km/h to 40 km/h [2–4]. All the same, considering that the
literature analysis offers several different techniques too different from one another and not
robust enough to account for the effect of a vehicle’s speed, in this paper, the effect of the
speed was first analyzed in terms of statistical process. After this, a simple process based
on machine learning algorithms was used to determine decision boundaries for different
severity levels in a simple way and offer an inexpensive and user-friendly approach to
analyzing road surface conditions and their influence on the speed effect.

The approach allows to extend the validity of the proposed methodology at least at all
the different speeds performed in the urban context.

3. Methods
3.1. Experimentation Overview

The procedure defined for the road network screening is summarized in Figure 1. It
consists of monitoring the road network (or road section as in this case) and recording the
vertical acceleration on the taxis equipped with the black box that routinely pass across the
road network.
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Figure 1. Monitoring steps.

Data processing and last classification of the road networks maintenance are completed
by the procedure based on the distress index evaluation (GPB index). Each time one
road segment was covered by a taxi passage, the monitoring process offers information
about the pavement condition for this specific segment within the overall road network.
Consequently, with this information, the segment information in the overall system needs
to be updated.

The proposed system constitutes a starting point to manage and maintain roads
pavement, especially for the urban context.

3.2. Monitoring Procedure and Evaluation Index

Ten Toyota Prius Hybrid 1.8 taxis equipped with black boxes were used for a period
of 15 months to record vertical acceleration along four road segments within the Florence
Municipality road network.

The black box used consists of one simple device composed of one inertial accelerome-
ter able to record acceleration in all the three directions, X, Y, and Z, one triaxial gyroscope,
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and a GPS device. The device was characterized by a sampling rate of 0.01 s in time (100 Hz).
This frequency is consistent with the sampling frequency of the devices used and described
in past research [2,17]. For each direction, the maximum acceleration recordable is equal
to 16 g, representing a very high value in comparison to the vibrations (and accelerations)
recorded by the distressed road surface.

The black box is connected to the car floorboard, between the pedals and gearbox, as
close as possible to the car center of gravity in order to minimize centrifugal/centripetal
force effects on the recorded signal, as shown in Figure 2.
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Figure 2. Black box position.

This device does not require any installation and calibration procedure. As GPS connec-
tion is stabilized, the taxi can regularly travel according to clients’ requested destinations.

Road sections were tested at speeds ranging between 20 km/h and 50 km/h.
Sometimes, the speed recorded was a bit less or greater than this range, but consistent

with the driver’s speed within the urban context. In Figure 3, the road sections analyzed
are shown (in red).
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The data recorded by the monitoring were used both for the identification and clas-
sification of the pavement surface damage and the definition of damage severity by an
iterative procedure.

The procedure proposed was based on the evaluation of the vertical acceleration
value recorded during the road monitoring (when taxis run across the road network). A
simple algorithm allows the estimation of the Global Pave Box Index (GPB), as described in
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Meocci et al. [2]. The GPB index evaluation is repeated every time data are provided for
the considered road section and updated by calculating the average value considering the
“i” passages conducted on the same section. The larger the number of taxi passages, the
greater the reliability and correctness of the procedure.

The GPB index is based on Equation (1).

GPB =

(∫ L

0
ˆσ(l)

2
dl
)
× 100

L
(1)

where ˆσ(l)
2

stands for the moving variance of vertical recorded acceleration (av), and
L represents the total length of road segment. The term 100/L allows to compare road
sections characterized by different length as a function of the standard length of 100 m
long.

Equation (2) describes the moving variance estimation.

σ̂2 =
∑n

i=1(av,i − av)
2

n
(2)

where av,i is the vertical acceleration recorded every 0.01 s, and av is the average value
estimated for a number of n = 20 av values. This process allows to eliminate the noise of
the signal by a filtering process using the moving variance over a sliding window of 0.2 s
length (20 av data), across the central range value. The process allows to align the precision
of the information contained in the acceleration signal according to the GPS accuracy in the
distress location (10 m).

As a function of the GPB values obtained, three severity levels were defined to describe
the pavement condition: low, medium, and high (Table 1).

Table 1. Severity levels for GPB index.

GPB Value Severity Level
<0.40 low

0.40–0.65 medium
0.65–1.45 high

These levels characterize the condition of the road pavement to be considered in
the definition of a priority plan for maintenance and restoration operations on the entire
road network.

A fourth and final level must, however, be defined for all those cases in which the
intervention has to be carried out immediately for road safety. In this case, the index does
not contribute to the prioritization of the intervention but gives to the RAs an alert defined
as the immediate “need for repair”.

The entire path monitored was divided into four sections characterized by different
distress levels based on the GPB index, as shown in Figure 4. One road segment was
included in the high severity level (red), one segment in the medium severity level (yellow),
and the last two segments were classified as low severity (green).

3.3. Data Processing

The distress index evaluated (GPB) was used to assess the speed impacts on the
evaluation process and understand how survey speed affects this proposed methodology,
in accordance with literary research findings.

The analysis was conducted by dividing the dataset into three different classes, one
for each severity level (low, medium, and high). This was conducted in accordance with
the four segments monitored in the research, the pavement conditions of which belong
to different distress severity classes (one segment was classified in high severity, one in
medium severity, and the last two in low severity).
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The speed effect was then analyzed by statistical approach, with the road surface
distress, evaluated in terms of GPB index considered as a dependent variable.

A preliminary Levene’s test was performed to assess the equality of variances (ho-
moscedasticity) of the dataset used for the statistical analysis. Then, a one-way ANOVA
test was performed to evaluate whether there were statistically significant effects of the
speed on the dependent variable. First, the ANOVA test was performed on the whole
dataset, and later repeated three times, one for each road segment sample, considering
implicitly the segment severity distress level and next combining the 2 classified segments
in the same level (low severity).

Speed was ranked in three different ranges <30 km/h, 30–40 km/h, and 40–50 km/h,
respectively named 1, 2, and 3 in the analysis. The independent variable was then repre-
sented by the speed range (1, 2, or 3) associated with each GPB index obtained.

The two following hypotheses were postulated and evaluated by the ANOVA test:

(a) null hypothesis (H0): GPB values obtained from the three speed ranges can be consid-
ered as belonging to the same population, hence speed surveying does not affect the
results in terms of severity classification;

(b) alternative hypothesis (H1): the GPB index values do not belong to the same popula-
tion; therefore, there is a significant difference between the GPB value estimated at
different speeds. In this case, the classification of the road pavement condition needs
to be made carefully, with reference (only) to a specific range of survey speed.

In the statistical analysis, a level of significance equal to 95% was selected.
Because the scientific and technical literature highlight a large dependence of the

vibration-based methods on the speed of the vehicle which conducted the monitoring [5]
and also highlight the issues related to different processes to consider the effect of the
variable in both the distress detection and classification, a simple, replicable, and reliable
procedure was proposed to take into account the speed effect.

A cluster analysis to classify the information obtained by the data processing procedure
was finally proposed. In this last step, the entire dataset was divided as a function of the
severity level and the decision boundaries between the severity levels defined by a Support
Vector Machine (SVM) algorithm to directly obtain the classification of the road surface
distress by the couple represented by speed-GPB values without any correction.
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4. Results and Discussion

For each section, the value of the GPB index was evaluated according to the above
briefly described procedure proposed by Meocci et al. [2]. A total of 926 GPB indices was
considered. Table 2 shows the average value of the GBP index for each section and the
descriptive statistics associated with the considered section.

Table 2. Descriptive information on data recorded in monitoring.

Section
ID

Sample
Size

Average Speed
(km/h)

Speed
S.D.

Average GPB
Index (m/s2)

GPB
Standard
Deviation

1 184 36 7.45 1.00 0.30
2 276 35 7.15 0.44 0.20
3 231 35 7.05 0.19 0.07
4 235 35 7.07 0.22 0.06

According to the dataset, the speed range between 30 km/h and 40 km/h was
the most representative for the survey conducted in an urban area. Figure 5 shows
speed distribution.
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In Figure 6, all the GPB evaluated were plotted as a function of the speed. The colors
used referred to the severity of the pavement distress per segment. Segments 3 and 4 were
considered together (green data).

From a quality point of view, Figure 6 shows a data stratification, especially in
low/high distress levels. The phenomenon was instead not particularly evident for GPB
included in the medium severity class, with scattered data that also overlapped with the
other severity classes.

The ANOVA test conducted was based on two assumptions:

• Normally distributed data (Shapiro–Wilk test);
• Homoscedasticity of the data (Levene’s test).
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The two tests were conducted on the dataset, first considering all data, then per each
severity class. In both tests, the estimated p-value was less than 0.05; therefore, both
hypotheses were violated.

The ANOVA test was usually robust, so the test was conducted, but in association
with the Kruskal–Wallis nonparametric test.

Table 3 shows the result of the ANOVA test conducted. The p-value indicates that the
H0 hypothesis cannot be rejected; therefore, somewhere in the three speed classes were
data that did not show statistically significant differences.

Table 3. Results of the ANOVA test.

Speed Class F p-Value

Between groups 14.762 <0.001

The analysis was completed by a pairwise post hoc Tukey’s test, to check for any
difference in the meaning of all possible pairs using a studentized range distribution. The
results obtained are summarized in Table 4.

Table 4. Results of the Tukey post hoc test.

Speed Class p-Value

1 2 0.995
3 <0.001

2 1 0.995
3 <0.001

3 1 <0.001
2 <0.001

The test found a statistically significant difference between speed classes n. 1 and n.
3 and between the speed classes n. 2 and n. 3, as highlighted in bold in Table 4. Instead,
no significant difference was found between speed classes 1 and 2. Therefore, the analysis
conducted with a speed ranging from a minimum value of 20 km/h to 40 km/h did not
affect the GPB results. Instead, the GPB value related to the high value of monitoring speed,
greater than 40 km/h, affects the value of the index evaluated and therefore could change
the severity estimations.

The nonparametric Kruskal–Wallis test confirms the result obtained in the ANOVA
test. In Table 5, the results obtained are summarized.
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Table 5. Results of the Kruskal–Wallis test.

Speed Class Statistica p-Value

1–2 0.793 0.428
1–3 −5.541 <0.001
2–3 −4.437 <0.001

This test was repeated after arranging the dataset per severity class, high, medium,
and low, including data for segments 3 and 4. The two hypotheses were invalidated, so both
ANOVA and Kruskal–Wallis tests were repeated. Table 6 summarizes the
results obtained.

Table 6. Results of the Tukey post hoc test.

Level of Severity Speed Class p-Value
ANOVA

p-Value
Kruskal–Wallis

High

1 2 <0.001 <0.001
3 <0.001 <0.001

2 1 <0.001 -
3 <0.001 <0.001

3 1 <0.001 -
2 <0.001 -

Medium

1 2 0.007 <0.001
3 <0.001 <0.001

2 1 0.007 -
3 <0.001 <0.001

3 1 <0.001 -
2 <0.001 -

Low

1 2 0.722 0.452
3 <0.001 <0.001

2 1 0.722 -
3 <0.001 <0.001

3 1 <0.001 -
2 <0.001 -

The tests allowed us to observe that, within each severity class, a statistically significant
difference was observed for different classes of speed, except for the low severity distress
class, where a statistically significant difference was not detected for speed ranging in
classes 1 and 2. The results obtained are therefore similar to those obtained in the first
statistical analysis.

The Support Vector Machine (SVM) analysis for the definition of the decision bound-
aries was repeated two times, the former considering linear decision boundaries and the
latter considering power functions decision boundaries (Equations (3) and (4)). In each
analysis, the overall dataset was split into a training set (80%) and a test set (20%).

Y = ax + b (3)

Y = ax2 + bx + c (4)

Two decision boundaries were proposed to cluster data in the different severity distress
conditions. Ten iterations were repeated to split the dataset in different and casual way.
The coefficients obtained for the functions in each iteration conducted are summarized in
Table 7.
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Table 7. Result of the iteration.

Boundary Linear Function Power Function
a b a b c

L-M 0.0086 −0.0126 −0.0001 0.0130 −0.0902
M-H 0.0219 −0.1298 0.0002 0.0051 0.1615

L-M 0.0100 −0.0574 0.0002 −0.0020 0.1549
M-H 0.0226 −0.1446 0.0001 0.0162 −0.0323

L-M 0.0092 −0.0294 −0.0001 0.0135 −0.0080
M-H 0.0204 −0.0624 0.00004 0.0173 −0.1058

L-M 0.0083 −0.0036 0.0001 0.0096 −0.0273
M-H 0.0214 −0.1083 0.00002 0.0110 0.0726

L-M 0.0096 −0.0477 0.000002 0.0098 −0.0503
M-H 0.0210 −0.0884 0.0001 0.0155 0.0071

L-M 0.0085 −0.0064 0.0001 0.0038 0.0770
M-H 0.0232 −0.1674 0.0003 −0.0012 0.2543

L-M 0.0089 −0.0182 0.00003 0.0069 0.0165
M-H 0.0225 −0.1343 0.0001 0.0137 0.0178

L-M 0.0086 −0.0109 0.00004 0.0117 −0.0667
M-H 0.0225 −0.1184 0.0001 0.0169 −0.0330

L-M 0.0095 −0.0397 0.000003 0.0092 −0.0354
M-H 0.0225 −0.1410 0.0001 0.0160 −0.0263

L-M 0.0091 −0.0273 0.00001 0.0101 −0.0445
M-H 0.0214 −0.1045 0.0001 0.0126 0.0490

The ability of the model to correctly predict the cluster per each iteration is summarized
in Table 8, both for linear and power functions decision boundaries.

Table 8. Ability to predict the cluster (severity level).

Iteration Class
Linear Power

Right Non-Right Right Non-Right

1
L 85 (91%) 8 (9%) 85 (91%) 8 (9%)
M 40 (82%) 9 (18%) 40 (82%) 9 (18%)
H 37 (84%) 7 (16%) 37 (84%) 7 (16%)

2
L 79 (88%) 11 (12%) 80 (88%) 11 (12%)
M 40 (70%) 17 (30%) 40 (71%) 16 (29%)
H 35 (90%) 4 (10%) 35 (90%) 4 (10%)

3
L 80 (85%) 14 (15%) 80 (85%) 14 (15%)
M 38 (69%) 17 (31%) 39 (70%) 17 (30%)
H 34 (92%) 3 (8%) 34 (94%) 2 (6%)

4
L 83 (93%) 6 7%) 83 (93%) 6 (7%)
M 42 (75%) 14 (25%) 43 (75%) 14 (25%)
H 34 (83%) 7 (17%) 34 (85%) 6 (15%)

5
L 83 (90%) 9 (10%) 83 (90%) 9 (10%)
M 40 (71%) 16 (29%) 40 (71%) 16 (29%)
H 32 (84%) 6 (16%) 32 (84%) 6 (16%)

6
L 85 (89%) 10 (11%) 85 (89%) 10 (11%)
M 39 (78%) 11 (22%) 40 (78%) 11 (22%)
H 35 (85%) 6 (15%) 35 (88%) 5 (13%)

7
L 89 (90%) 10 (10%) 89 (90%) 10 (10%)
M 41 (82%) 9 (18%) 41 (82%) 9 (18%)
H 33 (89%) 4 (11%) 33 (89%) 4 (11%)

8
L 87 (91%) 9 (9%) 87 (91%) 9 (9%)
M 39 (80%) 10 (20%) 39 (80%) 10 (20%)
H 34 (83%) 7 (17%) 34 (83%) 7 (17%)
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Table 8. Cont.

Iteration Class
Linear Power

Right Non-Right Right Non-Right

9
L 88 (94%) 6 (6%) 88 (94%) 6 (6%)
M 46 (84%) 9 (16%) 47 (84%) 9 (16%)
H 34 (92%) 3 (8%) 34 (94%) 2 (6%)

10
L 83 (88%) 11 (12%) 83 (88%) 11 (12%)
M 41 (77%) 12 (23%) 41 (77%) 12 (23%)
H 36 (92%) 3 (8%) 36 (92%) 3 (8%)

Table 8 shows a good ability to propose decision boundaries to predict the severity
class of the road condition surface given the information about GPB and speed. The
minimum value was observed for the medium severity level, which had an average value
equal to about 77%. The values for the other classes were instead higher, and equal to
90% and 87%, respectively, for low and high severity. There were no differences between
linear and parabolic functions to be highlighted. Figures 7 and 8 show all the decision
boundaries found. The accuracy obtained with this procedure is similar to, or greater than,
those obtained in other literature research conducted by machine learning and artificial
intelligence approaches [5,6,26,27].

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16 
 

 

5 
L 83 (90%) 9 (10%) 83 (90%) 9 (10%) 
M 40 (71%) 16 (29%) 40 (71%) 16 (29%) 
H 32 (84%) 6 (16%) 32 (84%) 6 (16%) 

6 
L 85 (89%) 10 (11%) 85 (89%) 10 (11%) 
M 39 (78%) 11 (22%) 40 (78%) 11 (22%) 
H 35 (85%) 6 (15%) 35 (88%) 5 (13%) 

7 
L 89 (90%) 10 (10%) 89 (90%) 10 (10%) 
M 41 (82%) 9 (18%) 41 (82%) 9 (18%) 
H 33 (89%) 4 (11%) 33 (89%) 4 (11%) 

8 
L 87 (91%) 9 (9%) 87 (91%) 9 (9%) 
M 39 (80%) 10 (20%) 39 (80%) 10 (20%) 
H 34 (83%) 7 (17%) 34 (83%) 7 (17%) 

9 
L 88 (94%) 6 (6%) 88 (94%) 6 (6%) 
M 46 (84%) 9 (16%) 47 (84%) 9 (16%) 
H 34 (92%) 3 (8%) 34 (94%) 2 (6%) 

10 
L 83 (88%) 11 (12%) 83 (88%) 11 (12%) 
M 41 (77%) 12 (23%) 41 (77%) 12 (23%) 
H 36 (92%) 3 (8%) 36 (92%) 3 (8%) 

Table 8 shows a good ability to propose decision boundaries to predict the severity 
class of the road condition surface given the information about GPB and speed. The 
minimum value was observed for the medium severity level, which had an average value 
equal to about 77%. The values for the other classes were instead higher, and equal to 90% 
and 87%, respectively, for low and high severity. There were no differences between linear 
and parabolic functions to be highlighted. Figures 7 and 8 show all the decision 
boundaries found. The accuracy obtained with this procedure is similar to, or greater than, 
those obtained in other literature research conducted by machine learning and artificial 
intelligence approaches [5,6,26,27]. 

 
Figure 7. Result obtained with linear decision boundaries. Figure 7. Result obtained with linear decision boundaries.

The two graphs showed that both parabolic and linear decision boundaries allow a
good prediction of the severity level of the data couple represented by speed and GPB.
However, it is important to highlight that it is not appropriate to extrapolate the prediction
outside the limits of the speed range described by the dataset. Indeed, for the lower limits,
we can note that the linear function, for speed values close to 0, cannot be used due to the
inversion of the two decision boundaries. On the contrary, the parabolic function tends to
diverge a lot for high-speed values. Therefore, it is necessary to highlight that the procedure
proposed needs to be limited to a relevant speed range between 20 km/h and 55 km/h
which, in any case, covers the speed range usually performed (and also permitted) in the
urban context.
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5. Conclusions

Nowadays, many monitoring methodologies are available; some of them are charac-
terized by high performance but also high costs, and others are characterized by limited
and subjective performance and high time consumption. The vibration-based system called
Pave Box consists of a user-friendly and cheap method based on the data crowdsourcing
approach. Data collection uses the inertial devices (black boxes) located inside the taxi vehi-
cles that routinely accompany passengers in the road context of the Florence Municipality.
A simple algorithm allows the users to estimate the road surface distress based only on
vertical accelerations recorded by the inertial devices.

Many other procedures similar to the Pave Box methodology have been proposed by
scientific literature, but none are currently directly applicable and widespread enough in
the area to carry out low-cost road pavement monitoring.

In this context, the need both to perfect the methodology proposed in 2021 and
make it reliable and immediately applicable has allowed for improvements in the research
dedicated to the analysis of the speed effect on the method results.

First, by means of a statistical analysis, the significance of speed in the distress index
evaluation was estimated. Then, a simple and structured process to overcome the effect
of speed in the severity level evaluation is proposed. The procedure is based on the data
stratification for each severity level, only as a function of the monitoring speed. The use of a
Support Vector Machine (SVM) algorithm allowed the definition of the decision boundaries
between the different severity levels and the direct identification of the road segment
pavement condition in terms of distress severity through only two data elements, speed
and GPB index. The ability to correctly predict the severity level range as a function of the
decision boundaries and the average values is close to 90%, except for the intermediate
distress severity, where a 77% accuracy was defined.

These tangible results promoted the use of the process in the urban area.
However, the topic investigated in this paper leaves open several future developments,

where the need to study the effect of different vehicles in the distress index evaluation
undoubtedly represents the first challenge. Finally, the definition of a validation procedure
that compares the results obtained with those obtained by the use of image-based methods,
very precise and accurate, could complete and confirm what has been investigated to date.
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