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Forest disturbance regimes are expected to intensify as Earth’s climate changes. Quantifying

forest vulnerability to disturbances and understanding the underlying mechanisms is crucial

to develop mitigation and adaptation strategies. However, observational evidence is largely

missing at regional to continental scales. Here, we quantify the vulnerability of European

forests to fires, windthrows and insect outbreaks during the period 1979–2018 by integrating

machine learning with disturbance data and satellite products. We show that about 33.4

billion tonnes of forest biomass could be seriously affected by these disturbances, with higher

relative losses when exposed to windthrows (40%) and fires (34%) compared to insect

outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay

between forest characteristics and background climate. Hotspot regions for vulnerability are

located at the borders of the climate envelope, in both southern and northern Europe. There

is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in

plant defence mechanisms to insect outbreaks, especially at high latitudes.
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European forests cover more than 2 million km2, corre-
sponding to 33% of the continent’s land surface1. They
provide a set of ecosystem services that contribute to human

well-being and climate regulation2. Despite the fact that forests are
highly resilient ecosystems when confronted with long-term
changes in environmental conditions, they are vulnerable to sud-
den changes because the long life-span of trees limits their ability to
rapidly adapt3,4. Understanding and quantifying the forest vul-
nerability to such disturbances and the underlying driving
mechanisms is crucial to assess climate impacts and develop
effective adaptation strategies. This is particularly urgent in light of
the expected changes in climate that could substantially increase
the future risks of natural disturbances for European forests5–8.

Land surface models (LSMs)—the land component of Earth
system models used to predict future climate trajectories—have
started to incorporate a mechanistic representation of forest
disturbances through equations of varying complexity9. Never-
theless, current model formulations only partially capture these
dynamics due to our incomplete understanding of the underlying
ecological processes10–13. Previous research on well-studied sys-
tems have provided important insights into the complex inter-
actions between forest disturbances and environmental
controls14–16. However, it is unclear to what extent results of such
local-scale analyses can be extrapolated to larger areas. Compi-
lations of reports on past tree mortality events can provide large
spatial coverage5,17–19, but the coarse resolution at which data are
usually recorded (e.g., country level) masks the spatial variability
and limits the assessment of the environmental controls. Satellite
datasets of forest disturbances have become increasingly available
and with their high spatial resolution and global consistency can
support large-scale comparative efforts20. However, while the
global mapping of forest disturbances is now feasible21–23, attri-
buting disturbance agents from remote sensing data remains
challenging24,25. Recent studies have used satellite retrievals to
explore the dependence of tree mortality on environmental
controls19,26,27, yet without attributing the vegetation response to
different agents of disturbances. In addition, these studies have
typically considered a limited set of drivers26,28 and have aggre-
gated vulnerability relations at regional level. Such approaches
typically adopt “a priori” knowledge to identify the functional
relationships that link vulnerability and drivers. Therefore, pos-
sible amplification or dampening effects that may emerge at local
scale from interactions among multiple factors or compound
events29 cannot be fully disentangled. Advances in the integration
of machine learning with the expanding availability of Earth
observations is fostering the assessment of ecosystem responses to
multiple interacting factors, without assuming any explicit func-
tional relation30. However, such approaches have yet to be
implemented comprehensively at large scales on multiple types of
disturbances.

Here, we investigate the vulnerability of European forests
(including Turkey and European Russia) to fires, windthrows, and
insect outbreaks over the period 1979–2018. We use random
forest (RF) regression as a machine learning method31 to identify
the emergent relationships between vulnerability—expressed by
the relative biomass loss following the occurrence of a given dis-
turbance (BLrel, response variable)—and a suite of forest, climate,
and landscape metrics (predictors) (Methods, Supplementary
Fig. 1 and Supplementary Table 1). We retrieve these variables by
integrating spatially explicit databases of forest disturbance events
with multiple satellite-based and reanalysis products. The RF
models—implemented for different plant functional types (PFTs)
and disturbances—are applied over the whole of Europe annually
between 1979 and 2018. This results in 40-year time series of
potential vulnerability that describe the spatio-temporal dynamics
of biomass loss should a specific natural disturbance occur.

Factorial simulations are used to isolate the key drivers of the
underlying ecological processes. Finally, the vulnerability is inte-
grated over the disturbance types in space and time to detect
possible forest hotspots of high susceptibility to natural dis-
turbances. Overall, our analysis sheds light on the vulnerability of
European forests to natural disturbances and its ongoing trends in
response to changing climate conditions. Results reinforce the
importance of accounting for the dynamic nature of vulnerability
in order to quantify the present and future impact of natural
disturbances on key ecosystem services, such as carbon seques-
tration. We point out that our vulnerability estimates should not
be interpreted as risk levels as defined in the IPCC framework32,33.
They rather reflect the relative biomass loss conditional on a
disturbance occurring, and do not integrate information on the
occurrence probability of disturbances nor on the exposure.

Results and discussion
Model evaluation. The RF-based vulnerability models were
developed by splitting the observed forest disturbances in two
separate samples: 60% of records were used for model calibration,
while the remaining 40% was used to validate model perfor-
mances (“Methods”). Models were calibrated and validated
separately for different natural disturbances and for all forests as
well as those dominated by individual PFTs.

We found that the best models explain on average 34–49% of the
variance in relative biomass loss (R2) across the considered
disturbances (Fig. 1), with a root mean squared error (RMSE)
ranging between 9 and 11% (corresponding to 12–15% when
normalized by the observed range). Models generally tend to
overestimate low relative biomass loss events and underestimate
those with high relative biomass loss (negative and positive relative
errors (REs), respectively). These compensatory effects—when
computed over the entire validation set—result in a ~2%
overestimation of biomass losses due to windthrows and an
underestimation of ~2% and ~10% of those caused by fires and
insect outbreaks, respectively (PBIAS). Model performances varied
not only across disturbance types but also across PFTs, in particular
for insect outbreaks where R2 ranges between 0.28 and 0.53 across
diverse PFTs (Fig. 1, inset box and Supplementary Fig. 2).

Response functions to natural disturbances. By definition,
machine learning methods are not based on the mechanistic
representation of the phenomena and therefore cannot provide
direct information on the underlying processes influencing the
system response to drivers. However, some model-agnostic
methods can be applied to gain insights on the outputs of RF
models. Here, we used variable importance metrics to quantify
and rank how individual environmental factors influence vul-
nerability (Table 1 and Fig. 2a–c). Furthermore, using partial
dependence plots (PDPs) derived from the machine learning
algorithm RF (see “Methods”) we explored the ecosystem
response function (BLrel,) to natural disturbances across gradients
of forest, climate and landscape features (Fig. 2d–e and
Supplementary Figs. 3–5).

In accordance with previous studies34,35, increased biomass,
tree density, and tree age, typically associated with great fuel
loads, correspond to higher vulnerability to fires (Fig. 2a, d and
Supplementary Fig. 3). Plant water stress, indicated by low
precipitation (Pcum), high maximum temperature (Tmax), low
moisture index (MI), and high fire weather index (FWI) act to
further increase vulnerability36. On the other hand, landscapes
with a low spatial homogeneity and high slopes generally show
lower vulnerability likely because of a higher resistance and lower
susceptibility to fire spread37.
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Stand biomass is also an important driver of vulnerability to
windthrows and shows a positive correlation with biomass loss
(Fig. 2b, e and Supplementary Fig. 4). A similar positive
relationship emerges for tree age and tree height, which tend to
reduce stem flexibility and increase bending moment38, respec-
tively. As expected, wind speed, a key factor of windthrows, shows
a positive relationship with vulnerability. Saturated soils in
regions with large amounts of rainfall (Pcum) and increased
accumulation of snow tend to weaken root anchorage and cause
tree canopy overloading, ultimately favouring tree overturning
and stem breakage when exposed to strong wind gusts39,40.

Colder climates (long-term Tavg) further appear correlated with
increased forest vulnerability to windthrows possibly reflecting
the shallower rooting systems41 and the relatively low stem
breakage resistance of tree species in these regions42. Landscapes
with low homogeneity and milder slopes appear less vulnerable to
windstorms because they are less prone to domino fall40 and have
typically deeper root depth43.

Concerning insect outbreaks, contrary to the expectation that
forests with high density and LAI may be more affected by insect
disturbance44,45, we found that these forests appear less
vulnerable, possibly reflecting good health conditions4 and
limited water stress46 (Fig. 2c, f and Supplementary Fig. 5). On
the other hand, forests with high standing volume (Biomass),
typically characterized by older (Tree age) and taller trees (Tree
height), are more prone to severe damages. Higher average
temperature (avg aTavg) and droughts (avg aPcum and avg SPEI)
appear key drivers of forest vulnerability to insect outbreaks
possibly because heat and water stress reduce plant resistance to
pest damage47. At the same time, warm and dry weather
anomalies may accelerate insect’ development and reduce
mortality rate in pest populations. Forests in cold climates
(Long-term Tavg), especially those in high-elevation areas, appear
particularly subject to such conditions because typically closer to
the edge of their thermal tolerance48. As also observed for fires
and windthrows, forests characterized by high heterogeneity (CV
variable) appear less vulnerable to insect outbreaks possibly
reflecting the enhanced resistance of mixed-species forests against
biotic disturbances49.

PDPs give the marginal effect of a covariate on the response
variable, so the response function (BLrel,) is only interpretable
within and not across covariates. We therefore complemented
these analyses and derived the Friedman’s H-statistics50 to assess
second-order interactions by quantifying how much of the
variation of the prediction depends on the two-way interplay
(“Methods”). We found that the interaction strength ranges
between 13 and 16% depending on the disturbance type
(Fig. 3a–c). The type of interacting predictors further modulates
the response function. Forest and climate features generally show
higher interaction strength in fires and insect outbreaks, while
landscape features appear more determinant in generating
interacting processes in windthrow events. It is important to
note that the observed interactions are positive, amplifying the
peaks in the response functions on average by 3–7% (Supple-
mentary Fig. 6a–c). However, for certain combinations of
features, the amplification may reach 25% compared to a
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Fig. 1 Validation of vulnerability models. Observed versus modelled relative biomass losses (BLrel) due to a fires, b windthrows, and c insect outbreaks.
Model estimates account for the mixture of different plant functional types (PFTs). Number of binned records (N), coefficient of determination (R2), root
mean squared error (RMSE) and percent bias (PBIAS) are shown in labels, while relative error (RE) in colour. R2 values in the inset box refer to PFT-specific
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Table 1 Environmental variables selected in the vulnerability
models.

Category Variable Temporal
resolution

Forest Above ground biomass (Biomass) Yearly
Tree density Static
Tree age Static
Leaf Area Index (LAI) Yearly
Tree height Static

Climate Fire Weather Index (FWI) Yearly
Moisture Index (MI) Yearly
Cumulated precipitation (Pcum) Yearly
Cumulated snow (Snow) Yearly
Short-term average anomaly in
cumulated precipitation (avg aPcum)

Yearly

Maximum temperature (Tmax) Yearly
Long-term average temperature
(long-term Tavg)

Static

Short-term average anomaly in
average temperature (avg aTavg)

Yearly

Maximum wind speed (wind speed) Yearly
Short-term anomaly in standardized
precipitation Evapotranspiration
Index (avg SPEI)

Yearly

Landscape Slope Static
Elevation Static
Homogeneity Static
Coefficient of variation (CV) Static

Forest, climate and landscape features utilized to characterize the response functions of
vulnerability to natural disturbances (see “Methods”). Abbreviations used in text and figures are
in parentheses. Details on spatial and temporal aggregation and data sources are listed in
Supplementary Methods 1.
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configuration with hypothetical absence of interactions. These
findings reinforce the importance of incorporating in a systematic
and automated manner the complex interacting processes that are
key determinant of the vulnerability of forests to natural
disturbances. In addition, the positive sign of the detected
interaction terms highlight the key role that climate drivers may
have in the future amplification of natural disturbances under
global warming scenarios.

Spatial patterns of vulnerability and its local sensitivity. When
applying RF models in predictive mode and averaging results for
Europe over 2009–2018, the vulnerability to windthrows and fires
has similar magnitude, with a potential relative biomass loss
(PBLrel) of 30.2% (29.4–30.3%, 95% confidence interval) and
25.6% (25.0–25.8%), respectively. The vulnerability to insect
outbreaks is lower with PBLrel of 19.9% (19.4–20.0%). Con-
siderable spatial variations in PBLrel emerge across regions
(Fig. 4a, c, e and Supplementary Table 2). Vulnerability to
windthrows is higher in Norway, the North of the British Islands,
Portugal, and Southern Europe, and particularly in its mountain
zones (e.g., Alps, Caucasus, and Carpathians) (Fig. 4c) where
vulnerability may reach 40%. In contrast, forests in southern
Sweden and Poland show lower vulnerability, which might be
because recent windstorms (e.g., Gudrun in 2004 and Kirill in
2007) have already reduced the biomass of the more susceptible
forests. Vulnerability to fires appear higher in Sweden, Finland,
European Russia, southern Iberian Peninsula and Turkey with

PBLrel locally exceeding 35%, whereas forests in wet climates such
as in central Europe and mountains zones show generally lower
values (Fig. 4a). Vulnerability to insect outbreaks generally
increases from south-to-north and from low to high-elevation
regions, with PBLrel up to 30% (Fig. 4e).

Predicted vulnerability maps show local uncertainty, expressed
in terms of standard error (SE) of PBLrel, lower than 1% (~4%
when normalized with respect to the average) over most of the
domain (Supplementary Fig. 7a, d, g). We note that some climate
regions characterized by high average PBLrel and high SE are
poorly represented in the observational databases of forest
disturbances (Supplementary Fig. 7). For instance, cold–wet and
warm–dry zones are largely missing in the windthrows dataset
and we have few fire records from cold–dry zones. Although we
cannot fully evaluate model performances outside the range of the
training/testing sets, we stress that dedicated checks were
performed on the PDPs at the boundaries of the observational
ranges to reduce potential extrapolation errors (“Methods”).
Furthermore, spatial statistics of vulnerability based solely on
areas with climatological conditions analogous to those of the
observational datasets (Methods and Supplementary Fig. 8)
showed marginal variations (<1 percentage point when averaged
at the Europe level) compared to the estimates derived from the
entire spatial domain (Supplementary Table 2). These results
corroborate the robustness of our findings. In light of the above-
mentioned considerations, we speculate that forests that were
predicted to be highly vulnerable by our models but have
experienced no or few natural disturbances over the observational
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period may now be less adapted to disturbances compared to
forests more prone to ecological stresses. Recent modelling
studies found that, over centuries, increasing disturbance
frequency fosters the reorganization of ecosystems and catalyses
the adaptation of forest composition to climate change51. While
such studies seemingly confirm our interpretation, additional
research is needed to confirm whether this mechanism operates at
short timescales too.

Vulnerability shows variations in sensitivity to environmental
conditions (Fig. 4b, d, f and Supplementary Figs. 9–11). Local
sensitivities, here quantified by the first-order derivative of the
forest response function (“Methods”), express the degree to which
vulnerability changes along the gradient of a given environmental
predictor. Forest structure characteristics play a prominent role in
influencing such sensitivities, particularly for insect outbreaks, for
which the average marginal contribution (Zmarg) at European
level is larger than 60% (Fig. 4f). Biomass, LAI, tree age and tree
density are key determinants of such emerging patterns; however,
the magnitude of their effects on local sensitivity vary greatly
among natural disturbances and geographical regions (Supple-
mentary Figs. 9–11). Climate features are also important in
controlling the vulnerability to fires and windthrows with a Zmarg

greater than 49% and 54%, respectively (Fig. 4b, d), while only
marginally affecting the vulnerability to insect outbreaks
compared to other environmental factors (8%, Fig. 4f). We point
out that such local sensitivity patterns refer to the mechanisms
characterizing the vulnerability and not to the triggering
processes, which on the contrary have been shown to be largely
dependent on climate conditions52,53. Residual effects on local
sensitivity of vulnerability are explained by landscape metrics. In
the case of insect outbreaks, for which landscape metrics have a
31% marginal contribution, elevation plays an important role
(Supplementary Fig. 11) because it is associated with the
conditions that control insect populations and their rate of
spread54 (e.g., Mountain Pine Beetle).

Overall, results show a current substantial predisposition of
European forests to be adversely affected by natural disturbances.
They also emphasize the importance of forest structural
characteristics in determining forest vulnerability, yet the
magnitude of their effects are strictly linked to the local
environmental conditions.

Trends in vulnerability in response to ongoing climate change.
Assessing the temporal evolution of vulnerability is a prerequisite to
understand the forest ecosystem response to ongoing climate
change. To this aim, we explored the temporal evolution of forest
vulnerability in response to changing climate conditions over the
period 1979–2018. We found that at European level there is no
substantial trend in forests’ vulnerability to fires and windthrows
(−4.9 × 10−3 and −1.4 × 10−3% year−1, respectively) and its
dynamics appear dominated by the large interannual variability in
climate (Fig. 5a, c). The time series analysis performed at grid-cell
level confirms these results, showing mostly non-significant trends
(δPBLrel) and contrasting patterns across Europe (Fig. 5b, d).
Locally significant positive trends in vulnerability to fires appear in
Iberian Peninsula, Italy, southern France and parts of Belarus and
Ukraine, and are associated with an increase in water stress (Fig. 5b
and Supplementary Fig. 12a–d). Opposite trends occur mostly in
Greece, Turkey, eastern Europe, northern Europe and European
Russia. Positive trends in vulnerability to windthrows are evident in
the Balkan countries and parts of Portugal and Norway (Fig. 5d),
following increases in precipitation, snowfall and wind speed
(Supplementary Fig. 12e–g), whereas opposite trends appear mostly
in central Europe and inland territories of Norway. However, the
significance of these changes remains largely elusive.

In contrast to fires and windthrows, the vulnerability to insect
outbreaks at European level grew substantially (8.8 × 10−2% year−1)
in response to changing climate conditions, particularly from 2000
onwards (Fig. 5e). Most of Europe shows statistically significant
increasing trends in vulnerability to insect outbreaks with local
δPBLrel exceeding 0.2% year−1 in north-eastern Fennoscandia and
northern European Russia (Fig. 5f). Such a rise in vulnerability
appears largely driven by the increase in temperature, which
represents the dominant factor in 91% of the area (Fig. 5f and
Supplementary Fig. 12h–j). The widespread and significant rise in
temperature (Supplementary Fig. 12h) and the monotonic increase
of the response function of vulnerability to temperature (Supple-
mentary Fig. 5d) largely explain such trends despite an overall low
local sensitivity of vulnerability to climate drivers (Fig. 4f). In
particular, the temperature anomaly of +0.5 °C with respect to the
1970–1990 climatology reached around the year 2000 (Fig. 5e, inset
box) corresponds to a temperature threshold after which vulner-
ability started increasing steadily (Fig. 5e). This suggests that,
around the year 2000 temperature reached a tipping point that
substantially altered forest resilience to pest outbreaks. Indeed,
further increases in temperature since then have likely reduced
plant defence mechanisms making European forests progressively
more vulnerable to insect outbreaks. Even when water availability
was not a limiting factor (Supplementary Fig. 12h–j), rising
temperatures may have affected plant water status by increasing
the vapour pressure deficit and decreasing stomatal conductance55,
which ultimately decreased labile carbon storage, secondary
metabolism and plant resistance56. This seems confirmed by the
documented recent rise in infestations of bark beetles responsible
for massive and destructive attacks on coniferous forests of many
northern and eastern European regions57.

Overall vulnerability to multiple disturbances. When multiple
disturbances are combined into a single composite index, hereafter
called overall vulnerability index (OVI), average results show that
over 2009–2018 European forests have a vulnerability of about
58% (57.0–58.4%) of their biomass (Fig. 6a). This corresponds to
33.4 billion tonnes of biomass that could potentially be lost due to
natural disturbances, mostly located in broadleaved deciduous
(BrDe) and needle leaf evergreen (NeEv) forests. The potential
biomass loss is driven primarily by the vulnerability of forests to
windthrows (40%), followed by fires (34%) and insect outbreaks
(26%) (Fig. 6a, inset pie chart). The OVI for Europe shows an
increase of 4.2 × 10−2% year−1 (4.1 × 10−2–4.3 × 10−2% year−1)
over the observational period (Fig. 6b), a trend dominated by the
temporal patterns of vulnerability to insect outbreaks (Fig. 6b,
inset pie chart).

By integrating spatial and temporal patterns of OVI, forests in
cold climates of Finland, northern European Russia and the Alps,
and to some extent warm–dry forests in the interior of the Iberian
Peninsula, emerge as particularly fragile ecosystems. They are
characterized by a high overall vulnerability and a concomitant
progressive intensification due to changes in climate (Fig. 6d, e).
The underlying correlation between spatial and temporal patterns
seems controlled predominantly by the vulnerability to insect
outbreaks (R2= 0.55, Fig. 6c). The vulnerability in these hotspots is
high due to a combination of current environmental conditions and
the intensified warming that occurred in the last decades. Hence,
global warming poses a serious threat to forest ecosystems with
potential critical consequences for climate mitigation actions and
local economies that are highly dependent on the forest sector1,58.

We stress that our estimates cannot account for interactions
among multiple disturbances (“Methods”) due to the structural
limitations of the datasets used to train the models. Cascading
and amplifying effects originating from natural disturbance
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interacting have the potential to increase the vulnerability of
forest ecosystems59,60 and lead to irreversible shifts in ecosystem
states61. Therefore, our results are likely to reflect only partially
the overall vulnerability resulting from the interactions of fires,
windthrows, and insect outbreaks.

Conclusions and implications. This study assesses the spatial
and temporal dynamics of the vulnerability of European forests to
fires, windthrows, and insect outbreaks and disentangles its key
drivers. We show that forest structural, physiological and
mechanical properties largely control forest vulnerability to these

natural disturbances. These results emphasize the potential of
forest management to increase the resilience and long-term sta-
bility of European forests and related ecosystem services. Our
analysis also shows that ongoing climate change has already
affected forest vulnerability and that the positive interplay
between climate and other environmental drivers has further
amplified forest vulnerability. In particular, rising temperature
after 2000 has increased the vulnerability of European forests to
insect outbreaks. We hypothesize that a tipping point was reached
in that year and further temperature rises weakened plant defence
mechanisms to insect outbreaks. Given the expected continuation
of warming and the probable intensification of natural
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Fig. 5 Temporal variations in forest vulnerability to natural disturbances over the 1979–2018 period. a Time series of vulnerability to fires (PBLrel)
aggregated at Europe level and rescaled to the first year (1979) vulnerability value (shown at the bottom left). The blue line and the shaded patterns reflect
the annual mean value and its 95% confidence interval, respectively. b Spatial map of the temporal trends in vulnerability to fires (δPBLrel); black dots show
pixels where trends are significant (two-sided Mann–Kendall test; p value < 0.05). Corresponding temporal drivers visualized in terms of area fraction
(reported in colour and numbers) where the given driver is dominant. The positive and negative effect of each driver on vulnerability is distinguished by the
symbols “+” and “−”, respectively. c, d and e, f as a, b but for windthrows and insect outbreaks, respectively. Inset box in panel e shows the average
response function of the vulnerability to insect outbreaks along the observed gradient of temperature anomalies. Annual values of temperature anomalies
aggregated at Europe level are overlaid on the response function and visualized in colour to capture their temporal evolution. Predictor acronyms are listed
in Table 1.
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disturbances in coming decades3,5, key ecosystem services such as
carbon sequestration and biodiversity conservation, could be
seriously compromised in the near future. This is particularly the
case in northern Europe, which we find to be particularly sus-
ceptible and exposed to accelerated warming.

In addition, our findings may serve as a benchmark for LSMs
to improve their capacity to represent natural disturbances and
ultimately enhance the reliability of future land–climate predic-
tions. All together, these results may help the development of
more integrated and effective mitigation and adaptation strategies
by informing climate policies on the current vulnerability of the
forest carbon stock and on potential ways to increase forest
resilience to climate hazards.

Methods
Observed forest disturbances. We focused on the vulnerability of European
forests to three major natural disturbances: forest fires, windthrows and insect
outbreaks (bark beetles, defoliators and sucking insects). In order to identify/
calibrate/validate vulnerability models (details on model development in the fol-
lowing sections) we used a large number of records of forest disturbances collected
over the 2000–2017 period (Supplementary Fig. 1, step1). Fires were retrieved from
the European Forest Fire Information System (EFFIS, https://effis.jrc.ec.europa.eu/)
and count 15,818 records. Windthrows were acquired from the European Forest
Windthrow dataset62 (FORWIND, https://doi.org/10.6084/m9.figshare.9555008)
with 89,743 records. Insect outbreaks were retrieved from the National Insect and
Disease Survey (IDS, http://foresthealth.fs.usda.gov) database of the United States
Department of Agriculture (USDA) which includes 50,777 records. Each

disturbance record is represented by a vector feature describing the spatial deli-
neation of the damaged forest patch obtained by visual photointerpretation of
aerial and satellite imagery or field surveys.

Even if the study focuses on Europe, for insect diseases we used the IDS-USDA
database due to the lack of an analogous monitoring system and related dataset for
Europe. Therefore, the models of vulnerability to insect outbreaks were identified/
calibrated/validated on US data and then applied in predictive mode to Europe (see
following sections for details). To assure the transferability of such models, we
developed models for functional groups instead of working on species-specific
models. For this purpose, we classified records based on functional groups of the
pest (bark beetles, defoliators and sucking insects) and on the PFT of the host tree
species. Records were considered if the host plant belonged to the following PFTs:
broadleaved deciduous, broadleaved evergreen, needle leaf deciduous and needle
leaf evergreen.

Reconstruction of annual biomass time series. In order to evaluate the biomass
loss expected given a disturbance event occurs, multi-temporal information of
biomass is required. However, there is still no single technology for direct and
continuous monitoring of such variable in time. In order to reconstruct the tem-
poral variations in biomass over the 2000–2017 period we integrated a static 100-m
above ground biomass map acquired for the year 2010 from multiple Earth
Observation systems63 with forest cover changes derived from the Global Forest
Change (GFC) maps recorded at 30-m spatial resolution from Landsat imagery21.
The GFC maps include three major layers: “2000 Tree Cover”, “Forest Cover Loss”
and “Forest Cover Gain”. “2000 Tree Cover” (TC2000) is a global map of tree
canopy cover (expressed in percentage) for the year 2000. “Forest Cover Loss” is
defined as the complete removal of tree-cover canopy at the Landsat pixel scale
(natural or human-driven) and is reported annually. “Forest Cover Gain” reflects a
non-forest to forest change and refers to the period 2000–2012 as unique feature
without reporting the timing of the gain.
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Fig. 6 Spatial and temporal patterns of the overall vulnerability of forests to multiple natural disturbances. a Current overall vulnerability index (OVI
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The data integration approach built a on the assumption that changes in
biomass are fully conditioned by the changes in tree cover. First, we quantified the
percentage of tree cover in 2010 (TC2010) by masking out all pixels where forest loss
occurred over the 2000–2010 period from the TC2000 map.

Then, in order to characterize to what extent an increase or decrease in tree
cover may affect biomass, we quantified the density of biomass per percentage of
tree cover lost (ρloss) and gained (ρgain) as follows:

ρloss ¼
B2010

TC2010;loss
; ð1Þ

ρgain ¼ B2010

TC2010;gain
; ð2Þ

where B2010 is the static biomass map available for the year 2010 (ref. 63). TC2010;loss

is the TC2010 masked over the pixels where there has been a forest loss during the
2011–2017 period. This filtering provides a picture of forests that were intact in
2010 but removed since then. Similarly, TC2010;gain is the TC2010 masked over the
pixels where there has been a forest gain and identifies the reforested and afforested
areas. Since the map of forest gain is a binary map referring to the year 2012, forest
gain pixels lack any information on their tree cover as their value in 2000 is zero.
We therefore associated to forest gain pixels the maximum of tree cover percentage
computed in a moving window with a radius of 2.5 km. This value represents the
maximum potential tree cover in the local environmental conditions and refers to
the whole 2000–2012 period (TC2012;gain). Then, we assumed that forest gain
proceeds at a constant rate over time and that the associated tree cover thus grows
linearly:

TC2010;gain

2010 � 2000ð Þ ¼
TC2012;gain

2012� 2000ð Þ ! TC2010;gain ¼ 0:83 � TC2012;gain; ð3Þ

Both TC2010;loss and TC2010;gain were resampled to the B2010 spatial resolution
(100 m). Supplementary Figure 13 shows the frequency distribution of ρloss and
ρgain over a test area in Southern Finland. As expected, the density of biomass
associated with forest losses is higher than that one associated to forest gain.
Indeed, biomass of new forest plantations is generally lower than the biomass of an
old one (e.g. a forest that is typically harvested).

The obtained maps of ρloss and ρgain in Eqs. (1) and (2) refer to sparse and
isolated pixels where there have been forest gain or loss. To obtain continuous
fields, such density values were spatialized by computing their median over a 0.1°
grid. Annual maps of biomass were finally obtained at 100 m spatial resolution as
follows:

Bt ¼ B2010 þ α � ρloss � TCt;loss � ρgain � TCt;gain �
2010� tð Þ

10
; ð4Þ

where t is the year (over the 2000–2017 period) and α takes the value of +1 for
t < 2009, and −1 otherwise. TCt;loss and TCt;gain are derived following the above-
described approach for year 2010. The analysis was implemented in Google Earth
Engine64 to efficiently handle the large data archives.

Biomass losses due to natural disturbances. We expressed forest vulnerability as
the relative biomass loss following the occurrence of a given natural disturbance.
For each disturbed forest area at year t—recorded in the disturbance databases
(EFFIS, FORWIND and IDS-USDA)—the corresponding relative biomass loss
(BLrel) was quantified based on the difference between pre- and post-disturbance
biomass (B) (Supplementary Fig. 1, step 2.1), as follows:

BLrel ¼
max Bt�n; ¼ ;Bt

� ��min Bt ; ¼ ;Btþm

� �

max Bt�n; ¼ ;Bt

� �
" #

; ð5Þ

where n and m represent the backward and forward time lags (in years), respec-
tively, and express the time window over which a biomass loss can be reasonably
attributed to a given disturbance. For fires and windthrows, n and m were both set
to 1, as these disturbances typically lead to an abrupt loss in vegetation. For insect
outbreaks, n and m were set to 2 and 5, respectively, in order to capture the
progressive and slow change in biomass following an insect infestation53. Input
data in Eq. (5) were obtained by spatially averaging the values of annual biomass
maps over the disturbed forest patch. BLrel represents the response variable in our
vulnerability modelling framework.

Environmental predictors and PFTs. The estimate of BLrel was complemented
with a set of environmental variables of three major categories: forest (F), climate
(C) and landscape (L) features selected as potential predictors of forest vulner-
ability based on existing literature (Supplementary Fig. 1, step 2.2). These variables
were collected from multiple sources, including satellite and reanalysis products
(Supplementary Methods 1) and spatially averaged over the forest area of each
disturbance record. Forest features include vegetation parameters describing the
forest state and productivity, such as above ground biomass, leaf area index (LAI),
tree age, tree density and tree height. Climate features include annual values of
temperature, precipitation and snow conditions, their long-term averages, and their
anomalies in the years preceding the disturbance, as well as extreme event

indicators such as standardized precipitation evapotranspiration index SPEI-12,
moisture index and maximum wind speeds. Landscape features include population
density, spatial variability of landscape patterns and geomorphological parameters.
Such multi-variate approach enabled us to account for possible amplification or
dampening effects among multiple susceptibility drivers, which are typical of
compound events29. Environmental variables have annual temporal resolution
(dynamic layers) or represent climatological values of the entire observational
period or of a specific era/year (static layers) (see Supplementary Methods 1).
Other variables, such as tree species composition and diversity, not included
explicitly in our assessment may affect vulnerability as well65. However, the lack of
a systematic monitoring of these quantities hampered their integration in our
large-scale assessment.

Finally, for each observed damaged area, the cover fractions of different PFTs
were retrieved from the landcover maps of the European Space Agency Climate
Change Initiative66 (ESA-CCI, https://www.esa-landcover-cci.org/) including
broadleaved deciduous (BrDe), broadleaved evergreen (BrEv), needle leaf
deciduous (NeDe) and needle leaf evergreen (NeEv).

Vulnerability modelling. Quantifying the risks for forest ecosystem services due to
natural disturbances requires the integration of hazard, exposure and vulnerability
components32,33. Hazard represents the occurrence of the agent affecting the forest
ecosystems (e.g. insect pest outbreak); exposure refers to the distribution of forest
ecosystem services potentially prone to a hazard; and vulnerability expresses the
degree to which a forest ecosystem is affected when exposed to a given disturbance.
In this study we focus on the vulnerability component quantified in terms of
relative biomass losses (BLrel) following the occurrence of a specific hazard (0%
means a forest is not vulnerable to the given disturbance, 100% means a forest is
completely damaged when exposed to the given disturbance). Therefore, our
estimates should not be confused with the overall risk levels, which incorporate in
addition to vulnerability also the probability of occurrence of disturbance and the
exposure32,33.

For each disturbance type, we developed an RF regression model31 to predict
the observed BLrel (response variable) based of pre-event environmental conditions
(predictors). The use of machine learning in general and of RF in particular, being
nonparametric and nonlinear data-driven methods, avoids making potentially
strong assumptions about the functional form relating the key drivers and the
response functions to natural disturbances.

First, in order to focus on effective damaging events in forest ecosystems, only
records with BLrel > 5% were selected (Supplementary Fig. 1, step 3). In the case of
windthrows, we noted that maximum wind speeds retrieved from 0.5° spatial
resolution of reanalysis data may largely underestimate effective maximum winds.
This was particularly evident for tornado events, given their limited spatial extents
compared to the grid cell, and the storm event Klaus that occurred in 2009 and for
which we noticed an underestimation of the effective wind speed of the 78%
(retrieved ~12 ms−1 instead of observed maximum wind speed of 55 ms−1

(ref. 67)). Therefore, such events were excluded from our analysis.
Possible missing data in the environmental variables were corrected by the

median value of the variable-specific distributions (Supplementary Fig. 1, step 4).
Potential effects of spatial dependence structure in the observational datasets were
reduced by resampling BLrel, F, C and L along the gradients of the three principal
components (PC) derived from the initial set of predictors. To this aim, we used 20
bins of equal intervals for each PC dimension spanning the full range of values. The
resampling procedure was stratified by splitting the records in training and testing
sets. For each year between 2000 and 2017, we randomly extracted 60% of the
records. The extracted subset (BLrel , F, C and L) was then binned in the PC space
using the average as aggregation metric weighted by the areal extents of each
disturbance record. The remaining 40% of records were similarly processed and
used as a separate validation set (Supplementary Fig. 1, steps 5–7). The cover
fraction of each PFT was resampled using the same approach and renormalized
within each bin. Only bins with at least three records were retained for model
development.

The resampled training and testing sets were used to calibrate and validate an
“approximate” RF model using the full set of variables (A) as predictors initially
identified based on literature review (Supplementary Fig. 1, step 8 and
Supplementary Table 1). With the RF algorithm importance scores for each
environmental variable can be calculated31. These scores reflect how important
each covariate is in determining the fitted values of relative biomass loss. The RF
implemented here uses 500 regression trees, whose depth and number of predictors
to sample at each node were identified using Bayesian optimization. To reduce
potential redundancy effects across predictors and facilitate the interpretability of
results, we implemented a feature selection procedure. Based on the “approximate”
RF model the importance of each predictor was quantified. We then computed the
Spearman correlation between each pair of predictors and when it exceeded 0.8, the
predictor with the lower variable importance was excluded (Supplementary Fig. 1,
step 9 and Supplementary Table 1). The remaining predictors (I) were then used
for a second set of RF runs, in which we iteratively evaluated RF performance on a
reduced set of predictors, excluding in each new run the less important variable
computed on the new reduced set of features. The set of predictors which
maximizes the R2 was finally selected (Q hereafter for short) (Supplementary Fig. 1,
step 10 and Supplementary Table 1). The implemented iterative feature selection
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procedure identifies a reasonable compromise between computing cost and model
performance. The general equation describing the vulnerability is as follows:

BLrel ¼ v Qð Þ; ð6Þ
where v is the vulnerability model implemented in the RF regression algorithm,
and describes the relative biomass losses as a function of a selected Q set of
environmental variables.

Such automatic feature selection process was complemented with visual
interpretation of the PDPs68 based on the RF algorithm. PDP is used to visualize
the relationship between explanatory covariates (environmental predictors) and
BLrel, independent of other covariates (Supplementary Figs. 2–4). PDP results were
analysed in combination with a detailed study of the literature and allowed us to
understand and interpret the response functions to natural disturbances (see details
in the main text and Fig. 2). Consistency of PDPs at the boundaries of the
observational ranges was carefully checked to reduce possible artefacts generated
when the models are used to extrapolate outside the range of training conditions.

Vulnerability models were further refined by retrieving v functions separately
for each PFT. For PFT-specific vulnerability models, only resampled records in the
PC space with a cover fraction >5% were retained and used for the model
development (Supplementary Fig. 1, step 11). Model performances were ultimately
evaluated on the testing set in terms of coefficient of determination (R2), root mean
square error (RMSE), percent bias (PBIAS)69 and RE.

Regarding the insect-related disturbance, we initially implemented specific RF
models for different insect groups (bark beetles, sucking insect and defoliators).
However, due to the limited sample size of the first two groups, RF was not able to
represent their effects on biomass losses reliably. We therefore opted to merge all
three groups in a unique insect disturbance class (hereafter referred as insect
outbreaks). We recognize that different ecological processes may characterize each
insect group and therefore the use of a unique insect class may potentially mask
some distinctive features. The resulting vulnerability models can therefore identify
only drivers and patterns common to all groups (e.g., susceptibility to temperature
anomalies70,71).

Interacting processes. The co-occurrence of multi-dimensional environmental
factors resulting from the combination of interacting physical processes (com-
pound events) may amplify or dampen ecosystem responses29. Tree-based models
consider all variables together in the model and account for nonlinear feature
interactions in the final model31,68. The inherent ability of RF models to detect
interacting variables allows avoiding the prescription of specific relations between
variables based on “a priori” knowledge—as for instance required in parametric
regression frameworks—by letting the model learn automatically these relations
from data.

In order to detect feature interactions and assess their strength in the developed
RF-based vulnerability models we computed the Friedman’s H-statistic50. Here, we
derived the H-statistic to assess second-order interactions by quantifying how
much of the variation of the prediction depends on two-way interactions. To speed
up the computation, we sampled 50 equally spaced data points over the
environmental gradients.

We complemented this analysis by estimating the amplification or dampening
effect (ΔP) associated to each feature interaction. To this aim, we quantified the
difference in the peak values between the response function which incorporates
interacting processes (two-way partial dependences) and those ones decomposed
without interactions (one-dimensional partial dependences) and expressed in terms
of relative variations.

The H and ΔP metrics were computed for each pair of features, and averaged
for different combinations of predictor categories (forest, climate, landscape).

Spatial and temporal patterns of vulnerability and its key drivers. The RF
models were used to evaluate the vulnerability of forests annually between 1979
and 2018 for each grid cell (0.25°) of the spatial domain covering the geographic
Europe (including Turkey and European Russia). To this aim, vulnerability models
were used in predictive mode using as input spatial maps of predictors, preliminary
resampled to the common resolution, and with results expressed in terms of
potential relative biomass loss (PBLrel). Estimates of PBLrel are obtained as the
average from all trees in the RF ensemble. The ongoing changes in climate features
were also accounted for in our framework. Climate predictors were kept dynamic
for backward RF runs, while the remaining forest and landscape features were fixed
to their current values averaged over the 2009–2018 period. Doing so, we implicitly
assume that the sampling of response variables and predictors is representative for
the whole temporal period. However, over longer time periods (from decades to
century) additional ecosystem processes may play a role, such as adaptation phe-
nomena driven by species change and shifting biomes, which could also affect
vulnerability trends. The lack of multi-temporal monitoring of most of the forest
and landscape predictors hampered the integration of their dynamics in the
backward RF runs.

Results of PFT-specific vulnerability models were averaged at grid-cell level with
weighting based on the cover fractions of PFTs (Supplementary Fig. 1, steps
12–13). This resulted in annual maps of vulnerability to each natural disturbance.
Spatial and temporal variations in vulnerability were both expressed in relative and
absolute terms. Absolute biomass losses were retrieved by multiplying estimates of

potential relative biomass loss by the available biomass. Therefore, vulnerability
values in a given grid cell reflect the biomass (relative or absolute) that would be
affected if exposed to a disturbance under its specific local and temporal
environmental conditions.

Grid-cell uncertainty of predicted vulnerability values were quantified in terms
of standard error (SE) derived by dividing standard deviations of the computed
responses over the ensemble of the grown trees of the model by the square root of
the ensemble size (Supplementary Fig. 7).

We then calculated the “current” vulnerability as the average vulnerability
over the 2009–2018 period. To factor out the local dependence of the current
vulnerability on each predictor we retrieved the Individual Conditional
Expectation72 (ICE) for each grid cell. ICE plots show the relationship between
the predicted target variable (PBLrel) and one predictor variable for individual
cases of the predictor dataset. In our application, an individual case is a specific
combination of F, C and L data for a given grid cell. To summarize and map the
ICE of each grid cell in a single number, we fitted by linear regression the partial
dependence of PBLrel versus the corresponding predictor variable and mapped
the slope of this regression, hereafter referred as “local sensitivity”
(Supplementary Figs. 5–7), similarly to the approach presented in ref. 30. The
marginal contribution (Zmarg) of each environmental category of predictors (F, C
and L, hereafter referred as X for short) on the current vulnerability was derived
as follows:

Zmarg;X ¼ 100 ´
P

i2X sij j
P

j2Q sj

���
���
; ð7Þ

where s represents the slope of ICE, i runs over all predictors of X, whereas j runs
over all available predictors Q. Therefore Zmarg;X values range between 0 (no
dependence of current vulnerability on X predictors) and 100% (full dependence
of current vulnerability on X predictors).

Long-term linear trends in vulnerability (δPBLrel) were quantified over the
1979–2018 period for each grid cell and their significance evaluated by the two-
sided Mann–Kendall test. In order to isolate the key determinants of the emerging
trends in vulnerability, a set of factorial simulations was performed. To this aim, we
estimated the vulnerability due to the temporal variations in a given k climate
predictor (PBLkrel), by applying the RF models to a data array in which the k climate
variable is dynamic while all the remaining features are kept fixed to their “current”
value (average value over 2009–2018). The resulting trends in vulnerability
associated to the k factor (PBLkrel) are then calculated by linear regression and
subject to the Mann–Kendall test.

Spatial and temporal patterns were visualized at grid-point scale and averaged
over geographic macro-regions (Supplementary Fig. 14 and Supplementary
Tables 2 and 3). Zonal statistics were obtained by averaging grid-cell results
weighted by their forest areal extent. Forests with cover fraction lower than 0.1
were excluded from the analyses. Uncertainty in spatial averages were based on the
95% bootstrap confidence interval computed with 100 bootstrap samples.

In order to derive statistics minimally affected by potential extrapolation errors
of the RF models, we replicated the aforementioned analyses by excluding areas
outside the observational ranges of climatological temperature and precipitation
(Supplementary Fig. 8).

Combining forest vulnerability to multiple natural disturbances. To quantify
the total vulnerability to multiple disturbances we defined the OVI, similarly to the
multi-hazard index developed in ref. 73. We assumed that the considered dis-
turbances are independent and mutually non-exclusive and the potential biomass
loss of single disturbances is spread homogeneously within each grid cell. From the
inclusion-exclusion principle of combinatorics the potential biomass loss associated
to the OVI can be expressed for a given year as follows:

PBLrel OVIð Þ ¼
[D

p¼1
PBLrel;p ¼

XD
q¼1

�1ð Þq�1�
X

G� 1;¼ ;Df g
Gj j¼q

PBLrel;G

0
B@

1
CA; ð8Þ

where p refers to the disturbance-specific PBLrel, D is the number of disturbances
considered, the last sum runs over all subsets G of the indices {1, …, D} containing
exactly q elements, and

PBLrel;G :¼
\

p2I PBLrel;p; ð9Þ
expresses the intersection of all those PBLrel;p with index in G. Maps of current
overall vulnerability and trends were ultimately analysed following the approach
adopted for single disturbances.

This approach does not account for the potential reduction in exposed biomass
following the occurrence of a given disturbance. Furthermore, possible
amplification/dampening effects due to interacting disturbances could also
occur3,74. A strong interaction effect has been documented for instance between
windthrows and bark beetle disturbances. Uprooted trees are virtually defenseless
breeding material supporting the build-up of beetle populations and the
consequent increase in vulnerability to insect outbreaks3,59. Insect outbreaks, in
turn, may potentially affect the severity of subsequent forest fires by altering the
abundance of available fuel60. The magnitude of these effects varies with insect type
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and outbreak timing. Despite the relevance of these interactions, the lack of
reference observational data of compound events hampered the integration of their
effects in our modelling framework. Therefore, estimates of OVI can only partially
capture the overall vulnerability resulting from multiple disturbances and should be
viewed in light of these limitations.

Spatial maps of current overall vulnerability and trends in OVI were then
normalized separately based on the min–max method and combined by simple
multiplication into a single index, hereafter referred as space-time integrated
OVI. High values of space-time integrated OVI depict forest areas that are
currently susceptible to multiple disturbances and their vulnerability have
experienced a substantial increase over the 1979–2018 period. The space-time
integrated OVI is used to identify currently fragile ecosystems that might in the
future become even more susceptible to natural disturbances.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The observation-driven datasets analysed in this study are publicly available as referenced
within the article (Methods and Supplementary Methods 1). The generated vulnerability
models are available at https://doi.org/10.6084/m9.figshare.13577960.

Code availability
The custom MATLAB code written to analyse the data, develop the random forest
models and generate figures is available at https://doi.org/10.6084/m9.figshare.13577960.
Additional codes written in R/Python and Google Earth Engine used for data pre-
processing are available on request from the corresponding author.
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