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The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere 
of a size that has not been documented in the modern geophysical record. The event generated a broad 
range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation 
networks. Most prominent is the surface-guided Lamb wave (≲0.01 Hz), which we observed propagating for 
four (+three antipodal) passages around the Earth over six days. Based on Lamb wave amplitudes, the 
climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga 
eruption produced remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible 
sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground 
coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight exceptional 
observations of the atmospheric waves. 
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The 15 January 2022 eruption of Hunga volcano (1), Tonga, 
was an unusually energetic explosive event. This climactic 
eruption (the largest eruption of an episode) began just after 
~04:00 UTC (~17:00 local time) from a submerged vent and 
delivered volcanic tephra and gas primarily into the strato-
sphere. An umbrella cloud developed at approximately 30 km 
above sea level, with a central transient overshoot much 
higher. Hunga is a largely submerged massif located ~65 km 
to the north-northwest of Tongatapu, Kingdom of Tonga. 
Eruption episodes consisting of relatively low-energy 
Surtseyan activity in 2009 and 2014–2015 had built a tephra 
cone that connected the established islands of Hunga Tonga 
and Hunga Ha’apai on the northwestern portion of the massif 
(2). Surtseyan eruptions transitioned into violent, impulsive 
eruptions from 19 December 2021 as part of the most recent 
episode. The climactic 15 January eruption produced a broad 
range of atmospheric waves observed globally by numerous 
ground-based and spaceborne instrumentation systems, in-
cluding atmospheric pressure sensors, seismometers, hydro-
phones, Global Navigation Satellite System (GNSS) receivers, 
and weather satellites (Fig. 1A) (3). We highlight exceptional 
multi-technology observations of this extraordinary event in 
the modern digital record and provide initial interpretations 
of the atmospheric wave types generated and their propaga-
tion around the globe. 

The onset of the most recent eruptive episode is charac-
terized remotely by seismicity and co-eruptive infrasound on 
19 December 2021, preceded by seismic activity on 18 Decem-
ber 2021 (16:49:46 UTC, body-wave magnitude mb 4.0) (Fig. 
1B) (3). Eruptive activity continued until 4 January 2022, with 
decreasing infrasonic amplitudes at International Monitor-
ing System (IMS) infrasound station IS22 (1,848 km) and in-
termittent detections by IMS hydroacoustic stations. 
Powerful eruptive infrasound activity resumed on 13 January 
2022, with amplitudes ~10 times that of the December activ-
ity. Infrasound continued on 14 January accompanied by seis-
mic tremor (3) (fig. S2, A and B); infrasound amplitudes 
subsequently decreased while the number of hydroacoustic 
T-phase detections increased. Following brief relative quies-
cence, at least four IMS hydroacoustic (fig. S3), all 53 IMS 
infrasound, and numerous seismic stations detected the main 
climactic eruption on 15 January 2022 (04:14:45 UTC, mo-
ment-magnitude Mw 5.7–5.8, table S1). Regional infrasound, 
barometer, and volcanic plume observations suggest a com-
plex eruption sequence occurring between 04:00 and ~04:30, 
not just a single onset or explosion (Figs. 1A, 2E, and 3A). A 
last major eruption at ~08:31 UTC 15 January was detected 
by at least 20 IMS infrasound and two IMS hydroacoustic sta-
tions, after which the volcanic activity decreased. 

Atmospheric waves (4) are propagating mechanical per-
turbations in the atmospheric fluid. Nonlinearities in the 
propagation cause the spectrum to evolve (i.e., energy 

cascading), and may result in shock-wave formation and pe-
riod lengthening. Gravity waves are disturbances to the bal-
ance between buoyancy and gravity (frequency f ≲ 3 mHz); 
acoustic waves manifest as propagating compressions and 
rarefactions (f ≳ 4 mHz). These different physical mecha-
nisms lead to different propagation speeds. Acoustic-gravity 
waves (AGWs) are waves exhibiting both buoyant and com-
pressional motion (5), typically with mHz frequencies and 
long wavelengths (tens of kilometers) relative to density 
stratification scale heights (fig. S4). Lamb waves (6) are 
AGWs propagating along Earth’s surface, with group veloci-
ties near the mean sound speed of the lower atmosphere 
[~310 m/s for a 16 km scale height above Earth’s surface (7)]. 
Lamb waves are associated with the largest atmospheric ex-
plosions from volcanic eruptions (8) and nuclear tests (9) and 
have periods on the order of several to hundreds of minutes. 
Audible sound refers to higher frequency acoustic waves that 
can be heard by humans. Infrasound (10) refers to acoustic 
waves below the standard audio range. The crossover be-
tween audible and infrasound is often given as 20 Hz. 

Of the atmospheric waves produced by the climactic 
Hunga explosion, the most prominent is the Lamb wave  
(f ≲ 0.01 Hz), which propagates efficiently and is detected 
globally by numerous ground-based and spaceborne geophys-
ical instrumentation systems (Fig. 1A, fig. S5, and movies S1 
to S6). Despite the Lamb wave’s large amplitude, its wave-
form pressure increase as a function of time (rise-time) is rel-
atively slow and does not have characteristics of a shock 
wave. Over six days, we observed global propagation of at 
least four minor-arc Lamb wave passages (A1,3,5,7) and three 
(A2,4,6) major-arc (antipodal) passages (Figs. 1A, inset, and 
2, A and B, and fig. S6A). 

The number of Lamb wave passages observed for Hunga 
(4 + 3 antipodal) is approximately the same as observed for 
the 1883 Krakatau eruption (11, 12) (Fig. 2A). The exceptional 
spatiotemporal resolution of the evolving wavefield from 
2022 Hunga, in comparison to 1883 Krakatau, is a conse-
quence of more than a century of advances in instrumenta-
tion technology and global sensor density (Fig. 1A). 
Measurements of Lamb wave peak-to-peak pressure ampli-
tudes as a function of distance indicate that the atmospheric 
pressure pulse generated by the Hunga event is comparable 
to that of the 1883 Krakatau eruption (12) (Fig. 2F and fig. 
S8). However, the Krakatau Lamb pulse was approximately 
30% longer-duration than that of Hunga at comparable sta-
tions (Fig. 2A). Peak-to-peak pressure amplitudes from 
Hunga generally decreased logarithmically from 1,473 Pa (756 
km) with range (Fig. 2F and fig. S9). We infer that the notable 
scatter in amplitudes at distances >7,500 km is related to 
winds and wavefront focusing around the spherical Earth (3), 
as well as a potentially anisotropic source. The Hunga signal 
amplitudes are over an order of magnitude larger than those 
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generated by the 1980 Mount St. Helens eruption (13). 
Equivalent explosive yields for large volcanic eruptions 

have previously been estimated using pressure recordings, 
but quantitative comparisons with non-volcanic sources are 
problematic. During the 1950s–1960s atmospheric nuclear 
testing era, theoretical and empirical relationships were gen-
erated relating AGW amplitudes and periods to explosive 
yield (14, 15). We find that such relationships are inapplicable 
to the signals generated by Hunga, as they result in unphysi-
cally large equivalent yields (3) (fig. S10A). This difference is 
presumably because, for a given energy release, the long-du-
ration climactic eruption excites longer-period pressure dis-
turbances than the near-instantaneous nuclear reaction (fig. 
S10B). Hunga signals have peak-to-peak pressures compara-
ble to those produced by the largest historical atmospheric 
nuclear test (58 Mt, USSR, 1961) (16), but the dominant erup-
tion signal periods (1,700–2,500 s) are approximately four 
times longer than those of the anthropogenic explosion (400–
700 s) (17). 

The Hunga eruption pressure waves have complex wave-
form and spectral characteristics, likely related to both source 
and propagation. The Lamb wave is the largest-amplitude 
pressure wave arrival (Fig. 2B) (3). Near Hunga, the Lamb 
wave consists of at least two pulses and begins with a 7–10 
min pressure increase, followed by a second larger compres-
sion and subsequent long rarefaction phase (Figs. 1A and 2). 
This sequence is different from a single bipolar pulse typical 
of large anthropogenic explosions (18). The shallow-subma-
rine volcanic source presumably contributes to this waveform 
complexity (19). The Lamb wave period ranges between 0.3–
10 mHz (3,300–100 s) and the group velocity is ~315 m/s (3, 
20) (fig. S11). Each subsequent antipodal passage produces an 
observed 90° phase shift in the Lamb wave (21) (fig. S12). This 
90° phase shift is expected by comparison of the asymptotic 
forms of the equation for a traveling wave on the surface of a 
sphere from before the antipodal crossing to that from after 
crossing (21, 22). The Lamb wave is composed of several AGW 
modes, and the Hunga signals show distinct dispersion at 
higher frequencies (fig. S13), which was similarly noted for 
other large AGW signals (20). Some barometer observations 
also show the arrival of a lower velocity gravity wave (figs. S11 
and S14). 

The climactic Hunga eruption also produced remarkable 
long-range infrasound (f ~ 0.01–20 Hz), clearly detected at 
most IMS infrasound arrays (fig. S15) as well as numerous 
regional arrays and networks (3) (table S4 and figs. S16 to 
S21). Infrasound signals arrive after the Lamb wave; at most 
stations, the Lamb wave dominates below ~0.01 Hz, followed 
by broadband infrasound (Fig. 3). The IMS infrasound net-
work recorded at least two direct and two antipodal infra-
sonic wave arrivals from the main explosive event. At most of 
the infrasound stations, array processing indicates direct 

infrasonic arrivals for ~2 hours with group velocities between 
250 to 290 m/s (3) (fig. S15). Infrasound amplitudes following 
the first Lamb wave arrival A1 are on the order of several pas-
cals, and are observed to decrease with each global wave pas-
sage (Fig. 2F). Complex waveform interference effects are 
observed for stations near the source and the antipode, where 
the wavetrains of successive arrivals overlap (3). Prominent 
time evolution in signal back-azimuth and apparent velocity 
is observed at many infrasound arrays, especially at stations 
for which the propagation path crosses the circumpolar vor-
tex (3) (fig. S22). 

Accounts of audible sound (f > 20 Hz) were reported 
across Alaska as far as 10,000 km from Hunga [compared to 
~4,800 km for Krakatau 1883; (12)] and are verified by ~30 
min duration signals on higher-sample-rate low-frequency 
microphone stations (Fig. 3E). The audio signals arrive after 
the Lamb wave and at the end of the infrasound wavetrain, 
and consist of short-duration impulsive signals consistent 
with repeated “booms” reported by observers. Linear propa-
gation and attenuation models cannot explain the high-fre-
quency infrasound and audible sound at these extreme 
ranges, implying nonlinearity in generating the higher fre-
quencies along the propagation path (3, 13). Evidence of non-
linearity in Fig. 3E is two-fold. First, the high-frequency 
spectral slope during the “peak” time window approximates 
that of an ideal shock wave in its old-age (3) (but still nonlin-
ear) decay: f−2, followed by a faster exponential roll-off at fre-
quencies where atmospheric absorption dominates 
nonlinearity. Second, the impulsive events, when separated 
from the lower-frequency, higher-amplitude infrasound por-
tion by filtering (from 10 to 40 Hz), have coarsely sampled N-
wave shapes reminiscent of explosions or sonic booms. Dra-
matic increases in global population and advances in societal 
connectivity (e.g., internet vs. telegraph) presumably contrib-
ute to the enhanced reports of audibility at distances greater 
than those historically documented for Krakatau and other 
large events. 

Due to the extraordinary amplitude of the Lamb wave, it 
produced coupled signals at multi-technology stations (Fig. 
2E) (3). For example, in the Mediterranean, the Lamb wave 
produced signals on hydrophones at ~50 m water depth near 
Stromboli volcano, 17,740 km from Hunga (3) (fig. S17B). 

Seismometers worldwide recorded ground motions asso-
ciated with both pure seismic waves (figs. S2 and S23) and 
air-to-ground coupled atmospheric waves (Fig. 3 and figs. S24 
and S6B). We associate the most prominent seismic (P, S, and 
Rayleigh waves) and atmospheric arrivals (Fig. 2) with the 
main eruption at 04:14:45 UTC, which had a reported Mw 5.7–
5.8. Our observations of multiple overlapping seismic phases 
(Fig. 2D) suggest a longer-duration source process, with at 
least two discrete events and multiple phases. Additionally, 
seismic ground motions globally exhibit a marked spectral 
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peak at 3.7 mHz (Fig. 3D). We interpret this peak as Rayleigh-
wave propagation (corresponding to Earth normal mode 0S29) 
resulting from the coupling of fundamental acoustic mode 
oscillations of the atmosphere near the volcanic source into 
the solid Earth (3) (fig. S25). This solid Earth mode was also 
excited during the 1991 eruption of Mount Pinatubo (23); 
however, the seismic oscillations generated by the climactic 
2022 Hunga eruption are over an order of magnitude larger 
(3). 

Numerous additional Earth observation systems recorded 
the atmospheric waves from the climactic eruption. Data 
from neutral atmospheric radio occultations (ROs), satellite-
based radiometers, and dual-frequency GNSS receivers, in 
conjunction with data from ground-based infrasound sta-
tions and a DART (Deep-ocean Assessment and Reporting of 
Tsunamis) buoy (1,225 km), reveal strong seismo- and hydro-
atmospheric coupling in the aftermath of the eruption (Fig. 
4). The Lamb wave arrival time at IS-II (station CTAO, 3,997 
km) is consistent with that obtained using brightness tem-
perature differences measured by the Himawari-8 satellite (3) 
(fig. S5). At this time, an RO profile over Eastern Australia 
(RO-III, 3,781 km) clearly displays heightened gravity-wave 
activity in the stratosphere. In the hours after the eruption, 
ROs in the vicinity of Hunga (RO-I, 366 km, and RO-II, 453 
km) also reveal strong gravity wave activity in the strato-
sphere with temperature perturbations of ±4 K, four times 
the typical background activity. 

The atmospheric waves also propagated to the iono-
sphere, where 1 Hz data recorded in real-time by ground-
based GNSS stations can be converted to ionospheric total 
electron content (TEC). TEC data clearly demonstrate wave-
like structures of unprecedented magnitude traveling be-
tween ~320 and 1,000 m/s. TEC profiles (G-I and G-II) collo-
cated with infrasound stations IS-I (station MSVF, 756 km) 
and IS-II show the arrival of the Lamb wave in the ionosphere 
~24 min after it is recorded at the infrasound station (propa-
gating at an apparent vertical velocity of ~312 m/s for an as-
sumed ionospheric shell height of 450 km). Similar to the 
global barometer data (Fig. 2B), the Lamb wave was observed 
worldwide in TEC data. In addition, a DART buoy (B-I) and a 
nearby TEC record (G-III) north of Hunga record tsunami-
like waves generated by the atmospheric pulse [i.e., air-sea 
waves; (8)], one hour before the appearance of tsunami sig-
natures of direct volcanic origin (3) (fig. S26). 

Understanding these geophysical observations from the 
Hunga eruption requires accurate propagation modeling. 
However, simulating atmospheric wave propagation is chal-
lenging here for multiple reasons. (i) The complexity of the 
highly-energetic, shallow submarine, and multiphase erup-
tion is beyond existing capability for modeling the source and 
the subsequent repartition of energy among the different 
waves (3). (ii) The physical problem involves multiple scales. 

Indeed, observed atmospheric waves contain energy extend-
ing from the acoustic-gravity regime, including a strong 
Lamb wave, through the infrasonic range, and into audio fre-
quencies (Fig. 3). (iii) Atmospheric wave propagation is 
strongly nonlinear, which leads to energy cascading into 
higher frequencies even far from the event. For such ener-
getic events, wave propagation nonlinearities remain im-
portant far from the source. Considering (ii) and (iii) 
together, the challenge is due to the nonlinear energy cascad-
ing that couples these various regimes (acoustic-gravity, in-
frasound, audio) and requires modeling methods that 
account for that coupling. (iv) Finally, substantial temporal 
and spatial variations of atmospheric conditions along prop-
agation paths render a stratified atmospheric model inappro-
priate. Existing propagation algorithms [based, for instance, 
on the equations of fluid mechanics, the parabolic approxi-
mation of the wave equation, normal-mode summation, or 
ray tracing; (3)] are limited in their physics and computa-
tional feasibility (fig. S27). Nevertheless, preliminary simula-
tions (3) find notable departures of predicted propagation 
paths from great circle paths (fig. S28 and movie S7), which 
leads to direction-of-arrival deviations qualitatively in agree-
ment with observations (fig. S22 and table S5). 

The impacts of volcanic atmospheric waves are usually 
limited, but sometimes shock waves from strong volcanic ex-
plosions damage nearby infrastructure (24, 25). Atmospheric 
waves from the main Hunga eruption had far more extensive 
impacts. Unusual sea level changes or tsunamis were ob-
served in the Pacific earlier than predicted, and in the Carib-
bean and Mediterranean without direct ocean routes. We 
report observations of early sea level oscillations in the Pa-
cific (3). At coastal tide gauges, the tsunami onset time coin-
cides approximately with the Lamb wave arrival (2 hPa 
pulse); the tsunami onset is unclear, but wave amplitudes 
gradually increase over 2–4 hours to >1 m in some locations. 
In contrast, deep-sea tsunamimeters record a clear leading 5 
hPa pressure pulse, more than double that of the air-pressure 
pulse (3) (figs. S29 and S30). Air-sea coupling (8, 26) likely 
caused these exceptional observations, and should be consid-
ered in future scenarios for tsunami early-warning systems. 

Geophysical records of the January 2022 Hunga eruption 
represent an unparalleled global dataset of atmospheric wave 
generation and propagation, providing an opportunity for 
multi-technology observation, modeling, and validation un-
precedented in the modern record. The datasets highlighted 
here are not exhaustive; there is outstanding potential for 
augmenting details of the global wavefield capture through 
incorporating numerous additional interdisciplinary da-
tasets, including citizen-science data (27, 28). The January 
2022 Hunga eruption presents an extraordinary opportunity 
to advance understanding of rarely captured physical phe-
nomena, including global Lamb wave propagation, 
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atmospheric free-oscillations coupling with the solid Earth, 
nonlinear energy cascading in atmospheric wave propaga-
tion, excitation of infrasound and audible sound at global dis-
tances, air-sea waves, and many others. 
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Fig. 1. Global distribution of recording geophysical sensors used in this study and 
remotely-observed eruption chronology. (A) Sensor map. Background image is brightness 
temperature difference (Himawari-8) at 07:10 UTC on 15 January 2022. Selected four-hour 
pressure waveforms are filtered 10,000–100 s. GNSS, Global Navigation Satellite System; 
RO, radio occultation; DART, Deep-ocean Assessment and Reporting of Tsunamis. Upper-
right inset shows Hunga wave paths around Earth. (B) Hunga activity, December 2021 
through January 2022, observed at IMS hydrophone, seismic, and infrasound stations (REB, 
Reviewed Event Bulletin); Hunga detections from nearest IMS infrasound array IS22 (1,848 
km). Frequency responses for atmospheric pressure sensors used in this study are 
displayed in fig. S1. 
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Fig. 2. Ground-based observations. (A) Lamb wave arrival times for 2022 Hunga (black) 
compared to 1883 Krakatau (blue); inset: Lamb A1 arrival waveform comparison (3). Global 
record sections of (B) barometer, (C) infrasound, and (D) seismic data showing the multiple 
arrivals and wave passages (see Fig. 1A inset); waveforms aggregated by radial distance  
(fig. S7). A separate Rayleigh R1 is associated with the later ~08:31 event. (E) Colocated 
microbarometer (black), infrasound sensor (blue), and seismometer (orange) waveforms; 
lower panel shows inverted displacement envelope. (F) Wideband peak-to-peak pressure 
versus distance comparing 2022 Hunga with large historical explosive events (table S2). 
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Fig. 3. Seismoacoustic spectral properties. Colocated wideband (A) pressure and  
(B) seismic spectrograms (top) and unfiltered waveforms (bottom). (C and D) Power 
spectral densities and seismoacoustic coherences worldwide show that pressure waves 
couple to the solid Earth through both (i) direct conversion as the Lamb wave passes the 
station and (ii) near-source excitation of atmospheric acoustic modes. (E) Alaska infrasound 
stations recorded audio range signals at great distances, apparent in the spectra (top) and 
as intermittent transients with shock-like features (middle and bottom panels). (F) Observed 
wideband pressure spectral character of Hunga compared to published instrumental 
observations of previous events (table S3). 
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Fig. 4. Seismo- and hydro-atmospheric coupling from Earth’s surface to space.  
(A) Brightness temperature variations in Himawari-8 data showing waves emanating from 
the Hunga eruption site. (B) Map of the inset in (A) with measurement locations in this figure. 
Ionospheric pierce point arcs (see supplementary materials section 14) are shown in green 
for the Lamb wave arrival for links G-I and G-II, and from 04:00 to 12:00 UTC for link G-III.  
(C) Infrasound (stations IS-I, IS-II) and TEC (GNSS links G-I and G-II) waveforms showing 
Lamb wave arrival; all signals high-pass filtered with 0.278 mHz (corresponding to 1-hour 
period) cutoff. (D) RO-I and RO-II at 06:50 UTC and 10:00 UTC showing strong coherent 
gravity wave activity several hours after the eruption; RO-III at 07:42 UTC also exhibits large 
gravity waves coincident with Himawari-8 data (A). (E) Hodochron plot of TEC records 
showing long-distance ionospheric wave propagation following the eruption. Features I and 
II are the first arrivals with different apparent wave velocities (551–1,333 m/s) due to the 
near-field wavefront curvature. Feature III, identified over 6,000 km from the eruption, 
propagates at 478 m/s and is more likely linked to long-period gravity waves. (F) Buoy B-I 
data compared to TEC data from an adjacent GNSS link (G-III) showing efficient air-sea-air 
coupling across a broad frequency spectrum (3). 
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