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Introduction
Copy number variants (CNVs) are chromosomal aberrations 
that result in an abnormal number of copies of specific 
DNA segments in comparison with a reference genome. 
Studies have reported that as much as 12% of the human 
genome varies in copy number.1 It is believed that some 
CNVs have no obvious phenotypic consequence or are 
merely related to normal phenotypic variations, while oth-
ers may be related to genomic disorders and susceptibil-
ity to disease. For example, the amplification of a DNA 
segment in a gene that promotes cell replication may cause 
the cell to begin dividing excessively, as usually happens in  
cancer cells.

The challenge of detecting CNVs has received a lot of 
attention, and several methods have been developed to infer 
CNVs from high-throughput array-based technologies, such 
as comparative genomic hybridization (CGH) and single 
nucleotide polymorphism arrays. These methods mostly rely 
on hidden Markov models (HMMs)2,3 and circular binary 
segmentation.4 Another question of interest is the identifica-
tion of CNVs associated with biological functions and complex 
human diseases. Procedures commonly used include uni-
variate tests or simple linear regression models, with multiple 
testing correction, to relate the normalized intensity measure-
ments to the outcomes of interest.3,5 A stochastic partitioning 
method for a multivariate model has been recently developed.6 
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The model identifies sets of correlated gene expression levels 
and sets of chromosomal aberrations that jointly affect mRNA 
transcript abundances. A disadvantage of all such methods is 
that they do not infer copy number states. Indeed, the high 
noise level in the raw signal intensities may lead to the identifi-
cation of a large number of false positives (FPs).7 An approach 
widely used to address this problem is to perform the analysis 
in two steps, first by estimating the copy number states and 
then using those as the true states in a subsequent associa-
tion analysis. However, using the estimated copy numbers as 
if they were the true states ignores the uncertainty in the esti-
mation process and can introduce bias. Some methods that 
incorporate the uncertainty in copy number estimation into 
the association analysis have been proposed.8,9

Here, we consider a Bayesian hierarchical model that han-
dles CNV detection and association analysis in a unified manner, 
by integrating array CGH and gene expression data collected 
on the same set of subjects. The framework takes advantage of 
a recently proposed measurement error model10 that relates the 
gene expression levels to latent copy number states. In turn, the 
latent states are related to the observed surrogate CGH measure-
ments via an HMM. The model incorporates a variable selection 
procedure with a prior distribution on the latent selection indica-
tor that exploits dependencies across adjacent DNA segments. 
In this study, we investigate an alternative formulation of the 
spatially dependent variable selection prior, that is the basis of 
the measurement error model in Ref. 10, and show that it allows 
for increased flexibility, remarkably easy interpretation of the 
key parameters and major performance improvements. More 
specifically, the selection prior that we propose herein is based 
on a latent probit link; therefore, it can easily accommodate 
additional available covariate information to improve detection 
of significant associations. Model fitting and posterior inference 
are accomplished via Markov chain Monte Carlo (MCMC) sto-
chastic search techniques. We explore the performance of this 
model in simulations and demonstrate an overall better perfor-
mance of the model with the newly proposed prior. We also show 
an application to data from a genomic study on lung squamous 
cell carcinoma, where we identify potential candidates of asso-
ciations between CNVs and the transcriptional activity of target 
genes. GO analyses of our findings reveal enrichments in genes 
that code for proteins involved in cancer.

The rest of the article is organized as follows: in Section 2, 
we introduce the integrative Bayesian model and its major 
components. In Section 3, we report the results from a simula-
tion study and the case study. We conclude with some remarks 
in Section 4.

Methods
This section is organized as follows. In Section 2.1, we review 
the integrative framework that we follow in the manuscript. In 
Section 2.2, we introduce an improved prior model for gene–
CGH associations, and in Section 2.3, we describe the model 
for analyzing copy number aberrations.

Integrative bayesian hierarchical model. A Bayesian 
hierarchical model that integrates gene expression levels with 
CNVs has been recently proposed.10 The model provides a 
unified approach for simultaneously inferring copy number 
states for all samples and identifying associations between 
sets of gene expression levels and copy number states. Let  
Yig denote the expression measurement for gene g (g = 1,…, G) 
and Xim the observed CGH measurement, ie, the normalized 
log2 intensity ratio, for the mth CGH probe (m = 1,…, M), in 
sample i (i = 1,…, n). Let Z = [y, X] indicate the matrix of all 
data. In our integrative framework, the observed CGH intensi-
ties, Xim, are treated as surrogates for the unobserved copy num-
ber states, and an HMM accounts for the measurement error in 
the observed intensities. Let ξ = [ξ1,…, ξ

m
] be the matrix of the 

latent copy number states. We assume that the CGH probes are 
ordered according to their chromosomal location and that the 
elements of the matrix ξ take any of the four possible values,

ξim = 1 for copy number losses;
ξim = 2 for copy neutral states;
ξim = 3 for a single copy gain;
ξim = 4 for multiple copy gains.

We assume that, given the latent states, the observed 
CGH measurements contain no additional information on 
the observed gene expression levels. Furthermore, we assume 
independence of the gene expression measurements, condi-
tional on the copy number states, and independence of the 
CGHs, given their latent states. Hence, we factorize the like-
lihood into two components as

 
( ) ( )

1 1 1
ξ ξ ξ

= = =

  =  
  

∏ ∏ ∏( | ) | |
n G M

ig i im im
i g m

f f Y f XZ  (1)

where one component captures the latent structure underly-
ing the CGH intensities and the other component models the 
association between the resulting copy number states and the 
gene expression levels. Such joint modeling reduces the bias 
that arises when the uncertainty in the CNV estimation pro-
cess is ignored (ie, copy number calls are used as if they were 
the true states), by allowing for the simultaneous inference of 
CNVs and their association with gene expression.10

Modeling the association between gene expression and 
cNVs. The model on y in the likelihood factorization (1) cap-
tures the association between the gene expression levels and 
the latent CNV states. A commonly used modeling approach 
assumes a linear regression model of the type

 
Yig g i g ig= + +µ ξ β ε  (2)

where µ1,…, µG are gene-specific intercepts, and 20~ ( , ),ig gNε σ  
with σ g

2 being the gene-specific variance.6,10,11

In model (2), we find, for each gene, a parsimonious set 
of CGH aberrations that most likely affect the gene expression 
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levels. This can be seen as a variable selection problem. Let r be 
a binary matrix representing the associations, that is rgm is set to 
1, if βgm in equation (2) is significantly different than zero, and 
is set to 0 otherwise. A common Bayesian approach to variable 
selection employs rgm to define a spike-and-slab prior on βgm,

 ( ) ( ) ( ) ( )2 1 2
00 1| , ,gm gm g gm g gm gmr r N c rβπ β σ σ δ β−= + −  (3)

with δ0(⋅) being a point mass at zero.12–15 The prior model is 
completed with conjugate distributions on the error precision, 

2

2 2
~ , ,g

dG δ
σ −  

  
 and on the intercepts, ( )2 20 µµ σ σ| ~ , ,g g gN c  

with δ, d, cµ, and cβ being hyperparameters to be set.
A key feature in the variable selection construction above 

is the prior distribution on the latent selection indicator rgm 
in (3). A mixture of an independent prior, ie, a Bernoulli 
prior, and a dependent component accounting for depen-
dence between adjacent DNA segments has been proposed.10 
Here, we propose a spatially informed distribution based on 
a probit link. Contiguous regions with the same non-neutral 
copy number state are likely to correspond to the same DNA 
aberration and therefore to jointly affect the expression level 
of a gene. Accordingly, a spatial prior formulation explicitly 
assumes that the probability of selection at location m depends 
on the copy number states and on the selection status of its 
adjacent probes at positions {m – 1, m + 1}. A way of achieving 
this is to first define a probe-specific quantity that captures 
information on the physical distance among probes and on the 
frequency of change points at position m in copy number states 
across all samples as
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with dm being the distance between the adjacent probes 
{m – 1, m} and D the total length of the DNA fragment (eg, the  
length of the chromosome) under consideration. Comparable 
measures of similarity that incorporate physical distances 
between probes have been reported in the literature on copy 
number detection.3,16 In this study, we propose to model the 
probability that the mth probe is associated with the gth gene 
through a latent spatial probit regression. More specifically, 
we assume

 ( ) ( )1 1 0 11 1( ) ( )| , ,gm g m g m mr r r Qπ ξ α α− += = − Φ +  (4)

where Φ indicates the c.d.f. of a standard normal distribu-
tion, and Qm defines a probe-level covariate that quantifies the 
available information as

 Q s sm
r

m m
r

m m
g m g m= − + −− +

− +( ) ( )( ) ( )
( ) ( )1 11 1

1 1  (5)

with α0 and α1 being hyperparameters to be set. From equa-
tions (4) and (5), some major features of the novel prior can be 

recognized. First of all, the probability of selection at location 
m depends on the adjacent probes at positions {m – 1, m + 1}. 
In particular, the probability can either increase or decrease 
based on the selection status of the adjacent probes, that is, 
whether they are included or excluded from the model. Fur-
thermore, the amount of increase or decrease depends on the 
relative distance between probes as well as the frequency of 
change points observed at each location. For comparison, it is 
worth noting that the probability of selection in Ref. 10 can 
only increase when either rg(m–1) or rg(m+1) is selected. Due to 
the different weighting we propose, our model ensures better 
false discovery control. In addition, CNVs located in regions 
of persistent states of aberration are more likely to be jointly 
associated with the expression levels of a gene, and this effect 
is more likely with increased proximity of the CGH probes. 
Within the literature on Bayesian variable selection in linear 
regression models, interest is being shown to probit-like priors 
of type (4) as a convenient way to incorporate external infor-
mation to guide the selection of the predictors.17 The advan-
tage of this novel formulation lies also in the interpretability of 
the parameters. The parameter α0 represents a baseline inter-
cept that can be directly set according to an a priori speci-
fied “level of significance” when there are no other covariates. 
For example, setting α0 = 3 and lacking any other covariate 
information, the probability of selection is 0.001 under the 
null distribution of no association (type 1 error). Similarly, 
α1 is immediately interpretable as the regression coefficient 
that captures the strength of the association between adjacent 
probes. Also as consequence, the probe-specific quantity s(m–1)m  
has a more direct effect on the probability of selection at loca-
tion m. In particular, if s(m–1)m = sm(m+1) = 0, prior (4) conve-
niently reduces to 1 – Φ(α0), which is a Bernoulli distribution 
that is commonly used in Bayesian variable selection. Finally, 
the use of a spatial probit regression allows for the possibility 
of including further covariate information, if available, which 
can potentially drive the selection of relevant associations, eg, 
type of cancer, disease stage, probe methylation status, etc. 
The flexibility and ease of interpretation of the prior (4) and 
(5) result in simpler prior elicitation as well as improved per-
formance with respect to those of previous proposals, eg,10 as 
shown in Section 3.

Modeling copy number aberrations in cGH data via 
HMM. The model on the CGH data in (1) is defined in terms 
of the emission probabilities of an underlying HMM. This 
choice is supported by the typically persistent state observed in 
copy number data, meaning that copy number losses or gains 
at a region are often associated with an increased probabil-
ity of gains and losses at neighboring regions.3,18–20 We use a 
four-state HMM and assume that, conditional on the latent 
states, the CGH intensities are independent and normally dis-
tributed, with state-specific means and variances as

 ( ) ( )2| ,iid
im im j jX j Nξ η σ= ∼  (6)

http://www.la-press.com


Cassese et al

32 CanCer InformatICs 2014:13(s2)

where ηj and σ j
2, respectively, represent the expected log2 ratio 

and the variance for CGH probes in state j ( j = 1,…, 4).19 
We assume truncated normal and gamma priors for ηj and σ j

2 , 
respectively. A first-order Markov model captures the depen-
dence between states in adjacent probes as

 ( ) ( )
11 1 1 ξ ξξ ξ ξ ξ ξ

++ += =…
( )( ) ( )| , , |

im i mi m i im i m imP P a

with A = (ahj) being the matrix of transition probabilities with 
strictly positive elements (h, j = 1,…, 4) and stationary distri-
bution, πA. The initial state probabilities are also assumed to 
be given by π

a
. We assume that the rows of A are independent, 

each following a Dirichlet distribution, π
a
 ∼ Dir(a1, a2, a3, a4), 

for some aj . 0, j = 1,…, 4.
Posterior inference. For posterior inference, we rely on 

an MCMC stochastic search algorithm.10 Our primary inter-
est lies in the estimation of the association matrix r and the 
matrix of copy number states ξ. Therefore, the remaining 
model parameters can be integrated out, both to simplify the 
sampler and improve the mixing of the chain.13,14,21 Here, in 
particular, once we integrate out µg, βg, and σ g

2, an MCMC 
algorithm can be designed as follows:

1. Update r using a Metropolis algorithm by randomly 
selecting ng genes and proposing, for each gene, a change 
in its inclusion status by an add/delete/swap move.

2. Update ξ using a Metropolis–Hastings algorithm by ran-
domly choosing a column and proposing new states for 
a subset of its elements using the current values of the 
transition matrix.

3. Update the emission distribution parameters, ηj and σ j
2, 

using Gibbs sampling.
4. Update the transition probability matrix, A, using a 

Metropolis algorithm.

Metropolis–Hastings stochastic search algorithms of this 
type have been used extensively in the Bayesian variable selec-
tion literature.10–15 The update on r can be made more efficient 
by selecting at random a subset of the rows and then perform-
ing an add/delete or swap move for every row in the subset. 
Also, for the update on ξ, CGH probes called in copy-neutral 
states in more than n × pC samples at the current MCMC 
iteration (with pC set by the user) can be disregarded, since 
these would not be expected to be associated with changes in 
mRNA transcript abundance.

Given the output of the MCMC, for each element of R,  
we can estimate its marginal posterior probability of inclu-
sion (PPI), p(rgm = 1|data), by averaging the number of itera-
tions where the element was set to 1. We can then select 
the most relevant associations by thresholding the PPIs 
based on some decision theoretic criterion. Finally, we can 
estimate each element of ξ as the modal state across the 
MCMC iterations.

Applications
simulation study. In this section, we assess the 

performance of our model on simulated data. For comparison 
purposes, we follow the simulation scheme in Ref. 10, which 
reflects the understanding that single copy number aberrations 
typically affect segments of DNA, and that neighboring chro-
mosomal locations are expected to share similar copy number 
states. In addition, transitions to the normal diploid state are 
more likely than transitions between different states of copy 
number aberration. Accordingly,

•	 we set M = 1000, G = 100, and n = 100;
•	 we initialize the matrix ξ with all elements set to 2;
•	 we select L , M columns at random in batches of adja-

cent columns and generate their values using the follow-
ing transition matrix,

 

0 7500 0 1800 0 0500 0 020

0 4955 0 0020 0 4955 0 007

0 0200 0 1800

. . . .

. . . .

. . 00 7000 0 010

0 0001 0 3028 0 1000 0 597

. .

. . . .























•	 we randomly select half of the remaining columns and, 
for each column, generate 10% of its positions according 
to the above transition matrix;

•	 we generate the elements of matrix X according to (6), 
fixing η1 = –0.65, η2 = 0, η3 = 0.65, η4 = 1.5 and σ1 = 0.1, 
σ2 = 0.1, σ3 = 0.1, σ4 = 0.2;

•	 we obtain the matrix of true associations, r, by select-
ing two clusters of 20 adjacent CGH probes among the  
L columns previously selected from X, and fix the cor-
responding values in R at 1. All other elements of R are 
set to 0;

•	 we generate the non-zero regression coefficients as β ∼ 
N(0.5, 32);

•	 finally, we generate the gene expression levels as Yig = 
µg + ξiβg + εig, with µg ∼ N(0, 0.12) and 20~ ( , )ig N εε σ . 
We consider two different settings for the random error 
standard deviation: σε = {0.1, 0.5}.

For setting the hyperparameters, we follow the general 
guidelines in similar regression models for the specification of 
the priors on the parameters µg, βg, and σ g

2 and on the HMM 
parameters ηj, σj, and aj.13,14,19 For the hyperparameters of the 
probit prior (4), we set α0 = 3, which is equivalent to a prior 
probability of selecting 0.001 when α1 = 0, and then perform 
a sensitivity analysis on the choice of α1. More specifically, we 
consider values of α1 in the set {0, 0.5, 1, 1.5, 2}. The results we 
report were obtained by running MCMC chains with 1,000,000 
iterations and a burn-in of 500,000. Using a dual-core Intel® 
Xeon® processor with 16 GB of memory, 2.2 GHz, our code 
takes approximately 2 minutes to run 10,000 iterations.
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We begin the analysis of the simulation results by 
focusing on the inference on r. We compute an estimate of 
the Bayesian false discovery rate (FDRb) and use a threshold 
on the PPIs that controls the false discovery rate at the 0.05 
level.22 In Table 1, we report the results in terms of specificity, 
sensitivity, FP counts, and false negative (FN) counts. Sensi-
tivity is defined as the ratio of true positive (TP) counts over 
the total number of true connections, and specificity is defined 
as the ratio of true negative (TN) counts over the number of 
true missing connections. We also report the realized Bayes-
ian q value, defined as min1–PPI#k FDRB(k), and the Matthew 
correlation coefficient (MCC), calculated as

     
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× + ×
+ + + +( )( )( )( )

.

The results show that values of α1 in the range [1, 1.5] 
lead to excellent performances, compared with both the 
independent prior (ie, α1 = 0) and higher values of α1, partic-
ularly for the larger σε value. Overall, our results are consis-
tently better than those obtained with competing models.10 
This can be seen by the low number of FP detections for 
most of the parameter values in the range considered. Also, 
for some values of α1, our prior (4) and (5) achieves perfect 
classification, with specificity and sensitivity equal to 1. To 
investigate the effect of the threshold on the PPIs on the 
selection results, in Figure 1, we report receiver operating 
characteristic (ROC)-type curves that display the FP counts 
versus the FN counts, calculated at a grid of equispaced 
thresholds in the interval [0.07, 1]. The plots clearly show 
that our results are satisfactory across different thresholds. 

They also highlight the consistently worse performance of 
the independent prior.

As for the inference on ξ, Table 2 reports the misclassifi-
cation counts and corresponding percent rates obtained by con-
sidering, for each element of ξ, the modal state attained at that 
genomic location over all MCMC iterations (after burn-in).  
The performances are consistently good. For the case of 
α1 = 0 and σε = 0.1, our estimated means and standard devia-
tions were 0 65151 0 00017 0 65128 1 49925ˆ [ . , . , . , . ]η = −  and 

0 10180 0 09974 0 10050 0 20896ˆ [ . , . , . , . ]σ = , respectively, which 
are consistent with the values used to simulate the data. We 
obtained similar estimates in all the other cases.

Lung cancer study. We applied our Bayesian model to 
data from a study of lung squamous cell carcinoma, which we 
obtained from The Cancer Genome Atlas data portal (https://
tcga-data.nci.nih.gov/tcga/). We used the level 2 (normal-
ized signals) Agilent 415K array as the CGH data, and the 
Affymetrix HG-U133A array as the gene expression levels. 
We performed our analysis on the 131 samples that were 
available for both data types. We considered CGH probes 
belonging to chromosome 3, as it has been highly implicated 
in lung squamous cell carcinoma.23,24 We further reduced the 
complexity of the data by filtering out genes and CGH probes 
that had a relatively small coefficient of variation (smaller than 
1.9 and 0.35, in absolute value, for genes and CGH probes, 
respectively). The resulting data consisted of G = 133 genes 
and M = 2,133 CGH probes.

We ran our model using a setting similar to that adopted 
in the simulated example described in Section 3.1. The 
results we report below were obtained by setting α1 = 1 and 
α0 = 2.32 and by running the MCMC sampler with 500,000 
iterations and a burn-in of 250,000. Figure 2 shows a heat-
map of the highest PPIs of gene–CNV associations corre-
sponding to the elements of the association matrix r with a 
PPI larger than 0.1. As expected, despite the large number 
of potential associations being investigated, few have rela-
tively large PPIs. Figure 3 shows the estimated frequencies 
of copy number gains and losses for each of the 2,133 CGH 
probes considered in our analysis, as is commonly done in the  
literature.25–29 In the figure, single and multiple copy gains 
are considered together as copy number amplifications. The 
estimates of the state-specific means and variances were 
close to their theoretical values (results not shown). Based 
on Figure 3, we can identify 67 probes with high-frequency 
(.45%) amplification and 23 probes with high-frequency 
(.25%) deletion. Among the identified probes, there are 
36 and 13 annotated genes for amplification and deletion, 
respectively. Interestingly, one of those genes (DVL3) shows 
both high-frequency deletion and amplification, and has 
been recently found to be involved in lung squamous cell 
carcinoma.30 Other genes detected by our method have been 
implicated in lung cancer, for example, EPHA6, CENTB2, 
and ZNF717 for high-frequency amplification, and PLD1 
and ATP2C1 for high-frequency deletion.31–34

Table 1. Simulated data: Results on specificity, sensitivity, number 
of false positives and false negatives, MCC, Bayesian q values, and 
number of detections obtained for an FDR threshold of 0.05.

σε = 0.1

α1 VALUE α1 = 0 α1 = 0.5 α1 = 1 α1 = 1.5 α1 = 2

Specificity 0.99999 1 1 0.99998 0.99992

Sensitivity 0.85 0.95 1 0.95 1

FP/FN 1/3 0/1 0/0 2/1 8/0

mCC 0.89596 0.97467 1 0.92709 0.84512

q-value 0.03624 0.01830 0.04425 0.02619 0.04445

# of detections 18 19 20 21 28

σε = 0.5

α1 VALUE α1 = 0 αl = 0.5 αl = 1 αl = 1.5 αl = 2

Specificity 0.99998 0.99999 0.99999 1 0.99992

Sensitivity 0.6 0.7 0.95 1 1

FP/FN 2/8 1/6 1/1 0/0 8/0

mCC 0.71709 0.80826 0.94999 1 0.84512

q-value 0.03198 0.04553 0.03101 0.02579 0.04444

# of detections 14 15 20 20 28
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Our findings identify potential candidates of associations 
between CNVs and the transcriptional activity of target 
genes. In order to assess whether the identified associations 
have biological relevance, we performed GO analyses on the 
lists of selected target genes and CGH probes, by using the 
database for annotation visualization and integrated discovery 
(DAVID) tool.35 We report the detailed results of the analy-
ses in the Supplementary Material. Figure 4 shows some of 
the results from the enrichment analysis of the list of selected 
target genes. More specifically, the upper box of the figure 
(labeled mRNA) reports the four most relevant molecular 
functions, together with the corresponding lists of target 
genes. In the lower box (labeled DNA), we report the lists 
of CGH probes that our model found to be associated with 
the target genes. The estimated associations between target 
genes and CNVs are marked by solid lines; whereas probes 
appearing in multiple lists are indicated by dashed lines. In 
Figure 5, we report similar summaries from the gene enrich-
ment analysis of the selected CGH probes. Specifically, in this 
figure, the upper box shows the molecular functions enriched 
in the list of CGH probes, and the lower box reports the list 
of target genes that our model found to be associated with the 
CGH probes.

The results from the GO analyses highlight the enrich-
ment of genes that code for proteins with binding function, 
cell surface binding, or an extracellular matrix constituent in 
the selected target genes (Fig. 4), and the enrichment of genes 

that code for proteins in the signal transduction machinery, 
mainly with kinase activity, in the selected CGH probes 
(Fig. 5). In both cases, we identified genes as members of 
the ephrin family or NTRK, which have been shown to be 
altered in another study on lung adenocarcinoma.36 Ephrin 
receptors have been shown to have an important role in tumor 
growth and progression in many cancers, including lung 
carcinoma.37 Another relevant protein from the GO analyses 
is PIK3CB, phosphatidylinositol-4,5-bisphosphate 3-kinase. 
The PI3K/AKT1 pathway has been shown to be altered in 
many cancer types, and often correlates with a more aggres-
sive form of disease.38–41 We also found proteins of the matrix 
metalloproteinase family, which are often involved in the 
induction and promotion of cancer cell migration (MMP10 
and ADAM23).42,43 Combining this observation with the 
finding of alterations in genes that code for members of the 
fibrinogen family (FGA, FGB, and FGG), and in genes that 
code for proteins with surface- and matrix-binding properties, 
we may hypothesize a dysregulation of pathways involved in 
the acquisition of a migratory phenotype. Extracellular matrix 
remodeling plays an important role in cancer progression since 
it can facilitate the migration and invasion of tumor cells. The 
genes we found to be altered may play an important role in this 
context. Such a hypothesis is interesting, but will require fur-
ther experimental investigation. Similar findings exist in the 
general literature on lung cancer in both human and mouse 
studies.44–49 Finally, many of the genes we identified have 
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figure 1. Simulated data: The false positive (FP) and false negative (FN) counts obtained by considering different thresholds on the marginal 
probabilities, for (A) σε = 0.1 and (B) σε = 0.5. Threshold values are calculated as a grid of equispaced points in the range [0.07, 1].

Table 2. Simulated data: Results on ξ as the number of misclassified copy number states for various values of α1.

# MISCLASSIfICATIoNS  
(PERCENT)

α1 = 0 α1 = 0.5 α1 = 1 α1 = 1.5 α1 = 2

Scenario with σε = 0.1 60 (0.06%) 55 (0.055%) 62 (0.062%) 53 (0.053%) 56 (0.056%)

Scenario with σε = 0.5 48 (0.048%) 54 (0.054%) 51 (0.051%) 49 (0.049%) 52 (0.052%)
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flexibility, which has been shown to result in easy interpre-
table model parameters for the purpose of prior elicitation, as 
well as improved performances and false discovery control on 
simulated data. Our HMM model considers four copy num-
ber aberration states, as commonly encountered in the litera-
ture.19,55,56 Once the HMM states are appropriately defined, 
our model can easily accommodate an additional state for the 
loss of both copies.3,18

We have presented an application to data from a genomic 
study on lung squamous cell carcinoma. Our model has iden-
tified potential candidates of associations between CNVs  
and the transcriptional activity of target genes. We have 
assessed the biological relevance of our findings through GO 
analyses. These have revealed enrichments in genes that code 
for proteins involved in cancer, such as those of the ephrin 
family, phosphatidylinositol-4,5-bisphosphate 3-kinase and 
matrix metalloproteinase family. Among these, some are 
already known to be involved in lung squamous cell carci-
noma, while others are interesting potential candidates for 
further experimental validation.

The approach we present can be extended to the analy-
sis of RNA-Seq gene expression values. In order to appro-
priately take into account the nature of such data, the priors 
and the algorithm for posterior inference will need to be 
modified to accommodate the count data and a Poisson 
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figure 2. Case study: Heatmap of the highest PPIs of gene–CNV 
associations, selected by looking at the elements of the association 
matrix R that have a PPI greater than 0.1.
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figure 3. Case study: Frequencies of estimated gains and losses among 
the 131 samples for the 2,133 CGH probes considered in our analysis. 
Red horizontal lines correspond to the 0.25 and 0.45 thresholds on the 
frequencies of deletion and amplification, respectively.

figure 4. Case study: Schematic representation of a GO analysis of 
the target genes identified by our model, via thresholding the posterior 
probabilities of inclusion. The upper box (labeled mRNA) shows the four 
most enriched molecular functions together with the corresponding lists 
of target genes. The lower box (labeled DNA) reports the lists of CGH 
probes that our model found to be associated with the target genes. 
Notes: The solid connecting lines (           ) indicate estimated 
associations between target genes and CNVs; dashed lines (– – –) 
indicate probes that appear in multiple lists.

been reported in the literature on lung cancer, for example 
ASCL1, HLA-DQA1, and PROM1 among the gene expres-
sion probes, and EPAH3, PRKCI, and EPHB1 among the 
identified CGH probes.36,50–54

conclusions
In this study, we have considered a recently developed Bayesian 
hierarchical framework for the integration of gene expression 
levels with CGH array measurements, collected on the same 
subjects. The proposed measurement error model relates the 
gene expression levels to latent copy number states which, in 
turn, are related to the observed surrogate CGH measure-
ments via an HMM. We have investigated an alternative 
formulation of the spatial variable selection prior for the gene–
CGH associations. Our prior exploits dependencies across 
adjacent DNA segments and allows for increased modeling 
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regression model. This represents an interesting avenue for 
future work.
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