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A B S T R A C T

The event runoff coefficient (i.e. the ratio between event runoff and precipitation that originated the runoff) is a
key factor for understanding basin response to precipitation events. Runoff coefficient depends on precipitation
intensity and duration but also on specific basin geohydrology attributes (including soil type, geology, land
cover, topography) and last but not least, antecedent (or pre-storm) conditions (i.e., the amount of water
stored in the different hydrological compartments, like the river, groundwater, soil and snowpack). The relation
between runoff coefficient and basin pre-storm conditions is critical for flood forecasting, yet, the understanding
of where, when and how much basin pre-storm conditions control runoff coefficients is still an open question.

Here, we tested the control of basin pre-storm conditions on runoff coefficient for 60620 flood events
across 284 basins in Europe. To do so, we derived basin pre-storm conditions from different proxies, namely:
antecedent precipitation; surface and root zone soil moisture from hydrological models, reanalyses and land
surface models also ingesting satellite observations; pre-storm river discharge, and pre-storm total water storage
anomalies. We evaluated the coupling strength between runoff coefficient and pre-storm conditions proxies in
relation to five classes of European basins, defined based on land use and soil type (as indexed by the Soil
Conservation Service curve number CN), topography, hydrology and long-term climate and tested their ability
to explain stormflow volume variability.

We found that precipitation explains relatively well the stormflow volumes for both small and large events
but not very well the peak discharge, especially for large floods. The runoff coefficient of events shows different
distributions for the five different classes and correlates well with deep soil storages (such as root-zone soil
moisture and pre-storm total water storage anomalies), pre-storm river discharge, and pre-storm snow water
equivalent. Overall, these correlations depend on the class. Poor correlations are found against antecedent
precipitation index despite its wide use in the hydrological community. Seasonal and interannual climate
variability exert a key role on the coupling strength between runoff coefficient and pre-storm conditions by
inducing sharp changes in the correlation with season and climate.

These results increase our understanding of the coupling between pre-storm conditions and runoff coeffi-
cients. This will aid flood forecasting, hydrological and land surface model calibration, and data assimilation.
Furthermore, these findings can help us to better interpret future flood projections in Europe based on expected
changes in long and short-term climatic drivers.
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1. Introduction

In addition to its exceptional total rainfall, the devastating flood that
impacted Germany, Belgium, Luxembourg and other neighboring coun-
tries in July 2021 and Emilia Romagna (Italy) in 2023 was amplified
by abundant precipitation during the weeks preceding the event. This
brought the pre-storm soil moisture conditions of the affected basins
very close to saturation, and actively contributed to the extreme river
discharges and flood volume observed at many sites (https://www.
eumetsat.int/devastating-floods-western-europe, https://en.wikipedia.
org/wiki/2023_Emilia-Romagna_floods). Indeed, ‘‘extreme’’ precipita-
tion intensity and amount are not necessarily the sole cause of extreme
flooding (Ivancic and Shaw, 2015; Sharma et al., 2018; Wasko et al.,
2020) as basin pre-storm conditions modulate the basin response to
precipitation (Tramblay et al., 2010). Climate change is expected to
increase the magnitude of extreme precipitation events (Gründemann
et al., 2022) and, at the same time, alter the interplay between wet
and dry spells (Vaittinada Ayar and Mailhot, 2021; Zolina et al., 2013).
It will, therefore, modify soil moisture conditions in complex ways. A
correct representation of the link between pre-storm conditions and
basin response by models is therefore critical for future flood and flood-
risk projections (Chen et al., 2011; Sharma et al., 2018). However, the
actual limits of models to represent soil moisture and the link between
pre-storm soil moisture and runoff challenges our ability to predict the
streamflow generated by future precipitation events (Crow et al., 2019).

Runoff coefficient (RC), defined as the ratio between the stormflow
olume (i.e., stormflow) and the rainfall that produced the flood,
uantifies the amount of precipitation that is transformed into runoff.
C, thus, it depends both upon the water stored in the soil, river,
nd groundwater prior to the rainfall event (i.e., pre-storm wetness
onditions or simply ‘‘pre-storm conditions’’ hereinafter), and on a
umber of factors including land cover, topography, soil type, and spe-
ific basin hydrology (normally described by hydrological signatures).
herefore, accurately characterizing and anticipating RC is crucial in
lood forecasting. As the actual RC can only be computed after a
lood has occurred, flood forecasting and early-warning systems need to
nderstand how the above-mentioned variables (that are usually known
efore the flood event) are linked to the RC of the subsequent event
that is only known after the event).

Given its dependence upon multiple factors, RC is characterized by
igh variability in both space and time (Viglione et al., 2009; Norbiato
t al., 2009; Merz and Blöschl, 2009; Penna et al., 2013; Wu et al.,
021). Evidence suggests that pre-storm conditions, and soil saturation
n particular, exert a key role in determining the land-surface response
o extreme precipitation at different basin scales (Norbiato et al., 2009;
erz and Blöschl, 2009; Marchi et al., 2010; Penna et al., 2011, 2016;
erghuijs et al., 2019; Bertola et al., 2021). In particular, Berghuijs
t al. (2019) found that floods in Europe are almost exclusively driven
y soil moisture excess and thus high antecedent soil moisture values
ay result in a more severe response to precipitation. The importance

f this generation process was found by the same authors to exceed
hat of the other processes like snowmelt and extreme precipitation
ombined.

The important role of antecedent conditions as a dominant control
n the spatiotemporal variability of event runoff coefficients was shown
y Merz and Blöschl (2009), who investigated how RC varies as a
unction of climate forcing, geology, soil types and land use over a large
et of Austrian basins. Similarly, Guastini et al. (2019) illustrated how
C varies as a function of the basin scale (0.14–109 km2). Tarasova
t al. (2018) also indicated that, unlike antecedent soil moisture and
re-event baseflow, antecedent precipitation indices do not accurately
epresent the wetness state of German basins. Storm-to-storm variations
n pre-storm soil moisture (i.e., pre-storm soil moisture change from
vent to event) was also found to be a good proxy for RC across the
editerranean area and beyond (see Brocca et al., 2009; Tramblay
2

t al., 2010, and references therein).
Soil moisture is normally derived from hydrological and land sur-
ace models, satellite observations or in situ measurement networks and
hen can significantly vary in terms of its vertical and spatial support
s well as in its dynamic. For instance, soil moisture information
s available from different soil parameterizations found within land
urface and hydrological models (Zhao et al., 2019). Satellite surface
oil moisture observations depend on the type of sensors (Kim et al.,
019) and, depending on the retrieval band, they can be representative
f different depths. Alternatively, pre-storm conditions can be obtained
rom river discharge and antecedent precipitation indices (API Ponce

and Hawkins, 1996), which can be used as a soil moisture index. These
pre-storm condition proxies are used in many operational applications.

At the time of writing, the increased availability of soil moisture in-
dices of varying vertical supports (i.e., representing different soil depth
and thus different soil storages) offer additional alternatives to support
flood forecasting. These include satellite estimates of surface soil mois-
ture (Bauer-Marschallinger et al., 2019; Entekhabi et al., 2010; Kerr
et al., 2001), root-zone soil moisture derived from a combination of
models and satellite observations (Manfreda et al., 2014; Martens et al.,
2017; Reichle et al., 2017) and relatively new terrestrial water storage
anomaly estimates obtained from satellite gravimetric missions (Tapley
et al., 2004). This information can be utilized, for instance, via data
assimilation into land surface and hydrological models (Kumar et al.,
2009; Mao et al., 2020; De Santis et al., 2021; Lievens et al., 2015), ini-
tialization of event-based rainfall-runoff models (Massari et al., 2014;
Mahdi El Khalki et al., 2020), flood forecasting via machine learning
approaches (Rasheed et al., 2022), or by the direct integration of these
products into operational applications, e.g., the flash flood guidance
system operated by NOAA https://www.weather.gov/serfc/ffg.

The success of the use of these products in flood forecasting, how-
ever, eventually depends on how strongly antecedent conditions are
coupled with runoff response, and thus on how much these products
are able to represent the link between antecedent conditions and RC.
In other words, it depends on the extent to which they can predict
how much precipitation will be transformed into stormflow. This not
only depends on their relative accuracy or representativeness but also
on basin characteristics and climate as underlined above. Nonetheless,
the coupling strength between antecedent conditions and RC is critical
in data assimilation experiments for improving streamflow predic-
tions (Chen et al., 2011; Massari et al., 2014; Lievens et al., 2015;
Baugh et al., 2020; Mao et al., 2020; Betchold et al., 2023), in data
calibration and initialization of rainfall-runoff model (Shahrban et al.,
2018; Mahdi El Khalki et al., 2020), and for understanding the potential
of future floods (Reager and Famiglietti, 2009; Sharma et al., 2018).
For instance, in large data assimilation studies aiming at improving
streamflow simulations, diverse attempts to ingest satellite surface soil
moisture retrievals (Chen et al., 2011; Kumar et al., 2009; De Santis
et al., 2021) led to inconclusive results. De Santis et al. (2021), for
example, showed that the assimilation of surface soil moisture satellite
observations over cold and humid climate did not bring any added
benefit and, in fact, partially deteriorated the ability of the models to
predict runoff under certain conditions.

Therefore, understanding the degree to which specific pre-storm
condition proxies are coupled to RC, and the impact of basin character-
istics (i.e., climate, season, location, topography, land cover and basin
specific hydrology) on such coupling, is crucial in flood research and
applications. The answer to this specific question has been explored
often for individual basins or at a local/regional level (see references
above), but – to our knowledge – has never been examined using
an integrated approach considering multiple basins spanning different
climates and basin characteristics.

In this study, we analyze the role of pre-strom proxies in modulating
RC and explain stormflow volume variability. To do so, we compare
different basin pre-storm indices (e.g., API, pre-storm river discharge,
surface and root-zone soil moisture, as well as total water storage

anomalies, TWSA, coming from hydrological models, reanalysis data

https://www.eumetsat.int/devastating-floods-western-europe
https://www.eumetsat.int/devastating-floods-western-europe
https://www.eumetsat.int/devastating-floods-western-europe
https://en.wikipedia.org/wiki/2023_Emilia-Romagna_floods
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and land surface models ingesting satellite soil moisture observations)
to explain observed RC variability across historical European floods.

e consider the impact of climate, season, land cover, topography,
nd the hydrological signatures of the basins and use correlation and
egression analyses and datasets of precipitation and river discharge
bservations (1980–2015) from 284 basins across Europe, from which
e extracted more than 60000 flood events. This work goes beyond

he analysis of Crow et al. (2017) and Massari and Camici (2020) as
t considers the effect of the climate and basin type on the coupling
trength between these variables and RC. Furthermore, it uses longer
ime records of precipitation and river discharge — which allow us to
ocus on an adequate sample of ‘‘true’’ flood events.

. Study area and dataset

.1. Study area and basin characteristics

The examined 284 basins result from the stringent screening pro-
ess of more than 3900 stations across Europe (see below) and range
etween 507 and 19920 km2 in size (see Figure SI 2). This is a range of
reas similar to the one used by other studies (Merz and Blöschl, 2009)
nd guarantees relatively small uncertainty due to the spatial interpo-
ation of rainfall (for smaller basins) and the small spatial variability of
C (for larger basins). The basin selection was carried out with the aim
f maximizing the geographical coverage and the long-term availability
f daily streamflow records (i.e., from 1980 to 2015 at least) col-
ected from the Global Runoff Data Center (GRDC, https://www.bafg.
e/GRDC/EN/01_GRDC/grdc_node.html). The selected basins passed
careful quality control aimed at excluding stations with unreliable

ime series due to human regulations (e.g., unrealistically constant
lows), inhomogeneity, or problems in the low-flow range (as suggested
n Kundzewicz and Robson (2004).

.2. Precipitation, soil moisture, evaporation products and ancillary data-
ets

Precipitation, temperature, and snow water equivalent (SWE) data
sed in this study were obtained from the ERA5 reanalysis dataset
Hersbach et al., 2020). ERA5 is particularly suitable for this study
ue to its homogeneity, demonstrably good performance over Eu-
ope (Bandhauer et al., 2021), and permissive usage license (Anon,
020). We acquired ERA5 data from 1979–2019 at a 0.25◦ (about 30
m) resolution for an hourly time step and summed them to obtain
aily estimates.

Soil moisture data were obtained from the following reanalysis,
ydrological models, and remote sensing observations:

1. ERA5 reanalysis (1979–2019, 0.25◦) over three soil layers: 0–
7 cm, 7–28 cm and 28–100 cm. These data were acquired at
an hourly timestep and averaged to obtain daily data. In an
evaluation study using 25 soil moisture networks including those
in Europe, ERA5 was shown to be superior to other reanalysis
datasets (Li et al., 2020).

2. Sacramento hydrological Model (SAC) surface and root zone soil
moisture obtained via the calibration of the SAC model against
observed streamflow time series. We used ERA5 precipitation
and temperature for calculating potential evaporation via the
Haymon formulation (Lu et al., 2005). SAC model has been
used extensively for operational stream flow forecasting within
medium-sized (about 1000 km2) river basins (Burnash, 1995).
Soil moisture accounting in the model is based on the estima-
tion of different soil water states: upper-zone free water con-
tent (𝑈𝑍𝐹𝑊 𝐶), upper-zone tension water content (𝑈𝑍𝑇𝑊 𝐶),
lower-zone tension water content (𝐿𝑍𝑇𝑊 𝐶), lower-zone free
primary water content (𝐿𝑍𝐹𝑃𝐶), and lower-zone free supple-
mental water content (𝐿𝑍𝐹𝑆𝐶) which we combined to obtain
3

basin-scale surface and root zone soil moisture (𝑆𝑆𝑀𝑆𝐴𝐶 =
𝑈𝑍𝐹𝑊 𝐶+𝑈𝑍𝑇𝑊 𝐶,𝑅𝑍𝑆𝐴𝐶 = 𝐿𝑍𝐹𝑃𝐶+𝐿𝑍𝑇𝑊 𝐶+𝐿𝑍𝐹𝑆𝐶).
Details related to the calibration and application of the SAC
model to the basins are reported in the supplementary mate-
rial. We found comparable river discharge simulation perfor-
mance to other model studies in Europe based on similar forcing
datasets (Camici et al., 2018; De Santis et al., 2021). Note that,
being a conceptual model, SAC does not assign specific surface
and root zone specific depths to its soil moisture states.

3. The Global Land Evaporation Amsterdam Model (GLEAM,
Martens et al., 2017). This is a suite of algorithms that separately
estimate different components of the terrestrial evaporation
by using data from satellite observations and atmospheric re-
analyses. The model uses the Priestley and Taylor equation to
estimate potential evaporation, and combines global satellite
observations – mostly derived from microwave observations –
to estimate different evaporation components via an evaporative
stress factor. Surface and root-zone soil moisture are calculated
using a multi-layer running water balance model that uses ob-
served precipitation as an input and the assimilation of satellite
soil moisture observations. Here we used the GLEAM version
3.5a which ingests ESA-CCI soil moisture observations to obtain
basin-scale daily evaporation, surface (0–10 cm, 𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 )
and root-zone (10–100 cm, 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 ) soil moisture estimates.
Despite being based on a combination of model and remote
sensing information, GLEAM is based on satellite observations
and is therefore assumed here to be representative of satellite
soil moisture datasets such as the SMAP Level 2 and 3 products
— with quasi-daily temporal resolution that only cover the
period after 2015 (note that CCI soil moisture is available since
1979, but it is not usable here due to its noticeable number of
missing values prior to 2001).

Other ancillary data were collected to describe the relatively static
asin attributes (Fig. 1):

1. Land cover and soil texture as indexed by the curve number
(CN). CN was estimated by using the dataset of Hong et al.
(2007) extracted from the MODIS land cover classification and
the hydrological soil group map are used to estimate the CN by
indexing in the standard lookup tables of the Natural Resources
Conservation Service Ponce and Hawkins, 1996.

2. Topography. Topographic complexity (tc) and elevation (elev)
were calculated on GTOPO30 digital elevation model. In partic-
ular, tc was quantified by the standard deviation of DEM cells
contained in the basin.

3. Aridity index (AI) calculated as the ratio between long-term
mean annual potential evaporation and mean annual precipita-
tion both from ERA5 data.

4. Hydrological behavior via hydrological signatures. Three dif-
ferent hydrological signatures were considered and computed
using the Gnann et al. (2021) toolbox: (i) the Base Flow index
(bfi), that is the ratio between baseflow (volume) and total
streamflow (volume), (ii) the Richard–Baker Flashiness index
(fl), that quantifies the response time of runoff after the onset
of a rainfall event and the subsequent return to base flow condi-
tions (Baker et al., 2004) and (iii) the Variability Index (vi), that
is the standard deviation of the common logarithms of discharge
determined at 10% intervals from 10% to 90% of the cumulative
frequency distribution.

Fig. 1 reveals a clear climate pattern with more water limited basins
(𝐴𝐼 > 1) located in central and eastern Spain and more energy lim-
ited ones over northern latitudes and across the mountainous regions.
Basins in the transition between fully water limited and fully energy
limited are located over the Western Iberia peninsula, Southern France,
Eastern Europe, and Southern UK. From the figure, basins located in

https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
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Fig. 1. Static attributes characterizing basins. (a) land cover as indexed by curve number (CN), (b) Aridity Index (AI = PET/precipitation) derived from long term potential
evapotranspiration and precipitation, (c) baseflow index (bfi) based on the Lyne and Hollick baseflow separation method, (d) flashiness (fl), (e) elevation, (f) topographic complexity
(tc), (g) variability (vi). For each feature, the median value is given in the title of the figures.
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Southern Europe are also characterized by higher elevation and more
complex topography. There is not a clear pattern between CN, bfi
and fl.

3. Methods

3.1. Flood event extraction

Flood event extraction was carried out by the following steps:

1. We separated the stormflow from the baseflow using the method
of Hewlett and Hibbert (1967) also credited by McDonnell
(2009). In this method, the flood extraction is done using an
algorithm that relies on two parameters: the area of the catch-
ment 𝐴𝑏 and a parameter 𝑘 that controls the slope of the
dividing line, that is, the slope that defines when event water
separates from the baseflow. 𝑘 was set equal to 0.000546 m3

s−1 km−2 d−1 as suggested by McDonnell (2009) which provided
the most reasonable flood event separation (visually). This was
further confirmed by carrying out the analysis with different 𝑘
values (using for 𝑘 values equal to 0.000546

𝑛 with 𝑛 = [−10,+10]
excluding zero. 𝑘 = 0.000546 was the one providing the best
agreement (i.e., Pearson correlation coefficient) between event
runoff coefficients and antecedent condition proxies. The tests
with different 𝑘 values showed a low sensitivity to the magnitude
of 𝑘 itself. The source code of the function to separate event
water from runoff is freely distributed via https://hydrograph-
py.readthedocs.io/en/latest/index.html.

2. To distinguish between two close flood events we calculated
for each basin the concentration time Tc as: 𝑇 𝑐 = 𝐿∕0.6 with
𝐿 = 1.19𝐴𝑏0.33 representing the lag time for the basin and Ab the
basin area as proposed by Melone et al. (2002). The coefficient
(1/0.6) was derived from the formulation of the concentration
time as proposed by Simas (1996), that can be assumed valid for
natural basin conditions given an approximately uniform spatial
distribution of runoff.

3. To select the onset of the event (when precipitation that pro-
duces the flood begins) we used the precipitation accumulated
in the previous Tc days (𝐴𝑃𝐼𝑇 𝑐). In particular, starting from
the presence of stormflow in the river identified at point 1
we considered N time steps backward until 𝐴𝑃𝐼𝑇 𝑐 was found
lower than 2 mm. The satisfaction of this condition marks the
beginning of the flood event. The event was considered to end
when the stormflow was equal to zero.

4. Events with RC larger than 2 were excluded to remove potential
errors in the data (these events were less than 0.1%, though, so
they did not impact the analysis).

The so applied flood event extraction resulted in 60620 separate
flood events. An example of the event separation is reported in the
supplementary material in Figure SI 1 along with the percentage of
flood events with RC larger than one for the different seasons and
different classes (see Figures SI 3 and SI 4) that resulted in about 2.5%
at maximum.

3.2. Pre-storm condition proxies

We considered several proxies for the pre-storm conditions:

1. The five days antecedent precipitation index (API5, Kohler,
1951, API from here onward), which aims at reproducing the
saturation state of the basin prior to the event by calculating the
cumulative rainfall of previous five days. Due to its presence in
the SCS-CN method (Ponce and Hawkins, 1996) for calculating
antecedent basin conditions, this is index is widely used by
5

hydrologists, c
2. The logarithm of the discharge on the day before the flood event
(preQ), as suggested by Brocca et al. (2009).

3. Soil moisture prior to the events from ERA5, representative of
two different depths (i.e., 0–7 cm 𝑆𝑀1𝐸𝑅𝐴 and 28–100 cm
𝑆𝑀3𝐸𝑅𝐴).

4. Surface and root-zone soil moisture estimates obtained from
GLEAM (which combines modeled and remotely sensed soil
moisture from CCI) that are representative of 10 cm
(𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 ) and 90 cm (𝑅𝑍𝐺𝐿𝐸𝐴𝑀 ) soil depths.

5. Modeled surface (𝑆𝑆𝑀𝑆𝐴𝐶 ) and root zone (𝑅𝑍𝑆𝐴𝐶 ) soil mois-
ture estimates obtained from the continuous SAC-SMA hydrolog-
ical model.

6. Pre-storm snow water equivalent (SWE) values obtained from
ERA5.

7. Total water storage (TWS) at the beginning of the event
(preTWS) calculated as residual of the water balance between
time t and t-120 days: 𝑝𝑟𝑒𝑇𝑊 𝑆(𝑡) =

∑𝑡
𝑡−120(𝑃 (𝑡) − 𝐸(𝑡) − 𝑅(𝑡))

where P was calculated from ERA5 precipitation, 𝐸 is the
evaporation derived from GLEAM and 𝑅 is the total runoff (in
mm) calculated from daily river discharge observations using
basin areas. The accumulation over 120 days was selected to
remove short-term scale changes of 𝑇𝑊 𝑆 and to isolate seasonal
and inter-annual components of the 𝑇𝑊 𝑆 signal.

3.3. Basin classification

The selected basins cover many parts of Europe and are classified
by their different land cover, climate, soil type, and hydrological sig-
natures. As a result, systematically examining the influence of each
individual factor on the coupling strength between RC and the dif-
ferent pre-storm condition proxies is challenging. To overcome this
issue, we performed a basin classification using the k-means clustering
lgorithm (Lloyd, 1982).

This algorithm is among the oldest and most classical unsupervised
earning algorithms used to partition datasets. It aims at portioning
bservations into K clusters defined by centroids, where K is chosen a
riori. The algorithm has been applied in many fields due to its intuitive
asis, high efficiency, and easy implementation (Chong, 2021). The
artitioning is based on iteratively finding clusters (i.e., groups of
asins) that minimize the sum of squared distance between the points
f the cluster (within-cluster sum of square WCSS) and its centroid,
nd simultaneously maximize the distance between cluster centroids.
s unsupervised learning, the algorithm detects patterns in the dataset
sing predefined distances such as Euclidian and exploits them.

In order to find an optimal number of clusters, we used the concept
f Silhouette score (Rousseeuw, 1987). In the method of (Rousseeuw,
987), each cluster is represented by a so-called silhouette (see Fig-
re SI 8 in the supplement) which shows tightness and separation
f each cluster for different number of clusters. The silhouette score
s a measure of how similar an object is to its own cluster (cohe-
ion) compared to other clusters (separation) (see supplementary ma-
erial Section Supplementary Information 1.3 for further details on the
ethod).

.4. Regression analysis

The main objective of this section is to understand to what ex-
ent the different pre-strom proxies are able to explain the stormflow
olume variability on top of precipitation. This was done by using
ulti-Linear Regression (MLR) and Random Forest Regression (RFR).
s predictors of stormflow volumes we selected, in addition to pre-
ipitation, the most highly correlated proxies with the RC (based on
he correlation analysis in Fig. 5) as well as commonly used pre-storm
roxies. These selected predictors are: 𝑃 , 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 , preQ, API, SWE
nd 𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 (the latter was used only for RFR given its potential

ollinearity with root zone observations).

https://hydrograph-py.readthedocs.io/en/latest/index.html
https://hydrograph-py.readthedocs.io/en/latest/index.html
https://hydrograph-py.readthedocs.io/en/latest/index.html
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For each basin we randomly selected 66% of events in calibration
and the rest for validation. All presented results below are based solely
on this validation period. To test the prediction capability of the differ-
ent pre-storm proxies we carried out two different experiments: (1) we
used only precipitation and antecedent precipitation index to predict
stormflow volumes, and, (2) we used precipitation in addition to the
pre-storm proxies mentioned above. RFR was also used to understand
the feature importance of the different predictors.

Note that we are not so much interested in ML-based estimation of
the stormflow volume in this manuscript, rather we leverage ML-based
tools to rank the importance of different pre-storm proxies on top of
precipitation.

3.4.1. Multi-linear regression
Multi-Linear Regression (MLR) is a statistical technique that em-

ploys several explanatory variables and one dependent variable, which
in the present study is stormflow volume. In the MLR model, the
dependent variable 𝑦 is assumed to be a function of k independent
variables 𝑥𝑘. The general form of the equation is computed as follows:

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1 +…+ 𝑏𝑘𝑥𝑘 + 𝑒 (1)

where 𝑏0 and 𝑏𝑖 are fitting constants; 𝑥𝑖 is the i-th observation of each
of the explanatory variables, 𝑦 is the prediction of stormflow volume,
and e is a random error term representing the remaining effects of
variables on y, which are not covered by the model (residuals). The
least squares criterion for the minimum sum of squares of error terms
is usually applied to determine the fitting constants. We applied this
approach here via the scikit-learn python package (Pedregosa et al.,
2011). The main limitation of the MLR is that it requires the predictors
to be mutually independent.

3.4.2. Random forest regression and feature importance
Random Forest Regression (RFR) modeling is an ensemble machine

learning method for regression that operates by constructing a multi-
tude of decision trees (Breiman, 2001). RFR modeling is appropriate
for modeling the nonlinear effect of variables. RFR consists in building
a forest of uncorrelated trees. Each individual tree is grown using a
randomized subset of predictor variables to the largest extent possible
without pruning and are aggregated via averaging. Since the individual
trees cannot be examined separately, RFR does not calculate regression
coefficients or confidence intervals (Cutler et al., 2007). Nevertheless,
it allows for the computation of variable importance measures that
can be compared to other regression techniques (Grömping, 2009).
RFR can handle complex interactions among variables, and is not
affected by multi-collinearity (Breiman, 2001). It can assess the effects
of all explanatory variables simultaneously, and automatically ranks
the importance of these variables in descending order (Rodriguez-
Galiano et al., 2012). However, the main limitation of RFR is its
inability to extrapolate values beyond the range of the training dataset,
which makes it inappropriate for capturing hydrological extremes. For
a detailed description of the mathematical formulation for the RFR
model, the reader is referred to Breiman (2001), Liaw and Wiener
(2002).

In this study, the open source scikit-learn RandomForestRegressor
function was used https://scikitlearn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html

To run the RFR model, it was necessary to first define a priori
different RFR parameters (i.e., hypermaparameters). In the case of a
random forest, hyperparameters include the number of decision trees
in the forest and the number of features considered by each tree when
splitting a node. These parameters control the way each tree is split
during training. The best hyperparameters are usually impossible to
determine in advance, so a trial and error procedure is necessary, which
is based on a random search across a wide range of values for each
hyperparameters. These parameters are in the case of the scikit-learn
6

RandomForestRegressor the following ones:
• number of decision trees in the forest (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠)
• max number of features considered for splitting a node

(𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
• max number of levels in each decision tree (𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ)
• minimum number of data points placed in a node before the node

is split (𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑠𝑝𝑙𝑖𝑡)
• min number of data points allowed in a leaf node (𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑙𝑒𝑎𝑓 )
• method for sampling data points (bootstrap) (with or without

replacement)

Normally, the most important settings are the number of trees in the
forest (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) and the number of features considered for splitting at
each leaf node (𝑚𝑎𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). To determine the above mentioned param-
eters we ran a grid search function using the GridSearchCV function of
the same scikit-learn package (https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.html) by letting the
𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 varying between 1000 and 5000 with steps of 100 and the
number of features to vary between 1 and 10 with steps of 1. The
logic to start from 1000 for the 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 is because (Rodriguez-Galiano
et al., 2014) demonstrated that the error was minimum and stable when
considering at least 1000 trees, while, for the number of features the
values were selected based on the recommendation of Breiman (2001)
who suggested using 𝑚 - where 𝑚 equals the number of predictors (six in
this case) divided by 3. The optimal number of these two parameters
was then found based on the minimum mean squared error obtained
in the validation sets of each basin. On top of regression analysis RFR
allows one to estimate the variable importance of predictors in the
explanatory model. This is done by the mean and standard deviation
of accumulation of the impurity decrease within each tree calculated
via the Gini index (which measures the quality of a split for each
variable in a tree, that is the node impurity or lack of information of
the explanatory factors, see again Breiman (see again 2001, for further
details).

4. Results and discussion

4.1. Runoff coefficient variability, flood seasonality and relation between
precipitation, event peak discharge and stormflow volume

The event extraction resulted in a distribution of RCs that shows
smaller values and much larger variability (quantified using the coef-
ficient of variation, CV = mean/standard deviation) over the Mediter-
ranean area and Eastern UK while larger RCs less variable are seen over
central Europe and Northern and Western Iberia Peninsula (see Fig. 2).
This is consistent with results in Merz and Blöschl (2009) in Austria
and Norbiato et al. (2009) in Northern Italy, who reported that mean
RCs are strongly correlated to indicators representing climate such as
mean annual precipitation.

For the majority of the basins, the extracted flood events occurred in
wintertime, especially in central Europe, while 30%–50% of events in
southern Europe occurred during the fall. Percentages below 30%–40%
are observed elsewhere during the spring (Fig. 3). A high frequency of
flood events during the summer is seen only over the Alps.

To identify the strength of the relationship between flood and pre-
cipitation, we plotted in Fig. 4 the box plots of the intra-basin Spearman
correlation obtained between event-based precipitation volumes and:
(i) event-based peak discharge of all extracted flood events (cor-peak),
(ii) event flow maximum annual peak discharge (cor-peak-max), (iii)
event-based stormflow volumes (cor-vol), and (iv) maximum annual
stormflow volume (cor-vol-max). From the figure it can be seen that
peak discharge is in general less related to precipitation with respect
to stormflow volumes particularly for large flood events — a result in
general expected (see Berghuijs et al., 2019; Stein et al., 2021; Do et al.,
2020). On the contrary, flood volumes seems well correlated with the
precipitation and not particularly impacted by the relative magnitudes

of the events.

https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


Journal of Hydrology 625 (2023) 130012C. Massari et al.
Fig. 2. Spatial distribution of the median RC(RC). The size of the dot is proportional to the coefficient of variation (CV) of RC across the selected flood events.
Note, however, that box plots in Fig. 4 are highly scattered sug-
gesting other potential mechanisms controlling the response in terms of
both volume and discharge beyond precipitation like for instance an-
tecedent conditions (see Section 4.4). This is particularly true for peak
discharge being it dependent also on residence times. RC modulates
the relationship between precipitation and both peak discharge and
stormflow volumes as shown in Figure SI 5 of the supplement, where
the Spearman correlation coefficient between precipitation and the two
variables is plotted for five equi-populated bins of RC. As expected,
correlations tend to increase for events characterized by larger RC
(with a tendency to decrease for RCs larger than one when considering
stormflow volume). This emphasizes the enhanced role of low RC
in modulating the response of the basins to precipitation. Additional
potential elements inducing this relatively large spread are the quality
and the spatial resolution of the data used in this analysis. Nonetheless
the analysis in terms of peak discharge remains difficult at the daily
time scale being river discharge not conservative unlike volumes.

4.1.1. Overall relation between runoff coefficients and pre-storm condition
proxies

Fig. 5 shows box plots of the Spearman correlation coefficient
computed between the RC of recorded flood events and different pre-
storm condition proxies for each of the 284 basins. Although the
correlation coefficients have large variability, a consistent increase in
the correlation for pre-storm proxies related to deeper (darker colors)
soil storages emerges (e.g., 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 , 𝑆𝑀3𝐸𝑅𝐴 and 𝑝𝑟𝑒𝑇𝑊 𝑆 show
higher median correlations). Note that being representative of root
zone 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 , 𝑆𝑀3𝐸𝑅𝐴 are essentially more mutually correlated
with respect to the other proxies (see Figure SI 6 in the supplement)
while 𝑝𝑟𝑒𝑇𝑊 𝑆 also depends on snow and other storages in the basin
so its mutual correlation is lower than between the previous two (see
also Section 4.3). Relatively higher correlations with RC are also found
for pre-storm river discharge and pre-storm snow water equivalent.
Shallow storages like 𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 , 𝑆𝑀1𝐸𝑅𝐴 show worse results while
for both 𝐴𝑃𝐼 and hydrological model states (𝑆𝑆𝑀𝑆𝐴𝐶 and 𝑅𝑍𝑆𝐴𝐶 )
correlations are weaker. The poor performance of the SAC states model
can be attributed to the overall relatively low performance of the model
(median KGE below 0.6, see Figure SI 7 in the supplementary material)
while the very low correlations of API are not expected a priori. Note
that we cannot extrapolate the result of SAC-SMA to hydrological
7

models in general as we only considered one model and one calibration
technique; however, it should also be mentioned that, as opposed to
the other proxies, the SAC model is directly calibrated against the river
discharge observations. Although we used state-of-the-art calibration
techniques, such calibration entails some levels of subjectivity, so that
no general conclusions should be drawn for this particular result.

The correlations in Fig. 5 are in any case generally low. This is not
surprising since we examined a wide spectrum of basins characterized
by different topography, climate, land cover and hydrological behaviors
(see Section 2.1 and Fig. 1) and because we did not separate between
seasons (and therefore main flood generation mechanisms). On top of
that, uncertainties in this analysis arise from the quality of precipitation
and river discharge datasets, as well as the use of daily data — that
can limit the identification of the exact timing of the flood peaks and
thus the correct identification of precipitation and pre-storm proxies.
Nonetheless, inherent uncertainty of the used proxies might play also
an important role. A final remark is related to the flood occurrence
which is concentrated mostly during the winter season, when the
storage variability of the basins is expected to be lower than in the
other seasons (see Section 4.3).

4.2. Basin classification

Figs. 5 helps us understand the overall relation between pre-storm
proxies with RC. However, it also reveals a large spread and modest
correlations that may hide the role of the basin in influencing the
response to precipitation. Therefore, we grouped basins with similar
attributes to clarify the coupling strength between pre-storm conditions
and RC by categorizing different types of basins using an unsupervised
clustering algorithm (see Section 3.3) based on land cover (CN), climate
(AI), topography (elev and tc), and hydrological signature (bfi, fl and vi)
(see Fig. 1). The partitioning was performed by k-means by choosing the
Euclidean distance as a metric with a number of clusters found equal to
5 following the Silhouette criterion (see Figure SI 8 in the supplement
and Section 3.3). Note that, relative to the work of Kuentz et al. (2017),
our experiment is much simpler — as we only used static features to
define the classes, and we performed the classification on only 284
basins.

Fig. 6 shows the distribution of the different basins descriptors as a
function of the class while Fig. 7 their geographical distribution. Based
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Fig. 3. Percentage of flood events occurred in the winter (December–January–February) (a), spring (March–April–May) (b), summer (June–July–August) (c) and fall
(September–October–November) during the period 1980–2016.
on the distribution of the predictors the characteristics of the classes
are summarized below:

1. Class 1: typically mountainous basins characterized by complex
topography, high elevations and energy limited climate. Low
permeability, low flashiness, and high baseflow index. These are
snow dominated basins belonging to the alpine range, Pyrenees,
and other mountainous chains of the Iberia Peninsula.

2. Class 2: hilly to mountainous basins with relatively warm cli-
mate (mainly water limited). They are characterized by low
bfi, higher variability, and flashiness. These basins are almost
exclusively concentrated in the Mediterranean area.

3. Class 3: flat cold basins, with high bfi and small variability
and flashiness typical of northern latitude flat basins where
groundwater and infiltration seems to dominate. These basins
are located mainly over flat lands around the Baltic and Northern
Sea.

4. Class 4: flat basins in transition between the energy limited
and water limited regions (likely subjected to annual alternation
between these two regimes) characterized by low bfi, medium
hydrological variability (i.e., vi) (although less than Class 2) and
high flashiness (the contribution of groundwater is expected to
be lower than Class 3). What distinguishes Class 3 from Class 4
8

is the contrasting hydrological behavior and the warmer climate
for the seconds. Class 4 basins are much more responsive than
Class 3 basins thanks to the larger fraction of impervious surfaces
suggested by CN (Fig. 6).

5. Class 5: hilly and cold basins with a large fraction of pervious
surfaces with medium flashiness and medium bfi. These basins
do not show a clear geographical pattern (see below).

It should be noted that the aridity index (AI) plays an important
role in the distinction among the classes, as also found by Kuentz
et al. (2017). In fact, AI sets sharp separation between classes 1, 3,
4 and 5 (placed across energy limited regions) with Class 2 (e.g., the
Mediterranean area). For the energy limited regions the distinction
between Class 3 from Class 4 is mainly based on the basin response,
with the first being characterized by low flashiness and high baseflow,
and the second by flashy behavior and low baseflow, where ground-
water contribution is expected to be lower. Finally, Class 5 is the
most uncertain one providing average values in terms of hydrological
response in relation to Class 3 and Class 4. However, it is interesting to
note that basins of Class 5 reflect the climate organization of temperate
humid with cool summer (i.e., Cfc, according to Köppen–Geiger) as also
seen in Beck et al. (2018). Basins belonging to Class 5 are different
from the ones in Class 3 and Class 4 from the fact that basins belonging



Journal of Hydrology 625 (2023) 130012C. Massari et al.
Fig. 4. Box plots of the intra-basin Spearman correlation (across all basins) obtained between event-based precipitation volumes and (i) stormflow peak discharge of all extracted
flood events (cor-peak), (ii) stormflow maximum annual peak discharge (cor-peak-max), (iii) stormflow volumes (cor-vol), and, (iv) maximum annual stormflow volume (cor-vol-max).
In the box plots the different lines refer to the median, the interquartile, the minimum and maximum.
Fig. 5. Spearman correlation coefficient between 𝑅𝐶s and basin pre-storm condition proxies: pre-storm river discharge (𝑝𝑟𝑒𝑄), Antecedent Precipitation Index (𝐴𝑃𝐼), Antecedent
Snow Water Equivalent (𝑆𝑊 𝐸), the surface (SSM) and root zone (RZ) soil moisture simulated by Sacramento Hydrological model (SAC), GLEAM and ERA5 (𝑆𝑀1𝐸𝑅𝐴 and 𝑆𝑀3𝐸𝑅𝐴),
and the calculated pre-storm total water storage anomalies (preTWS) and pre-strom snow water equivalent (SWE). Darker color reflects deeper storage representations except for
preQ, API and SWE.
to it are placed on hilly terrains (versus flat) and have a much higher
percentage of pervious surfaces as indexed by their CN distribution. For
the energy limited regions the distinction between Class 3 from Class 4
is mainly based on the basin response, with the first being characterized
by low flashiness and high baseflow, and the second by flashy behavior
and low baseflow, where groundwater contribution is expected to be
lower. Finally, Class 5 is the most uncertain one providing average
values in terms of hydrological response in relation to Class 3 and Class
4. However, it is interesting to note that basins of Class 5 reflect the
climate organization of temperate humid with cool summer (i.e., Cfc,
according to Köppen–Geiger) as also seen in Beck et al. (2018). Basins
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belonging to Class 5, differently from the ones in Class 3 and Class 4,
are placed on hilly terrains (versus flat) and have a higher percentage
of pervious surfaces, as indexed by their CN distribution.

To understand any possible relation between RC distribution and
the specific class, we plotted in Fig. 8 the different distribution of runoff
coefficients corresponding to each class. It can be seen that the largest
RC variability is observed for Class 2, which also shows the largest
fraction of events with small RC value. This is likely due to the warm
climate and normally dry conditions, that let precipitation infiltrate
more easily. Conversely, cold basins as those in mountainous areas and
northern regions (Class 1 and Class 5) show a large fraction of high RCs,
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Fig. 6. Distribution of the different basin descriptors (land cover and soil as indexed by the curve number – CN, aridity index – AI, topography – elevation, elev, and topographic
complexity, tc), hydrological signature – baseflow index bfi, flashiness, fl, and hydrological variability, vi), as a function of the class.

Fig. 7. Basin classification obtained by the k-means clustering algorithm.
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Fig. 8. Runoff coefficient distribution within the five identified classes. CV refers to the Coefficient of variation. (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4, (e) Class 5.
potentially due to snowmelt process and saturated soils. Finally Class 3
and Class 4 (flat basins with contrasting hydrological regimes) show
some differences in the distributions, with Class 4 showing a larger
fraction of high RCs probably favored by lower permeability of the
surfaces (see CN in Fig. 6c), and Class 3 characterized by very flat
terrain and larger infiltration capacity (as demonstrated by the large
bfi in Fig. 6d).

Fig. 8 can be considered a sort of cross validation of the clustering,
as no information on RC has been used to identify the clusters. Fur-
thermore, it shows consistent results with literature by demonstrating
the link between RC and basin attributes and therefore, potentially, be-
tween precipitation and related flood magnitudes (Komma et al., 2007;
Berghuijs et al., 2016; Breiman, 2001; Slater and Villarini, 2016; Breinl
et al., 2021). The interplay of these factors determines the specific
behavior of the basins in response to precipitation. For example, over
cold and wet basins event RCs tend to be higher due more constant
saturated soil conditions and snowmelt contribution, thus strengthen-
ing the relation between flood and precipitation frequencies (Borga
et al., 2007). Across warmer basins, where also other factors might
play a role like infiltration-excess (Yair and Klein, 1973), soil moisture
is more seasonally variable than in more humid basins, and weaker
relationships between precipitation and floods are expected (Sivapalan
et al., 2005; Merz and Blöschl, 2009).
11
4.3. Relation between runoff coefficient and pre-storm proxies as a function
of type of basin, season and climate

Fig. 9 displays the intra-basin Spearman correlation coefficient be-
tween RC and different pre-storm proxies for the five classes. The figure
reflects in general the results obtained in Section 4.1.1, with relatively
low correlations for API and SAC model states, medium low ones for
surface soil moisture proxies, and higher for deep water storages, pre-
storm river discharge and snow water equivalent. The last three, in
particular, show different behaviors depending on the class.

In Class 1 (typically mountainous basins) pre-strom SWE shows the
highest correlation, suggesting that RCs here are mainly driven by
snowmelt. The latter is followed by pre-strom deep water storage in
particular by 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 and preTWS. All the other proxies seem to have
a poor relation with RC.

Class 2, which contains basins located in warmer climates, shows
a larger importance of deep pre-strom proxies and pre-storm river
discharge, with medium-to-low correlations for surface soil moisture,
although higher than in Class 1 (see the 𝑆𝑀1𝐸𝑅𝐴 in particular). This
is consistent with earlier results from Tramblay et al. (2010), Brocca
et al. (2009), who found a strong relation between soil moisture and
RC over the Mediterranean area. In general in Class 1 and Class 2, that
are the classes characterized by more complex topography and higher
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Fig. 9. Same as Fig. 5, organized by class.
elevations (see Fig. 6), the overall agreement of pre-storm proxies with
RC is lower than in the other classes. This is likely due to the effect of
the slopes and other factors controlling RC variability (Tarasova et al.,
2018).

Class 3 contains flat cold basins with high bfi. Here, the situation
seems to mirror Class 2, but with one important exception related to the
larger importance of pre-storm SWE. Also here, deep soil storage pre-
strom proxies are generally characterized by higher correlations with
respect to the other proxies (more than in Class 1 and Class 2). Here,
the root zone SAC model state (i.e., 𝑅𝑍𝑆𝐴𝐶 ) shows higher correlations
with respect to the other classes, likely due to the better performance of
the model across higher latitudes (see Figure SI 7 in the supplement).

For Class 4, which contains basins generally warmer than Class 3
and characterized by an opposite hydrological behavior (high flashiness
and variability and much lower bfi similar to the one in Class 2), pre-
strom river discharge shows the highest correlation with RC, depicting
its relatively high importance in flood forecasting. In these basins,
snowmelt seems much less important than in Class 3 (as expected
from the AI distribution). At the same time, pre-storm soil storages
are also better correlated with RC and show an interesting inversion
of the scores of the 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 and 𝑆𝑀3𝐸𝑅𝐴, with the latter better
than 𝑅𝑍𝐺𝐿𝐸𝐴𝑀 in Class 4 with respect to Class 2, and vice versa. The
reasons for this are not clear but reflect patterns of assimilation results
of De Santis et al. (2021), who found, over southern European latitudes,
better performance of satellite surface soil moisture observations in
improving river discharge simulations than in northern latitudes. Note
that however that this would require further analyses to be demon-
strated. 𝑅𝑍𝑆𝐴𝐶 reflects the results of Class 3, likely due to the better
performance of the SAC model.

Finally, for Class 5, containing cold basins with pervious surfaces
(mostly natural basins based on the CN distribution), the distributions
of correlations among the proxies is very similar to Class 3, with a
stronger correlation of pre-storm snow water equivalent with RC for
Class 5 (higher with respect to Class 3).

Fig. 10 show the Spearman correlation coefficient obtained by pre-
strom proxies and RC for all the events belonging to a certain class as a
function of the season. To take into account sampling uncertainty, we
used bootstrap with 500 replicates by randomly sampling 70% of the
events for each replicate (error bars on the histogram bars).

It can be seen that Class 1 shows a general poor correlation between
RC and pre-storm proxies during the winter season, when the basins are
normally wet and the cold temperature makes the RCs less variables
due to the lower atmospheric demand. As expected, during spring and
12
summer these correlations increase significantly, especially for pre-
strom 𝑆𝑊 𝐸 and preTWS (which likely contains the snow signal in
it). During summer and fall, correlations remain moderate, with an
increase in the correlations of deep soil water storage during fall and
of surface soil moisture during summer.

Class 2 shows similar correlations between winter and spring, and a
drop during summer. The lower agreement between RC and pre-storm
proxies during the summer can be explained by the higher chance of
convective precipitation during this period, which increases the chance
of infiltration-excess runoff generation process. This is in line with the
results of Castillo et al. (2003), who found that in hot semiarid and
arid environments with drier soils, the role of antecedent soil moisture
is generally less important. They attributed this to the controlling
runoff mechanism of infiltration excess overland flow, as opposed to
saturation excess (also confirmed by Zhang et al. (2011). Indeed, during
fall, we observed again a marked increase in correlations for 𝑝𝑟𝑒𝑄 and
deep soil storages (a results generally observed for all classes).

For Classes 3, 4 and 5 the correlations of the proxies with RC during
winter are relatively low, especially for soil water storage (with even
no correlation for Class 5). These correlations tend to increase for pre-
storm SWE during spring, especially for the coldest basins of Class
5. These results only partially confirm the results of Berghuijs et al.
(2019), who found that floods in Europe are almost exclusively driven
by soil moisture excess with minor impact of snowmelt and extreme
rainfall. Conversely, our results suggests that during spring snowmelt
can have an important contribution in runoff generation. During sum-
mer deep pre-storm soil moisture storage correlations increase for both
Class 3 and Class 4, along with surface storages for Class 3 (which is
characterized by a more flashy behavior). Note that during summer
we observe higher correlations also for surface soil moisture proxies
for Class 4, which look equally important to their respective root zone
parts. This could be related to the higher flashiness of these basins
with respect to the other classes, which would cause a larger impact
of surface layers in determining the response to precipitation inputs.
This is confirmed by the poorer correlation of the SAC root zone soil
moisture with respect to its surface counterpart. In fact, the model tends
to use shallower soil moisture states to simulate flashy runoff response.
Finally, during fall, all classes show a marked increase in the correlation
of preQ (probably proxy of groundwater contained in the basins during
these periods) and deep soil storages. Here, the correlation between
RC and pre-storm proxies is generally higher than during the other
seasons, as precipitation tends to replenish soil moisture following

summer evaporation, thus providing a rather direct link between soil
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Fig. 10. As Fig. 8 but stratified for different seasons (DJF: December, January, February, MAM: March, April, June, SON: September, October, November). Each row refers to a
class, namely Class 1 first line, Class 2 second line, Class 3 third line and Class 4 fourth line. Error bars refer to two standard deviations.
moisture and RC. These results reflect results of Berghuijs and Slater
(2023) who found antecedent baseflow and groundwater important for
shaping floods across north American rivers basins.

Fig. 11 shows the Spearman correlation coefficient between the
pre-storm conditions proxies and RC within the different classes as
a function of long-term precipitation anomalies as indexed by the
Standardized Precipitation Index (SPI). To calculate the SPI we used
the exponentiated Weibull distribution, as suggested by Pieper et al.
(2020), and an accumulation period of 12 months (SPI12, McKee et al.,
1993). Values of SPI12 are indexed commonly as: 𝑆𝑃𝐼12 <= −1: drier
than normal, −1 < 𝑆𝑃𝐼12 < 1: normal and 𝑆𝑃𝐼 >= 1: wetter than
normal). In the figure, we note generally lower correlations (except for
Class 2) during wet periods, as opposed to medium and dry periods,
for deep soil water storage proxies, especially for soil water storage
proxies and particularly for preTWS. This result is expected for classes
located in energy limited environments because these basins, during
wet periods (𝑆𝑃𝐼 >= 1), are generally subjected to constant saturated
soil conditions and lower storage variability (and specifically for TWS).
Conversely, for normal periods and periods drier than normal, the soil
storage variability is expected to be higher because of stronger effect
evaporation. This higher variability translates into a stronger coupling
between RC and the different pre-storm soil storage proxies.

Unlike the other classes, in Class 2 the coupling between RC and
pre-storm proxies for normal periods and periods wetter than normal
remains high. For these basins, mostly located in a water limited-
regime, the stronger influence of evaporative demands with respect
to energy limited basins induces more frequent and intense cycles of
wetting and drying also during normal and wetter than normal periods
(with respect to drier than normal ones). This will likely increase the
coupling between RC and soil storages and so the larger correlations.
This is however not reflected in preTWS (which contains the total water
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contained in the basin, including snow, groundwater and soil water)
as its longer memory and its close relation to the groundwater signal
in these warm basins makes it less impacted by short term climate
variability. This finding related to preTWS is true also for Classes 2,
3 and 4, while the snow influence on preTWS in Class 1 and Class 5
significantly reduces this drop in correlation. For Class 2 it is interesting
to see how preQ changes its relative importance by moving from dry to
wet periods because, in wet periods, it is more related to the water
stored in the basin. In Class 1, pre-storm SWE increases its relation
with RC during humid periods (more snowy as expected), while Class
5 seems basically not impacted by SPI.

For Classes 2, 3 and 4 surface soil moisture estimates (i.e., 𝑆𝑀1𝐸𝑅𝐴
and 𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 ) seem to be more strongly coupled with RC in periods
that are drier than normal, especially for Class 4 (flashier basins) where
𝑆𝑆𝑀𝐺𝐿𝐸𝐴𝑀 reaches correlation equivalent to root zone soil moisture
products.

4.4. Regression analysis

In this section, we applied regression techniques defined in Sec-
tion 3.4 to understand to what extent the different pre-strom proxies are
able to explain the stormflow volume variability on top of precipitation.

Fig. 12 shows the distribution of the coefficient of determination ob-
tained across the five classes of basins for the two regression techniques
in the two configurations with all predictors (RFR-F and MLR-F) and
with only precipitation and API (RFR-B and MLR-B). It can be seen that
in general both MLR-F and RFR-F provide better scores with respect
to MLR-B and RFR-B (except for class 1 for RFR). This points to the
importance of the pre-storm proxies in the generation of flood volumes
for all classes. In particular, MLR outperforms RFR, likely due to the
worse ability of the latter to extrapolate across magnitudes not present
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Fig. 11. As Fig. 11 but stratified per climate periods (i.e., drier than normal in the first column, normal in the second column and wetter than normal in the third column).
in the training dataset (despite the lower number of predictors used in
MLR).

As RFR-F provides a way to calculate the importance of the differ-
ent predictors, we displayed in Fig. 13 the rank of their importance
obtained by comparing the mean of the feature importance obtained
across the five classes. As expected, precipitation is the most important
predictor while pre-storm SWE plays a key role (it ranks second among
the six predictors) in Class 1, 3 and 5 which are characterized by
relatively cold climates. In Class 2 and Class 4 river discharge seems to
play also an important role, followed by root zone soil moisture in Class
2 and SWE in class 4. The importance of root zone soil moisture ranks
third or second in many cases, indicating an overall high importance –
as also suggested by Fig. 5. Finally, surface soil moisture and antecedent
precipitation index seem to play a minor role in all classes. These results
corroborate the correlation analysis done in Fig. 5 and can thus be
considered further proofs of the behavior of the basins we described
in the previous sections.

Given that these results refer to all periods and all events, it is
likely that the relative rank can change based on seasons/climatic
periods, as shown in Section 4.3. Furthermore, despite the pattern of
improvements obtained by RFR reflects that of MLR, and thus the
calculation of the feature importance can be considered reliable, the
performance of the RFR-F experiments are not excellent. This makes
the derived ranks inherently uncertain. In this respect, it is important
to note that the regression experiments carried out here do not have
the goal to demonstrate the ability these techniques to forecast flood
volumes but only to show the relative contribution of pre-storm proxies
in the generation of runoff. It is likely that more complex regression
techniques or well calibrated (directly on flood events) hydrological
models can achieve performances far better than the ones obtained
here.
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4.5. Limitations of the study

Our results focus on European basins only, and are limited by
the size of the examined basins and by the resolution of the used
datasets. We call for further large-scale experiments in other parts of
the world and for further investigation at finer scales, for example
with better, more explicit and more controlled consideration of local
factors, such as basin features, hydrological regimes, and anthropogenic
influences. Indeed, the large-scale relationships found in this multi-
basin study may not hold for individual basins, as various underlying
physical processes can impact basin hydrological behavior, such as
specific geological and climatological conditions, anthropogenic influ-
ences, complex hydrological regime, and more local basin processes.
In this respect, our basin classification could be sub-optimal especially
across northern latitudes as also highlighted by Kuentz et al. (2017).
Furthermore, at the scale of the European continent, large-scale gridded
data as those used in this study, provide only a rough approximation of
the occurring precipitation (Hofstra et al., 2009), as the grid cells are
averaged over considerable spatial heterogeneity. The latter, in particu-
lar, introduces additional conditional bias issues determining potential
underestimation of extreme precipitation. As a result, individual rain
storms recorded in the data set will not always reflect local basin
conditions. For example, true maxima may be obscured, challenging
an accurate attribution of flood drivers on an event basis. This also
holds for the large-scale soil moisture and evaporation products used
in this study, which not always accurately represent the event-scale
basin conditions. Finally, the basin size considered in this study and
the daily granularity of the analysis can hide the small-scale temporal
variations of hydrological conditions. In this respect, our analysis could
be strengthened by focusing on a selected sample of basins with higher
temporal- and spatial-resolution data. Nevertheless, the fact that we
found a clear statistical large-scale signal of dominant correlations
between different pre-storm proxies and RCs for different datasets from
different data sources and for a variety of basins with different local
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Fig. 12. Coefficient of determination distribution (r2) across the different classes of basins for the regression techniques using random forest and multi-linear regression using all
predictors (MLR-F and RFR-F) and with only precipitation and API (MLR-B and RFR-B).
Fig. 13. Rank of the importance of different predictors in predicting stormflow volumes calculated by taking the median of the feature importance obtained for the basins belonging
to the different classes: 6 refers to maximum importance, 1 to minimum importance.
features, suggests that, at the examined scales, our conclusions are
generally relevant for Europe and its main climate regions.

5. Summary and conclusions

Understanding basin response to precipitation is crucial for flood
forecasting, hydrological data assimilation, hydrological model calibra-
tion, and for better predicting the impact of climate change on future
floods. In this study, we carried out a large-scale analysis considering
284 basins located in different regions of Europe. We extracted more
than 60000 flood events that occurred in the period 1980–2015, and
studied the coupling strength between RC and different proxies of
pre-storm conditions (namely, antecedent precipitation index, surface
and root zone soil moisture derived from hydrological, land surface
model ingesting satellite surface soil moisture observations and re-
analysis, pre-storm river discharge, snow water equivalent, and total
water storage anomalies). We classified the 284 basins into five classes
based on land cover and soil, long term climate, topography, and
hydrological signatures: (i) Class 1, mountainous basins, (ii) Class 2,
typically Mediterranean basins; (iii) Class 3, cold flat basins with high
baseflow, (iv) Class 4, temperate/cold basins characterized by flashier
behavior and impervious surfaces, (v) Class 5, cold basins characterized
by a high fraction of pervious surfaces.

We found that, in Europe, precipitation explains relatively well the
event water volume for both small and large events but not very well
15
the event water peak discharge, especially for large flood events. The
five classes of basins show different RC distributions, that generally cor-
relates well with deep soil storages (such as root-zone soil moisture and
pre-storm total water storage anomalies), pre-storm river discharge,
and pre-storm snow water equivalent. In particular, across cold and
mountainous regions, the snow water equivalent prior to the events
plays a key role in controlling RC (see Section 4.3) and stormflow
volume generation (Section 3.4), especially during spring and summer.
Conversely, across warmer and more arid regions, deep pre-storm soil
storages and pre-storm river discharge explain better RC variability.
Poor correlations are found against antecedent precipitation index. This
is a caveat to the hydrological community, that makes large use of this
proxy.

Seasonal and interannual climate variability exert a key role on
the coupling strength between RC and pre-storm conditions. For in-
stance, unlike all the other classes, warmer basins (Class 2) show
good correlations between pre-storm proxies and runoff coefficient
also during the winter and for relatively wet periods. Conversely,
for all the other classes, during the winter and during wet periods
these correlations tend to decrease and peak during fall and rela-
tively dry periods. While snow exerts an important role during spring
time only for very cold basins, deep pre-storm soil storage are best
correlated with RC especially during fall. Surface soil moisture stor-
ages exhibits stronger importance during summertime than wintertime.
This data-driven multi-basin and multi-climate study examines the
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ability of different pre-storm proxies to predict RC variability across
a set of European basins. These results should be further explored
within a large-scale soil moisture modeling, for example in land surface
schemes, hydrological data assimilation studies, and generally in the
design of flood forecasting systems. Our results indicate a possibly
new evidence of strong climate/seasonal dependency on the coupling
between pre-storm indices and RC, and also provide a new way to
benchmark models and new observations in flood forecasting and
climate studies — with the ultimate goal of improving our ability to
make accurate assessments of future flood risks.

Open access data and code

• The precipitation, soil moisture, temperature and snow water
equivalent (SWE) from ERA5 data used for the analysis are freely
available via the Copernicus Climate Change Service (C3S) at htt
ps://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-single-levels?tab=overview

• Discharge observations and shapefiles are obtained from the
Global Runoff Data Center (GRDC, https://www.bafg.de/GRDC/
EN/01_GRDC/grdc_node.html and are available under request htt
ps://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_nod
e.html

• The soil moisture and evapotranspiration products of GLEAM 3.5a
are accessible previous registration at https://www.gleam.eu

• SAC-SMA and SNOW17 models used for discharge simulations
and soil moisture accounting are freely available https://github.
com/danbroman/NWS_SacSMA_source. Potential evapotranspira-
tion used within the SAC-SMA model was calculated with python
pyet library https://github.com/phydrus/pyet while the routing
functions can be downloaded here: https://github.com/chriscascia
hydrological_utilities. The calibration code is available via the
pyswarm library here: https://pyswarms.readthedocs.io/en/latest/

• The regression analysis has been carried out with sci-kit python
package available here: https://scikit-learn.org/stable/

• The code for the event extraction can be downloaded here: https:
//hydrograph-py.readthedocs.io/en/latest/index.html

CRediT authorship contribution statement

Christian Massari: Conceptualization, Methodology, Writing –
original draft. Victor Pellet: Methodology, Writing – review & editing.
Yves Tramblay: Methodology, Writing – review & editing. Wade
T. Crow: Writing – review & editing. Gaby J. Gründemann: Data
curation, Writing – review & editing. Tristian Hascoetf: Methodology,

riting – review & editing. Daniele Penna: Writing – review & editing.
Sara Modanesi: Writing – review & editing. Luca Brocca: Writing
– review & editing. Stefania Camici: Writing – review & editing.
Francesco Marra: Conceptualization, Methodology, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Acknowledgments

CM, SM, LB and SC were supported by 4DMED-Hydrology Euro-
pean Space Agency project ESA 4D-MED (4000136272/21/I-EF) and
DTE-Hydrology Evolution (4000136272/21/I-EF - CCN N. 1). FM was
supported by the CARIPARO Foundation through the Excellence Grant
2021 to the ‘‘Resilience’’ Project. USDA ARS is an equal opportunity
employer.
16
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jhydrol.2023.130012.

References

Anon, 2020. Copernicus climate change service (C3S) ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate. copernicus climate change service
climate data store (CDS). URL: https://cds.climate.copernicus.eu/#!/search?text=
ERA5&type=dataset.

Baker, D.B., Richards, R.P., Loftus, T.T., Kramer, J.W., 2004. A new flashiness
index: Characteristics and applications to midwestern rivers and Streams1.
JAWRA J. Am. Water Resour. Assoc. 40 (2), 503–522. http://dx.doi.org/10.
1111/j.1752-1688.2004.tb01046.x, URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1752-1688.2004.tb01046.x. _eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/j.1752-1688.2004.tb01046.x.

Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O.,
Tveito, O.E., Frei, C., 2021. Evaluation of daily precipitation analyses in E-OBS
(V19.0e) and ERA5 by comparison to regional high-resolution datasets in European
regions. Int. J. Climatol. 1 (21), http://dx.doi.org/10.1002/joc.7269, URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/joc.7269.

Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T.,
Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., Wagner, W., 2019. Toward
global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming
obstacles. IEEE Trans. Geosci. Remote Sens. 57 (1), 520–539. http://dx.doi.org/
10.1109/TGRS.2018.2858004, Conference Name: IEEE Transactions on Geoscience
and Remote Sensing.

Baugh, C., De Rosnay, P., Lawrence, H., Jurlina, T., Drusch, M., Zsoter, E.,
Prudhomme, C., 2020. The impact of SMOS soil moisture data assimilation
within the operational global flood awareness system (GloFAS). Remote Sens. 12
(9), 1490. http://dx.doi.org/10.3390/RS12091490, https://www.mdpi.com/2072-
4292/12/9/1490/htm. https://www.mdpi.com/2072-4292/12/9/1490.

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F.,
2018. Present and future Köppen-Geiger climate classification maps at 1-Km
resolution. Sci. Data 5, 180214. http://dx.doi.org/10.1038/sdata.2018.214, arXiv:
30375988. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207062/.

Berghuijs, W.R., Harrigan, S., Molnar, P., Slater, L.J., Kirchner, J.W., 2019. The
relative importance of different flood-generating mechanisms across europe. Water
Resour. Res. 55 (6), 4582–4593. http://dx.doi.org/10.1029/2019WR024841, https:
//onlinelibrary.wiley.com/doi/full/10.1029/2019WR024841. https://onlinelibrary.
wiley.com/doi/abs/10.1029/2019WR024841. https://agupubs.onlinelibrary.wiley.
com/doi/10.1029/2019WR024841.

Berghuijs, W.R., Slater, L.J., 2023. Groundwater shapes North American river floods.
Environ. Res. Lett. 18 (3), 034043. http://dx.doi.org/10.1088/1748-9326/acbecc,
Publisher: IOP Publishing.

Berghuijs, W.R., Woods, R.A., Hutton, C.J., Sivapalan, M., 2016. Dominant flood gener-
ating mechanisms across the United States. Geophys. Res. Lett. 43 (9), 4382–4390.
http://dx.doi.org/10.1002/2016GL068070, URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/2016GL068070. _eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/2016GL068070.

Bertola, M., Viglione, A., Vorogushyn, S., Lun, D., Merz, B., Blöschl, G., 2021. Do
small and large floods have the same drivers of change? A regional attribu-
tion analysis in Europe. Hydrol. Earth Syst. Sci. 25 (3), 1347–1364. http://dx.
doi.org/10.5194/hess-25-1347-2021, URL: https://hess.copernicus.org/articles/25/
1347/2021/. Publisher: Copernicus GmbH.

Betchold, M., Modanesi, S., Lievens, H., Baguis, P., Brangers, I., Carassi, A., Getirana, A.,
Gruber, A., Heyvaert, Z., Massari, C., Scherrer, S., Vannitsem, S., De Lannoy, G.,
2023. Assimilation of Sentinel-1 backscatter into a land surface model with river
routing and its impact on streamflow simulations in two Belgian catchments.
(submitted for publication).

Borga, M., Boscolo, P., Zanon, F., Sangati, M., 2007. Hydrometeorological Analysis
of the 29 August 2003 flash flood in the Eastern Italian Alps. J. Hydrom-
eteorol. 8 (5), 1049–1067. http://dx.doi.org/10.1175/JHM593.1, URL: https://
journals.ametsoc.org/view/journals/hydr/8/5/jhm593_1.xml. Publisher: American
Meteorological Society Section: Journal of Hydrometeorology.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. http://dx.doi.org/10.
1023/A:1010933404324.

Breinl, K., Lun, D., Müller-Thomy, H., Blöschl, G., 2021. Understanding the
relationship between rainfall and flood probabilities through combined intensity-
duration-frequency analysis. J. Hydrol. 602, 126759. http://dx.doi.org/10.
1016/j.jhydrol.2021.126759, URL: https://www.sciencedirect.com/science/article/
pii/S002216942100809X.

Brocca, L., Melone, F., Moramarco, T., Morbidelli, R., 2009. Antecedent wetness
conditions based on ERS scatterometer data. J. Hydrol. 364 (1), 73–87. http:
//dx.doi.org/10.1016/j.jhydrol.2008.10.007, URL: https://www.sciencedirect.com/
science/article/pii/S002216940800512X.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/12_plcy/data_policy_node.html
https://www.gleam.eu
https://github.com/danbroman/NWS_SacSMA_source
https://github.com/danbroman/NWS_SacSMA_source
https://github.com/danbroman/NWS_SacSMA_source
https://github.com/phydrus/pyet
https://github.com/chriscascia/hydrological_utilities
https://github.com/chriscascia/hydrological_utilities
https://github.com/chriscascia/hydrological_utilities
https://pyswarms.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
https://hydrograph-py.readthedocs.io/en/latest/index.html
https://hydrograph-py.readthedocs.io/en/latest/index.html
https://hydrograph-py.readthedocs.io/en/latest/index.html
https://doi.org/10.1016/j.jhydrol.2023.130012
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01046.x
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01046.x
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2004.tb01046.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2004.tb01046.x
http://dx.doi.org/10.1002/joc.7269
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.7269
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.7269
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.7269
http://dx.doi.org/10.1109/TGRS.2018.2858004
http://dx.doi.org/10.1109/TGRS.2018.2858004
http://dx.doi.org/10.1109/TGRS.2018.2858004
http://dx.doi.org/10.3390/RS12091490
https://www.mdpi.com/2072-4292/12/9/1490/htm
https://www.mdpi.com/2072-4292/12/9/1490/htm
https://www.mdpi.com/2072-4292/12/9/1490/htm
https://www.mdpi.com/2072-4292/12/9/1490
http://dx.doi.org/10.1038/sdata.2018.214
http://arxiv.org/abs/30375988
http://arxiv.org/abs/30375988
http://arxiv.org/abs/30375988
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207062/
http://dx.doi.org/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/full/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/full/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/full/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024841
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR024841
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR024841
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR024841
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019WR024841
http://dx.doi.org/10.1088/1748-9326/acbecc
http://dx.doi.org/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL068070
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL068070
http://dx.doi.org/10.5194/hess-25-1347-2021
http://dx.doi.org/10.5194/hess-25-1347-2021
http://dx.doi.org/10.5194/hess-25-1347-2021
https://hess.copernicus.org/articles/25/1347/2021/
https://hess.copernicus.org/articles/25/1347/2021/
https://hess.copernicus.org/articles/25/1347/2021/
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb11
http://dx.doi.org/10.1175/JHM593.1
https://journals.ametsoc.org/view/journals/hydr/8/5/jhm593_1.xml
https://journals.ametsoc.org/view/journals/hydr/8/5/jhm593_1.xml
https://journals.ametsoc.org/view/journals/hydr/8/5/jhm593_1.xml
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.jhydrol.2021.126759
http://dx.doi.org/10.1016/j.jhydrol.2021.126759
http://dx.doi.org/10.1016/j.jhydrol.2021.126759
https://www.sciencedirect.com/science/article/pii/S002216942100809X
https://www.sciencedirect.com/science/article/pii/S002216942100809X
https://www.sciencedirect.com/science/article/pii/S002216942100809X
http://dx.doi.org/10.1016/j.jhydrol.2008.10.007
http://dx.doi.org/10.1016/j.jhydrol.2008.10.007
http://dx.doi.org/10.1016/j.jhydrol.2008.10.007
https://www.sciencedirect.com/science/article/pii/S002216940800512X
https://www.sciencedirect.com/science/article/pii/S002216940800512X
https://www.sciencedirect.com/science/article/pii/S002216940800512X


Journal of Hydrology 625 (2023) 130012C. Massari et al.
Burnash, R.J.C., 1995. The NWS river forecast system - Catchment modeling. In: Com-
puter Models of Watershed Hydrology. pp. 311–366, URL: https://www.cabdirect.
org/cabdirect/abstract/19961904770. Publisher: Water Resources Publications.

Camici, S., Ciabatta, L., Massari, C., Brocca, L., 2018. How reliable are satellite
precipitation estimates for driving hydrological models: A verification study over
the Mediterranean area. J. Hydrol. 563, 950–961. http://dx.doi.org/10.1016/J.
JHYDROL.2018.06.067.

Castillo, V.M., Gómez-Plaza, A., Martınez-Mena, M., 2003. The role of antecedent
soil water content in the runoff response of semiarid catchments: A sim-
ulation approach. J. Hydrol. 284 (1), 114–130. http://dx.doi.org/10.1016/
S0022-1694(03)00264-6, URL: https://www.sciencedirect.com/science/article/pii/
S0022169403002646.

Chen, F., Crow, W.T., Starks, P.J., Moriasi, D.N., 2011. Improving hydrologic predictions
of a catchment model via assimilation of surface soil moisture. Adv. Water Resour.
34 (4), 526–536. http://dx.doi.org/10.1016/j.advwatres.2011.01.011, URL: https:
//www.sciencedirect.com/science/article/pii/S030917081100025X.

Crow, W.T., Chen, F., Reichle, R.H., Liu, Q., 2017. L band microwave remote sensing
and land data assimilation improve the representation of prestorm soil moisture
conditions for hydrologic forecasting. Geophys. Res. Lett. 44 (11), 5495–5503.
http://dx.doi.org/10.1002/2017GL073642, URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/2017GL073642. _eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/2017GL073642.

Crow, W.T., Chen, F., Reichle, R.H., Xia, Y., 2019. Diagnosing Bias in modeled soil mois-
ture/runoff coefficient correlation using the SMAP level 4 soil moisture product.
Water Resour. Res. 55 (8), 7010–7026. http://dx.doi.org/10.1029/2019WR025245,
URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR025245.

Cutler, D.R., Edwards, Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J.,
Lawler, J.J., 2007. Random forests for classification in ecology. Ecology 88
(11), 2783–2792. http://dx.doi.org/10.1890/07-0539.1, URL: https://onlinelibrary.
wiley.com/doi/abs/10.1890/07-0539.1.

De Santis, D., Biondi, D., Crow, W.T., Camici, S., Modanesi, S., Brocca, L., Massari, C.,
2021. Assimilation of satellite soil moisture products for river flow prediction: An
extensive experiment in over 700 catchments throughout Europe. Water Resour.
Res. 57 (6), http://dx.doi.org/10.1029/2021WR029643, e2021WR029643. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021WR029643.

Do, H.X., Mei, Y., Gronewold, A.D., 2020. To what extent are changes in
flood magnitude related to changes in precipitation extremes? Geophys. Res.
Lett. 47 (18), http://dx.doi.org/10.1029/2020GL088684, e2020GL088684. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088684. _eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088684.

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N.,
Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R.,
Koster, R.D., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R.,
Shi, J.C., Spencer, M.W., Thurman, S.W., Tsang, L., Van Zyl, J., 2010. The soil
moisture active passive (SMAP) mission. Proc. IEEE 98 (5), 704–716. http://dx.
doi.org/10.1109/JPROC.2010.2043918.

Gnann, S.J., Coxon, G., Woods, R.A., Howden, N.J.K., McMillan, H.K., 2021.
TOSSH: A toolbox for streamflow signatures in hydrology. Environ. Model.
Softw. 138, 104983. http://dx.doi.org/10.1016/j.envsoft.2021.104983, URL: https:
//www.sciencedirect.com/science/article/pii/S1364815221000268.

Grömping, U., 2009. Variable importance assessment in regression: Linear regression
versus random forest. Amer. Statist. 63 (4), 308–319, arXiv:25652309. URL: http:
//www.jstor.org/stable/25652309.

Gründemann, G.J., p. d. u. family=Giesen, given=Nick, Brunner, L., p. d. u. family=Ent,
given=Ruud, 2022. Rarest rainfall events will see the greatest relative increase
in magnitude under future climate change. Commun. Earth Environ. 3 (1), 1–
9. http://dx.doi.org/10.1038/s43247-022-00558-8, URL: https://www.nature.com/
articles/s43247-022-00558-8.

Guastini, E., Zuecco, G., Errico, A., Castelli, G., Bresci, E., Preti, F., Penna, D., 2019.
How does streamflow response vary with spatial scale? Analysis of controls in
three nested Alpine catchments. J. Hydrol. 570, 705–718. http://dx.doi.org/10.
1016/j.jhydrol.2019.01.022, URL: https://www.sciencedirect.com/science/article/
pii/S0022169419300678.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S.,
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G.D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E.,
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Ros-
nay, P.d., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5
global reanalysis. Q. J. R. Meteorol. Soc. 146 (730), 1999–2049. http://dx.doi.org/
10.1002/qj.3803, URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.
3803. _eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803.

Hofstra, N., Haylock, M., New, M., Jones, P.D., 2009. Testing E-OBS European high-
resolution gridded data set of daily precipitation and surface temperature. J.
Geophys. Res.: Atmos. 114 (D21), http://dx.doi.org/10.1029/2009JD011799, URL:
https://onlinelibrary.wiley.com/doi/abs/10.1029/2009JD011799.

Hong, Y., Adler, R.F., Hossain, F., Curtis, S., Huffman, G.J., 2007. A first approach to
global runoff simulation using satellite rainfall estimation. Water Resour. Res. 43
(8), http://dx.doi.org/10.1029/2006WR005739, URL: https://onlinelibrary.wiley.
com/doi/abs/10.1029/2006WR005739.
17
Ivancic, T.J., Shaw, S.B., 2015. Examining why trends in very heavy precipitation
should not be mistaken for trends in very high river discharge. Clim. Change
133 (4), 681–693. http://dx.doi.org/10.1007/s10584-015-1476-1, URL: http://
link.springer.com/10.1007/s10584-015-1476-1.

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J., Font, J., Berger, M., 2001.
Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS)
mission. IEEE Trans. Geosci. Remote Sens. 39 (8), 1729–1735, Publisher: IEEE.

Kim, S., Zhang, R., Pham, H., Sharma, A., 2019. A review of satellite-derived soil
moisture and its usage for flood estimation. Remote Sens. Earth Syst. Sci. 2 (4),
225–246. http://dx.doi.org/10.1007/s41976-019-00025-7.

Komma, J., Reszler, C., Blöschl, G., Haiden, T., 2007. Ensemble prediction of floods
&ndash; catchment non-linearity and forecast probabilities. Nat. Hazards Earth
Syst. Sci. 7 (4), 431–444. http://dx.doi.org/10.5194/nhess-7-431-2007, URL: https:
//nhess.copernicus.org/articles/7/431/2007/.

Kuentz, A., Arheimer, B., Hundecha, Y., Wagener, T., 2017. Understanding hydrologic
variability across Europe through catchment classification. Hydrol. Earth Syst.
Sci. 21 (6), 2863–2879. http://dx.doi.org/10.5194/hess-21-2863-2017, URL: https:
//hess.copernicus.org/articles/21/2863/2017/.

Kumar, S.V., Reichle, R.H., Koster, R.D., Crow, W.T., Peters-Lidard, C.D., 2009. Role
of subsurface physics in the assimilation of surface soil moisture observations.
J. Hydrometeorol. 10 (6), 1534–1547. http://dx.doi.org/10.1175/2009JHM1134.1,
URL: https://journals.ametsoc.org/view/journals/hydr/10/6/2009jhm1134_1.xml.

Kundzewicz, Z.W., Robson, A.J., 2004. Change detection in hydrological records—a
review of the methodology / Revue méthodologique de la détection de changements
dans les chroniques hydrologiques. Hydrol. Sci. J. 49 (1), 7–19. http://dx.doi.org/
10.1623/hysj.49.1.7.53993, Publisher: Taylor & Francis _eprint.

Li, M., Wu, P., Ma, Z., 2020. A comprehensive evaluation of soil moisture and soil
temperature from third-generation atmospheric and land reanalysis data sets. Int.
J. Climatol. 40 (13), 5744–5766. http://dx.doi.org/10.1002/joc.6549, URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/joc.6549.

Liaw, A., Wiener, M., 2002. Classification and Regression by RandomForest, Vol. 2.
Lievens, H., Tomer, S.K., Bitar, A.A., Lannoy, G.J.D., Drusch, M., Dumedah, G.,

Franssen, H.J.H., Kerr, Y.H., Martens, B., Pan, M., Roundy, J.K., Vereecken, H.,
Walker, J.P., Wood, E.F., Verhoest, N.E., Pauwels, V.R., 2015. SMOS soil moisture
assimilation for improved hydrologic simulation in the Murray Darling Basin,
Australia. Remote Sens. Environ. 168, 146–162. http://dx.doi.org/10.1016/J.RSE.
2015.06.025.

Lloyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28 (2),
129–137. http://dx.doi.org/10.1109/TIT.1982.1056489.

Lu, J., Sun, G., McNulty, S.G., Amatya, D.M., 2005. A comparison of six potential
evapotranspiration methods for regional use in the Southeastern United States1.
JAWRA J. Am. Water Resour. Assoc. 41 (3), 621–633. http://dx.doi.org/10.
1111/j.1752-1688.2005.tb03759.x, URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1752-1688.2005.tb03759.x. _eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/j.1752-1688.2005.tb03759.x.

Mahdi El Khalki, E., Tramblay, Y., Massari, C., Brocca, L., Simonneaux, V., Gascoin, S.,
El Mehdi Saidi, M., 2020. Challenges in flood modeling over data-scarce
regions: How to exploit globally available soil moisture products to estimate
antecedent soil wetness conditions in Morocco. Nat. Hazards Earth Syst. Sci.
20 (10), 2591–2607. http://dx.doi.org/10.5194/nhess-20-2591-2020, URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%
2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93.
tex.document_type: Article tex.source: Scopus.

Manfreda, S., Brocca, L., Moramarco, T., Melone, F., Sheffield, J., 2014. A physi-
cally based approach for the estimation of root-zone soil moisture from surface
measurements. Hydrol. Earth Syst. Sci. 18 (3), 1199–1212. http://dx.doi.org/
10.5194/hess-18-1199-2014, URL: https://hess.copernicus.org/articles/18/1199/
2014/. Publisher: Copernicus GmbH.

Mao, Y., Crow, W.T., Nijssen, B., 2020. Dual state/rainfall correction via soil mois-
ture assimilation for improved streamflow simulation: Evaluation of a large-scale
implementation with soil moisture active passive (SMAP) satellite data. Hydrol.
Earth Syst. Sci. 24 (2), 615–631. http://dx.doi.org/10.5194/hess-24-615-2020,
URL: https://hess.copernicus.org/articles/24/615/2020/.

Marchi, L., Borga, M., Preciso, E., Gaume, E., 2010. Characterisation of selected
extreme flash floods in Europe and implications for flood risk management. Flash
Floods: Observations and Analysis of Hydrometeorological Controls, J. Hydrol.
Flash Floods: Observations and Analysis of Hydrometeorological Controls, 394
(1), 118–133. http://dx.doi.org/10.1016/j.jhydrol.2010.07.017.URL: https://www.
sciencedirect.com/science/article/pii/S0022169410004427,

Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M.,
Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., Verhoest, N.E.C., 2017. GLEAM v3:
Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev.
10 (5), 1903–1925. http://dx.doi.org/10.5194/gmd-10-1903-2017, URL: https://
gmd.copernicus.org/articles/10/1903/2017/. Publisher: Copernicus GmbH.

Massari, C., Brocca, L., Barbetta, S., Papathanasiou, C., Mimikou, M., Moramarco, T.,
2014. Using globally available soil moisture indicators for flood modelling
in Mediterranean catchments. Hydrol. Earth Syst. Sci. 18 (2), 839–853.
http://dx.doi.org/10.5194/hess-18-839-2014, URL: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&
partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a. tex.document_type:
Article tex.source: Scopus.

https://www.cabdirect.org/cabdirect/abstract/19961904770
https://www.cabdirect.org/cabdirect/abstract/19961904770
https://www.cabdirect.org/cabdirect/abstract/19961904770
http://dx.doi.org/10.1016/J.JHYDROL.2018.06.067
http://dx.doi.org/10.1016/J.JHYDROL.2018.06.067
http://dx.doi.org/10.1016/J.JHYDROL.2018.06.067
http://dx.doi.org/10.1016/S0022-1694(03)00264-6
http://dx.doi.org/10.1016/S0022-1694(03)00264-6
http://dx.doi.org/10.1016/S0022-1694(03)00264-6
https://www.sciencedirect.com/science/article/pii/S0022169403002646
https://www.sciencedirect.com/science/article/pii/S0022169403002646
https://www.sciencedirect.com/science/article/pii/S0022169403002646
http://dx.doi.org/10.1016/j.advwatres.2011.01.011
https://www.sciencedirect.com/science/article/pii/S030917081100025X
https://www.sciencedirect.com/science/article/pii/S030917081100025X
https://www.sciencedirect.com/science/article/pii/S030917081100025X
http://dx.doi.org/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073642
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073642
http://dx.doi.org/10.1029/2019WR025245
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR025245
http://dx.doi.org/10.1890/07-0539.1
https://onlinelibrary.wiley.com/doi/abs/10.1890/07-0539.1
https://onlinelibrary.wiley.com/doi/abs/10.1890/07-0539.1
https://onlinelibrary.wiley.com/doi/abs/10.1890/07-0539.1
http://dx.doi.org/10.1029/2021WR029643
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021WR029643
http://dx.doi.org/10.1029/2020GL088684
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088684
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088684
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088684
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088684
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1016/j.envsoft.2021.104983
https://www.sciencedirect.com/science/article/pii/S1364815221000268
https://www.sciencedirect.com/science/article/pii/S1364815221000268
https://www.sciencedirect.com/science/article/pii/S1364815221000268
http://arxiv.org/abs/25652309
http://www.jstor.org/stable/25652309
http://www.jstor.org/stable/25652309
http://www.jstor.org/stable/25652309
http://dx.doi.org/10.1038/s43247-022-00558-8
https://www.nature.com/articles/s43247-022-00558-8
https://www.nature.com/articles/s43247-022-00558-8
https://www.nature.com/articles/s43247-022-00558-8
http://dx.doi.org/10.1016/j.jhydrol.2019.01.022
http://dx.doi.org/10.1016/j.jhydrol.2019.01.022
http://dx.doi.org/10.1016/j.jhydrol.2019.01.022
https://www.sciencedirect.com/science/article/pii/S0022169419300678
https://www.sciencedirect.com/science/article/pii/S0022169419300678
https://www.sciencedirect.com/science/article/pii/S0022169419300678
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803
http://dx.doi.org/10.1029/2009JD011799
https://onlinelibrary.wiley.com/doi/abs/10.1029/2009JD011799
http://dx.doi.org/10.1029/2006WR005739
https://onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005739
https://onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005739
https://onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005739
http://dx.doi.org/10.1007/s10584-015-1476-1
http://link.springer.com/10.1007/s10584-015-1476-1
http://link.springer.com/10.1007/s10584-015-1476-1
http://link.springer.com/10.1007/s10584-015-1476-1
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb34
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb34
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb34
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb34
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb34
http://dx.doi.org/10.1007/s41976-019-00025-7
http://dx.doi.org/10.5194/nhess-7-431-2007
https://nhess.copernicus.org/articles/7/431/2007/
https://nhess.copernicus.org/articles/7/431/2007/
https://nhess.copernicus.org/articles/7/431/2007/
http://dx.doi.org/10.5194/hess-21-2863-2017
https://hess.copernicus.org/articles/21/2863/2017/
https://hess.copernicus.org/articles/21/2863/2017/
https://hess.copernicus.org/articles/21/2863/2017/
http://dx.doi.org/10.1175/2009JHM1134.1
https://journals.ametsoc.org/view/journals/hydr/10/6/2009jhm1134_1.xml
http://dx.doi.org/10.1623/hysj.49.1.7.53993
http://dx.doi.org/10.1623/hysj.49.1.7.53993
http://dx.doi.org/10.1623/hysj.49.1.7.53993
http://dx.doi.org/10.1002/joc.6549
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.6549
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.6549
https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.6549
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb41
http://dx.doi.org/10.1016/J.RSE.2015.06.025
http://dx.doi.org/10.1016/J.RSE.2015.06.025
http://dx.doi.org/10.1016/J.RSE.2015.06.025
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03759.x
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03759.x
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2005.tb03759.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1752-1688.2005.tb03759.x
http://dx.doi.org/10.5194/nhess-20-2591-2020
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090906896&doi=10.5194%2fnhess-20-2591-2020&partnerID=40&md5=8e11335157f81eb5a0bfcd7fa055cc93
http://dx.doi.org/10.5194/hess-18-1199-2014
http://dx.doi.org/10.5194/hess-18-1199-2014
http://dx.doi.org/10.5194/hess-18-1199-2014
https://hess.copernicus.org/articles/18/1199/2014/
https://hess.copernicus.org/articles/18/1199/2014/
https://hess.copernicus.org/articles/18/1199/2014/
http://dx.doi.org/10.5194/hess-24-615-2020
https://hess.copernicus.org/articles/24/615/2020/
http://dx.doi.org/10.1016/j.jhydrol.2010.07.017
https://www.sciencedirect.com/science/article/pii/S0022169410004427
https://www.sciencedirect.com/science/article/pii/S0022169410004427
https://www.sciencedirect.com/science/article/pii/S0022169410004427
http://dx.doi.org/10.5194/gmd-10-1903-2017
https://gmd.copernicus.org/articles/10/1903/2017/
https://gmd.copernicus.org/articles/10/1903/2017/
https://gmd.copernicus.org/articles/10/1903/2017/
http://dx.doi.org/10.5194/hess-18-839-2014
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896859292&doi=10.5194%2fhess-18-839-2014&partnerID=40&md5=ced2d3c4b59a1a71b1d2dd39da6d898a


Journal of Hydrology 625 (2023) 130012C. Massari et al.
Massari, C., Camici, S., 2020. Antecedent wetness conditions of European floods:
A comprehensive study. In: IGARSS 2020 - 2020 IEEE International Geoscience
and Remote Sensing Symposium. pp. 3935–3938. http://dx.doi.org/10.1109/
IGARSS39084.2020.9324459, ISSN: 2153-7003.

McDonnell, J.J., 2009. Hewlett, J.D. and Hibbert, A.R. 1967: Factors affecting the
response of small watersheds to precipitation in humid areas. In sopper, W.E.
and Lull, H.W., Editors, Forest hydrology, New York: Pergamon Press, 275—90.
Progr. Phys. Geogr. Earth Environ. 33 (2), 288–293. http://dx.doi.org/10.1177/
0309133309338118.

McKee, T., Doesken, N., Kleist, J., 1993. The relationship of drought frequency and
duration to time scales. In: Proceedings of the Eighth Conference on Applied
Climatology. American Meteorological Society, pp. 179–184.

Melone, F., Corradini, C., Singh, V.P., 2002. Lag prediction in ungauged basins: An
investigation through actual data of the upper Tiber River valley. Hydrol. Process.
16 (5), 1085–1094. http://dx.doi.org/10.1002/hyp.313, URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/hyp.313.

Merz, R., Blöschl, G., 2009. A regional analysis of event runoff coefficients with respect
to climate and catchment characteristics in Austria. Water Resour. Res. 45 (1),
http://dx.doi.org/10.1029/2008WR007163.

Norbiato, D., Borga, M., Merz, R., Blöschl, G., Carton, A., 2009. Controls on event
runoff coefficients in the Eastern Italian Alps. J. Hydrol. 375 (3), 312–325. http:
//dx.doi.org/10.1016/j.jhydrol.2009.06.044, URL: https://www.sciencedirect.com/
science/article/pii/S0022169409003485.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12 (null), 2825–2830.

Penna, D., Borga, M., Zoccatelli, D., 2013. 7.9 Analysis of flash-flood runoff response,
with examples from major European events. In: Shroder, J.F. (Ed.), Treatise on
Geomorphology. Academic Press, pp. 95–104. http://dx.doi.org/10.1016/B978-
0-12-374739-6.00153-6, URL: https://www.sciencedirect.com/science/article/pii/
B9780123747396001536.

Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., Borga, M., Dalla Fontana, G., 2011.
The influence of soil moisture on threshold runoff generation processes in an alpine
headwater catchment. Hydrol. Earth Syst. Sci. 15 (3), 689–702. http://dx.doi.
org/10.5194/hess-15-689-2011, URL: https://hess.copernicus.org/articles/15/689/
2011/hess-15-689-2011.html. Publisher: Copernicus GmbH.

Penna, D., van Meerveld, H.J., Zuecco, G., Dalla Fontana, G., Borga, M., 2016.
Hydrological response of an Alpine catchment to rainfall and snowmelt events.
J. Hydrol. 537, 382–397. http://dx.doi.org/10.1016/j.jhydrol.2016.03.040, URL:
https://www.sciencedirect.com/science/article/pii/S0022169416301457.

Pieper, P., Düsterhus, A., Baehr, J., 2020. A universal Standardized Precipitation Index
candiyear distribution function for observations and simulations. Hydrol. Earth
Syst. Sci. 24 (9), 4541–4565. http://dx.doi.org/10.5194/hess-24-4541-2020, URL:
https://hess.copernicus.org/articles/24/4541/2020/.

Ponce, V.M., Hawkins, R.H., 1996. Runoff curve number: Has it reached
maturity? J. Hydrol. Eng. 1 (1), 11–19. http://dx.doi.org/10.1061/(ASCE)
1084-0699(1996)1:1(11), URL: https://ascelibrary.org/doi/10.1061/%28ASCE%
291084-0699%281996%291%3A1%2811%29. Publisher: American Society of Civil
Engineers.

Rasheed, Z., Aravamudan, A., Sefidmazgi, A.G., Anagnostopoulos, G.C.,
Nikolopoulos, E.I., 2022. Advancing flood warning procedures in ungauged
basins with machine learning. J. Hydrol. 609, 127736. http://dx.doi.org/10.
1016/J.JHYDROL.2022.127736, URL: https://linkinghub.elsevier.com/retrieve/pii/
S0022169422003110.

Reager, J.T., Famiglietti, J.S., 2009. Global terrestrial water storage capacity and
flood potential using GRACE. Geophys. Res. Lett. 36 (23), http://dx.doi.org/
10.1029/2009GL040826, URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/
2009GL040826.

Reichle, R.H., Lannoy, G.J.M.D., Liu, Q., Ardizzone, J.V., Colliander, A., Conaty, A.,
Crow, W., Jackson, T.J., Jones, L.A., Kimball, J.S., Koster, R.D., Mahanama, S.P.,
Smith, E.B., Berg, A., Bircher, S., Bosch, D., Caldwell, T.G., Cosh, M., González-
Zamora, A., Collins, C.D.H., Jensen, K.H., Livingston, S., Lopez-Baeza, E.,
Martínnez-Fernández, J., McNairn, H., Moghaddam, M., Pacheco, A., Pellarin, T.,
Prueger, J., Rowlandson, T., Seyfried, M., Starks, P., Su, Z., Thibeault, M., van der
Velde, R., J., W., Wu, X., Zeng, Y., 2017. Assessment of the SMAP Level-4 Surface
and Root-zone soil moisture product using in situ measurements. J. Hydrometeorol.
18 (10), 2621–2645. http://dx.doi.org/10.1175/JHM-D-17-0063.1, URL: https://
journals.ametsoc.org/view/journals/hydr/18/10/jhm-d-17-0063_1.xml.

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.,
2012. An assessment of the effectiveness of a random forest classifier for land-
cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104. http://dx.doi.
org/10.1016/j.isprsjprs.2011.11.002, URL: https://www.sciencedirect.com/science/
article/pii/S0924271611001304.

Rodriguez-Galiano, V., Mendes, M.P., Garcia-Soldado, M.J., Chica-Olmo, M., Ribeiro, L.,
2014. Predictive modeling of groundwater nitrate pollution using random forest
and multisource variables related to intrinsic and specific vulnerability: A case
study in an agricultural setting (Southern Spain). Sci. Total Environ. 476–477,
189–206. http://dx.doi.org/10.1016/j.scitotenv.2014.01.001, URL: https://www.
sciencedirect.com/science/article/pii/S0048969714000102.
18
Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65. http://dx.doi.org/10.1016/
0377-0427(87)90125-7, URL: https://www.sciencedirect.com/science/article/pii/
0377042787901257.

Shahrban, M., Walker, J.P., Wang, Q.J., Robertson, D.E., 2018. On the Impor-
tance of Soil Moisture in Calibration of Rainfall–Runoff Models: Two Case
Studies, Vol. 63, No. 9. Taylor & Francis, pp. 1292–1312. http://dx.doi.org/
10.1080/02626667.2018.1487560, URL: https://www.tandfonline.com/doi/abs/10.
1080/02626667.2018.1487560.

Sharma, A., Wasko, C., Lettenmaier, D.P., 2018. If precipitation extremes are increasing,
why aren’t floods? Water Resour. Res. 54 (11), 8545–8551. http://dx.doi.org/
10.1029/2018WR023749, URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/
2018WR023749.

Simas, M., 1996. Lag Time Characteristics in Small Watersheds in the United states
(Ph.D. thesis).

Sivapalan, M., Blöschl, G., Merz, R., Gutknecht, D., 2005. Linking flood frequency
to long-term water balance: Incorporating effects of seasonality. Water Resour.
Res. 41 (6), http://dx.doi.org/10.1029/2004WR003439, URL: https://onlinelibrary.
wiley.com/doi/abs/10.1029/2004WR003439.

Slater, L.J., Villarini, G., 2016. Recent trends in U.S. flood risk. Geophys. Res.
Lett. 43 (24), 12,428–12,436. http://dx.doi.org/10.1002/2016GL071199, URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL071199. _eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071199.

Stein, L., Clark, M.P., Knoben, W.J.M., Pianosi, F., Woods, R.A., 2021. How do
climate and catchment attributes influence flood generating processes? A large-
sample study for 671 catchments across the contiguous USA. Water Resour. Res.
57 (4), http://dx.doi.org/10.1029/2020WR028300, e2020WR028300. URL: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028300.

Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and
climate experiment: Mission overview and early results. Geophys. Res. Lett. 31
(9), http://dx.doi.org/10.1029/2004GL019920, URL: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2004GL019920. _eprint: https://agupubs.onlinelibrary.
wiley.com/doi/pdf/10.1029/2004GL019920.

Tarasova, L., Basso, S., Zink, M., Merz, R., 2018. Exploring controls on rainfall-
runoff events: 1. Time series-based event separation and temporal dynamics
of event runoff response in Germany. Water Resour. Res. 54 (10), 7711–7732.
http://dx.doi.org/10.1029/2018WR022587, https://onlinelibrary.wiley.com/
doi/full/10.1029/2018WR022587. https://onlinelibrary.wiley.com/doi/abs/10.
1029/2018WR022587. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/
2018WR022587.

Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J.-F., Todorovik, D., Domer-
gue, J.-M., 2010. Assessment of initial soil moisture conditions for event-based
Rainfall–Runoff modelling. J. Hydrol. 387 (3), 176–187. http://dx.doi.org/10.
1016/j.jhydrol.2010.04.006, URL: https://www.sciencedirect.com/science/article/
pii/S0022169410001873.

Vaittinada Ayar, P., Mailhot, A., 2021. Evolution of Dry and wet spells under climate
change over North-Eastern North America. J. Geophys. Res.: Atmos. 126 (5), http:
//dx.doi.org/10.1029/2020JD033740, e2020JD033740. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1029/2020JD033740.

Viglione, A., Merz, R., Blöschl, G., 2009. On the role of the runoff coefficient in the
mapping of rainfall to flood return periods. Hydrol. Earth Syst. Sci. 13 (5), 577–
593. http://dx.doi.org/10.5194/hess-13-577-2009, URL: https://hess.copernicus.
org/articles/13/577/2009/. Publisher: Copernicus GmbH.

Wasko, C., Nathan, R., Peel, M.C., 2020. Changes in antecedent soil moisture mod-
ulate flood seasonality in a changing climate. Water Resour. Res. 56 (3), http:
//dx.doi.org/10.1029/2019WR026300, URL: https://onlinelibrary.wiley.com/doi/
abs/10.1029/2019WR026300.

Wu, S., Zhao, J., Wang, H., Sivapalan, M., 2021. Regional patterns and physical controls
of streamflow generation across the conterminous United States. Water Resour.
Res. 57 (6), http://dx.doi.org/10.1029/2020WR028086, e2020WR028086. https:
//onlinelibrary.wiley.com/doi/full/10.1029/2020WR028086. https://onlinelibrary.
wiley.com/doi/abs/10.1029/2020WR028086. https://agupubs.onlinelibrary.wiley.
com/doi/10.1029/2020WR028086.

Yair, A., Klein, M., 1973. The influence of surface properties on flow and erosion pro-
cesses on debris covered slopes in an arid area. Catena 1, 1–18. http://dx.doi.org/
10.1016/S0341-8162(73)80002-5, URL: https://www.sciencedirect.com/science/
article/pii/S0341816273800025.

Zhang, Y., Wei, H., Nearing, M.A., 2011. Effects of antecedent soil moisture on runoff
modeling in small semiarid watersheds of Southeastern Arizona. Hydrol. Earth
Syst. Sci. 15 (10), 3171–3179. http://dx.doi.org/10.5194/hess-15-3171-2011, URL:
https://hess.copernicus.org/articles/15/3171/2011/.

Zhao, L., Liu, C., Sobkowiak, L., Wu, X., Liu, J., 2019. A review of underlying surface
parameterization methods in hydrologic models. J. Geogr. Sci. 29 (6), 1039–1060.
http://dx.doi.org/10.1007/s11442-019-1643-9.

Zolina, O., Simmer, C., Belyaev, K., Gulev, S.K., Koltermann, P., 2013. Changes in the
duration of European wet and dry spells during the last 60 years. J. Clim. 26 (6),
2022–2047. http://dx.doi.org/10.1175/JCLI-D-11-00498.1, URL: https://journals.
ametsoc.org/view/journals/clim/26/6/jcli-d-11-00498.1.xml.

http://dx.doi.org/10.1109/IGARSS39084.2020.9324459
http://dx.doi.org/10.1109/IGARSS39084.2020.9324459
http://dx.doi.org/10.1109/IGARSS39084.2020.9324459
http://dx.doi.org/10.1177/0309133309338118
http://dx.doi.org/10.1177/0309133309338118
http://dx.doi.org/10.1177/0309133309338118
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb53
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb53
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb53
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb53
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb53
http://dx.doi.org/10.1002/hyp.313
https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.313
https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.313
https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.313
http://dx.doi.org/10.1029/2008WR007163
http://dx.doi.org/10.1016/j.jhydrol.2009.06.044
http://dx.doi.org/10.1016/j.jhydrol.2009.06.044
http://dx.doi.org/10.1016/j.jhydrol.2009.06.044
https://www.sciencedirect.com/science/article/pii/S0022169409003485
https://www.sciencedirect.com/science/article/pii/S0022169409003485
https://www.sciencedirect.com/science/article/pii/S0022169409003485
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb57
http://dx.doi.org/10.1016/B978-0-12-374739-6.00153-6
http://dx.doi.org/10.1016/B978-0-12-374739-6.00153-6
http://dx.doi.org/10.1016/B978-0-12-374739-6.00153-6
https://www.sciencedirect.com/science/article/pii/B9780123747396001536
https://www.sciencedirect.com/science/article/pii/B9780123747396001536
https://www.sciencedirect.com/science/article/pii/B9780123747396001536
http://dx.doi.org/10.5194/hess-15-689-2011
http://dx.doi.org/10.5194/hess-15-689-2011
http://dx.doi.org/10.5194/hess-15-689-2011
https://hess.copernicus.org/articles/15/689/2011/hess-15-689-2011.html
https://hess.copernicus.org/articles/15/689/2011/hess-15-689-2011.html
https://hess.copernicus.org/articles/15/689/2011/hess-15-689-2011.html
http://dx.doi.org/10.1016/j.jhydrol.2016.03.040
https://www.sciencedirect.com/science/article/pii/S0022169416301457
http://dx.doi.org/10.5194/hess-24-4541-2020
https://hess.copernicus.org/articles/24/4541/2020/
http://dx.doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
https://ascelibrary.org/doi/10.1061/%28ASCE%291084-0699%281996%291%3A1%2811%29
https://ascelibrary.org/doi/10.1061/%28ASCE%291084-0699%281996%291%3A1%2811%29
https://ascelibrary.org/doi/10.1061/%28ASCE%291084-0699%281996%291%3A1%2811%29
http://dx.doi.org/10.1016/J.JHYDROL.2022.127736
http://dx.doi.org/10.1016/J.JHYDROL.2022.127736
http://dx.doi.org/10.1016/J.JHYDROL.2022.127736
https://linkinghub.elsevier.com/retrieve/pii/S0022169422003110
https://linkinghub.elsevier.com/retrieve/pii/S0022169422003110
https://linkinghub.elsevier.com/retrieve/pii/S0022169422003110
http://dx.doi.org/10.1029/2009GL040826
http://dx.doi.org/10.1029/2009GL040826
http://dx.doi.org/10.1029/2009GL040826
https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL040826
https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL040826
https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL040826
http://dx.doi.org/10.1175/JHM-D-17-0063.1
https://journals.ametsoc.org/view/journals/hydr/18/10/jhm-d-17-0063_1.xml
https://journals.ametsoc.org/view/journals/hydr/18/10/jhm-d-17-0063_1.xml
https://journals.ametsoc.org/view/journals/hydr/18/10/jhm-d-17-0063_1.xml
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
https://www.sciencedirect.com/science/article/pii/S0924271611001304
https://www.sciencedirect.com/science/article/pii/S0924271611001304
https://www.sciencedirect.com/science/article/pii/S0924271611001304
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
https://www.sciencedirect.com/science/article/pii/S0048969714000102
https://www.sciencedirect.com/science/article/pii/S0048969714000102
https://www.sciencedirect.com/science/article/pii/S0048969714000102
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://dx.doi.org/10.1080/02626667.2018.1487560
http://dx.doi.org/10.1080/02626667.2018.1487560
http://dx.doi.org/10.1080/02626667.2018.1487560
https://www.tandfonline.com/doi/abs/10.1080/02626667.2018.1487560
https://www.tandfonline.com/doi/abs/10.1080/02626667.2018.1487560
https://www.tandfonline.com/doi/abs/10.1080/02626667.2018.1487560
http://dx.doi.org/10.1029/2018WR023749
http://dx.doi.org/10.1029/2018WR023749
http://dx.doi.org/10.1029/2018WR023749
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023749
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023749
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023749
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb71
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb71
http://refhub.elsevier.com/S0022-1694(23)00954-X/sb71
http://dx.doi.org/10.1029/2004WR003439
https://onlinelibrary.wiley.com/doi/abs/10.1029/2004WR003439
https://onlinelibrary.wiley.com/doi/abs/10.1029/2004WR003439
https://onlinelibrary.wiley.com/doi/abs/10.1029/2004WR003439
http://dx.doi.org/10.1002/2016GL071199
https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL071199
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071199
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071199
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071199
http://dx.doi.org/10.1029/2020WR028300
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028300
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028300
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028300
http://dx.doi.org/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL019920
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL019920
http://dx.doi.org/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/full/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022587
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022587
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022587
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022587
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR022587
http://dx.doi.org/10.1016/j.jhydrol.2010.04.006
http://dx.doi.org/10.1016/j.jhydrol.2010.04.006
http://dx.doi.org/10.1016/j.jhydrol.2010.04.006
https://www.sciencedirect.com/science/article/pii/S0022169410001873
https://www.sciencedirect.com/science/article/pii/S0022169410001873
https://www.sciencedirect.com/science/article/pii/S0022169410001873
http://dx.doi.org/10.1029/2020JD033740
http://dx.doi.org/10.1029/2020JD033740
http://dx.doi.org/10.1029/2020JD033740
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JD033740
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JD033740
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JD033740
http://dx.doi.org/10.5194/hess-13-577-2009
https://hess.copernicus.org/articles/13/577/2009/
https://hess.copernicus.org/articles/13/577/2009/
https://hess.copernicus.org/articles/13/577/2009/
http://dx.doi.org/10.1029/2019WR026300
http://dx.doi.org/10.1029/2019WR026300
http://dx.doi.org/10.1029/2019WR026300
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026300
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026300
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026300
http://dx.doi.org/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/full/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/full/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/full/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028086
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028086
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028086
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028086
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR028086
http://dx.doi.org/10.1016/S0341-8162(73)80002-5
http://dx.doi.org/10.1016/S0341-8162(73)80002-5
http://dx.doi.org/10.1016/S0341-8162(73)80002-5
https://www.sciencedirect.com/science/article/pii/S0341816273800025
https://www.sciencedirect.com/science/article/pii/S0341816273800025
https://www.sciencedirect.com/science/article/pii/S0341816273800025
http://dx.doi.org/10.5194/hess-15-3171-2011
https://hess.copernicus.org/articles/15/3171/2011/
http://dx.doi.org/10.1007/s11442-019-1643-9
http://dx.doi.org/10.1175/JCLI-D-11-00498.1
https://journals.ametsoc.org/view/journals/clim/26/6/jcli-d-11-00498.1.xml
https://journals.ametsoc.org/view/journals/clim/26/6/jcli-d-11-00498.1.xml
https://journals.ametsoc.org/view/journals/clim/26/6/jcli-d-11-00498.1.xml

	On the relation between antecedent basin conditions and runoff coefficient for European floods
	Introduction
	Study area and dataset
	Study area and basin characteristics
	Precipitation, soil moisture, evaporation products and ancillary data- sets

	Methods
	Flood event extraction
	Pre-storm condition proxies
	Basin classification
	Regression analysis
	Multi-Linear Regression
	Random Forest Regression and feature importance


	Results and discussion
	Runoff coefficient variability, flood seasonality and relation between precipitation, event peak discharge and stormflow volume
	Overall relation between runoff coefficients and pre-storm condition proxies

	Basin classification
	Relation between runoff coefficient and pre-storm proxies as a function of type of basin, season and climate
	Regression analysis
	Limitations of the study

	Summary and conclusions
	Open access data and code
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


