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We investigate the possible implications of the measured value of the scalar tilt ns for the tensor-to-scalar
ratio r in slow-roll, single-field inflationary models. The measured value of the tilt satisfies ns − 1 ∼ 1=N�,
where N� ∼ 60 is the number of e-folds for observationally relevant scales. If this is not a coincidence and
the scaling holds for different values of N, it strongly suggests that either r is as big as 10−1 (a possibility in
tension with the recent data), or smaller than 10−2 and exponentially dependent on ns. A large region of the
ðns; rÞ plane is not compatible with this scaling.
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I. INTRODUCTION

Planck confirmed previous indications that the spectrum
of scalar perturbations is not scale invariant: ns − 1 ¼
−0.032� 0.004 at 1σ [1]. This is surely an important step
in the understanding of the early Universe: inflation
generically predicts a deviation from scale invariance,
although the magnitude is, as we will discuss, model
dependent. The experimental value of jns − 1j is of order
1=N� ≃ 0.017, where N� is the number of e-folds to the
end of inflation for observationally relevant scales (we are
going to take N� ¼ 60 for definiteness). This did not have
to be the case: it is easy to find models on the market with
jns − 1j much bigger, say 0.2 (of course the slow-roll
approximation requires the tilt to be much smaller than 1),
or much smaller, say 10−4. For example in the prototypical
hybrid inflation model

V ¼ 1

2
m2ϕ2 þ 1

4
λðψ2 −M2Þ2 þ λ0ϕ2ψ2 ð1Þ

the tilt is ns − 1≃ 2η ¼ ð2m2M2
PÞ=V0, where V0 ¼ 1

4
λM4

is the vacuum energy during inflation, before the field ψ
relaxes to the true minimum. The tilt is a constant and does
not depend on N: it can be much smaller or much larger
than 1=N. (In this example the tilt is positive, but the same
applies to inverted hybrid models with red tilt.) In this kind
of models, the inflaton “does not know” when inflation is
going to end, i.e. when the waterfall field will become
tachyonic. Thus there is no relation between the tilt, which
only depends on the derivatives of the potential at a given
point, and N, which measures the distance to the end of
inflation. The approximate equality ns − 1 ∼ 1=N could
just be an accident.

On the other hand in this paper we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of
gravitational waves. Our formulas will be similar to
Refs. [2] and [3] (see also Refs. [4] and [5]) although
the implications we will draw will be slightly different.

II. MAIN ARGUMENT

The experimental value of the scalar tilt suggests

ns − 1 ¼ −
α

N
; ð2Þ

with α of order unity. We assume the equation above to be
valid in a window which is comfortably larger than the
observable one: in other words the same equation would
hold if one were to measure perturbations at, say,N ¼ 10 or
N ¼ 200 instead of N ¼ 60. For the time being we assume
α is strictly a constant and later discuss deviations from this
assumption. Writing the tilt in terms of ϵ≡ − _H=H2 and its
derivative, the equation above becomes (at first order in
slow roll) a differential equation for ϵ

ns − 1 ¼ −2ϵþ d log ϵ
dN

¼ −
α

N
: ð3Þ

This is easily integrated to give

ϵðNÞ ¼ 1

2ðα − 1Þ−1N þ ANα ; ð4Þ

with A an integration constant which can be related to the
number of e-folds N× where the two terms in the denom-
inator are equal: A ¼ 2N1−α

× =ðα − 1Þ. By a judicious choice
of A (or equivalently N×) one can choose any value for ϵ
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(and thus for r) at N� ¼ 60. However the scaling (2) says
that there is nothing special at the scale N� ¼ 60 we
measure, and therefore it looks reasonable to further assume
that, in a certain parametric window around N�, only one of
the two power laws in the denominator of Eq. (4) dominates.
Conversely N� ¼ 60 would be accidentally close to the
transition point between the two regimes.
Within this assumption one has two different cases

depending on whether α is larger or smaller than 1. For
α > 1 there are two possible behaviors, depending on
which scaling of ϵ is chosen, while only one solution
exists for α < 1, since ϵ cannot be negative. Therefore there
are three cases:
(1) α > 1 and ϵ≃ ðα − 1Þ=2N. The value of ϵ (and thus

of r) is fixed and large. This is the case of monomial
potentials V ∝ ϕ2α−2. This is the simplest and most
informative scenario: inflation is driven by a simple
monomial potential, r is large enough to make %
measurements possible [6] (see also Refs. [7,8]) and
we would be quite confident of what is going on
[9,10]. However, the most recent bounds on r [11]
almost exclude this scenario at 2σ.

(2) α > 1 and ϵ≃ A−1N−α. In this case one cannot fix the
value of ϵ: the only requirement is that the constant A
is big enough so that one can neglect the first term in
the denominator of Eq. (4). In terms of r this gives

r ¼ 16ϵ≃ 16A−1N−α ≲ 8ðα − 1ÞNα−1
× N−α: ð5Þ

Of course, r depends not only on α but also onN×. As
already stated, we are assuming that the crossing is far
away from our observable window, e.g.N× ≃ 1 (solid
orange line in Fig. 1), or N× ≃ N�=10 (left dashed
orange line in Fig. 1).
It is easy to find the potentials that correspond to

these behaviors [12].
The case α > 2 consists for example of hilltop

models that inflate around the origin,

VðϕÞ ¼ V0

�
1 −

�
ϕ

M

�
n
�
; ð6Þ

with n > 2 and M ≲MP. For these potentials
α ¼ ð2n − 2Þ=ðn − 2Þ. Notice that for n ¼ 2 the
potential does not follow the 1=N scaling, since η
(and thus ns) goes to a constant at small ϕ.1

For α ¼ 2 one has models that approach a constant
exponentially for large ϕ

VðϕÞ ¼ V0½1 − e−ϕ=M�; ð7Þ

with M ≲MP.
2

In the case 1 < α < 2 one finds models that
approach a constant polynomially at large ϕ

VðϕÞ ¼ V0

�
1 −

�
M
ϕ

�
n
�
; ð8Þ

with n > 0 and M ≲MP. For these α ¼ 2ðnþ 1Þ=
ðnþ 2Þ.
The potentials given above are just examples

which reproduce approximately Eq. (2). For example
in the case above of models that approach a constant
polynomially, corrections to Eq. (2) go as
ðN−1 ·M2=M2

PÞn=ð2þnÞ: for M ≲MP, this is a good
approximation to Eq. (2) (unless n is too small; see
later).
In all the cases A−1 ∼ ðM=MPÞ2α−2. As we dis-

cussed, this number cannot be large; see Eq. (5), but

FIG. 1 (color online). Possible allowed regions in the exper-
imental ðns; rÞ plane, as derived from our assumptions. The solid
blue and orange lines correspond to the behavior of case 1) and
2). Dashed lines depend on the choice of N̄ and N×, as explained
in the text. The experimentally allowed region is in green (1 and
2σ contours). In the gray shaded regions jαj is significantly
different from one, so that the assumption in Eq. (2) may not
apply. The solid purple line corresponds to the Lyth bound.

1This suggests that if one modifies the potential with n ¼ 2
with a correction which goes to zero slower than any polynomial,
one gets intermediate behavior for ns − 1. For example the
potential V¼V0½1þðϕ=MÞ2= logðϕ=MÞ� gives ns−1∝ 1=

ffiffiffiffi
N

p
.

This shows that the 1=N scaling is not the only possibility,
although arguably the most natural. It is the experimental value of
ns that suggests 1=N.

2Notice that the potentials we are quoting for each case are just
examples and that there are completely different potentials giving
the same α. For instance the potential V0½1 − exp ðM=ϕÞ� near the
origin gives the correct 1=N scaling with α ¼ 2.
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unfortunately it can be arbitrarily small, when the
scale M is smaller than the Planck scale. As done in
Refs. [2,3] one can assume that M ≃MP, or equiv-
alently that ϵ≃ N−α; however this is an additional
assumption and not a consequence of Eq. (2). For
smaller values of M (and thus of ϵ) slow roll
terminates because η becomes of order one: after that
ϵ starts varying fast and reaches unity in one e-fold or
so. For example brane inflation corresponds in its
simplest form to a potential of the form of Eq. (8) with
n ¼ 4 and M parametrically smaller than MP [13].
Furthermore, exponential potentials are ubiquitous
in field and string theory constructions, both with
M ∼MP and with M ≪ MP [13,14].

(3) α < 1 and ϵ≃ A−1N−α. This regime is qualitatively
different from the previous ones. The second term in
the denominator of Eq. (4) must dominate, since the
first term would give a negative ϵ. Since the first
term grows faster than the second for large N, this
case cannot be sustained for arbitrarily large N. On
the other hand we can require that it is valid for a
large window around the observable scales, say up to
N̄ ¼ 10N�. Again this gives an upper bound on the
amplitude of gravitational waves

r ¼ 16ϵ≲ 1 − α

2

1

N̄

�
N̄
N

�
α

: ð9Þ

Although it may look artificial, this behavior can be
obtained with the potential

V ¼ V0

�
1þ

�
ϕ

M

�
n
�
; ð10Þ

with 0 < n < 2 and M ≫ MP. Equation (2) is valid
with α ¼ −2ðn − 1Þ=ð2 − nÞ for ϕ ≪ M (as we said
this regime cannot last for arbitrarily large N).

This class covers also the case of blue tilt of order 1=N.
But there is an important difference: for red tilt slow roll
breaks when η becomes large and negative, so that ϵ is
increasing and naturally leads to the end of inflation ϵ ¼ 1.
For blue tilt η is large and positive at the end of slow roll, so
that ϵ is small and decreasing. Some additional ingredient is
needed to ultimately terminate inflation. Of course this is
not so interesting since a blue tilt is ruled out experimen-
tally. Notice also that one should not use our arguments too
close to the scale-invariant point jαj ≪ 1 because this
would violate the assumption that ns − 1 is of order
1=N. The same applies when jαj becomes parametrically
larger than one. Anyway, both these cases are experimen-
tally ruled out.
In Fig. 1 we draw the various possibilities together with

the current experimental bounds [1] and the predictions for
power-law potentials and the Starobinsky model [15],
requiring that one of the two behaviors of ϵ dominates

in a window up to N̄ ¼ 10N�. The solid orange line
corresponding to Eq. (5) is defined only up to a factor
of order unity. The dashed line for α < 1 and around the
large-ϵ solution depends on N̄, and should be thus
interpreted with care. We also draw (solid purple line)
the Lyth bound [16]: in Eq. (4) we choose the value of A
such that the displacement of the inflaton from N� ¼ 60 to
the end is Δϕ ¼ MP [17]. Within the experimentally
allowed region for the scalar tilt, all “measurable” values
of r (≳5 × 10−4) correspond to Δϕ > MP.
It is important to stress that the 1=N scaling, given in

Eq. (2), can be checked experimentally by the measurement
of the running which is obviously fixed to be αs ¼
−α=N2� ≃ −7 × 10−4 [12]. Unfortunately this value is
probably too small to be measured with cosmic microwave
background (CMB) experiments [18]; however a measure-
ment of a larger running would disprove Eq. (2).

III. STABILITY OF THE CONSTRAINTS

Of course one cannot argue from the measurement of the
tilt that Eq. (2) holds with α strictly constant. At most one
can argue that αðNÞ is a slowly varying function of N.3 Let
us check that the qualitative features of the plot in Fig. 1
remain the same. If α depends on N, Eq. (3) can be written
as a linear differential equation

dϵ−1

d logN
− αðNÞϵ−1 ¼ −2N; ð11Þ

whose general solution is

ϵ−1ðNÞ ¼ − 2e
R

N

1

d ~N
~N
αð ~NÞ

Z
N

1

d ~Ne−
R

~N

1

dN̂
N̂
αðN̂Þ þ Ae

R
N

1

d ~N
~N
αð ~NÞ:

ð12Þ

The first line on the rhs is the nonhomogeneous solution
and it reduces to 2ðα − 1ÞN for constant α. When α is not a
constant the solutions will not be power laws, but we can
still assume that one of the two behaviors (corresponding to
ϵ ∼ η or ϵ ≪ η) dominates over a parametric window
without moving from one to the other. The constraints
on ϵ (and thus on r) will be perturbatively close to the case
of constant α if the variation is small. The second line
corresponds to the homogeneous solution of the differential
equation. It amounts to neglecting the contribution of ϵ to
the tilt, ϵ ≪ η, and it reduces to the power law Nα for a
constant α.
If α weakly depends on N, the plot of Fig. 1 will be

slightly “blurred.” For example if Eq. (2) is modified to
allow for a “running” α

3It is easy to find examples of potentials where there are
corrections to the exact 1=N scaling: for example the potential
V¼V0½1−expð−ϕ2=M2

PÞ� has ns−1≃−2=N · ð1þ1=ð2 logNÞÞ.
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ns − 1 ¼ −
α

N

�
N
N�

�
δ

; ð13Þ

then the power-law solution ϵ ∝ N−α is modified for small
δ by a factor ð1þ αδðlogN�Þ2=2þ…Þ. If we take δ≃ 0.3,
in such a way that the effective α changes by a factor of 2 as
N varies by an order of magnitude, the correction is of order
2. This does not affect our conclusions, since Eq. (5) is
anyway defined up to a factor of order unity. These
uncertainties will sum up with the experimental uncertain-
ties on ns and the theoretical ones on the number of e-folds
N. This in particular tells us we should not take too
seriously the small value of r in the region close to
α ¼ 1: the two solutions N and Nα becomes closer and
closer and the results are very sensitive to the corrections
we just discussed.

IV. CONCLUSIONS

The robust conclusion is that there are regions in the
ðns; rÞ plane which are not compatible with the 1=N
hypothesis of Eq. (2) (see also Ref. [2]), and the assumption
that there is no change of behavior for ϵ. Unfortunately
these assumptions do not set a lower bound for r. If one
further requires that ϵ becomes of order one when slow roll
breaks, then we have either the case 1) or the case 2) with
the inequality (5) saturated (solid orange line in Fig. 1).
Conversely the 1=N scaling is compatible with an arbi-
trarily low energy during inflation. In particular it is also
compatible with large-fa QCD axion models, which would
be in tension with high-scale inflation models [19–21].
It is important to stress that, since in Eq. (5) r depends

exponentially on the tilt, an improvement on the exper-
imental limits of this quantity will be of great importance.
Current and upcoming CMB experiments will be able to

probe values of r as small 2 × 10−3 [8] in the not-so-distant
future. If experiments will put us in the “forbidden” region,

we will have to give up one of the assumptions. One
possibility is that the value of the tilt is only accidentally of
order 1=N. Inflation requires the slow-roll parameters to be
small, but in explicit constructions it may be difficult to
make them as small as we like. For example supergravity
corrections (or in general Planck-suppressed operators)
tend to push η towards one (η problem), thus giving large
contributions to the tilt. Similarly it appears difficult to have
pseudo-Nambu-Goldstone bosons with a decay constant
much bigger than MP [22], so that a not-so-small tilt of
order M2

P=f
2 is expected. One can surely reproduce the tilt

we observe in these cases, though one might argue that a
larger value would be expected if the flatness of the
potential is so hard to maintain. Another way out is a
small speed of sound for the inflaton. Current constraints
still allow a substantial reduction in the value of r. The
other assumption we might have to relax is that ϵ does not
move from one behavior to the other close to our observ-
able window. For example in Ref. [23] the authors
considered the model V ∝ tanh2ðϕ= ffiffiffiffiffi

6β
p Þ which satisfies,

for any β, Eq. (2) with α ¼ 2. One can obtain values of r in
the forbidden region by adjusting β in such a way that the
two terms in the denominator of Eq. (4) are comparable for
N ¼ N�. However, this requires some amount of tuning
since observable inflation happens very close to the
inflection point of the potential.
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