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Abstract
We introduce a novel stochastic volatility model with price and volatility co-jumps driven
by Hawkes processes and develop a feasible maximum-likelihood procedure to estimate the
parameters driving the jump intensity. Using S&P500 high-frequency prices over the period
May 2007–August 2021, we then perform a goodness-of-fit test of alternative jump intensity
specifications and find that the hypothesis of the intensity being linear in the asset volatility
provides the relatively best fit, thereby suggesting that jumps have a self-exciting nature.
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estimation · Goodness-of-fit testing
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1 Introduction

The volatility is arguably themost important attribute of a traded asset. Indeed, in the keystone
Black and Scholes model, the volatility undoubtedly represents themost important parameter
that a trader has to estimate in order to price a derivative claim. At the same time, the
availability of efficient estimates of the volatility is also crucial for the econometrician who
wishes to infer and forecast market features. It then sounds ironic that, in spite of decades of
research, the question about the “right” volatility model is still at the heart of concerns for
financial institutions and researchers.
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Starting from the seventies, each decade proposed at least one novel paradigmand revisited
the previous ones, claiming that the solution of the so-called “volatility puzzle” was in sight.
In the seventies, Black and Scholes proposed to model the dynamics of asset prices via a
geometric Brownian motion with constant volatility, but the Black Monday crash of 1987
exposed the pitfalls of such model in broad daylight. In the early eighties, Engle (1982)
introduced the discrete-time ARCH model, which is capable of reproducing time-varying
volatility and clustering. The model was then generalized by Bollerslev (1986), just a few
years later. In the same years, Hull andWhite (1987) independently introduced a continuous-
time log-normal model to reproduce the non-deterministic evolution and large fluctuations
of asset volatilities. The nineties were instead the decade of the Heston model (Heston,
1993), which features a stochastic volatility process, possibly correlated with the price to
reproduce leverage effects. The works of Bates (1996), Bates (2000) and Barndorff-Nielsen
and Shephard (2001) in the early 2000s characterized the decade of stochastic volatility
models with jumps, in particular common jumps in the volatility and the price. Finally, the
last decade has seen the growth of rough volatility models, see El Euch et al. (2018).

All the previous models have clear advantages, but also some drawbacks. Early setups
failed to reproduce stylized facts such as the volatility smile and the persistency and mean-
reversion properties of the volatility, whereas more recent models may require the estimation
of a large number of parameters, thereby inducing the problem of overfitting, or may fail
to satisfy the Markov property. In this paper we present a self-exciting model for the price-
volatility evolution which shares a large part of the advantages of existing setups but, at the
same time, is also able to reproduce the volatility behavior parsimoniously, that is, with a
small number of parameters, each one with a clear financial interpretation.

As pointed, e.g., by El Euch et al. (2018), the market microstructure of financial assets is
well captured by point processes with a remarkably high degree of self-excitement, that is,
asset price changes are quite often explained by previous changes. Under some hypotheses,
El Euch et al. (2018) showed that their rescaled setup converges to a continuous-path volatil-
ity model driven by a fractional Brownian motion. However, this result contrasts with the
remarkable study of Todorov and Tauchen (2011), who pointed out that the volatility activity
is strictly smaller than 2 and thus is not consistent with a Brownian driver, either standard
or fractional with Hurst parameter smaller than 1/2, see Woerner (2011). The answer to the
“volatility puzzle” by Todorov and Tauchen is that the volatility is driven by a pure jump
process. Additionally, the authors highlighted the important role of common jumps in the
underlying and its volatility, a feature which allows for the presence of leverage effects, in the
case of a negative correlation. This feature is captured by the model proposed by Barndorff-
Nielsen and Shephard (2001) (hereafter denoted by BNS). The crucial role of co-jumps is
also supported by the empirical results presented in Broadie et al. (2007), where it is shown
that an affine model, like the one by Heston, is rejected by historical option prices (even
when it features volatility jumps with constant intensity), while a stochastic volatility model
with contemporaneous jumps (denoted by SVCJ) is better supported empirically. Common
large price-volatility fluctuations represent an important feature shared by the continuous-
time BNS model and the discrete-time models in the ARCH family. The novelty of ARCH
models was in fact represented by the feedback effect that links larger past shocks on the
underlying to a higher volatility level. This property is clearly not captured by the Heston
model and rough volatility models.

Our goal is then to generalize the continuous-time BNS model in order to accommodate
for the feedback effect from the underlying to the volatility. Accordingly, we assume that the
jump intensity is not constant but increases after each jump, following a Hawkes process, see
Hawkes (1971). Under this hypothesis, one obtains jump clustering, see Bernis and Scotti
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(2020). Moreover, the replacement of the Poisson process with a Hawkes driver in the BNS
model allows reproducing the persistency of the volatility.Up to some extent, this replacement
covers the same gap existing between ARCH and GARCH processes.

Unfortunately, the use of Hawkes processes comes with a main issue. Differently from
the Poisson process, the Hawkes process is not Markov, unless the couple represented by the
point process and its intensity is considered. This in turn causes an increase in the dimension
of the model and thus in the number of parameters to be inferred. A possible strategy to
overcome this problem, introduced in option pricing theory, see Bernis et al., (2021), is
to force the intensity of the Hawkes process to coincide with the volatility. This way one
reduces the size of the process and, consequently, the parameters to be estimated, along with
the ensuing numerical instabilities. A Kolmogorov-Smirnov test performed with VIX data in
(Bernis et al., 2021, Sect. 2 ) provides support to this hypothesis. Moreover, this hypothesis
is coherent with the results presented in the econometric literature. For instance, Pan (2002)
stresses that an “important feature of the jump-risk premium is that it depends on the market
volatility". Moreover, based on Broadie et al. (2007, Figure 1), one may observe that the
VIX index was relatively low and flat during the period 1988-93, except for the rise linked
with first Gulf War. The same figure indicates that the decade 1988-1997 featured almost
no large fluctuations, compared with the period 1998-2002, which was instead characterized
by five big crises and an average level of the VIX index equal to at least twice the value of
the decade 1988–97. Similar considerations emerge from (Horst and Xu, 2019, Figure 2),
where a more recent period was taken into account. In particular, no large fluctuations of the
VIX were observed over the periods 2002-2007 and 2012-2014, characterized by financial
stability. Instead, the intervals 2008-2011 and 2015-2018, corresponding to turmoil phases,
were characterized by the presence of a large number of jumps and a much larger average
level of the VIX.

In this paper we achieve two main results. First, we derive a feasible maximum-likelihood
procedure to estimate the parameters driving the jump intensity of Hawkes-driven models
from asset prices. The effectiveness of the procedure is tested with simulated data. Secondly,
we evaluate the goodness-of-fit of alternative jump intensity specifications with empirical
data. To do so, we focus on the S&P 500 index, sampled at the 5-minute frequency, over the
period May 1, 2007–August 6, 2021. It emerges that the relatively best fit is obtained when
the intensity of the Hawkes process is a linear transformation of the variance process. This
result is coherent with the findings by Bernis et al., (2021). Note that this goodness-of-fit
assessment is performed in the spirit of the study by Callegaro et al. (2019) on energy data,
but is based on a more robust econometric strategy.

The paper is organized as follows. In Sect. 2 we outline the Hawkes-driven BNS model,
while in Sect. 3 we derive a feasible maximum-likelihood procedure to estimate the intensity
parameters of the latter. Sects. 4 and 5 contain, respectively, numerical and empirical analyses.
Sect. 6 concludes.

2 Themodel

This section is devoted to the presentation of the general setup that will be tested empirically
in Sect. 5. Let (�,F,P) be a probability space, where P represents the historical probability
measure, supporting the following objects:

• a standard Brownian motion {Wt }t≥0;
• an auxiliary square-integrable martingale {Mt }t≥0;
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• a marked point process {Nt }t≥0 characterized by its counting measure ν(dt, d�, dz)
defined on R2+ × R�, whose jump times and marks are denoted by {Ti , Li , Zi }i≥1.

In addition to {Nt }t≥0, ν(dt, d�, dz) gives rise to two compound processes:

• J L
t := ∑

i≥1 Li ITi≤t , representing the non-negative jumps of the variance;
• J Z

t := ∑
i≥1 Zi ITi≤t , standing for the jumps of the equity.

Last but not least, let us further assume that the compensator of the counting measure
ν(dt, d�, dz) writes λt−dtυ(d�, dz) where λ := {λt }t≥0 refers to the right-continuous
form of the jump intensity, and where υ(d�, dz) is a probability distribution on the mea-
surable space (R+ × R�,B(R+ × R�)), with marginals υL(d�) := ∫

z∈R�
υ(d�, dz) and

υZ (dz) := ∫
�∈R+ υ(d�, dz).

We specify the evolution of the log-price X := {Xt }t≥0 of the asset and its spot variance
V := {Vt }t≥0 as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXt = ηt dt + √
VtdWt − 1

2
Vtdt + d J Z

t

dVt = κ(φ − Vt )dt + dMt + d J L
t

λt = μ + α
∑

i∈N e−β(t−Ti )ITi≤t + θVt

, (1)

where η := {ηt }t≥0 represents the instantaneous drift of the log-price under P, V0 = v > 0
and X0 = x ∈ R denote the initial conditions, β, κ, φ are positive constants and μ, α, θ are
non-negative constants.

2.1 Examples

The intensity process λ specified in (1) includes a large class of models studied in literature.
We refer in particular to the following interesting instances, which will be tested empirically
in Sect. 5.

Poisson setup
If α = θ = 0, the intensity is constant and equal to μ. In this case the model coincides
with the BNS model, see Barndorff-Nielsen and Shephard (2001), provided that the
two marks (Z , L) are the same, up to a leverage parameter. Similarly, if the mark L is
identically zero (i.e., the volatility never jumps) and M is a Brownian motion correlated
with W , one obtains the model by Bates (1996). Moreover, if the volatility is set to be
constant, one finds the model by Merton (1976). Finally, if the law of the mark Z is
assumed to be a double exponential, one gets the model by Kou (2002).

Hawkes setup
If θ = 0, the intensity is a Hawkes process, see Hawkes (1971), that is, the intensity
starts at the value μ and increases by a fixed amount. In light of the growing interest on
clustering effects, the financial literature has recently focused on Hawkes processes, see,
for instance, Bernis et al. (2018), El Euch et al. (2018), Fičura (2017) and the references
in Bernis and Scotti (2020). The main drawback of this setup is that the process is
intrinsically three-dimensional, since the triplet (X , V , λ) is Markovian whereas the
couple (X , V ) is not. Basically all previously cited models with constant intensity could
be extended to the Hawkes paradigm.
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Table 1 The different jump
intensity specifications studied in
the paper under the model
illustrated in (1)

setup \ parameters μ α θ

Poisson Positive Null Null

Hawkes Positive Positive Null

Pure self-exciting Null Null Positive

Hybrid self-exciting Positive Null Positive

Pure self-exciting setup
Away to preserve theMarkov property of the couple (X , V ), while adding the clustering
effect, is to assume that the process V plays both the role of the volatility and the intensity
of jumps. Accordingly, we assume that μ = α = 0, so that the intensity λ coincides
with the variance V , up to a multiplicative constant. Under the mild hypothesis that
the quadratic variation of the auxiliary martingale M is proportional to V , the model
belongs to the exponentially affine class, see Duffie et al. (2000). The volatility process
V belongs to the class of branching processes, see Dawson and Li, (2012) for the explicit
representation. The first example of a pure self-exciting jump model is, to the best of
our knowledge, the model by Jiao et al., (2017) for interest rates. A similar model has
been applied to power markets and volatilities, see Jiao et al. (2018), Jiao et al. (2021).
These last three models are based on alpha-stable processes. The main advantage of this
framework is its parsimony, since the volatility process V plays a two-fold role and thus
the number of parameters is importantly reduced.

Hybrid self-exciting setup
The main drawback of the pure self-exciting setup, as the name suggests, is the perfectly
endogenous nature of the fluctuations. By definition, external, i.e., non-financial, events
play no role. To overcome this issue, in the hybrid setup we relax the constraint on μ,
i.e., we only assume that α = 0, so that the intensity λ is affine in the variance V . The
latter then belongs to the class of branching processes with immigration, see Dawson
and Li, (2012). A recent application of this setup is proposed in Bernis et al., (2021).

We resume the previous examples in the Table 1

2.2 Main properties

We start by showing that the model satisfies the Markov property.

Proposition 1 (Markov property) The intensity process λ satisfies the Markov property, and
hence is an autonomous process, if one of the three following conditions is verified:

1. Hawkes setup: θ = 0.
2. Pure self-exciting setup: α = 0 and the process M is such that V is a Markov process.
3. Same mean-reversion speed case: κ = β and M ≡ 0.

Moreover, in the last specification, the process {Nt }t≥0 is a marked Hawkes process with
jump intensity satisfying

λt = μ + θV0 +
∫ t

0

∫

R+

∫

R�

e−β(t−s)(α + θ�)ν(ds, d�, dz)

and the process is stable if β > α + θ�.
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Proof For the self-exciting case, the result is immediate. For the Hawkes case, the result is
deduced by the fact that λ is the strong solution of the third SDE in (1). The interesting case is
the last one, where we assume, without loss of generality, that α > 0 and θ > 0. We compute
the differential equation satisfied by λ, that reads

dλt = −βα

(
∑

i∈N
e−β(t−Ti )ITi≤t

)

dt + αdNt + θdVt

= −βα

(
∑

i∈N
e−β(t−Ti )ITi≤t

)

dt + θκ(φ − Vt )dt + θdMt +
(
αdNt + θd J L

t

)
.

The drift in the previous equation depends both on V and on the sequence of jumps times
{Ti }i∈R. However, if β = κ , the previous differential equation can be written in the form

dλt = β (μ + θφ − λt ) dt +
(
αdNt + θd J L

t

)
, (2)

that is, λ is a mean-reverting process driven by a marked point process with marks {α +
θLi }i≥1. The fact that {Nt }t≥0 is a marked Hawkes process is a direct consequence of (Bernis
and Scotti 2020, Definition 5.1) with α̂(�, z) = α+θ�, see also (Bernis et al. 2018, Definition
2). The stability property is obtained by applying (Brémaud and Massoulié, 1996, Sect. 4 ,
eq. (14)). ��

The sharp-eyed reader may notice that the process λ satisfies an SDE similar to that
satisfied by V in (1). A natural question then arises about the interest of considering two
feedback effects to capture clustering. The next remark highlights the differences between
these two feedbackmechanisms, while the empirical analysis in Sect. 5will test if both effects
are needed or one is sufficient to achieve a good fit with empirical data.

Remark 1 There are two main differences between the Hawkes and the pure self-exciting
setups. The first difference relates to the size of jumps. Indeed, the latter is fixed and equal
to α in the Hawkes framework. From the financial standpoint, this means that the effect on
the probability of a new jump is the same, independently of the level of the price and/or
volatility. A dichotomy then arises between the standard evolution of the model, captured
by continuous-path processes, and the occurrence of unusual events, described by jumps.
Consequently, a potential challenge emerges in relation to the precise identification of the
jump times and sizes. This difficulty is smoothed away in the self-exciting setup, where the
intensity is proportional to the volatility.

The other main difference is more subtle. The intensity is a hidden process and shares this
drawback with the volatility. However, the volatility can be accurately estimated with high-
frequency data, see Aït-Sahalia and Jacod (2014) and references therein. Moreover, if one
assumes that the model is exponentially affine (see Duffie et al. (2000)), then the variance-
swap rate is affine in the spot variance (see Kallsen et al. (2011)), and this affine link can be
exploited to empirically approximate volatility values indirectly. In fact, in the case of the
S&P500, variance-swap rates are quoted on themarket in the form of theVIX index.Mancino
et al. (2020) test the affine link empirically and find a remarkable match. In sum, even if the
volatility is theoretically hidden, it could be considered as (nearly) observable in practice. In
contrast, the intensity is hard to be inferred, as many approximations and hypotheses may be
needed.

From here onwards, the Markov property will be assumed and we will replace κ with β

when both α and θ are strictly positive.
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Lemma 1 (Compensated version) The process (X , V , λ) admits the following compensated
version

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXt = (ηt + zλt ) dt + √
VtdWt − 1

2
Vtdt + d J̃ Z

t

dVt = κ(φ − Vt )dt + dMt + d J L
t = [

κ(φ − Vt ) + �λt
]
dt + dMt + d J̃ Vt

dλt = β̃ (μ̃ − λt ) dt + θdMt + (
α + θLNt

)
d Ñt

, (3)

where (Ñ , J̃ Z , J̃ V ) is the compensated process associated with (N , J Z , J V ) and β̃ :=
β − α − θ�, μ̃ := β (μ + θφ) β̃−1.

The proof is a direct computation and is then omitted, see also (Bernis et al., 2021, Lemma
1) for a similar result. The main interest of the previous lemma is to exploit it to demonstrate
the actual speed of mean reversion. We resume the result in the next corollary, which is a
direct application of the previous lemma and (Jiao et al., 2017, Proposition 3.7).

Corollary 1 (Mean-reverting and ergodicity) We have the following mean-reversion and
ergodicity conditions for the variance and intensity processes.

Variance process: The variance process V is mean-reverting if κ > �. Its mean level reads
κφ

κ − �
. The actual speed of mean reversion is κ −�. Moreover, the process

is exponentially ergodic under the same hypothesis.
Intensity process: Assume that α > 0 and θ > 0. Then the intensity is mean-reverting if

κ = β > α + θ� and its mean level reads
β (μ + θφ)

β − α − θ�
. The actual speed

of mean reversion is β − α − θ�. Moreover, the process is exponentially
ergodic under the same hypothesis.

Proposition 2 (Exponentially affine class) The intensity process λ solution of (2) is a
continuous-state branching processwith immigration. As a consequence, the triplet (X , V , λ)

is an exponentially affinemodel.Moreover, this characterization is preservedwhen adding the
noise M, provided that its instantaneous quadratic variation is proportional to λ itself, that
is, Mt = σM

∫ t
0

√
λs dWM

s , where WM is an auxiliary Brownian motion, and the intensity
process reads

dλt = β (μ + θφ − λt ) dt + θσM

√
λt dW

M
t +

(
αdNt + θd J L

t

)
. (4)

Proof First consider the case when M ≡ 0. The SDE satisfied by λ verifies the conditions in
Dawson and Li, (2012) and then belongs to the class of continuous-state branching processes
with immigration ( the proof is essentially the same as in Bernis et al., 2021, Proposition
1). Moreover, it is non-negative. The affine property of the triplet (X , V , λ) is deduced from
the characterization of the intensity process λ as a continuous-state branching process with
immigration, see (Dawson and Li, 2006, Theorems 5.1, 5.2 and 6.2).

Consider now the case when M has instantaneous quadratic variation proportional to λ.
Thanks to the Lévy characterization theorem, see for instance (Ikeda and Watanabe, 1998,
Theorem II.7.1), we write Mt = σM

∫ t
0

√
λs dWM

s , where WM is an auxiliary Brownian
motion. TheSDE (4) has a unique solution, see (Li andMa, 2008, Proposition 2.1) andbelongs
to the class of continuous-state branching processes with immigration, in accordance with
(Dawson and Li, 2012, Theorem 3.1). Also, we remark that (X , V , λ) is a Markov process.
Finally, by applying Itô’s lemma with jumps, we find the evolution of λ as given in (4). ��
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From here onwards, we will assume the affine structure.

Proposition 3 (Positivity of the process) The intensity process λ is non-negative. It is more-
over strictly positive if and only if:

Hawkes setup: μ > 0 when θ = 0 and α > 0.
Pure self-exciting setup: 2κφ > σ 2

Mθ when α = μ = 0 and θ > 0.
General case: 2β(μ + φθ) > σ 2

Mθ2 when μ > 0 and θ > 0 and β = κ .

The positivity property has to be considered in the probability sense, that is, the probability
of the intensity reaching zero is either zero if the previous conditions are satisfied or is strictly
positive otherwise.

The proof of Proposition 3 is postponed to Appendix 1.

3 Feasible maximum-likelihood estimation

In this section we describe a feasible procedure to estimate the intensity λ appearing in
(1) which is based on likelihood maximization. First of all, we obtain the log-likelihood
function related to λ, assuming the knowledge of the volatility process and jump times and
sizes. Then, given that the jumps and the volatility are hidden processes, we replace them
with the corresponding estimated processes based on the following strategy. First, we detect
jump times via the non-parametric test by Lee and Mykland (2008); secondly, we exploit
the bipower variation estimator by Barndorff-Nielsen and Shepard (2004) and its numerical
derivative to obtain non-parametric estimates of, respectively, the integrated and the spot
variance.

Proposition 4 Assume to observe the point process N, whose intensity is the process λ in (1),
until time t. The log-likelihood function is given by

L(t;ϑ)=−μt+α

β

Nt∑

i=1

(
e−β(t−Ti )−1

)
−θ

∫ t

0
Vs ds+

Nt∑

i=1

log

(

μ+α
∑

j<i

e−β(Ti−Tj )+θVTi−
)

,

(5)
where ϑ := [

μ, α, β, θ
]
is the parameter vector.

Proof Starting from the results on point processes by Rubin (1972), it is:

L(t;ϑ) = −
∫ t

0
λs(ϑ) ds +

∫ t

0
log λs−(ϑ) dNs .
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Hence:

L(t;ϑ) = −
∫ t

0

(

μ + α
∑

i∈N
e−β(s−Ti )ITi≤s + θVs

)

ds

+
∫ t

0
log

(

μ + α
∑

i∈N
e−β(s−Ti )ITi<s + θVs−

)

dNs

= −μt − α
∑

i∈N

∫ t

0
e−β(s−Ti )ITi≤s ds − θ

∫ t

0
Vs ds

+
Nt∑

i=1

log

(

μ + α
∑

j∈N
e−β(Ti−Tj )ITj<Ti + θVTi−

)

= −μt + α

β

Nt∑

i=1

(
e−β(t−Ti ) − 1

)
− θ

∫ t

0
Vs ds

+
Nt∑

i=1

log

(

μ + α
∑

j<i

e−β(Ti−Tj ) + θVTi−
)

.

Note that the only technical step involves interchanging the summation and the integration at
the second line. The interchange is a consequence of the fact that the total number of jumps
is finite. In fact, since the activity of the jump process is finite, then all the summations are
almost surely finite over the fixed interval [0, t]. We then apply the stochastic Fubini theorem,
see e.g., (Eberlein and Kallsen, 2020, Theorem 3.29). ��

We point out that the maximum-likelihood estimator is consistent and asymptotically
normal, see Ozaki (1979) and Ogata (1988). In particular, the Fischer Information matrix is
explicitly computed inOzaki (1979) under the hypothesis that the jump size is constant.Bernis
and Scotti (2020) provide the extension to the case of random a jump size, i.e. the marked
Hawkes case. The interested reader could also refer to Kirchner (2017) or to Lemonnier and
Vayatis (2014) for a new estimation method based on machine learning.

Clearly, the maximization of (5) is unfeasible, unless accurate estimates of the integrated
volatility on [0, t], i.e., ∫ t

0 Vsds, and the spot volatility values Vt , t ∈ {Ti−}i=1,...,Nt , are
available. The literature on financial econometrics offers very reliable tools to detect jumps
and reconstruct the volatility, based on high-frequency data.

To detect the instants at which jumps occurred, one can apply the non-parametric test
by Lee and Mykland (2008). To the best of our knowledge, this is the only test that allows
detecting jumps on arbitrarily small intervals. We recall that the model (1) postulates price-
volatility co-jumps, so it is sufficient to the test for the presence of jumps in the price.
As the output of the test, we obtain a sequence {T ∗

i }i=1,...,N∗
t
of reconstructed jump times.

Specifically, assume that, for a sufficiently large value of the sample size n, the price process
is observable on the equally-spaced grid with mesh equal to δn := t/n over the interval [0, t].
The jump test can be then performed on all “small" intervals (( j−1)δn, jδn], j = 1, ...n, and,
if the i-th jump is detected on (( j−1)δn, jδn], we say that T ∗

i = jδn , while T ∗
i− = ( j−1)δn .

The reader may refer to Lee and Mykland (2008) for further details.
As for the estimation of the integrated volatility, we propose to use a non-parametric

consistent estimator in the presence of jumps, namely the bipower variation by Barndorff-
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Nielsen and Shepard (2004). Let ti,n := iδn , i = 0, ..., n. The bipower variation reads

BPV [0,t],n := π

2

n∑

i=2

|Xti ,n − Xti−1,n | |Xti−1,n − Xti−2,n |. (6)

Barndorff-Nielsen et al. (2006) show that BPV [0,t],n converges stably in law to
∫ t
0 Vsds as

n → ∞, with rate n1/2. A local consistent non-parametric estimator of the spot volatility
can be obtained via the numerical differentiation of (6) (see Aït-Sahalia and Jacod (2014))
and reads, for s ∈ (ti−1,n, ti,n],

V̂s,n :=
π
2

∑kn
j=2 |Xti+ j ,n − Xti+ j−1,n | |Xti+ j−1,n − Xti+ j−2,n |

knδn
, (7)

where kn is a sequence of positive integers such that kn → ∞ and knδn → 0 as n → ∞.
Note that we do not need to reconstruct the entire volatility trajectory on the grid of mesh
size δn , but we only need local estimates on the grid {T ∗

i−}i=1,..,N∗
t
.

The feasible version of (5) then reads:

L∗(t, n;ϑ) = −μt + α

β

N∗
t∑

i=1

(
e−β(t−T ∗

i ) − 1
)

− θBPV[0,t],n

+
N∗
t∑

i=1

log

(

μ + α
∑

j<i

e−β(T ∗
i −T ∗

j ) + θ V̂T ∗
i −,n

)

. (8)

In general, if volatility values are accurately estimated and jumps times are carefully
detected, one may obtain a reliable approximation of the values of the parameter vector ϑ

that maximize the unfeasible log-likelihood in (5) via the numerical maximization of its
feasible version in (8), for a fixed time horizon t and a sufficiently large sample size n.
However, as one can easily verify, an analytic solution to the maximization problem of the
unobservable log-likelihood is attainable in some special cases. For instance, if α = θ = 0
(i.e., the Poisson setup is assumed), then, for any t > 0,

argmax
μ∈R+

L(t;μ) = Nt

t
,

which can be approximated by

μ̂ := N∗
t

t
; (9)

instead, if μ = α = 0 (i.e., the pure self-exciting setup is assumed), then, for any t > 0,

argmax
θ∈R+

L(t; θ) = Nt
∫ t
0 Vsds

,

which could be approximated by

θ̂ := N∗
t

BPV[0,t],n
. (10)

4 Simulation study

In this section, we illustrate the results of a numerical exercise where we investigated the
performance of the maximum-likelihood estimation procedure described in Sect. 3 with
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simulated data from model (1). The main goal is to show that the procedure detailed in Sect.
3 leads to efficient estimates of the parameters appearing in the examples described in Sect.
2.1.

For the simulation, we made the following assumptions on the compound processes J Z

and J L . The marks Z and L were assumed to follow two exponential distributions, with
parameters γZ and γL , respectively. Further, the sign of the equity marks Z was assumed to
be negative with probability 0.8, since, empirically, jumps are most often negative, see, e.g.,
Bernis et al., (2021). Finally, for all simulated paths, we set the initial conditions X(0) =
log(1000) and V (0) = φ. Overall, we simulated observations from the following four
parametric setups, each corresponding to one of the relevant jump intensity specifications
illustrated in Sect. 2.1:

– Poisson setup: (η, κ, φ, μ, γZ , γL) = (0.01, 0.4, 0.05, 10, 0.05, 0.005);
– Hawkes setup: (η, κ, φ, μ, α, β, γZ , γL) = (0.01, 0.4, 0.05, 7.5, 8.5, 8.4, 0.05, 0.005);
– Pure Self-Exciting setup: (η, κ, φ, θ, γZ , γL) = (0.01, 0.4, 0.05, 65, 0.05, 0.005);
– Hybrid Self-Exciting setup: (η, κ, φ, μ, θ, γZ , γL) = (0.01, 0.4, 0.05, 6.5, 180,

0.05, 0.005).

For each setup, we simulated 200 monthly trajectories of price-volatility observations. A
month is assumed to encompass 21 days of 6.5 hours each, matching the actual length of a
trading day on the US market. Observations were simulated on the equally-spaced grid of
mesh size equal to 5 minutes. The simulation scheme for an Hawkes process is adapted from
Dassios and Zhao (2013) and Bernis et al., (2021). The explicit algorithm is presented in
Appendix 1.

For the detection of jump times and the estimation of integrated and spot volatility values,
needed to compute the feasible log-likelihood (8), we used the largest n available, that is,
n corresponding to the frequency δn = 5 minutes. The value of the tuning parameter kn in
(7) is set equal to 390. However, parameter estimates appear to be fairly robust to any kn in
the range 350− 430. The use of relatively long local windows for the efficient estimation of
the spot volatility is discussed, e.g., in Lee and Mykland (2008), Aït-Sahalia et al. (2013),
Toscano and Recchioni (2021). Note that, to compute spot volatility values, we used “left”
local windows of length knδn , thus a sufficient number of extra observations was simulated at
the beginning of each monthly trajectory to accommodate for the necessary burn-in period.
For the implementation of the jump test by Lee and Mykland, we followed the practical
recommendations given in Sections 1.3 and 1.4 of Lee and Mykland (2008). In particular,
note that the test was performed at the 1% significance level.

In order to estimate the intensity parameters in the Poisson and pure-self exciting setups,
we used, respectively, the closed-form estimators given in Eq. (9) and (10). Instead, in the case
of the Hawkes and hybrid self-exciting frameworks, we resorted to numerical optimization.
Specifically, we used the interior-point method for the maximization of the feasible log-
likelihood in Eq. (8), with a strict-positivity constraint on the parameters to be estimated. As
initial parameter values, we used the vectors (μ = N∗

t /t, θ = N∗
t /BPVn,[0,t]) and (μ =

N∗
t /t, α = 1, β = 0.9), respectively.However, the numerical optimization programappeared

to be rather insensitive to the selection of initial parameter values. Table 2 reports the sample
average of parameters estimates obtained over an increasing number of monthly samples.
Sample standard deviations range from approximately 120% of the true value for sample
estimates of β to approximately 60% for sample estimates of μ in the Poisson framework
and are quite stable with respect to the value of M . Based on Table 2, the performance of
the feasible maximum-likelihood procedure proposed appears to be satisfactory, as estimates
present relatively small biases, at least for M greater or equal than 100. These simulation
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Table 2 Sample average of parameter estimates obtained over an increasing number M of simulated monthly
samples of the model (1) under four different intensity setups: Poisson (P), Hawkes (H), Pure Self-Exciting
(PSE) and Hybrid Self-Exciting (HSE)

Setup Parameter True value M = 50 M = 100 M = 150 M = 200

P μ 10 9.201 9.455 9.5800 9.880

H μ 7.5 6.492 7.403 7.840 7.777

α 8.5 10.132 9.013 8.908 8.757

β 8.4 6.334 7.560 8.122 8.214

PSE θ 65 62.370 65.121 64.973 65.037

HSE μ 6.5 5.963 6.126 6.3872 6.561

θ 180 176.336 181.3146 179.011 179.578

results support the robustness of the empirical results shown in Sect. 5, where the sample
used covers 163 months.

5 Empirical study

In this section, we illustrate the results of an empirical study where, based on the maximum-
likelihood procedure described in Sect. 3, we reconstructed jump-intensity parameters under
the alternative setups described in Sect. 2.1 in order to perform a goodness-of-fit test. For
this study we used the series of 5-minute trade prices of the S&P500 index, recorded during
trading hours. Specifically, we used the prices recorded between 9.30 a.m. and 4 p.m. Days
with early closures were discarded. The period considered for the analysis is May 1, 2007 -
August 6, 2021.

5.1 Preliminary jump detection

As a preliminary step of our empirical study, it is of paramount importance to assess whether
the frequency of jumps is large enough to justify the use of the model illustrated in (1).
Accordingly, by means of the methodology by Lee and Mykland (2008), we tested for the
presence of jumps on 5-minute intervals at 1% significance interval. The number of jumps
detected per year is illustrated in Fig. 1. For 2007 and 2021, we considered only the periods
May-December and January-August, respectively. Based on the observation of Fig. 1, it is
evident that jumps play an important role, as each full year considered displays at least 100
jumps. On average, each month analyzed contains approximately 13 jumps. Note that, given
the well-documented presence of leverage effects, see, e.g., Aït-Sahalia et al. (2013) and
references therein, we are assuming that price jumps are accompanied by volatility jumps
(see also the result by Todorov and Tauchen (2011) and Bernis et al., (2021)).

Moreover, some interesting insights can be obtained by looking at the reconstructed intra-
day pattern of the jump frequency. As one would expect, the majority of jumps (namely,
1420, corresponding to 85.39% of the total number of jumps detected) takes place between
the closing time (16 p.m.) and the opening time (9.30 a.m.) of the next day, as companies
typically release their earnings reports when themarket is closed. However, if one restricts the
horizon to the trading day, as we do in Fig. 2, it is possible to notice that the jump frequency
peaks at 10 a.m. and 2 p.m., when new information affecting macroeconomic variables is
usually released by, e.g., governments and central banks.
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Fig. 1 S&P500 over the period May 1, 2007–August 6, 2021: frequency of jumps on 5-minute intervals per
year
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Fig. 2 S&P500 over the period May 1, 2007– August 6, 2021: daily pattern of the jump frequency

5.2 Goodness-of-fit testing of alternative intensity specifications

The goodness-of-fit of the different jump intensity specifications discussed in Sect. 2.1 can be
compared via the computation of the Bayesian Information Criterion (BIC) and the Akaike
Information Criterion (AIC), see, respectively, Schwarz (1978) and Akaike (1974). To do
so, however, one needs first to obtain parameter estimates. In this regard, Table 3 reports the
sample average of parameter estimates, along with sample standard deviations, computed
over 163 samples of S&P500 prices with length 21 days, spanning the period May 1, 2007 -
August 6, 2021. For the estimation, we followed the feasible maximum-likelihood procedure
illustrated in Sect. 3. For selection of tuning parameters and initial conditions, necessary
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Table 3 Sample average and standard deviations of parameter estimates, related to four alternative jump
intensity setups under model (1), obtained from 163 21-day long samples of 5-minute prices of the S&P500
index spanning the period May 1, 2007- August 6, 2021

Setup Parameter Average estimate (std. dev.)

Poisson μ 156.590 (35.623)

Hawkes μ 4.500 (9.907)

α 40.359 (9.276)

β 2.909 (10.758)

Pure Self-Exciting θ 15186.733 (13548.571)

Hybrid Self-Exciting μ 156.589 (35.623)

θ 0.003 (0.003)

Table 4 Sample average of AIC
and BIC values, related to four
alternative jump intensity setups
under model (1), obtained from
163 21-day long samples of
5-minute prices of the S&P500
index spanning the period May 1,
2007–August 6, 2021

Setup AIC BIC

Poisson 108.470 116.884

Hawkes 181.298 198.180

Pure Self-Exciting 98.636 104.050

Hybrid Self-Exciting 110.470 121.298

for the estimation, we followed the recommendations offered by the simulation exercise in
Sect. 4.

Comparing the results obtained under the Poisson setup to those obtained under the
Hawkes setup, we observe that the intrinsic intensity μ is reduced dramatically to com-
pensate for the self-exciting component of the intensity. However, the estimated speed of
mean-reversion β is really small, corresponding to a half-life of about one trimester. We
also remark that the estimate of α is larger than that of β, so that the stability condition is
violated. The pure self-exciting framework yields an estimated intensity proportional to the
variance of order 104. Recalling that the mean value of the VIX is around 10% over the
estimation period, we have a reconstructed average intensity which is coherent with the data.
Finally, when the hybrid setup is considered, the optimization gives an important weight to
the immigration component μ, compared to the branching structure θ . This is in contrast
with a large empirical literature, see Aït-Sahalia et al. (2015), Bates (2000), Bernis and Scotti
(2020), Callegaro et al. (2019), Fontana et al. (2021), Horst and Xu, (2019), Jiao et al. (2021),
Mancino et al. (2020), Todorov and Tauchen (2011). A possible explanation is that the sample
covers only two large crises, i.e., the financial crisis of 2008 and the COVID crisis of 2020.
Outside of these two turbulent periods, the volatility is relatively flat; in particular, the VIX
index shows an impressive persistence of low values. Low VIX values re-appear also after
the peak of the COVID crisis: precisely, three months after the historical peak of 82, reached
in March 2020, the VIX reverted to quotes below the value of 40.

Table 4 contains the average values of BIC and AIC over the same 163 21-day samples.
Based on the minimization of the AIC and BIC, it appears that the pure-self exciting setup
provides the best fit among the intensity specifications considered. Note that this setup min-
imizes AIC and BIC for all individual samples, not just on average. Both criteria give the
same ranking, that is (from best to worst): pure self-exciting, Poisson, hybrid self-exciting
and, finally, Hawkes.
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Some remarks are in order. First, sample data appear to strongly reject the Hawkes setup,
as it provides by far the worst performance in terms of AIC and BIC. Also, it is worth noting
that this setup is the onewith the largest number of intensity parameters to be estimated (three)
and thus is the most likely to be sensitive to numerical instabilities. Overall, the rejection
can then be justified both on empirical and theoretical grounds. The rejection of the Hawkes
framework contrasts with the result by Callegaro et al. (2019), which is obtained on data
from energy markets.

Secondly, notice that AIC andBIC values achieved under the hybrid self-exciting setup are
close to the ones obtained under the Poisson setup. This suggests that the addition of a self-
exciting effect to the Poisson model via the introduction of the parameter θ (whose estimated
value is, besides, relatively small, see Table 3) does not importantly increase the goodness-
of-fit. Instead, it may be interpreted just as unnecessary over-parametrization, relative to the
Poisson model. In fact, the AIC, which attributes less importance to overparametrization
compared to the BIC, gives almost equivalent results in relation to the goodness-of-fit of the
Poisson and hybrid self-exciting frameworks.

Finally, the pure self-exciting setup minimizes both the AIC and BIC for each month
analyzed, outperforming the Poisson setup. It is worth noting that the pure self-exciting
setup features the same number of parameters as the Poisson setup (namely, one): thus, the
best AIC and BIC values are explained only by larger log-likelihood values. This result is
in line with the empirical results obtained on daily data by Bernis et al., (2021), who test
both a Poisson (i.e., constant) intensity and an intensity proportional to the square of the
VIX, finding that a constant jump intensity is clearly rejected by the data, while an intensity
proportional to the VIX achieves an impressive fit.

6 Conclusions

In this paper we obtained twomain results. First, after introducing a novel stochastic volatility
modelwith price and volatility co-jumps driven byHawkes processes,wedeveloped a feasible
maximum-likelihood procedure to estimate the parameters driving the jump intensity. This
procedure exploits the jump test by Lee and Mykland (2008), which allows testing for the
presence of jumps on small intervals, and jump-robust volatility estimators based on the
bipower variation. Secondly, using S&P500 5-minute prices over the period May 1, 2007 -
August 6, 2021, we evaluated the goodness-of-fit of alternative jump-intensity specifications
and found that the hypothesis of the intensity being linear in the volatility provides the
relatively best fit, thereby hinting towards a self-exciting nature for the jumps. This result
supports and extends the empirical findings by Todorov and Tauchen (2011) and Bernis et
al., (2021).

It is worth noting that our empirical results on US equity data contrast with the analysis
by Callegaro et al. (2019), which was conducted on data from energy markets. This may
be explained by the fact that equity markets are highly endogenous while energy markets
are more dependent on exogenous events (e.g., power plant failures, lack of wind or solar
energy, etc...). Specifically, the results by Callegaro et al. (2019) are consistent with the
typically observed clustering of external events and thus support the use of the Hawkes setup
to model the intensity of jumps in energy markets. In other words, energy prices seem not
to represent an efficient synthesis of the activity of market players, but rather they appear to
be highly exposed to external factors. Instead, in our paper we empirically showed that this
is not the case for equity markets, where the variance of traded assets represents a proper
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synthetic indicator of the level of endogenous activity by market players and thus can be
deemed as a very good predictor of the intensity of large fluctuations.

Similar considerations apply also to other markets. For instance, in the case of fixed-
income and credit markets, the interest rate and the default intensity may represent a good
proxy for the intensity of large fluctuations, as assumed in the setups discussed in Fontana
et al. (2021) and Bernis et al. (2018).

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Proposition 3

We focus on the general case, as the pure self exciting setup could be easily deduced from
it. According to (Duhalde et al., 2014, Theorem 2), we have that zero is an inaccessible
boundary point if and only if

∫ ∞

1
exp

(∫ z

1

�(x)

�(x)
dx

)
dz

�(z)
= ∞,

where � and � are respectively the immigration and branching mechanism of the process λ,
i.e., (4). In our particular setup, the immigration rate is �(x) := β (μ + θφ) x . According to
equation (5) in Duhalde et al., (2014), the branching mechanism reads

�(x) := βx + 1

2
σ 2
Mθ2x2 +

∫ ∞

0

(
e−x(α+θ�) − 1

)
υL(d�).

We first show that the condition is necessary. Let ��(x) := βx + 1
2σ

2
Mθ2x2. Since x ≥ 0,

we have ��(x) ≥ �(x) and then
∫ ∞

1
exp

(∫ z

1

�(x)

�(x)
dx

)
dz

�(z)
≥

∫ ∞

1
exp

(∫ z

1

�(x)

��(x)
dx

)
dz

��(z)
.

A standard computation gives that the right hand term is infinite if and only if 2β (μ + θφ) ≥
σ 2
Mθ2. In particular, note that the couple (��,�) corresponds to a CIR process, for which it

is well-known that the right-hand term is infinite if and only if 2β (μ + θφ) ≥ σ 2
Mθ2.

Conversely, recalling that the jump activity is finite, consider the interval [Ti , Ti+1). The
restricted evolution of the intensity (4) reads

dλt = β (μ + θφ) dt − β̃λt dt + θσM

√
λt dW

M
t ,

that is, we get the CIR evolution with mechanisms (�̃�,�), where �̃�(x) = �� + (β̃ −β)x .
Thus λ stays positive between two jumps and it is then always positive, since jump sizes are
positive. Moreover, since the jump activity is finite, the jump time sequence {Ti }i≥1 goes to
infinity. Therefore we have that the condition is both sufficient and necessary. ��
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B Simulation scheme

In order to simulate the SDEs in (1), we adapted the schemes proposed in Dassios and Zhao
(2013) and Bernis et al., (2021). The only approximation is to replace the increment of the
martingaleMt by a standard Euler-Maruyamamethod. However, for the purpose of the paper,
we have assumed M ≡ 0 in order to have an exact simulation scheme.

In the next algorithm we detail the discretization scheme in its whole generality.

Algorithm 1 Simulation scheme
Input: X0, V0, η λ0 μ, α, β, θ , γL , γZ , κ , φ, {t0, t1, ..., tn := T }
Output: {Xt j , Vt j , λt j }nj=1

Set k = 0 and δ j = t j − t j−1

for j = 1 : n do

Draw a uniform random variable U

Set Xt j−1 = Xt j−1 , V t j−1 = Vt j−1 , λt j−1 = λt j−1 and δ j

Compute V̂ j = δ jφ + 1

κ

(
V t j−1 − φ

) (
e−κδ j − 1

)
and

�̂ j :=
∫ t j

t j−1

λ̃sds = δ jμ + 1

κ

(
λt j−1 − μ

) (
e−βδ j − 1

)
+ θ V̂ j

while �̂ j < − ln(U ) do

Draw (L, Z) in accordance with the joint law

Draw G ∼ N (0, 1)

Define �T such that
∫ �T
t j−1

λ̂sds = −ln(U ) as in Dassios and Zhao (2013)

Draw �Mj := Mt j−1+�T − Mt j−1 |V t j−1 , λt j−1

V t j−1 ← φ +
(
V t j−1 − φ

)
e−κ�T + L

λt j−1 ← μ +
(
λt j−1 − μ

)
e−β�T − 1 + α

Compute Ṽ j = �Tφ + 1

κ

(
V t j−1 − φ

) (
e−κ�T − 1

)

Xt j−1 ← Xt j−1 + η�T − Z +
√
Ṽ j G − 1

2 Ṽ j

δ j ← δ j − �T and draw U

�̂ j ← δ jμ + 1

κ

(
λt j−1 − μ

) (
e−βδ j − 1

)
+ θ V̂ j

end

Draw G ∼ N (0, 1)

Draw �Mj := Mt j−1+δ j
− Mt j−1 |V t j−1 , λt j−1

Vt j = φ +
(
V t j−1 − φ

)
e−κδ j

λt j = μ +
(
λt j−1 − μ

)
e−βδ j

Compute Ṽ j = δ jφ + 1

κ

(
V t j−1 − φ

) (
eκδ j − 1

)

Xt j = Xt j−1ηδ j +
√
Ṽ j G − 1

2 Ṽ j
end
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Fičura, M. (2017). Forecasting jumps in the intraday foreign exchange rate time series with Hawkes processes

and logistic regression. In New Trends in Finance and Accounting, (pp. 125-137). Springer.
Fontana, C., Gnoatto, A., & Szulda, G. (2021). Multiple yield curve modelling with CBI processes. Mathe-

matics and Financial Economics, 15(3), 579–610.
Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58,

83–90.
Hawkes, A. G., & Oakes, D. (1974). A cluster process representation of a self-exciting process. Journal of

applied probability, 11, 493–503.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond

and currency options. Review of Financial Studies, 6(2), 327–343.
Horst, U., & Xu,W. (2019). The microstructure of stochastic volatility models with self-exciting jump dynam-

ics. ArXiv e-print, 1911, 12969.
Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatility. Journal of Finance,

42, 281–300.
Ikeda, N., &Watanabe, S. (1998). Stochastic differential equations and diffusion processes 2nd edition, North-

Holland mathematical library.
Kirchner, M. (2017). An estimation procedure for the Hawkes process.Quantitative Finance, 17(4), 571–595.
Jiao, Y., Ma, C., & Scotti, S. (2017). Alpha-CIR model with branching processes in sovereign interest rate

modeling. Finance and Stochastics, 21(3), 789–813.
Jiao, Y., Ma, C., Scotti, S., Sgarra, C. (2019). A branching process approach to power markets. Energy

Economics, 79, 144-156.
Jiao, Y., Ma, C., Scotti, S., & Zhou, C. (2021). The alpha-heston stochastic volatility model. Mathematical

finance, 31, 943–978.
Kallsen, J., Muhle-Karbe, J., & Voß, M. (2011). Pricing options on variance in affine stochastic volatility

models. Mathematical Finance, 21, 627–641.
Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science, 48, 1086–1101.
Lee, S. S., &Mykland, P. A. (2008). Jumps in financial markets: a new nonparametric test and jump dynamics.

The review of financial studies, 21(6), 2535–2563.
Lemonnier, R., & Vayatis, N. (2014). Nonparametric Markovian learning of triggering kernels for mutually

exciting and mutually inhibiting multivariate Hawkes processes. In W. Daelemans & K. Morik (Eds.),
Machine Learning and Knowledge Discovery in Databases (pp. 161–176). Berlin: Springer.

Li, Z. (2020). Continuous-state branching processes with immigration. In from probability to finance (pp.
1-69). Springer.

Li, Z., & Ma, C. (2008). Catalytic discrete state branching models and related limit theorems. Journal of
Theoretical Probability, 21(4), 936–965.

Mancino,M. E., Scotti, S., &Toscano, G. (2020). Is the variance swap rate affine in the spot variance? Evidence
from S&P500 data. Applied Mathematical Finance, 27(4), 288–316.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial
economics, 3(1–2), 125–144.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes.
Journal of the American Statistical association, 83(401), 9–27.

Ozaki, T. (1979). Maximum likelihood estimation of Hawkes self-exciting processes. Annals of the institute
of statistical mathematics, 31, 145–155.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal
of Financial Economics, 63, 3–50.

Protter, P. (1992). Stochastic integration and differential equations. Springer.
Rubin, I. (1972). Regular point processes and their detection. IEEE Transactions on Information Theory, 18,

547–557.
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
Todorov, V., & Tauchen, G. (2011). Volatility jumps. Journal of business and economic statistics, 29, 356–371.
Toscano, G., & Recchioni, M. C. (2022). Bias-optimal vol-of-vol estimation: the role of window overlapping.

Decisions in Economics and Finance, 45(1), 137–185.
Woerner J.H.C. (2011). Analyzing the fine structure of continuous time stochastic processes. In: Seminar on

stochastic analysis, random fields and applications VI. progress in probability, vol. 63, Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S&P500 data
	Abstract
	1 Introduction
	2 The model
	2.1 Examples
	2.2 Main properties

	3 Feasible maximum-likelihood estimation
	4 Simulation study
	5 Empirical study 
	5.1 Preliminary jump detection
	5.2 Goodness-of-fit testing of alternative intensity specifications

	6 Conclusions
	A Proof of Proposition 3
	B Simulation scheme
	References




