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Abstract

TP53‐altered myelodysplastic syndrome with excess blasts and TP53‐altered acute

myeloid leukemia should be considered under one unifying classification term for

their study in clinical trials. Ultimately, such a unification would simplify the

screening processes for clinical trials and allow a focus on treating the patient for a

genetically defined disorder rather than one based on an arbitrary blast threshold.

K E Y W O R D S

acute myeloid leukemia (AML), cutoff, excess blasts, myelodysplastic syndrome (MDS), p53,

TP53

INTRODUCTION

There is increasing recognition that genetic and molecular charac-

teristics are blurring the clinical boundaries traditionally dividing

myelodysplastic syndrome with excess blasts‐2 (MDS‐EB2; 10%–

19%) from acute myeloid leukemia (AML).1–3 The nominal distinction

between MDS‐EB2 and AML is neither functionally impactful nor

therapeutically validated, and it is subject to significant interobserver

variability. This separation of a biologically defined population into

two distinct subsets may also preclude patient candidacy for clinical

trials and limit access to novel, effective drugs available for only

MDS‐EB2 or AML. Approximately 10%–20% of AML/myelodysplastic

syndrome with excess blasts (MDS‐EB) cases harbor a pathogenic

TP53 variant, and they represent a biological subset of disease with

The first two authors contributed equally to this article.

The last two authors contributed equally to this article.

Cancer. 2023;129:175–180. wileyonlinelibrary.com/journal/cncr © 2022 American Cancer Society. - 175

https://doi.org/10.1002/cncr.34535
https://orcid.org/0000-0002-8542-2944
https://orcid.org/0000-0001-7103-373X
https://orcid.org/0000-0001-7017-8160
mailto:amer.zeidan@yale.edu
https://orcid.org/0000-0002-8542-2944
https://orcid.org/0000-0001-7103-373X
https://orcid.org/0000-0001-7017-8160
http://wileyonlinelibrary.com/journal/cncr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcncr.34535&domain=pdf&date_stamp=2022-11-17


critical implications, regardless of the blast percentage, among all

MDS‐EB cases (i.e., with 5%–19% blasts).4–7 In this article, we pro-

vide evidence and advocate for the unification of TP53‐altered AML/

MDS‐EB as a single hematopathologic and clinical entity for disease

classification and study in future clinical trials.

CONTRIVED BLAST ENUMERATION CONSTRAINTS

In 2001, the World Health Organization (WHO) eliminated the pre-

viously accepted French–American–Britishmyelodysplastic syndrome

(MDS) subcategory of refractory anemia with excess blasts in trans-

formation (RAEB‐t), which included patients with bone marrow blast

percentages of 20%–29%, on the basis of similar outcomes for patients

with RAEB‐t and patients with AML with ≥30% blasts.8,9 This change

lowered the blast percentage threshold for defining AML to a new

numerical cutoff of 20% and eliminated the entity RAEB‐t.10 In clinical

practice, sampling inconsistency and interobserver variability between

hematopathologists limit the precision of assigned blast percentages

used to define patients as having either MDS‐EB or AML.11–13 Up to

20% of patients with MDS‐EB have been reclassified as having AML

upon tertiary center hematopathologic review, whereas the converse

reclassification is rare.12 Although providers may clinically elect to

treat a patient with MDS‐EB bordering on AML (e.g., 15%–19% blasts)

with AML‐directed therapy because of the accepted variance in blast

enumeration, such patients are excluded from AML clinical trials

requiring a bonemarrowblast percentage of ≥20% as part of protocol‐
defined inclusion criteria, and thus patients are excluded from

accessing important treatment options. Furthermore, there are

frequent instances in which drugs, including targeted therapies, that

are approved to treat AML are requested for treating patients with

15%–19% blasts but are denied coverage by insurance carriers

because the patient does “not have AML.” This issue is further

accentuated by the recent approvals by the US Food and Drug

Administration of nine new drugs for AML versus only two for MDS in

the last 5 years. In fact, several of the drugs approved for AML (e.g.,

IDH1/2 inhibitors) have shown similarly promising clinical activity in

single‐arm studies/cohorts of MDS‐EB.14,15

MOLECULAR UNIFORMITY OF TP53‐ALTERED AML/
MDS‐EB

TP53‐altered MDS‐EB and AML have virtually indistinguishable

biology. Although MDS/secondary AML–associated mutations co‐
occur with TP53‐altered disease, including those in DNMT3A, TET2,

ASXL1, RUNX1, and SRSF2, approximately 50%–70% of patients with

TP53‐altered MDS‐EB and AML will not harbor any other common

myeloid mutations.6,16–20 These two currently separately defined

subcategories of disease also have a paucity of driver mutations

involving NPM1 and FLT3.6 In contrast, cytogenetic abnormalities are a

hallmark of TP53‐altered AML/MDS‐EB. Specifically, complex/mono-

somal karyotypes are observed in 80%–90% of patients with either

entity andoften include aberrations of chromosomes5, 7, and17.6,16,18

These cytogenetic abnormalities often raise an initial suspicion for

TP53‐altered disease, as a high proportion of MDS‐EB or AML cases

with a complex or monosomal karyotype will be TP53‐altered20–22

(Table 1).

UNIFORMLY POOR OUTCOMES IN TP53‐ALTERED
AML/MDS‐EB

Perhaps the most important basis for establishing functional equiva-

lence between TP53‐altered MDS‐EB and TP53‐altered AML is the

uniformly poor clinical outcome for patients affected by either. Pa-

tients with TP53‐altered AML/MDS‐EB have a median overall survival

(OS) of 5–9 months, with only 5%–10% enjoying long‐term survival,

regardless of the therapy used (intensive induction, hypomethylating

agent [HMA] monotherapy, or HMA with venetoclax).18,23,24 Even

with allogeneic hematopoietic stem cell transplantation (allo‐HSCT),

the expected survival is less than 12 months.23,25,26 For example, in an

analysis of 83 patients with TP53‐mutated AML (n = 45) or MDS‐EB

(n = 30), the median OS was similar (6.7 vs. 5.5 months; p = .10).24 In

a large study of 230 patients with TP53‐mutated myeloid malig-

nancies, Grob et al.18 showed that 186 patients with TP53‐mutated

AMLhad anOS similar to that of 44 patients with TP53‐mutatedMDS‐
EB, with both approximating 10 months (p = .55). Finally, Weinberg

et al.17 reported equally poor outcomes for patients with complex

karyotype TP53‐mutated AML (n = 113) and MDS‐EB (n = 91; OS, 8.3

vs. 10.7 months; p = .16).

An important question is whether the spectrum of TP53‐altered
AML/MDS‐EB is homogeneous. The existence of subgroups with

disparate features defined by blast percentage thresholds could

challenge the proposal to merge the two entities. The impact of a

complex karyotype, the TP53 variant allele frequency (VAF), the

predicted TP53 allele status (monoallelic vs. biallelic), responses to

therapy, and post–allo‐HSCT outcomes have been studied recently in

cohorts of patients with TP53‐altered AML/MDS‐EB. Although a

complex karyotype is associated with a higher proportion of marrow

blasts among patients with TP53‐altered MDS, a TP53 mutation itself

is a stronger determinant of outcome than a higher blast count (10%–

29%) among patients with TP53 wild‐type MDS.27 Furthermore,

there is a negligible difference in the median OS among patients with

TP53‐altered AML/MDS‐EB and the presence or absence of a com-

plex karyotype.18 The prognostic impact of the mutant TP53 VAF in

AML is controversial19,27–31; it appears to lose significance when one

is specifically evaluating patients with complex karyotype, TP53‐
altered AML/MDS‐EB.16–18 This may be related to the likelihood that

the TP53 VAF and the complex karyotype are surrogates for the

TP53 allelic state, with biallelic TP53 disruption resulting in a greater

effect on the functional TP53 protein. Indeed, the Molecular Prog-

nostic Scoring System for MDS, which underlines the importance of

biallelic TP53 alteration, predicts that a patient with biallelic TP53

disruption and 6% marrow blasts will have the same prognosis as a

patient with AML.32 An estimated 55%–75% of TP53‐altered
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AML/MDS‐EB cases have biallelic TP53 defects.5,17,18,20 Although

exact copy number determination is imperfect with routinely per-

formed techniques, clinical outcomes for patients with biallelic de-

fects, inferred from the presence of double TP53 mutations, the

concurrent presence of a chromosome 17/17p abnormality, or a high

VAF (i.e. > 40%–50%), are uniformly poor in patients with TP53‐
altered AML/MDS‐EB.17,18,33

The absence of an effective standard‐of‐care induction and

consolidation strategy in this group of patients diminishes the like-

lihood that currently available treatment approaches will influence

outcomes, regardless of whether the given diagnosis is TP53‐altered
AML or TP53‐altered MDS‐EB.16,18 For example, treatment out-

comes for patients with TP53‐altered AML receiving intensive

chemotherapy are just as poor as those for patients with TP53‐
altered MDS‐EB receiving HMA therapy in retrospective, propensity

score–matched comparisons,16,34 with the imbalanced effect of allo‐
HSCT limiting any conclusions regarding whether either approach is

superior.35 Disappointingly, the addition of venetoclax to frontline

HMA therapy does not appear to improve OS in TP53‐altered
AML.28,36,37 Because of the similar outcomes associated with inten-

sive and less intensive treatment approaches for TP53‐altered AML,

there has been a progressive shift over the last decade toward the

use of less intensive therapy for these patients regardless of age/

fitness. The absence of a standard treatment approach for TP53‐
altered AML is reflected by the US Food and Drug Administration

endorsement of either intensive or nonintensive chemotherapy as

the control arm for a registration‐enabling study for patients with

TP53‐altered AML (NCT04435691).

The adverse outcomes for patients with TP53‐altered AML/

MDS‐EB should strongly encourage preferential enrollment of pa-

tients into experimental trials. This allows patients to access prom-

ising agents or combinations with the potential to improve outcomes.

Unfortunately, clinical trial eligibility may be restricted by arbitrary

blast thresholds despite pathobiological and prognostic similarities

between TP53‐altered MDS‐EB and AML. In response to this limi-

tation, a minority of trials have allowed patients with either MDS‐EB

T A B L E 1 Biological and outcome comparisons of TP53‐mutated AML and TP53‐mutated MDS‐EB

TP53‐mutated MDS‐EB TP53‐mutated AML References

Biological features

Cytogenetics Monosomy 5/del(5q) 63% 44%–79% 18–20

Monosomy 7/del(7q) 34% 26%–52% 18–20

Monosomy 17/del(17p) 24% 21%–40% 18, 19

Complex karyotype 90% 68%–90% 16, 18, 19

Monosomal karyotype 85% 78%–87% 16, 18

Molecular FLT3 mutation 0%–2% 0%–7% 6, 16, 17, 19, 20

NPM1 mutation 0% 0%–5% 6, 17, 19, 20

IDH1/2 mutation 2%–3% 3%–14% 6, 16, 17, 19

DNMT3A mutation 5%–14% 10%–14% 6, 16–19

TET2 mutation 2%–9% 4%–9% 6, 16–19

ASXL1 mutation 0%–5% 3%–10% 6, 16, 18, 19

RUNX1 mutation 0%–6% 1%–6% 6, 16–19

SRSF2 mutation 0%–2% 2%–10% 6, 18, 19

Allelic state ≥2 TP53 mutations 30% 17%–19% 16, 18

Median VAF 40% 43%–55% 16–18, 22

Predicted biallelic loss 68%–75% 65%–77% 5, 17, 18, 20

Outcomes n = 227 n = 186 n = 44 18

Median OS, mo ~10 (p = .55) ~10

n = 204 (complex karyotype) n = 113 n = 91 17

Median OS, mo 10.7 (p = .16) 8.3

n = 83 n = 30 n = 45 24

Median OS, mo 5.5 (p = .10) 6.7

n = 60 (sAML/MDS‐EB) n = 40 n = 20 6

Median OS, mo 7 (p = .97) 11

Abbreviations: AML, acute myeloid leukemia; MDS‐EB, myelodysplastic syndrome with excess blasts; OS, overall survival; sAML, secondary acute

myeloid leukemia; VAF, variant allele frequency.
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or what is colloquially known as oligoblastic AML (20%–29% blasts)

to be enrolled.

There are additional logistical challenges, even after we

consider the significant interobserver and time‐based variability in

blast enumeration and the absurdity of considering TP53‐altered
AML/MDS‐EB with 19% blasts versus 20% blasts as different

diseases, to use argumentum ad extremum. A frustration encoun-

tered in our clinical practice has been going through the often

burdensome screening of a patient with MDS‐EB for a trial

compatible with the current WHO diagnostic blast cutoffs only to

find that a patient initially eligible for an MDS trial has become

ineligible just a few weeks later because of a peripheral blood or

marrow blast count exceeding 20%. This delay is caused by the

time required to make the diagnosis of TP53‐mutated AML/MDS‐
EB, which requires one to wait for next‐generation sequencing

analysis, which can take up to 4 weeks at some institutions.

However, recent validation of the use of mutant p53 protein

expression patterns by immunohistochemistry to robustly inform

the TP53 mutation status and allelic state may soon allow a more

expedient and reproducible means of disease risk assignment and

treatment allocation.38,39

These realizations have prompted an appropriate rethinking of

the classification of TP53‐mutated AML/MDS‐EB and the modern

clinical approach. Although a ≥20% blast threshold to define AML is

retained, the revised 2022 WHO classification states that TP53‐
mutated MDS with ≥10% marrow blasts (or ≥5% peripheral blood

blasts) “may be regarded as AML‐equivalent for therapeutic con-

siderations and from a clinical trial design perspective when appro-

priate.”3 Furthermore, the most recent European LeukemiaNet 2022

recommendations and the new International Consensus Classifica-

tion (ICC) now include an entity known as AML with mutated TP53,

which requires a TP53 VAF ≥10%, regardless of the allelic status.3,40

The ICC further delineates TP53‐mutated myeloid neoplasms by

blast threshold and establishes those with 10%–19% blasts and a

TP53 VAF ≥ 10% as MDS/AML with mutated TP53; disease with up

to 9% blasts, however, is still considered MDS, and a molecularly

defined moniker excludes disease with predicted monoallelic TP53

disruption.3 The conception of a 10% blast and 10% VAF cutoff with

allelic state restriction as well as an approach to TP53‐altered AML

with recurring or defining genetic abnormalities, albeit rare, requires

further validation. Nonetheless, the efforts by European Leukemia-

Net, WHO, and ICC are commended and will pave the way for a

more inclusive and ergonomic approach to improving patient

outcomes.

It is for these reasons that we believe that TP53‐altered MDS‐EB

(5%–19% blasts) and TP53‐altered AML should be considered under

one unifying classification term. Laboratory studies such as RNA

sequencing and proteomic analyses should be conducted across

TP53‐altered AML/MDS‐EB rather than for separate entities to

further support this contention. Ultimately, such a unification would

simplify the screening processes for clinical trials and allow a focus on

treating the patient for a genetically defined disorder rather than one

based on an arbitrary blast threshold.
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