RESEARCH LETTER

WILEY

Glucagon-like peptide 1 (GLP1) receptor agonists and risk for ischemic optic neuropathy: A meta-analysis of randomised controlled trials

Giovanni Antonio Silverii MD¹[©] | Laura Pala PhD² | Barbara Cresci MD²[©] | Edoardo Mannucci MD¹[©]

¹Experimental and Clinical Biomedical Sciences 'Mario Serio' Department, University of Florence, Florence, Italy

²Diabetology Unit, AOU Careggi, Florence, Italy

Correspondence

Giovanni Antonio Silverii, Experimental and Clinical Biomedical Sciences 'Mario Serio' Department, University of Florence, Largo Brambilla 3, 50134, Florence, Italy. Email: giovanniantonio.silverii@unifi.it

KEYWORDS: antidiabetic drug, antiobesity drug, clinical trial, GLP-1 analogue

1 | BACKGROUND

Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are an established treatment for type 2 diabetes; due to their weight-reducing effect, some of the molecules of the class are increasingly used as a treatment for obesity.¹ The use of GLP-1 RA is associated with a reduction of major cardiovascular events,² with possible improvements of heart failure,^{3,4} and renal function.⁵ An increased risk for worsening pre-existing diabetic retinopathy was also observed in a large trial with semaglutide,⁶ but it may be the consequence of a sudden and wide reduction of hyperglycaemia.⁷

Recently, a retrospective observational study highlighted the possibility of an association of semaglutide treatment with a more than four-fold increase in risk for nonarteritic anterior ischemic optic neuropathy (NAION), but the results could be affected by selection bias, as the study was performed in a sample referring to a specialist facility.⁸ NAION, a condition potentially leading to blindness, is relatively rare in the general population (2–10/100 000 cases/year),^{9,10} but more frequent in patients with obesity, diabetes and possibly obstructive sleep apnoea.^{10,11} Because GLP-1 receptors have been detected in neuronal cells in the human eye,¹² a possible effect of GLP1-RA on optic neuropathy is not implausible. However, a retrospective study, even when well-designed, cannot provide any demonstration of causal relationships, because the possibility of confounding factors cannot be entirely ruled out. In case

of suggestions of safety issues detected in observational studies, the retrieval of specific data from randomised trial can therefore add relevant information.

2 | METHODS

The present meta-analysis is a post hoc analysis of a systematic review aimed at the assessment of another potential safety issue, that is the incidence of thyroid malignancies, previously registered on the PROSPERO website (https://www.crd.york.ac.uk/PROSPERO; registration number CRD42023456382). It followed the Preferred Reporting Items for Systematic Reviews and Meta Analyses reporting guidance.¹³

We included all randomised controlled trials (RCTs) lasting at least 12 months, in which any GLP-1 RA approved by European Medical Agency for any indication (at present, obesity and type 2 diabetes) was compared with either placebo or active comparators in adults, and the complete list of serious adverse events (SAE) was disclosed. The population of interest was therefore composed of people with obesity and/or type 2 diabetes.

A Medline, Embase, Clinicaltrials.gov, Cochrane CENTRAL Database search was performed up to 20th July 2024. Keywords included all the included GLP1-RA drug names, without any language or date restriction, whereas animal studies were excluded. Detailed

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2024 The Author(s). Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

² WILEY-

TABLE 1 Characteristics of the included trials.

Study name	Drug	Comparator	Ind	Dur	Age	BMI	Py D	Py C
Ahren 2017	Semaglutide	Sitagliptin	DM	56	55	33	881	438
Aroda 2019	IdegLira	Glargine	DM	104	57	32	1012	1012
Arturi 2017	Liraglutide	Sitagliptin	DM	52	60	32	10	22
Astrup 2013	Liraglutide	Orlistat	OB	104	46	35	738	386
Blonde 2015	Dulaglutide	Glargin	DM	52	60	33	588	296
Bunck 2009	Dulaglutide	Glargine	DM	52	58	31	37	33
Buse 2020	Semaglutide	Sitagliptin	DM	52	57	31	213	216
Davies 2015	Liraglutide	Placebo	DM	56	55	37	570	180
Davies 2021	Semaglutide	Placebo	OB	68	55	36	1053	526
Derosa 2010	Exenatide	Glibenclamide	DM	52	56	29	63	65
Derosa 2011	Exenatide	Glimepiride	DM	52	55	28	52	49
Derosa 2013	Exenatide	Placebo	DM	52	57	32	86	85
Diamant 2014	ExenatideLAR	Glargine	DM	156	58	32	699	702
Elkind-Hirsch 2020	Liraglutide	Placebo	OB	84	45	35	57	60
Gallwitz 2012	Exenatide	Glimepiride	DM	208	56	32	2044	2032
Garber 2011	Liraglutide	Glimepiride	DM	104	53	33	1366	538
Garvey 2020	Liraglutide	Placebo	OB	56	Nr	Nr	210	212
Garvey 2022	Semaglutide	Placebo	OB	104	47	39	304	304
Gerstein 2019	Dulaglutide	Placebo	DM	281	66	32	25 277	24 925
Giorgino 2015	Dulaglutide	Glargine	DM	78	57	31	nr	nr
Gough 2015	Liraglutide	Degludec	DM	52	55	31	nr	nr
Gudbersen 2021	Liraglutide	Placebo	OB	52	59	32	76	70
Hennon 2017	Liraglutide	Placebo	DM	52	53	34	68	199
Holman 2017	Exenatide	Placebo	DM	166	62	32	22 676	22 625
Husain 2019	Semaglutide	Placebo	DM	68	66	32	2103	2055
Inagaki 2012	ExenatideLAR	Glargine	DM	52	57	26	215	212
Jabbour 2020	Exenatide	Placebo	DM	104	54	33	922	466
Jaiswal 2015	Exenatide	Glargine	DM	78	52	36	524	132
Kadowaki 2022	Semaglutide	Placebo	OB	68	50	nr	524	132
Kaku 2018	Semaglutide	None	DM	56	58	27	517	130
Kaku 2019	Liraglutide	Degludec	DM	52	57	27	273	271
Kosiborod 2023	Semaglutide	Placebo	DM	52	69	37	256	266
Kosiborod 2024	Semaglutide	Placebo	DM	52	69	37	305	306
Koska 2021	ExenatideLAR	Placebo	DM	78	63	33	164	81
Liang 2013	Exenatide	Placebo	DM	52	51	30	34	36
Lincoff 2023	Semaglutide	Placebo	OB	170	62	33	29 197	29 190
Lingvay 2019	Semaglutide	Canagliflozin	DM	52	56	32	394	394
Lundgren 2021	Liraglutide	Placebo	Lira	52	Nr	37	98	97
Marso 2016	Semaglutide	Placebo	DM	109	65	33	3333	3318
Marso 2016 bis	Liraglutide	Placebo	DM	198	64	33	17 882	17 795
Miyagawa 2015	Dulaglutide	Placebo	DM	52	58	25	281	70
Nahra 2022	Liraglutide	Placebo	OB	54	56	35	114	116
Nauck 2007	Exenatide	Aspart insulin	DM	52	58	30	253	248
Nauck 2013	Liraglutide	Glimepiride	DM	104	57	31	966	726
O'Neill 2018	Liraglutide	Placebo	OB	52	47	39	103	136
Perkovic 2024	Semaglutide	Placebo	DM	177	68	32	5707	5467

TABLE 1 (Continued)

Study name	Drug	Comparator	Ind	Dur	Age	BMI	Py D	Py C
Pfeffer 2015	Lixisenatide	Placebo	DM	107	60	30	6334	6444
Pratley 2011	Liraglutide	Placebo	DM	52	55	33	439	219
Pratley 2019	Liraglutide	Placebo	DM	52	56	33	284	142
Pi-sunyer 2015	Liraglutide	Placebo	OB	70	45	38	2237	1067
Rodbard 2019	Semaglutide	Empagliflozin	DM	52	58	33	410	409
Rosenstock 2019	Semaglutide	Sitagliptin	DM	78	58	33	2096	701
Rubino 2022	Liraglutide	Placebo	OB	52	49	38	253	85
Ruff 2021	Exenatide	Placebo	DM	62	63	32	2879	2925
Samson 2011	Exenatide	None	DM	52	52	32	12	12
Tronieri 2020	Liraglutide	Placebo	OB	52	48	39	100	50
Tuttle 2018	Dulaglutide	Glargine	DM	52	52	32	383	194
Umpierrez 2014	Dulaglutide	Metformin	DM	52	56	33	269	268
Unger 2022	Liraglutide	Any OAD	DM	104	57	34	1356	1258
Wadden 2013	Liraglutide	Placebo	OB	56	46	38	228	226
Wadden 2020	Liraglutide	Placebo	OB	56	47	39	153	151
Wadden 2021	Semaglutide	Placebo	OB	68	46	38	532	267
Wang 2019	Dulaglutide	Glargine	DM	52	55	26	515	259
Weinstock 2015	Dulaglutide	Sitagliptin	DM	104	54	31	1212	354
Wilding 2021	Semaglutide	Placebo	OB	68	46	38	1708	829
Yamada 2020	Semaglutide	Placebo	DM	52	61	26	192	49
Zhang 2020	Exenatide	Insulin	DM	52	58	24	27	32
Zinman 2020	Semaglutide	Placebo	DM	52	61	31	362	362
Synthesis			-	56	57	32	144 226	132 922

Note: Age, mean age of participants (years); BMI, mean body mass index of enrolled patients (in kg/m²). In the Synthesis row, median duration, age and BMI and total patient-years are displayed.

Abbreviations: DM, diabetes mellitus; Dur, study (weeks); Ind, indication; OB, obesity; OAD, oral anti diabetic drug; py d, patient-years in the drug arm; py c, patient-years in the control arm.

information on the search strategy is reported in Table ${\sf S1}$ of the supplementary materials.

The endpoint was the difference in incidence of ischemic optic neuropathy, as reported by investigators as SAE.

Estimates for the variables of interest were extracted from the principal publication, secondary publications and clinicaltrials.gov registry, in the hierarchical order reported above. Three authors performed data extraction independently (G. A. S., L. P., B. C.), and conflicts were resolved by a fourth investigator (E. M.).

Mantel-Haenszel Odds Ratio [MH-OR] for categorical variables were calculated and displayed as forest plots, using random effect models if heterogeneity was significant, and fixed-effects models if it was not. Statistical heterogeneity was assessed by *I*² test. Subgroup analyses were performed for trials performed with different molecules. The risk of bias in RCTs was assessed using the revised Cochrane recommended tool¹⁴; the procedure is detailed in Table S2. All analyses were performed using Review Manager (RevMan), Version 5.4.1 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration).

3 | RESULTS

The complete trial research flow summary is reported in Figure S1. Out of 6034 items retrieved after removing duplicates, 101 records were selected to retrieve full text; of those, 69 studies fulfilled the inclusion criteria, overall including 144 226 and 132 922 patient-years in GLP1-RA and placebo arms respectively. Of those, 52 trials included only patients with type 2 diabetes, whereas 17 were performed enrolling obese individuals; liraglutide, semaglutide, exenatide, dulaglutide and lixisenatide were used in 23, 19, 15, 7 and 1 trials respectively. The characteristics of the included trials are reported in Table 1, whereas the list of excluded studies is reported in Table S3. The median duration of the studies was 56 weeks. The median age was 57 years, and the median body mass index was 32 kg/m². The risk of bias table and summary are reported in Figures S2 and S3 respectively.

Of the 69 trials extensively reporting SAE, 64 did not report any case of NAION. In the remaining five trials, we retrieved eight cases of ischemic optic neuropathy in the GLP1-RA arm and four cases in

Risk of bias legend

(A) 1 Randomization process

(B) 2 Assignment to intervention

(C) 3 Missing outcome data

(D) 4 Measurement of the outcome

(E) 5 Bias in reported results

(F) Overall bias

the comparator arm. When considering different molecules, six cases were observed in patients on semaglutide and one each in patients on liraglutide and dulaglutide. GLP1-RA treatment was not associated with a significant difference in the risk for optic ischemic neuropathy in the fixed-effects analysis (MH-OR 1.53, 95% CI [0.53, 4.44], p = 0.43; Figure 1), with low heterogeneity ($I^2 = 0\%$).

The estimated incidence of optic ischemic neuropathy was 5.6/100 000 patient-years and 3/100 000 patient-years in the GLP1-RA and placebo arms respectively. The estimated absolute increase in risk for ischemic optic neuropathy in patients in GLP1-RA therapy was 2.6/100 000 patient-years, whereas a 570/100 000 patient-years absolute increase in risk would have been required to reach a statistical power of 80%.

4 CONCLUSIONS

Our meta-analysis failed to detect a significant detrimental effect of GLP1-RA therapy on ischemic optic neuropathy in randomised clinical trials. However, the confidence interval was very wide, showing that the number of observed events could have been insufficient to yield a significant result. In fact, NAION is a rare condition, with an incidence between 2 and 10 cases per 100 000 patient-years.^{9,10} In the present meta-analysis, an accurate incidence estimate could not be calculated, because the time of occurrence of ischemic optic neuropathy during trials was not available. However, an approximate calculation based on the mean duration of observation for each trial suggests an approximate incidence of ischemic optic neuropathy of 5.6 and 3.0 cases per 100 000 patient-years in patients in GLP1-RA and control arms respectively, which is compatible with current epidemiological data.^{9,10} The possibility of underreporting should not be excluded, because ischemic optic neuropathy was not an independently adjudicated adverse event. Furthermore, it was not specified, in clinical trials

whether ischemic neuropathy was arteritic or not arteritic, which is a challenging differential diagnosis and reporting for many ophthalmologists, as the two diseases share the same ICD-9 coding.⁸

Considering the rarity of the condition, available clinical trials, although relevant for number and sample size, are not yet sufficient to demonstrate an association nor to establish the safety of GLP-1 RA in this respect, particularly for semaglutide, because the majority of detected cases was treated with this specific agent. The potential impact of such a risk increase, if confirmed, could be amplified by the fact that patients with obesity and diabetes, who are most likely to receive treatment, already have an increased baseline risk of NAION.¹⁰

A relevant increase of the relative risk for a very rare, although severe, condition does not modify the overall risk-benefit ratio of effective drugs, at least when appropriately prescribed. In fact, if we assume a difference in incidence between GLP1 RA and placebo of 2.6 cases per 100 000 patient-years, the 1-year number needed to harm would be 38 460-well above the number needed to treat to avoid a major cardiovascular event in cardiovascular outcome trials.^{2,15} In fact, sight-threatening diabetic retinopathy is much more frequent than NAION.¹⁶ At the same time, we should be aware that the inappropriate use of drugs for inducing weight loss in moderately overweight patients with low cardiovascular risk could be associated with rare, but severe, adverse effects, possibly including NAION. Owing to the rarity of NAION, results of clinical trials cannot either establish nor rule out an association with GLP1 RA, which needs to be further investigated.

AUTHOR CONTRIBUTIONS

GAS and EM made the analysis plan, researched data, performed analyses, contributed to the discussion and wrote the first draft of the manuscript. LP and BC contributed to data research and discussion and reviewed and edited the manuscript. All authors approved the

final version of the manuscript. All the authors had full access to all the data in the study, and they take responsibility for the integrity of the data and the accuracy of the data analysis.

ACKNOWLEDGEMENTS

This research was performed as a part of the institutional activity of the unit, with no specific funding. Open Access Funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement.

FUNDING INFORMATION

This research was performed independently of any funding, as part of the institutional activity of the investigators. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

CONFLICT OF INTEREST STATEMENT

GAS, LP and BC have no conflicts of interest to declare. The unit directed by EM has received research grants from Abbott, Eli-Lilly and Novo Nordisk, outside the submitted work. EM has received consultancy fees from Dexcom and Sanofi and speaking fees from Astra Zeneca, Boehringer-Ingelheim, Eli-Lilly and Novo Nordisk, outside the submitted work.

PEER REVIEW

The peer review history for this article is available at https://www. webofscience.com/api/gateway/wos/peer-review/10.1111/dom. 16076.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Giovanni Antonio Silverii b https://orcid.org/0000-0002-6695-3213 Barbara Cresci https://orcid.org/0000-0002-8730-0748 Edoardo Mannucci https://orcid.org/0000-0001-9759-9408

REFERENCES

- Lingvay I, Agarwal S. A revolution in obesity treatment. Nat Med. 2023;29(10):2406-2408. doi:10.1038/s41591-023-02538-7
- Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221-2232. doi:10.1056/NEJMoa2307563
- Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389(12):1069-1084. doi:10.1056/NEJMoa 2306963
- Kosiborod MN, Petrie MC, Borlaug BA, et al. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med. 2024;390(15):1394-1407. doi:10.1056/NEJMoa2313917

 Perkovic V, Tuttle KR, Rossing P, et al. Effects of Semaglutide on chronic kidney disease in patients with type 2 diabetes. N Engl J Med. 2024;391(2):109-121. doi:10.1056/NEJMoa2403347

WILEY

- Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19):1834-1844. doi:10.1056/NEJMoa1607141
- Ntentakis DP, Correa VSMC, Ntentaki AM, et al. Effects of newergeneration anti-diabetics on diabetic retinopathy: a critical review. *Graefes Arch Clin Exp Ophthalmol.* 2023;262:717-752. doi:10.1007/ s00417-023-06236-5
- Hathaway JT, Shah MP, Hathaway DB, et al. Risk of Nonarteritic anterior ischemic optic neuropathy in patients prescribed Semaglutide. JAMA Ophthalmol. 2024;142:732-739. doi:10.1001/jamaoph thalmol.2024.2296
- Hattenhauer MG, Leavitt JA, Hodge DO, Grill R, Gray DT. Incidence of Nonarteritic Anteripr ischemic optic neuropathy. Am J Ophthalmol. 1997;123(1):103-107. doi:10.1016/S0002-9394(14)70999-7
- Foster RC, Bhatti MT, Crum OM, Lesser ER, Hodge DO, Chen JJ. Reexamining the incidence of Nonarteritic anterior ischemic optic neuropathy: a Rochester epidemiology project study. J Neuroophthalmol. 2024;44(3):337-341. doi:10.1097/WNO.00000000002102
- Bulloch G, Seth I, Zhu Z, Sukumar S, McNab A. Ocular manifestations of obstructive sleep apnea: a systematic review and meta-analysis. *Graefes Arch Clin Exp Ophthalmol.* 2024;262(1):19-32. doi:10.1007/ s00417-023-06103-3
- Hebsgaard JB, Pyke C, Yildirim E, Knudsen LB, Heegaard S, Kvist PH. Glucagon-like peptide-1 receptor expression in the human eye. *Diabetes Obes Metab.* 2018;20(9):2304-2308. doi:10.1111/dom.13339
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89. doi:10.1186/s13643-021-01626-4
- Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:I4898. doi:10. 1136/bmj.I4898
- Mannucci E, Silverii GA. Cardiovascular prevention with glucoselowering drugs in type 2 diabetes: an evidence-based approach to the categories of primary and secondary prevention. *Diabetes Obes Metab.* 2023;25(12):3435-3443. doi:10.1111/dom.15226
- Lundeen EA, Burke-Conte Z, Rein DB, et al. Prevalence of diabetic retinopathy in the US in 2021. JAMA Ophthalmol. 2023;141(8):747-754. doi:10.1001/jamaophthalmol.2023.2289

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Silverii GA, Pala L, Cresci B, Mannucci E. Glucagon-like peptide 1 (GLP1) receptor agonists and risk for ischemic optic neuropathy: A meta-analysis of randomised controlled trials. *Diabetes Obes Metab.* 2024;1-5. doi:10.1111/dom.16076