q

Check for
updates

HUSTLE: A Hardware Unit
for Self-test-Libraries Efficient Execution

1,2(X) 3

, Francesco Terrosi® @, Luca Maruccio!, Francesco Rossi!,
2@, and Andrea Bondavalli3

Nicola Ferrante
Luca Fanucci

1 Resiltech, 56025 Pontedera, PI, Italy
nicola.ferrante@resiltech.com
2 University of Pisa, 56126 Pisa, PI, Italy
3 University of Florence, 50121 Firenze, FI, Italy

Abstract. Online testing of computer systems is crucial in contexts such as the
safety-critical domain, where the software is usually made of functional code,
which is the code implementing the application-specific functionalities, and non-
functional code, which implements auxiliary functionalities, e.g., test routines. By
periodically running a test routine it is possible to satisfy the high dependability
requirements mandated by regulators, and defined in safety standards such as
15026262, IEC61508, and CENELEC EN 5012X. Self-Test Libraries (STLs) are
a form of software-based self-test, widely used in safety-related applications. The
main drawback of this safety mechanism is the overhead imposed on the execution
of the functional code, and reducing this overhead is a well-known challenge in
research. We propose here HUSTLE, a Hardware Unit for STL Efficient execution,
which can be integrated into the chip design with no modification to the CPU’s
internal logic. We also propose a scheduling mechanism that allows HUSTLE to
efficiently execute self-tests, by exploiting the CPU’s idle time. This is achieved
by storing test code in a separate memory and sending instructions to the CPU,
bypassing the Instruction Cache, thus allowing to reduce the overall execution
time and the cache interference of STL, while CPU utilization increases.

Keywords: Software-based self-test - Safety-critical systems - Embedded
systems testing

1 Introduction

In safety-critical systems, protecting the CPU from hardware faults in the field is a fun-
damental requirement [1, 2]. Many protection techniques were proposed, based on both
hardware (HW) and software (SW) mechanisms, each of them providing different levels
of protection. HW-based techniques are faster but require modifications to the original
design, whereas SW-based techniques have little to no impact on the device area, but
significantly reduce performance [3, 4]. To reduce the impact of safety mechanisms on
performance, we propose an approach that exploits the idle time of the CPU to execute
test routines, i.e., Self-Test Libraries (STL). Well-established Functional Safety stan-
dards, such as ISO 26262, require high coverage of random hardware faults, for which

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Bellotti et al. (Eds.): ApplePies 2023, LNEE 1110, pp. 392-398, 2024.
https://doi.org/10.1007/978-3-031-48121-5_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48121-5_56&domain=pdf
http://orcid.org/0000-0003-3490-0990
http://orcid.org/0000-0001-6024-4849
http://orcid.org/0000-0001-5426-4974
http://orcid.org/0000-0001-7366-6530
https://doi.org/10.1007/978-3-031-48121-5_56

HUSTLE: A Hardware Unit for Self-test-Libraries 393

STLs have been identified as an effective safety mechanism, providing high coverage
without any impact on the device’s design [5]. However, to achieve the target protection
level STLs need to stimulate as much as possible the internal logic of the component,
imposing a significant overhead on the nominal execution [6]. We present here HUSTLE,
a hardware mechanism to improve the execution efficiency of STLs. HUSTLE provides
STL instructions to the core without accessing the Instruction Cache (IC), reducing the
overall response time and the IC pollution (cache misses for STL instructions are elim-
inated), since the cache will keep in memory only instructions relative to the functional
workload. To demonstrate the possibilities offered by HUSTLE we also implemented
an efficient event-triggered scheduling mechanism by exploiting architectural signals to
detect CPU’s idle time, and use this time to execute STL instructions. HUSTLE allows to
reduce the overhead on the execution time and the interference with the cache, increasing
core utilization.

2 Related Works

The use of instruction-based self-test, i.e., STL, is a widely used technique [7], and
improving their efficiency is an active research field. Most designers of such test libraries
try to leverage target architecture’s resources to achieve a higher protection degree while
meeting constraints on the imposed overhead [8, 9], while others try to develop finer
algorithms that are both general and efficient. E.g., in [10] the authors merge different SW
techniques combining random program generation and signature-based self-checking; in
[11] the authors focus on improving the automatic generation of test programs, while [12]
proposes a technique that relies solely on available processor resources. The scheduling
of such tests is crucial to their efficiency and effectiveness [9, 13]. We found no study
about scheduling mechanisms that exploit idle times in the CPU by executing fragments
of STL code. Using dedicated HW support to speed up software operations is a common
approach [14], however, we found only one work that adopts this approach towards
self-testing, by storing STL instructions in a dedicated memory [15]. In this work, the
authors focus on implementing hardware support that can store test code and data. The
STL is implemented as an Interrupt Service Routine, but no specific scheduling strategy
is proposed.

3 HUSTLE Overview

3.1 Mechanism Description

HUSTLE is placed between the CPU and the IC, to provide STL instructions to the Core
as fast as possible. This is achieved as follows: during the execution of functional code,
HUSTLE, is in IDLE state, and it just forwards requests received from the CPU to the
IC, and the subsequent responses from the IC to the CPU. When the CPU starts execut-
ing the STL it requests addresses in the address range of HUSTLE’s ROM, HUSTLE
transitions into the ACTIVE state. In this state, it blocks requests from the CPU to the
IC and responds to the CPU with the requested instructions in place of the IC. Internally,
HUSTLE has a Read Only Memory (ROM) containing the STL payload, i.e., the set of

394 N. Ferrante et al.

STL instructions that must be executed. A high-level schema of HUSTLE’s interface
is depicted in Fig. 1a, while the transition diagram is shown in Fig. 1b. This addition
to the design allows to: (i) reduce STL instruction latency, as STL instructions are not
fetched from the IC or lower levels of cache, (ii) reduce IC pollution, since a request to
an address relative to an STL instruction will be handled by a separate memory, and (iii)
increase overall core’s resource usage, as result of (i) and (ii).

‘ HUSTLE ‘

ByPass > CPU
Logic L 1
? lis_STL(address)

w—lenable
ACTIVE
enable
enable—

is_ STL address)

a b
Fig. 1. a HUSTLE block diagram, b HUSTLE transition diagram.

3.2 HUSTLE Scheduling Strategy

HUSTLE’s scheduling strategy is based on monitoring architectural signals to detect
events that may cause instruction starvation and leave the core idle. One of the most
frequent causes of instruction starvation are IC misses [16]. When a miss in the IC
happens, the core must wait for its resolution to execute the next instruction. HUSTLE
can exploit this time to execute STL instructions stored in its ROM.

The proposed scheduling strategy triggers a control-flow redirection sending a hard-
ware interrupt as soon as a cache miss is detected. In our prototype, the IC miss signal is
routed to HUSTLE and connected to the interrupt controller, using the STL as Interrupt
Service Routine (ISR). Note that, without ad-hoc HW support it wouldn’t be possible
to exploit idle times caused by cache misses, because the control flow redirection to
handle the interrupt could cause additional cache misses itself, thus invalidating all the
benefits. In Fig. 2 we illustrate a simple scheduling example showing how idle times
could be leveraged by HUSTLE. It is important to note that the STL code shall take into
account proper mechanisms to avoid interference with other running applications. For
example, context-switching techniques, granularity of sequences of consecutive STL
tests to execute, and their priority. In general, all the aspects that can affect the impact of
this scheduling strategy on the execution time of other applications should be analyzed,
based on the requirements of the target system. The analysis of these aspects is not
reported in this work for brevity.

4 Experimental Activity

To evaluate HUSTLE, a prototype has been developed using the Chipyard [17] frame-
work. We chose as target CPU architecture the RISC-V [18] Berkley Out-of-Order
Machine (BOOM) Core [19]. To evaluate the impact of the developed solution on dif-
ferent hardware configurations, we selected two configurations of the BOOM core:

HUSTLE: A Hardware Unit for Self-test-Libraries 395

Fixed scheduling

HUSTLE's scheduling

[lsm
‘ Application

Il gl Time

t

Fig. 2. Visual representation of HUSTLE’s scheduling strategy. OR stands for overhead reduction.

SmallBoom, a single pipeline core, and the MediumBoom, a two-wide pipeline core.
The Verilog RTL description of the design is generated using Chipyard’s toolchain,
which was then compiled and simulated using Synopsys VCS.

HUSTLE is placed between BOOM’s Frontend (Containing the IC), and the Core.
A Control Status Register (CSR) was created to allow enabling HUSTLE via SW. HUS-
TLE’s ROM is initialized with STL instructions, which are mapped at a specific address
that is configured at runtime as the ISR address for HUSTLE’s interrupt.

The SW used for evaluation is made of three components: the workload, the STL, and
a scheduler function. The workload is made of integer and floating-point operations e.g.,
addition, multiplication, and bit shifts, and it is large enough to fill the IC, to guarantee IC
misses to happen during its whole execution. The scheduler function consists of a for-loop
with a variable number of iterations. Inside the for-loop, the workload is scheduled once
for each iteration. The STL is composed of 10 signature-based arithmetic and logic tests
developed in assembly, and it includes a context switch routine to preserve application(s)
context. We developed three variations of the code which we call: test_1, test_2, and
test_3. In test_1 STL instructions are scheduled after each workload execution. Here
we intend to model the worst-case for STL execution, where the whole IC is filled
with functional-code instructions. In test_2, the STL is scheduled periodically, with
higher priority than the workload. This test is used to evaluate the effect of HUSTLE
in a common-case scenario, in which some STL instructions may be already in the IC
when the STL starts its execution. Finally, in test_3 we evaluate HUSTLE’s scheduling
strategy, against a fixed periodic scheduling strategy. Each software is tested on the
BOOM Core as is, and the BOOM Core with HUSTLE. Hereafter we define a set of
metrics to evaluate HUSTLE. Values measured on HW configuration with HUSTLE are
reported with the A subscript.

Execution overhead of STL (OR): To evaluate the reduction of the overhead caused
by the STL, we define C as the number of additional clock cycles required to execute
the STL w.r.t. the baseline. Overhead reduction is computed as OR = I — (C/C).

CPU usage during STL (AIPC): To evaluate HUSTLE’s effect on the CPU resource
usage we measure the Instructions Per Cycle (IPC) on the overhead imposed by the STL.
We define N as the number of executed STL instructions, thus IPC = N/C. Then we
measure the difference on HW configurations with and without HUSTLE as AIPC =
IPCy, - IPC.

396 N. Ferrante et al.
Cache Interference of STL (IR): To measure the cache interference of the STL we

define M as the number of additional cache misses caused by STL instructions w.r.t the
baseline. We compute the interference reduction as IR = I — (M /M).

5 Results

In this section, we discuss the results obtained from the experimental campaign. Data
are reported in Table 1.

Table 1. Metrics for test_1I and test_2.

SW HW OR AIPC IR

test_1 Small 0.355 0.278 1.026
Medium 0.496 0.477 0.907

test_2 Small 0.032 0.027 0.953
Medium 0.058 0.069 1.035

We see that HUSTLE provides an OR up to 40% on the worst-case scenario. Whereas
in the common case, i.e., test_2, the benefits are reduced. This may be because STL
instructions are still present in the cache, hence the use of HUSTLE has not a consid-
erable impact as in fest_I. We note also that the improvement provided by HUSTLE is
higher with the MediumBoom configuration than with the SmallBoom in both tests. The
increase in resource usage of the CPU (column AIPC) is much higher in test_I; this is
expected since the idle time due to cache misses is reduced and instructions are served
directly by HUSTLE. The MediumBoom approximately doubles HUSTLE’s benefits
w.r.t. SmallBoom configuration. The results on cache interference (column IR) present
a different trend than the others. As can be noted, the SmallBoom has a higher benefit
in this case: in fest_I the number of cache misses is less than the baseline (IR > 1),
whereas in the MediumBoom is always lower than 0.91. We argue that this may be due
to branch predictor and speculative execution.

Having confirmed the benefits of HUSTLE, we now compare two different schedul-
ing strategies: periodic at a fixed time interval and event-driven in correspondence of
cache misses. Values are reported in Table 2. Looking at the rows “HUSTLE” and
“Periodic”, results show that the proposed scheduling strategy outperforms the fixed
scheduling strategy in both Small and Medium configurations. We can see that HUS-
TLE’s scheduling strategy almost doubles AIPC and OR for the Small configuration,
while more than doubling these values for the Medium configuration. The Medium con-
figuration shows the larger benefits, approximately doubling the increase in IPC w.r.t. a
fixed scheduling strategy, and the same applies to the OR.

HUSTLE: A Hardware Unit for Self-test-Libraries 397

Table 2. test_3 results, the baseline execution considered is test_2.

HW Scheduling AIPC OR

Small HUSTLE 0.049 0.057
Periodic 0.027 0.032

Medium HUSTLE 0.133 0.107
Periodic 0.069 0.058

6 Conclusions

In this work, we presented HUSTLE, a HW module that allows efficient execution
of STL code. We showed how with this module it is possible to reduce the overhead
and cache interference of STL execution while increasing the CPU utilization. We also
provide an implementation of an efficient event-triggered STL scheduling mechanism to
show the benefits provided by HUSTLE. In our experiments, we demonstrated that this
mechanism increases CPU utilization (IPC) while reducing the overhead on execution
time. Moreover, we found that by using HUSTLE it’s possible to reduce the interference
between functional and non-functional code, in particular the allocation of cache lines
for non-functional code, and in some cases reducing also the cache misses in functional
code.

References

1. Peleska J, Siegel M (1996) Test automation of safety-critical reactive systems
2. Parnas DL et al (1990) Evaluation of safety-critical software. ACM
3. Osinski L, Langer T, Mottok J (2017) A survey of fault tolerance approaches on different
architecture levels. ARCS
4. Abid A, Khan MT, Igbal J (2021) A review on fault detection and diagnosis techniques: basics
and beyond. Artif Intell Rev 54
5. Pratas F et al (2018) Measuring the effectiveness of [SO26262 compliant self-test library. In:
2018 ISQED. IEEE
6. Malaiya YK et al. The relationship between test coverage and reliability. In: Proceedings of
1994 IEEE international symposium on software reliability engineering
7. Psarakis M et al (2010) Microprocessor software-based self-testing. IEEE Des Test Comput
27(3):4-19
8. Bernardi P et al (2015) Development flow for online core self-test of automotive microcon-
trollers. IEEE Trans Comput 65(3):744-754
9. Paschalis A, Gizopoulos D (2004) Effective software-based self-test strategies for on-line
periodic testing of embedded processors. IEEE Trans Comput Aided Des Integr Circuits Syst
24(1):88-99
10. Kranitis N et al (2008) Hybrid-SBST methodology for efficient testing of processor cores.
IEEE Des Test Comput 25(1):64-75
11. Riefert A et al (2016) A flexible framework for the automatic generation of SBST programs.
IEEE Trans on Very Large Scale Integr (VLSI) Syst 24(10)
12. Hatzimihail M et al (2007) A methodology for detecting performance faults in microproces-
sors via performance monitoring hardware. In: 2007 IEEE international test conference

398

13.

14.

15.

16.

17.

18.
19.

N. Ferrante et al.

Li Y et al (2009) Operating system scheduling for efficient online self-test in robust systems.
In: International conference on computer-aided design

Dally W1J, Turakhia Y, Han S (2020) Domain-specific hardware accelerators. Commun ACM
63(7):48-57

Bernardi Petal (2013) MIHST: a hardware technique for embedded microprocessor functional
on-line self-test. IEEE Trans Comput 63(11):2760-2771

Kanev S et al (2015) Profiling a warehouse-scale computer. In: Proceedings of the 42nd annual
international symposium on computer architecture

Chipyard. https://chipyard.readthedocs.io/en/stable/. Accessed 28 Mar 2023

RISC-V ISA. https://riscv.org/. Accessed 28 Mar 2023

BOOM Core. https://boom-core.org/. Accessed 28 Mar 2023

https://chipyard.readthedocs.io/en/stable/
https://riscv.org/
https://boom-core.org/

	HUSTLE: A Hardware Unit for Self-test-Libraries Efficient Execution
	1 Introduction
	2 Related Works
	3 HUSTLE Overview
	3.1 Mechanism Description
	3.2 HUSTLE Scheduling Strategy

	4 Experimental Activity
	5 Results
	6 Conclusions
	References

