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Abstract
We propose an entropic approximation approach for optimal transportation problems
with a supremal cost. We establish �-convergence for suitably chosen parameters for
the entropic penalization and that this procedure selects ∞-cyclically monotone plans
at the limit. We also present some numerical illustrations performed with Sinkhorn’s
algorithm.

Keywords ∞-Optimal transport · ∞-Cyclical monotonicity · Entropic
approximation

Mathematics Subject Classification 49Q22 · 65K10

1 Introduction

The usualMonge–Kantorovich optimal transport problem consists, given a transporta-
tion cost and distribution of sources and targets, in finding a transport plan making
the average transport cost minimal. It has attracted a considerable amount of attention
in the last three decades, as can be seen from the textbooks of Villani [17, 18] and
Santambrogio [15]. In optimal transport probems with a supremal cost (also called
L∞ optimal transport), one rather looks for transport plans which minimize the essen-
tial supremum of the cost. Whereas the usual Monge–Kantorovich problem is linear
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programming, L∞ optimal transport leads to non-convex optimization (eventhough
the supremal cost has convex sublevel sets), which to a large extent, explains why
there are less theoretical results and numerical methods (with the notable exception
of the recent combinatorial approach of Bansil and Kitagawa [1]) to address them. As
in the Calculus of Variations with a supremal functional, L∞ optimal transport may
admit many minimizers and selecting special ones which satisfy tractable optimality
conditions is an important issue, which was studied first by Champion, De Pascale
and Juutinen in [6]. In contrast with the classical Monge–Kantorovich problem, where
restrictions of optimal plans remain optimal between their marginals, this might be
false for L∞ optimal transport. This is why the authors of [6] have introduced the
notion of restrictable optimal and shown that such restrictable solutions are character-
ized by a remarkable property of ∞-cyclical monotonicity of their support. This was
the starting point for the existence of optimal maps for L∞ optimal transport under
various conditions on the cost and the marginals, see [3, 6, 10].

Among numerical methods for optimal transport (see Cuturi and Peyré [14], Ben-
amou [2], Mérigot and Thibert [12]), the entropic penalization approach and the
Sinkhorn algorithm have gained a lot of popularity since Cuturi’s paper [7]. Entropic
optimal transport, which has connections with large deviations and the so-called
Schrödinger bridge problem, see Léonard [11] has also stimulated an intensive stream
of recent theoretical research, see the lecture notes of Nutz [13] and the references
therein. A recent breakthrough in the field is the work of Bernton, Ghosal and Nutz [8]
where a large deviations principle, related to cyclical monotonicity is established for
entropic optimal plans.

Thegoal of the present paper is to investigate, theoretically andnumerically,whether
the entropic approximation strategy can be used for L∞ optimal transport as well. We
will in particular see how the results of [8] can be used to show that this approximation
selects at the limit the distinguished restrictable ∞-cyclically monotone minimizers
introduced in [6].

The article is organized as follows. The setting is introduced in Sect. 2. Section3 is
devoted to �-convergence towards the supremal cost functional. In Sect. 4, we study
how the entropic penalization selects ∞-cyclically monotone plans in the limit. In
Sect. 5, we give some quantitative convergence estimates and a large deviations upper
bound in the spirit of [8]. Finally, we present some numerical illustrations in Sect. 6.

2 Assumptions and Notations

In the sequel, we will always assume that the transportation cost is continuous and
nonnegative, c ∈ C(Rd × R

d ,R+), and that the fixed marginals of the problem, μ, ν

are two Borel probability measures on Rd , μ, ν ∈ P(Rd), with compact support. Let
�(μ, ν) be the set of transport plans between μ and ν i.e. the set of Borel probability
measures onRd ×R

d havingμ and ν as marginals. More precisely, a Borel probability
measure γ on R

d × R
d belongs to �(μ, ν) when

γ (A × R
d) = μ(A) and γ (Rd × A) = ν(A),
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for every Borel subset A of Rd . Note that every γ in �(μ, ν) has its support in
spt(μ)×spt(ν) and that c is uniformly continuous on spt(μ)×spt(ν).We are interested
in the following ∞-optimal transport problem (see [6]):

inf
γ∈�(μ,ν)

γ − ess sup c = ‖c‖L∞(γ ). (∞-OT)

In contrast with classical optimal transport where one minimizes an integral cost,

inf
γ∈�(μ,ν)

∫
Rd×Rd

c(x, y)dγ, (OT)

(∞-OT) is a non-convex and presumably harder problem.
Due to the success of entropic approximation of optimal transport with regulariza-

tion parameter ε > 0

inf
γ∈�(μ,ν)

∫
Rd×Rd

c(x, y)dγ + εH(γ |μ ⊗ ν), (ε-EOT)

recalled in the introduction, it seems natural to introduce, for ε > 0 and exponent
p ≥ 1 the following functional Jp,ε : P(Rd × R

d) → R ∪ {+∞}

Jp,ε(γ ) :=
{(∫

Rd×Rd c(x, y)pdγ (x, y) + εH(γ |μ ⊗ ν)
) 1
p if γ ∈ �(μ, ν),

+∞ otherwise,

where H stands for relative entropy:

H(γ |μ ⊗ ν) =
{∫

Rd×Rd log
(

dγ
dμ⊗ν

)
dγ if γ 	 μ ⊗ ν,

+∞ otherwise.

Note that due to strict convexity of the entropy, for every ε > 0 and p ≥ 1, Jp,ε
admits a unique minimizer. We now denote by J∞ : P(Rd × R

d) → R ∪ {+∞}, the
supremal functional

J∞(γ ) :=
{

γ − ess sup c if γ ∈ �(μ, ν),

+∞ otherwise.

Finally, let us set

Jp := Jp,1.

Since H(γ |μ ⊗ ν) ≥ 0 with an equality exactly when γ = μ ⊗ ν, Jp,ε(γ ) ≥
‖c‖L p(γ ) but also ‖c‖L p(γ ) ≤ J∞(γ ). So, roughly speaking both approximations play
in opposite directions: adding the entropic term is an approximation from above but
approximating ‖c‖L∞(γ ) by ‖c‖L p(γ ) is an approximation from below.
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We also observe that letting p → ∞ and ε → 0 is not enough to ensure that
minimizers of Jp,ε converge to a minimizer of J∞ (i.e. a solution of ∞-OT). Indeed,
if ‖c‖∞ ≤ 1

2 and ε = 1
p the minimizer γp of Jp, 1p

satisfies

H(γp|μ ⊗ ν) ≤ p2−p

hence γp converges (actually strongly by Pinsker’s inequality, see e.g. Lemma 2.5
in [16]) to μ ⊗ ν which in general is not a minimizer of J∞. On the one hand, this
suggests that �-convergence of the regularizations above to J∞ require conditions
relating ε to p. On the other hand, in the previous example, we see that the range of
cp compared to the size of the entropic penalization ε is crucial. But the solutions of
the ∞-optimal transport problem are invariant when one replaces c by an increasing
function of c, in particular one can replace c by c + 2 (say) so that cp will typically
dominate the entropic term and one can expect �-convergence as p → ∞ for a fixed
(or even large) value of ε (see the next section for more details).

3 0-Convergence

Our first result concerns the �-convergence of Jp,ε to J∞:

Theorem 3.1 Under the general assumptions of Sect.2 we have:

1. Jp,εp �-converges (for the weak star topology of P(spt(μ) × spt(ν)) to J∞ as

p → ∞ provided ε
1
p
p → 0 as p → ∞,

2. if, in addition, c ≥ 1 + λ with λ ≥ 0, then Jp,εp �-converges to J∞ as p → ∞
provided

lim
p→∞

1

p
log

(
1 + εp

log(p)

(1 + λ)p

)
= 0. (3.1)

In particular, in this case, Jp,1 and Jp,p �-converge to J∞ as p → ∞.

Proof 1. Let γp ∈ �(μ, ν) converge weakly star to γ . By nonnegativity of H(γp|μ⊗
ν), we have

lim inf
p

Jp,εp (γp) ≥ lim inf
p

‖c‖L p(γp).

Hence, for fixed q, since ‖c‖L p(γp) ≥ ‖c‖Lq (γp) for p ≥ q, we have

lim inf
p

Jp,εp (γp) ≥ lim inf
p

‖c‖Lq (γp) = ‖c‖Lq (γ )

taking the supremum with respect to q thus yields the desired �-liminf inequality

lim inf
p

Jp,εp (γp) ≥ ‖c‖L∞(γ ) = J∞(γ ).
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Let us now prove the �-limsup inequality. For any γ ∈ �(μ, ν) we consider γ δ ,
the block approximation of γ at scale δ ∈ (0, 1) defined by (3.3) below, whose
convergence to γ is guaranteed by the first inequality in (3.4). By concavity, we first
have for p ≥ 1,

Jp,εp (γ
δ) ≤ ‖c‖L p(γ δ) + ε

1
p
p H(γ δ|μ ⊗ ν)

1
p

≤ ‖c‖L∞(γ δ) + ε
1
p
p H(γ δ|μ ⊗ ν)

1
p .

Denoting by ω a modulus of continuity of c on spt(μ) × spt(ν), thanks to the first
inequality in (3.4), we have

‖c‖L∞(γ δ) ≤ ‖c‖L∞(γ ) + ω(
√
2dδ),

being
√
2dδ the diameter of the cubes of the approximation. Moreover, by the second

inequality in (3.4), we have

H(γ δ|μ ⊗ ν)
1
p ≤ d

1
p log(L/δ)

1
p

so if we define γp as the block approximation of γ at scale δ = 1
p (say), we obtain

lim sup
p

Jp,εp (γp) ≤ J∞(γ ) + lim sup
p

(
ω
(√

2d

p

)
+ d

1
p ε

1
p
p log(Lp)

1
p

)
= J∞(γ ),

since we have assumed that ε
1
p
p → 0 as p → +∞.

2. Let us now assume that c ≥ 1+ λ, the proof of the �-liminf inequality for Jp,εp
is exactly as above. For γ ∈ �(μ, ν) and γp the block approximation of γ at scale 1

p ,
we have

Jp,εp (γp) ≤ ‖c‖L∞(γp)

(
1 + dεp log(Lp)

(1 + λ)p

) 1
p

≤
(
J∞(γ ) + ω

(√
2d

p

))(
1 + dεp log(Lp)

(1 + λ)p

) 1
p

(3.2)

so that, as soon as (3.1) holds, one has

lim sup
p

Jp,εp (γp) ≤ J∞(γ ).

�
Remark 3.2 Notice that in case c ≥ 1 + λ for some λ > 0, �-convergence of Jp,εp to
J∞ is guaranteed even for fastly increasing εp like εp = pm(1+ λ)p with m ≥ 0. On

the contrary, in the general case, the condition ε
1
p
p → 0 requires to choose values of

123



   10 Page 6 of 28 Applied Mathematics & Optimization            (2024) 90:10 

ε way too small to be used in practice for numerical computations. This suggests in
practice to rescale the cost so that it is bounded from below by 1.

Remark 3.3 We observe that in (3.2) it is sufficient that ||c||L∞(γp) ≥ 1+ λ, therefore
the conclusion of case 2. in Theorem 3.1 remains valid under the weaker assumption
that v∞ = min�(μ,ν) J∞ ≥ 1 + λ.

Remark 3.4 The conditions on εp in Theorem 3.1 turn out to be sharp for the �-
convergence of Jp,εp to J∞. To see this, let us first observe that μ ⊗ ν is a maximizer
of J∞ on �(μ, ν) since its support contains the support of any other transport plan
betweenμ and ν. Therefore, unless J∞ is constant on�(μ, ν), every minimizer γ∞ of
J∞ satisfies H(γ∞|μ ⊗ ν) ≥ M for some M ∈ (0,+∞]. Let us then assume that J∞
is not constant on �(μ, ν), fix γ∞ a minimizer of J∞ and let γp ∈ �(μ, ν) converge
weakly star to γ∞. Since obviously

Jp,εp (γp) ≥ ε
1
p
p H(γp|μ ⊗ ν)

1
p

and since lim inf p H(γp|μ ⊗ ν) ≥ M > 0, if for some a > 0 one has εp ≥ a p for
large p, then

lim inf
p

Jp,εp (γp) ≥ a.

This rules out the �-limsup inequality as soon as J∞(γ∞) < a and shows that the

condition ε
1
p
p → 0 in the first statement of the Theorem is sharp. Now, if c ≥ 1 + λ

for some λ ≥ 0, the same computation as before yields that, if for some a > 0 and p
large

log
(
1 + εp

log(p)

(1 + λ)p

)
≥ ap,

then

lim inf
p

Jp,εp (γp) ≥ lim inf
p

ε
1
p
p = (1 + λ)ea

which rules out the �-limsup inequality as soon as J∞(γ∞) < (1 + λ)ea , showing
sharpness of (3.1).

For the �-limsup inequality, we have used the block approximation introduced
in [4], which is defined as follows:

Definition 3.5 Let γ ∈ �(μ, ν). For δ > 0 and k ∈ Z
d , we denote by Qδ

k the cube
δ(k + [0, 1)d). The block approximation of γ at scale δ ∈ (0, 1) is then defined by

γ δ :=
∑

k,l∈Zd : μ(Qδ
k )>0, ν(Qδ

l )>0

γ (Qδ
k × Qδ

l )μ
δ
k ⊗ νδ

l (3.3)
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where μδ
k and νδ

l are defined by

μδ
k(A) = μ(Qδ

k ∩ A)

μ(Qδ
k)

, νδ
l (A) = ν(Qδ

l ∩ A)

ν(Qδ
l )

for every Borel subset A of Rd .

For the sake of completeness, we give a short proof of the properties of the block
approximation that we have used in the proof of Theorem 3.1 (see [4] and [5] for
related results):

Lemma 3.6 Let γ ∈ �(μ, ν) and γ δ be the block approximation of γ at scale δ ∈
(0, 1), then γ δ ∈ �(μ, ν) and

W∞(γ δ, γ ) ≤ √
2dδ, H(γ δ|μ ⊗ ν) ≤ d log

( L
δ

)
, (3.4)

where L is a constant depending only on spt(μ) (actually on its diameter).

Proof The fact that γ δ ∈ �(μ, ν) is easy to check by construction (see [4]). Now
observe that by (3.3) the density of γ δ with respect to μ ⊗ ν is

dγ δ

dμ ⊗ ν
(x, y) =

⎧⎨
⎩

γ (Qδ
k×Qδ

l )

μ(Qδ
k )ν(Qδ

l )
if (x, y) ∈ Qδ

k × Qδ
l , and μ(Qδ

k), ν(Qδ
j ) > 0,

0 otherwise.

Therefore

H(γ δ|μ ⊗ ν) =
∑

k,l∈Zd : μ(Qδ
k )>0, ν(Qδ

l )>0

∫
Qδ
k×Qδ

l

log

(
γ (Qδ

k × Qδ
l )

μ(Qδ
k)ν(Qδ

l )

)
dγ δ

≤
∑

k,l∈Zd : μ(Qδ
k )>0, ν(Qδ

l )>0

∫
Qδ
k×Qδ

l

log

(
1

μ(Qδ
k)

)
dγ δ

=
∑

k∈Zd : μ(Qδ
k )>0

μ(Qδ
k) log

(
1

μ(Qδ
k)

)
,

where the inequality is due to the fact that
γ (Qδ

k×Qδ
l )

ν(Qδ
l )

≤ 1, while the last equality is

obtained summing over ł. If L ≥ 1 is such that sptμ is contained in a cube of side

L−1, the number of cubes Qδ
k with positiveμ-measure is not greater than Nδ := ( L

δ

)d
.

Therefore, applying Jensen’s inequality to the concave function f (z) = z log( 1z ), we
have

123



   10 Page 8 of 28 Applied Mathematics & Optimization            (2024) 90:10 

H(γ δ|μ ⊗ ν) ≤
Nδ∑
k=1

μ(Qδ
k) log

(
1

μ(Qδ
k)

)

≤ Nδ

(
1

Nδ

Nδ∑
k=1

μ(Qδ
k) log

(
1∑Nδ

k=1
1
Nδ

μ(Qδ
k)

))

= log(Nδ) = d log(L) − d log(δ),

which proves the second inequality in (3.4).
By construction γ (Qδ

k × Qδ
l ) = γ δ(Qδ

k × Qδ
l ), for any k, l. Let J be the set of

pairs of indices (k, l) such that γ δ(Qδ
k × Qδ

l ) > 0 and set Q j = Qδ
k × Qδ

l , for any
j = (k, l) ∈ J . We define

ηδ :=
∑

j : γ (Q j )>0

γ (Q j )γ j ⊗ γ δ
j ,

where γ j (A) := γ (A∩Q j )

γ (Q j )
and γ δ

j (A) := γ δ(A∩Q j )

γ δ(Q j )
. By construction ηδ ∈ �(γ, γ δ),

thus

W∞(γ, γ δ) ≤ ||x − y||L∞(ηδ) ≤ diam(Q j ) = √
2dδ.

�

4 Selection of Plans with∞-Cyclically Monotone Support

As shown in [6] and [10], restrictable minimizers of J∞ are supported on∞-cyclically
monotone sets, such sets are defined as follows:

Definition 4.1 A set � ⊂ R
d × R

d is said to be ∞-cyclically monotone if we have
that

max
i=1,...,k

{c(xi , yi )} ≤ max
i=1,...,k

{c(xi , yi+1)} ,

for all k ∈ N
∗ and {(xi , yi )}ki=1 ⊂ �, where yk+1 = y1. A transport plan γ is said to

be ∞-cyclically monotone if spt γ is an ∞-cyclically monotone set.

Since every permutation can be obtained as composition of cycles on disjoint sets
and trivial cycles on fixed points, one can see that ∞-cyclical monotonicity of a set
� ⊂ R

d × R
d is equivalent to the fact that for every k ∈ N

∗, every {(xi , yi )}ki=1 ⊂ �

and every σ ∈ �(k) (where �(k) is the permutation group of {1, . . . , k}), one has

max
i=1,...,k

{c(xi , yi )} ≤ max
i=1,...,k

{
c(xi , yσ(i))

}
.
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Usually, in the literature, the previous definition is called ∞-c-cylical monotonicity,
to keep notations simple, we have omitted the dependence on the cost c; let us remark
that ∞-cyclical monotonicity is invariant by replacing c by a strictly increasing trans-
formations of c (like cp with p > 0), contrarily to the usual notion of c-cyclical
monotonicity. We recall that a nonempty subset � of Rd × R

d is called c-cyclically
monotone when for every k ∈ N

∗, every (xi , yi )ki=1 ⊂ � and every permutation
σ ∈ �(k), one has

k∑
i=1

c(xi , yi ) ≤
k∑

i=1

c(xi , yσ(i)). (4.1)

Our goal in this section is to investigate the convergence of the entropic approximation
to ∞-cyclically monotone plans. We shall make use of the analysis of the landmark
recent article [8]. Let us first recall the notion of (c, ε)-cyclically invariance introduced
in [8]:

Definition 4.2 Let c : R
d × R

d → (0,∞) be a measurable function. A coupling
γ ∈ �(μ, ν) is called (c, ε)-cyclically invariant if γ 	 μ ⊗ ν and its density admits
a representative dγ

dμ⊗ν
: Rd × R

d → (0,∞) such that

k∏
i=1

dγ

dμ ⊗ ν
(xi , yi )

= exp

(
−1

ε

[
k∑

i=k

(c(xi , yi ) − c(xi , yi+1))

])
k∏

i=1

dγ

dμ ⊗ ν
(xi , yi+1),

for all k ∈ N
∗ and {(xi , yi )}ki=1 ⊂ R

d × R
d , where yk+1 = y1.

In [8] (Proposition 2.2), it is shown that whenever (ε-EOT) is finite, the (unique)
solution γε of (ε-EOT) is characterized by being (c, ε)-cyclically invariant. The next
lemma, which is a part of Lemma 3.1 in [8], provides an estimate for (c, ε)-cyclically
invariant couplings, which will be useful for our purpose. For the reader’s convenience
we provide also here the proof.

Lemma 4.3 Let ε > 0 and γε ∈ �(μ, ν) be (c, ε)-cyclical invariant. For every fixed
k ≥ 2, k ∈ N, and δ ≥ 0, let Ak,c(δ) be the set defined by

Ak,c(δ) :=
{

(xi , yi )
k
i=1 ∈

(
R
d × R

d
)k :

k∑
i=1

c(xi , yi ) −
k∑

i=1

c(xi , yi+1) ≥ δ

}

(4.2)

where yk+1 = y1. Let A ⊂ Ak,c(δ) be Borel. Then γ k
ε := ∏k

i=1(γε)(dxi , dyi ) satisfies

γ k
ε (A) ≤ e

−δ
ε .

Proof By Definition 4.2 of (c, ε)-cyclical invariance, for γ k
ε a.e. (xi , yi )ki=1 ∈ A we

have that
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k∏
i=1

dγε

μ ⊗ ν
(xi , yi ) ≤ e− δ

ε

k∏
i=1

dγε

μ ⊗ ν
(xi , yi+1).

In one defines the set A := {(xi , yi+1) : (xi , yi ) ∈ A}, by integrating over A with
respect to γ k

ε = ∏
γε(xi , yi ) = ∏

γε(xi , yi+1) we obtain

γ k
ε (A) ≤ e− δ

ε γ k
ε (A) ≤ e− δ

ε .

�
The fact that the entropic approximation procedure selects ∞-cyclically monotone

plans is then ensured by the following:

Theorem 4.4 Under the general assumptions of Sect.2, further assume that c > 0
everywhere, and let γp,εp be the minimizer of Jp,εp . Then, any weak star cluster point
γ∞ as p → ∞ of the family {γp,εp }p≥1 is ∞-cyclically monotone, provided

1. ε
1
p
p → 0 as p → ∞,

2. εp = o(p(1 + λ)p) if, in addition, c ≥ 1 + λ with λ ≥ 0.

Proof Up to extracting a subsequence, let us assume that γp,εp weakly star converges
to γ∞. We proceed by contradiction assuming that there exist δ > 0 and a finite
sequence of points (xi , yi )ki=1 contained in spt γ∞, such that

max
i=1,...,k

{c(xi , yi )} > max
i=1,...,k

{c(xi , yi+1)} + δ.

By the continuity of the cost function c and by the uniform convergence of(∑k
i=1 c(x

′
i , y

′
i )

p
) 1

p
to maxi=1,...,k{c(x ′

i , y
′
i )}, as p → +∞, we deduce that for every

i = 1, . . . , k there exists an open neighborhoodUi of (xi , yi ) and p(δ) > 0, such that

(
k∑

i=1

c(x ′
i , y

′
i )

p

) 1
p

>

(
k∑

i=1

c(x ′
i , y

′
i+1)

p

) 1
p

+ δ,

for every (x ′
i , y

′
i ) ∈ Ui (again with the convention that y′

k+1 = y′
1) and p ≥ p(δ). We

now observe that

k∑
i=1

c(x ′
i , y

′
i )

p >

⎛
⎜⎝
(

k∑
i=1

c(x ′
i , y

′
i+1)

p

) 1
p

+ δ

⎞
⎟⎠

p

≥
k∑

i=1

c(x ′
i , y

′
i+1)

p + p

(
k∑

i=1

c(x ′
i , y

′
i+1)

p

) p−1
p

δ, (4.3)
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where the last inequality follows from the convexity of t �→ t p, with p > 1. Since
c > 0 there exists some b > 0 such that c ≥ b on each Ui , i = 1, . . . , k, hence, for
every (x ′

i , y
′
i ) ∈ Ui and p ≥ p(δ)

k∑
i=1

c(x ′
i , y

′
i )

p >

k∑
i=1

c(x ′
i , y

′
i+1)

p + pδbp−1. (4.4)

We thus have U1 × · · · × Uk ⊂ Ak,cp (pδbp−1), where Ak,cp (pδbp−1) is defined as
in (4.2) with c replaced by cp. Applying Lemma 4.3, we thus get:

γ k∞(U1 × · · · ×Uk) :=
k∏

i=1

γ∞(Ui )

≤ lim inf
p

γ k
p,εp (U1 × · · · ×Uk) :=

k∏
i=1

γp,εp (Ui )

≤ lim inf
p

e
− pδbp−1

εp (4.5)

so that if ε
1
p
p → 0 as p → ∞, for large enough p one has εp ≤ bp, which yields

lim inf
p

e
− pδbp−1

εp = 0.

On the other hand, since the points (xi , yi ) belong to spt γ∞, we have that γ k∞(U1×
· · · ×Uk) > 0, which yields the desired contradiction. This shows the first assertion.
Now, if c ≥ (1 + λ) with λ ≥ 0, we can replace b by (1 + λ) in (4.5) and the same
conclusionwill be reached as soon as εp = o(p(1+λ)p), proving the second assertion.

�
Remark 4.5 Despite what we observed in Remark 3.3 regarding Theorem 3.1, in the
proof of the second assertion of Theorem 4.4, it does not seem that the condition
c(x, y) ≥ 1 for every (x, y) can be weakened to J∞ ≥ 1. Note also that the condition
εp = o(p(1 + λ)p) is stronger than condition (3.1) that guarantees �-convergence
when c ≥ 1 + λ.

5 Some Estimates on the Speed of Convergence

Our aim in this section is to give some error estimates for vp − v∞ where

vp := min
γ∈�(μ,ν)

Jp and v∞ := min
γ∈�(μ,ν)

J∞, (5.1)

where Jp := Jp,1 (i.e. for the sake of simplicitywe take εp = 1 as entropic penalization
parameter).
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5.1 Upper Bounds

Proposition 5.1 (Upper bounds on the speed of convergence). Let c ∈ C0,α(Rd ×R
d),

with α ∈ (0, 1] and let us assume that v∞ ≥ 1 + λ for some λ ≥ 0. Then we have

vp − v∞ ≤
{
O(e−β p), with β = min{α, log(1 + λ)} if λ > 0

O
(
log(log p))

p

)
if λ = 0.

Proof Let γ∞ be a minimizer of J∞ and γ δ be the block approximation of γ∞ at scale
δ ∈ (0, 1), as defined in (3.3). We observe that, by construction and by the Hölder
condition on c, denoting by A the C0,α semi-norm of c, we first have

||c||L∞(γ δ) ≤ ||c||L∞(γ∞) + Aδα.

Then

vp ≤
(∫

cpdγ δ + H(γ δ|μ ⊗ ν)

) 1
p ≤

(
||c||p

L∞(γ δ)
+ H(γ δ|μ ⊗ ν)

) 1
p

≤ (||c||L∞(γ∞) + Aδα
) (

1 + H(γ δ|μ ⊗ ν)

(1 + λ)p

) 1
p

≤ (
v∞ + Aδα

) (
1 + d log(L/δ)

(1 + λ)p

) 1
p

, (5.2)

where the last inequality follows from Lemma 3.6. For λ > 0, choosing δ := e−p,
(5.2) becomes (setting C = d log(L))

vp ≤ (
v∞ + Ae−α p) (1 + C + dp

(1 + λ)p

) 1
p

,

then, we observe that for large p, one has

(
1 + C + dp

(1 + λ)p

) 1
p = 1 + d

(1 + λ)p
+ o

( 1

(1 + λ)p

)
.

Therefore, for p large enough,

vp ≤ v∞ + Be−β p,

for some B > 0 and β = min{α, log(1 + λ)}.
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Now if λ = 0, we choose δ = p−1/α in (5.2) which gives

vp ≤
(
v∞ + A

p

)
exp

( 1
p
log(1 + d log(Lp1/α))

)

= v∞ + 1

α

v∞
p

log(log(p)) + o
( log(log(p)

p

)

which ends the proof. �

5.2 Upper and Lower Bounds in the Discrete Case

Let us now consider the discrete case where there exist x1, . . . , xN and y1, . . . , yM
points in R

d such that

μ =
N∑
i=1

μiδxi and ν =
M∑
j=1

ν jδy j (5.3)

with (strictly, without loss of generality) positive weights μi and ν j summing to 1.
To shorten notations let us set ci j = c(xi , y j ) ≥ 0. In this setting, transport plans γ

will simply be denoted as N × M matrices with entries γ i j . We also recall that in
the discrete setting �(μ, ν) is a convex polytope and the constraint γ ∈ �(μ, ν) is
equivalent to

γ1M =
⎛
⎝ M∑

j=1

γ i j

⎞
⎠

i

= (μi )i and γ ᵀ1N =
(

N∑
i=1

γ i j

)

i

= (ν j ) j .

In the discrete setting transport plans have a finite entropy with respect to μ ⊗ ν,
with the (crude) bound

H(γ |μ ⊗ ν) ≤ M := −
N∑
i=1

μi log(μi ) −
N∑
j=1

ν j log(ν j )

for every γ ∈ �(μ, ν). So if v∞ ≥ 1 + λ with λ ≥ 0, taking γ∞ a minimizer of J∞,
we obtain

vp ≤ Jp(γ∞) ≤ v∞
(
1 + M

(1 + λ)p

) 1
p

≤ v∞
(
1 + M

p(1 + λ)p
+ o

( M

p(1 + λ)p

))

which gives (in a straightforward way, i.e. without using block approximation) an
exponentially decaying upper bound for vp − v∞ for λ > 0 and an algebraic upper
bound vp − v∞ ≤ O(1/p) if λ = 0. The fact that v∞ ≥ 1 therefore ensures that
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p(vp − v∞) is bounded from above. It turns out, that in the discrete setting, this
condition also guarantees that we also have an algebraically decaying lower bound for
the error. To see this, we first need the following:

Lemma 5.2 Let μ and ν be discrete measures i.e. of the form (5.3) and define

F∞ := {γ ∈ �(μ, ν) : J∞(γ ) = v∞}

and for every γ ∈ F∞,

m(γ ) := max{γ i j : γ i j > 0, ci j = v∞}

then there is some θ > 0 such that m(γ ) ≥ θ , for every γ ∈ F∞.

Proof Since v∞ is the minimum of J∞ over �(μ, ν), one can write F∞ as the set of
transport plans for which

γ i j > 0 ⇒ ci j − v∞ ≤ 0

or equivalently

l(γ ) :=
∑
i j

γ i j (ci j − v∞)+ = 0.

In otherwords, F∞ is the facet of�(μ, ν)where the linear form l (which is nonnegative
on�(μ, ν)) achieves itsminimumand it is therefore a convexpolytope,whose extreme
points belong to the (finite) set of extreme points of �(μ, ν). Let us then denote by
{γa, a ∈ A} with A a finite index set the set of extreme points of F∞. Thanks to
Minkowski’s theorem, we can write any γ ∈ F∞ as

γ :=
∑
a∈A

αaγa,

for some weights αa ≥ 0 summing to 1. In particular we may pick a0 ∈ A with
αa0 ≥ 1

|A| (with |A| denoting the cardinality of A). Then we have

m(γ ) ≥ m(γa0)

|A| ≥ θ := min
a∈A

m(γa)

|A| > 0,

where the strict positivity of θ then follows from the fact that A is finite andm(γa) > 0
for every a ∈ A. �

We are now ready to prove the announced lower bound.
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Proposition 5.3 (Lower bound on the speed of convergence, discrete case). Assume
that μ and ν are discrete measures i.e. of the form (5.3) and that v∞ ≥ 1, then
p(vp − v∞) is bounded from below. Hence

vp − v∞ = O
( 1
p

)
.

Proof Let us argue by contradiction and assume that p(vp − v∞) is unbounded from
below, then there is a sequence pn → ∞ as n → ∞ such that

lim
n

pn(vpn − v∞) = −∞. (5.4)

Letting γn be the minimizer of Jpn , passing to a subsequence if necessary, we may
assume that γn converges to some γ∞ which belongs to F∞ (as defined in Lemma 5.2)
since v∞ ≥ 1. In particular, there exists i0, j0 such that

ci0 j0 = v∞ and γ
i0 j0∞ ≥ θ > 0,

where θ is the lower bound from Lemma 5.2. Since γ
i0 j0
n converges to γ

i0 j0∞ we have,
for large enough n, γ

i0 j0
n ≥ θ

2 , hence, using the fact that ci0 j0 = v∞ and again the
nonnegativity of the entropy

vpn ≥ v∞
(θ

2

) 1
pn = v∞ exp

( 1

pn
log

θ

2

)

≥ v∞
(
1 + 1

pn
log

θ

2

)

which is the desired contradiction to (5.4). �

5.3 A Large Deviations Upper Bound

In this (somehow independent) paragraph, our goal is to discuss a (partial) extension
of the large deviations results of [8] to the L∞-optimal transport framework. Con-
sidering the Monge–Kantorovich problem (OT) it is well-known (see [9, 15]) that
the optimality for (OT) of a plan γ ∈ �(μ, ν) is characterized by a property of c-
cyclical monotonicity of its support � := spt(γ ), where c-cyclical monotonicity is
defined by (4.1). To analyze fine convergence properties of the entropic approximation
of (OT), defined by (ε-EOT), assuming convergence (taking a subsequence if neces-
sary) as ε → 0+, of the minimizer γε of (ε-EOT) to some γ and denoting by � the
c-cyclically monotone set spt(γ ), the authors of [8] introduced

I (x, y) := sup
k≥2

sup
(xi ,yi )ki=2⊂�

sup
σ∈�(k)

{ k∑
i=1

c(xi , yi ) −
k∑

i=1

c(xi , yσ(i))
}
, (x, y) ∈ R

d × R
d
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with (x1, y1) = (x, y). They proved that I is a good rate function for the family of
optimal entropic plans, {γε}ε>0 in the sense that it obeys, under very general conditions,
the large deviations principle

lim sup
ε→0

ε log(γε(C)) ≤ − inf
(x,y)∈C I (x, y) and

lim inf
ε→0

ε log(γε(U )) ≥ − inf
(x,y)∈U I (x, y),

for every compact C and every openU included in spt(μ) × spt(ν). Denoting by γp,ε

the minimizer of Jp,ε, the results of [8] (using cp instead of c) of course apply to the
convergence of γp,ε as ε → 0+ for a fixed exponent p. For L∞ optimal transport, it
makes more sense to rather consider the situation where ε > 0 is fixed and p tends
to ∞. More precisely, we know from Theorem 4.4, that if c ≥ 1, ε > 0 is fixed, the
family {γp,ε}p≥1 weakly star converges (again possibly after an extraction) to some
γ∞ as p → ∞, �∞ := spt(γ∞) is ∞-cyclically monotone. In addition to the general
assumptions of Sect. 2, we shall further assume throughout this paragraph that

• c ≥ 1,
• ε > 0 being fixed, the sequence of minimizers {γp,ε}p≥1 weakly star converges
as p → ∞ to some γ∞, with (∞-cyclically monotone) support �∞.

Let us define for every (x, y) ∈ R
d × R

d

I∞(x, y) := sup
k≥2

sup
(xi ,yi )ki=2⊂�∞

sup
σ∈�(k)

{
max
1≤i≤k

{c(xi , yi )} − max
1≤i≤k

{c(xi , yσ(i))}
}
,

where (x1, y1) = (x, y). Also define

Ĩ∞(x, y) := sup
k≥2

sup
(xi ,yi )ki=2⊂�∞

{
max
1≤i≤k

{c(xi , yi )} − max
1≤i≤k

{c(xi , yi+1)}
}
,

where (x1, y1) = (x, y) and yk+1 = y1. In our supremal optimal transport set-
ting, we cannot really expect that I∞ is a good rate function for {γp,ε}p≥1; indeed,
argmin�(μ,ν) J∞ is unchanged when replacing c with a strictly increasing function of
c, while the same does not hold for the function I∞. However it can be interesting to
have a better understanding of the function I∞, which still provides an upper bound
for the family {γp,ε} (see Proposition 5.6).

Lemma 5.4 Let I∞ and Ĩ∞ be defined as above, then

• I∞ and Ĩ∞ are related by I∞ = max(0, Ĩ∞),
• I∞ and Ĩ∞ are lower semicontinuous, I∞ ≥ 0, I∞ = 0 on �∞,
• I∞ and Ĩ∞ coincide on (spt(μ) × R

d) ∪ (Rd × spt(ν)).

Proof The fact that I∞ ≥ max(0, Ĩ∞) is obvious as well as the fact that Ĩ∞ = 0 on
�∞.

We nowprove the converse inequality. Fix now (x, y) = (x1, y1) ∈ R
d×R

d , k ≥ 2,
(x2, y2), . . . (xk, yk) in �∞ and σ ∈ �(k). We can then partition {1, . . . , k} into I0
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the (possibly empty) set of fixed-points of σ and disjoint (empty if σ is the identity)
orbits I1, . . . , Il on each of which σ is a cycle, this means that for j = 1, . . . , l, we
may denote (xi , yi )i∈I j as (̃x j

r , ỹ j
r )r=1,...,|I j | and (xi , yσ(i))i∈I j as (̃x j

r , ỹ j
r+1)r=1,...,|I j |

with the convention ỹ j
|I j |+1 = ỹ j

1 . We now observe that

max
1≤i≤k

{c(xi , yi )} − max
1≤i≤k

{c(xi , yσ(i))} ≤ max
j

{
max
i∈I j

c(xi , yi ) − max
i∈I j

c(xi , yσ (i))
}
.

where the max with respect to j is taken on indices for which I j is nonempty. To
shorten notations, for such a j let us set

β j := max
i∈I j

c(xi , yi ) − max
i∈I j

c(xi , yσ (i)).

Of course if I0 is nonempty, β0 = 0, now if j ≥ 1 and I j is nonempty

β j = max
r=1,...,|I j |

c(̃x j
r , ỹ j

r ) − max
r=1,...,|I j |

c(̃x j
r , ỹ j

r+1) ≤ Ĩ∞(̃x j
1 , ỹ j

1 ).

So, if (̃x j
1 , ỹ j

1 ) = (x1, y1), β j ≤ Ĩ∞(x, y) and if (̃x j
1 , ỹ j

1 ) �= (x1, y1), then (̃x j
1 , ỹ j

1 ) ∈
�∞, hence Ĩ∞(̃x j

1 , ỹ j
1 ) = 0 by the definition of Ĩ∞ and the fact that�∞ is∞-cyclically

monotone. In other words, we can bound from above each β j by max(0, Ĩ∞(x, y)).
Taking suprema with respect to k, (x2, y2), . . . (xk, yk) in �∞ and σ ∈ �(k), we thus
get I∞ ≤ max(0, Ĩ∞). Moreover, since Ĩ∞ ≤ 0 on �∞, I∞ = max(0, Ĩ∞) = 0 on
�∞

Lower semi continuity of I∞ and Ĩ∞ follows from the continuity of c. Finally
assume that x ∈ spt(μ) and y ∈ R

d , since �∞ = spt(γ∞) is compact and γ∞ ∈
�(μ, ν), there exists y′ ∈ R

d such that (x, y′) ∈ �∞. Taking (x1, y1) = (x, y),
(x2, y2) = (x, y′) as a competitor in the definition of Ĩ∞(x, y)we see that Ĩ∞(x, y) ≥
0 hence I∞(x, y) = Ĩ∞(x, y). The same argument shows that I∞ and Ĩ∞ coincide on
R
d × spt(ν). �

Lemma 5.5 Let us fix (x, y) ∈ R
d × R

d . Suppose that for some δ ∈ R, k ∈ N, k ≥ 2
and (xi , yi )ki=2 ⊂ spt γ∞, we have

max
1≤i≤k

{c(xi , yi )} − max
1≤i≤k

{c(xi , yi+1)} > δ, where (x1, y1) := (x, y).

Then there exist α > 0, r > 0 and p0 ≥ 1 such that

γp,ε(Br (x, y)) ≤ αe
−pδ

ε , ∀p ≥ p0,

where γp,ε is the minimizer of Jp,ε.

Proof Of course if δ ≤ 0, one can just take α = 1 so we may assume that δ > 0.
Reasoning as in the proof of Theorem 4.4 (recall that we have assumed c ≥ 1), we
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know that there exist p0 and r > 0 such that

k∑
i=1

cp(x ′
i , y

′
i ) −

k∑
i=1

cp(x ′
i , y

′
i+1) > pδ,

for every p ≥ p0 and (x ′
i , y

′
i )
k
i=1 ⊂ Br (x1, y1)× · · ·× Br (xk, yk). Then Br (x1, y1)×

· · · × Br (xk, yk) ⊂ Ak,cp (pδ) so, thanks to Lemma 4.3,

γ k
p,ε(Br (x1, y1) × · · · × Br (xk, yk)) ≤ e− pδ

ε .

Moreover lim inf p→∞ γp,ε(Br (xi , yi )) ≥ γ∞(Br (xi , yi )) > β, for all 2 ≤ i ≤ k, for
some β > 0 since (xi , yi )ki=2 ⊂ spt γ∞, then

γp,ε(Br (x, y)) ≤
(

β

2

)1−k

e− pδ
ε ,

for all p ≥ p0 (possibly replacing p0 with a larger one). �
Proposition 5.6 Under the assumptions of this paragraph, for any compact set C ⊂
R
d × R

d , one has

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(spt(μ)×spt(ν))
Ĩ∞ ≤ − inf

C
I∞.

Proof First note that since γp,ε is supported on spt(μ) × spt(ν),

γp,ε(C) = γp,ε(C ∩ (spt(μ) × spt(ν)))

and there is noting to prove if C is disjoint from spt(μ) × spt(ν). Therefore we can
assume that C ∩ (spt(μ) × spt(ν)) �= ∅. It then follows from Lemma 5.4 that

inf
C∩(spt(μ)×spt(ν))

Ĩ∞ = inf
C∩(spt(μ)×spt(ν))

I∞ ≥ inf
C

I∞.

Now let η > 0 and (x, y) ∈ C ∩ (spt(μ) × spt(ν)). By definition of Ĩ∞(x, y) there
exist k ≥ 2 and (xi , yi )ki=2 ⊂ �∞, such that (setting as usual (x1, y1) = (x, y) and
yk+1 = y)

max
1≤i≤k

{c(xi , yi )} − max
1≤i≤k

{c(xi , yi+1)} > min(η−1, Ĩ∞(x, y)) − η.

Note that the truncation is used to handle the case where Ĩ∞(x, y) = +∞. By
Lemma 5.5 we know that there exist α, r > 0 such that

γp,ε(Br (x, y)) ≤ α exp

(−p(min(η−1, Ĩ∞(x, y)) − η)

ε

)
.
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Then

lim sup
p→∞

ε

p
log γp,ε(Br (x, y)) ≤ −min(η−1, Ĩ∞(x, y)) + η

and, by compactness of C ,

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(spt(μ)×spt(ν))
min(η−1, Ĩ∞) + η

which, letting η → 0+, yields the desired upper bound. �

6 Numerical Results

In this section, we present several numerical examples, with the aim of illustrating
the discussions and theoretical analysis of the previous sections. We shall consider
discrete marginals; let N , M ∈ N, with a slight abuse of notation, we will denote by
μ and ν both the measures and the vectors of weights (μi )

N
i=1 and (ν j )

M
j=1 and γ will

denote both the transport plan and the N × M matrix (γ i j ). For fixed p, ε > 0, in this
discrete setting, the minimization of Jp,ε reads

min
�(μ,ν)

⎛
⎝∑

i, j

γ i j c pi j + ε
∑
i j

γ i j log
( γ i j

μiν j

)⎞⎠
1
p

. (6.1)

Raising the above cost to the power p, which does not change the minimizer, leads to
a standard entropic transport problem. For such problems, we used in all our examples
Sinkhorn’s algorithm (see for instance Chapter 4 in [14]) to find a good approximation
(with error smaller than 10−5) of the solution.

If v∞ ≥ 1, in light of Theorem 3.1, we expect the output γ of the Sinkhorn
algorithm to be, for suitable p and ε, also a good approximation of an optimal plan
for the discretized L∞- optimal transport problem

v∞ := min
γ∈�(μ,ν)

max
i, j

{
ci, j : γ i j �= 0

}
.

Furthermore, if c ≥ 1, thanks to Theorem 4.4, we expect to find a plan close to an
∞-cyclically monotone one.

Remark 6.1 As the set of transport plans �(μ, ν) is a convex polytope, for any γ ∈
�(μ, ν) there exists a finite set of indices S, such that γ = ∑

s∈S asγs , with as > 0,∑
as = 1 and γs an extreme point of �(μ, ν). If N = M and μi = ν j = 1

N , the
set �(μ, ν) is the set of the so-called bi-stochastic matrices, whose extreme points,
by Birkhoff’s theorem, form the set of permutation matrices. We observe that, by
definition of γ − ess sup, J∞(γ ) = maxs∈S J∞(γs) and thus the minimum of J∞ is
attained at some permutation matrix. Therefore, if N = M and μi = ν j = 1

N
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Fig. 1 Example of convergence of the plan to the ∞-cm plan: c(x, y) = |x − y|p , p ∈ {2, 3, 4, 5}, ε = 1
and μ and ν having orthogonal supports

v∞ = min
σ∈�(N )

max
i

ci,σ (i).

This can be in principle used to compute v∞ exactly. However this is not particularly
useful in practice; regarding for instance the example on bottom of Fig. 4, even if the
size of μ and ν is the same, in order to calculate the exact value of v∞ we should be
able to perform 100! evaluations, which is infeasible in practice!

All the examples in this section, will be in dimension d = 2, μ will be represented
by blue points, ν by red points and the plan will be represented by arrows: the black
ones indicate that a blue point is sent to a red point with high probability, while the
gray ones indicate that a blue point is sent to a red point with lower probability (but
still not negligible).

In the first example, as shown by Fig. 1, we consider cp = |x − y|p, for p ∈
{2, 3, 4, 5}, μ which is uniformly concentrated on the blue points
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Fig. 2 Error on the marginals: the first image shows the error |γ14−μ| of the output γ on the first marginal
and the second one the error |γ ᵀ18 − ν| on the second marginal

{(−2, 0), (−1.5, 0), (−1, 0), (−0.5, 0), (0.5, 0), (1, 0), (1.5, 0), (2, 0)}

and ν on the red points

{(0,−1.367), (0,−0.867), (0, 867), (0, 1.367)}.

Note that with this choice of sptμ and spt ν, c ≥ 1 everywhere and therefore, thanks to
Theorems 3.1 and 4.4, �-convergence and convergence of the outputs towards ∞-cm
plans still hold choosing ε = 1. We observe that for p = 2, every transport plan γ is
optimal. Indeed, by the orthogonality of the two supports, any plan is concentrated on
a cyclically monotone set (see (4.1)) and, as recalled in Sect. 5.3 (see for instance [9,
15]), this is a sufficient optimality condition. Here, since we look for a plan which
minimizes the regularized problemwhich involves the entropy, the Sinkhorn algorithm
selects the most diffuse one, as evidenced by the picture on the upper left of Fig. 1. The
other three pictures in Fig. 1 show that convergence towards an ∞-cm plan is really
fast and it occurs already for p = 5.

Regarding the accuracy, Fig. 2 shows that for p = 5 and ε = 1 the distance |γ14−μ|
between the first marginal of the output γ and the distance |γ ᵀ18 − ν| between the
second marginal of γ and ν is of the order of 10−5 after only 350 iterations.

We have also considered the same example (see Fig. 3) with the cost function
cp(x, y) := (max{|x1 − y1|, |x2 − y2|})p. In this case the convergence is still fast and
the error is small after few iterations (of order 10−5 after about 180 iterations).

Remark 6.2 When c > 1, on the one hand, we don’t need ε to be small and we can
even take it large as p grows (by case 2. in Theorem 3.1 we can even choose for
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Fig. 3 Example of convergence of the plan to the ∞-cm plan for c(x, y) = (max{|x1 − y1|, |x2 − y2|})p ,
for p ∈ {2, 3, 4, 5}, ε = 1 and μ and ν having orthogonal supports

instance εp = (1+ λ)p). On the other hand, we can encounter some difficulties when

computing the Gibbs kernel Ki j = e− c
p
i j
ε : if p is large it can happen that, for some

i, j , Ki, j = 0 making impossible to perform the division in the iterations of the primal
version of the Sinkhorn algorithm. Fortunately, this problem can be overcome using
the Log-Domain version (see for instance Sect. 4.4 in [14]), as we did in the following
example, represented by Fig. 4.

Figure 4, which shows a comparison among three different examples, considered
for p = 2 on the left and for p = 15 on the right and ε = 1. The two pictures on
top in Fig. 4 show the representation by arrows of the output when μ is uniformly
concentrated on 400 points which discretize the unitary square and ν is uniformly
concentrated on the points (1, 2) and (2, 1). This is a discretization of the case μ

uniform on the square [0, 1]2, where (see also Example 2.2 in [6]) every γ ∈ �(μ, ν)
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Fig. 4 Comparison among three different examples: ε = 1, c(x, y) = |x−y|p , on the left p = 2, on the right
p = 15. On top:μ a uniform discretization of the unitary square and ν uniformly concentrated on the points
(1, 2) and (2, 1). In the middle: μ the same discretization of the unitary square, ν = 0.1δ(1,2) + 0.9δ(2,1)
(the point (2, 1) is represented by a bigger dot). On bottom: μ a uniform discretization of the square
[−0.25, 0.25] × [−0.25, 0.25] and ν of the rectangle [1.25, 1.5] × [−0.5, 0.5] (Color figure online)
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Fig. 5 Comparison among the speed of convergence of vp −v∞, Be−β p and− A
p for p ∈ [10, 206],μ and

ν as the ones on top of Fig. 4. On top: vp in blue and v∞ in orange. On bottom: Be−β p in green, − A
p in

orange and vp − v∞ in blue. Here A, B are obtained by linear regression (least squares) and β = log(v∞)

(the same β as in Proposition 5.1) (Color figure online)

is optimal for the problem

inf
γ∈�(μ,ν)

γ − ess sup c = ‖c‖L∞(γ ).

Indeed

‖c‖L∞(γ ) = sup{c(x, y) : (x, y) ∈ spt γ }
= |(0, 0) − (1, 2)| = |(0, 0) − (2, 1)| = √

5,

for every γ ∈ �(μ, ν). Since every plan is optimal, when p is smaller, as shown in
the picture on the left, the role of the entropy is more important and the algorithm
selects the most diffuse plan. While increasing the value of p the entropy becomes
more and more negligible and output becomes sparser: already for p = 15 (on the
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Fig. 6 μ and ν uniformly
distributed both concentrated on
8 points. The value of v∞ is
about 1.38647347 and it is
obtained transporting mass
between the two points
connected by the magenta
segment (Color figure online)

right) the output is a good approximation of the∞-cyclically monotone plan, which in
this case is unique (see Theorem 5.6 in [6]). A small variation, represented by the two
figures in themiddle, is to consider ν which is not uniformly concentrated on the points
(1, 2) and (2, 1). Here we have taken ν = 0.1δ(1,2) +0.9δ(2,1). Finally, on the bottom,
we have implemented the case in which also ν is the discretization of an absolutely
continuous measure. Here μ approximates the square [−0.25, 0.25] × [−0.25, 0.25]
and ν the rectangle [1.25, 1.5] × [−0.5, 0.5] and both measures are supported on 100
points. As previously, one can notice that for p = 2 the entropy plays an important
role and the algorithm selects the most diffuse plan, while, already for p = 15 the
plan is considerably sparser.

We are now interested in the asymptotic behavior of vp := min�(μ,ν) Jp and we
want to numerically represent the upper and lower bounds on the speed of convergence
of vp towards v∞ := min�(μ,ν) J∞ proved in Propositions 5.1 and 5.3. In order to
apply Propositions 5.1 and 5.3 it is enough to assume a lower bound on v∞ and not a
pointwise one on c.

Figure5 provides an example of the asymptotic behavior of vp and of the speed of
convergence in the case of μ and ν as the ones represented in the two pictures on top
of Fig. 4. In light of what we have just remarked, we have re-scaled the cost c in order
to have v∞ � 1.08166. For p ∈ [10, 206] the image on top of Fig. 5 shows in blue
how vp changes varying p, while v∞ is constant and is represented by the orange line.
On bottom of Fig. 5 we have represented in blue vp − v∞, in green the upper bound
Be−β p and in orange the lower bound − A

p , where β = log(v∞) by Proposition 5.1
(indeed in this case c is Lipschitz so α = 1 > log(v∞)) and A, B have been estimated
by a linear regression method (by least squares).

Finally, an example in which it is possible (even if it is really slow!) to compute v∞
exactly (see Remark 6.1) is represented in Fig. 6. Here μ is concentrated on 8 points,
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Fig. 7 Comparison among the speed of convergence of vp − v∞, Be−β p and − A
p for p ∈ [10, 172] and

ε = 5002, μ and ν as the ones in Fig. 6. On top: vp in blue and v∞ in orange. On bottom: Be−β p in

green, − A
p in orange and vp − v∞ in blue. Here A, B are obtained by linear regression (least squares) and

β = log(v∞) (the same β as in Proposition 5.1) (Color figure online)

given by

{(x1, x2) : x1 = −0.25 + 0.125 · i, i = 1, . . . , 4, x2 ∈ {−0.1, 0.1}}

and ν is concentrated on 8 equidistant points of the segment starting from the point
(0.625, 1.25) to the point (1.25, 0) of the line y2 = −2y1 + 2.5. We have computed
v∞ for the cost c(x, y) = |x − y| applying Remark 6.1, and we have obtained that
v∞ � 1.38647347 and that the points which are at the minimal-maximal distance are
x∗ = (−0.25,−0.1) and y∗ = (0.98214286, 0.53571429), connected by the purple
segment in the picture. Regarding the speed of convergence we rescaled the cost in
order to decrease further v∞ � 1.052460609. As shown in Fig. 7, vp is calculated
varying p in the interval [10, 172], with ε = 5002. We observe that in this case, as
shown in the picture on top, vp is initially smaller than v∞, then it increases becoming
greater and finally it starts decreasing converging to v∞.
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