
Robotics and Autonomous Systems 166 (2023) 104449

D
I

t
i
h
a
i
r
o
b
t
s
m

r
i
I
h

U

a

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Informed expansion for informative path planning via online
distribution learning
Leonardo Zacchini ∗, Alessandro Ridolfi, Benedetto Allotta
epartment of Industrial Engineering (DIEF), University of Florence (UNIFI), via di Santa Marta, 3, Florence, 50139, Italy
nteruniversity Center of Integrated Systems for the Marine Environment (ISME), Genova, 16145, Italy

a r t i c l e i n f o

Article history:
Received 23 August 2022
Received in revised form 24November 2022
Accepted 8 May 2023
Available online 16 May 2023

Keywords:
Informative Path Planning
Informed expansion
Mobile robots
Autonomous Underwater Vehicles

a b s t r a c t

Mobile robots are essential tools for gathering knowledge of the environment and monitoring areas of
interest as well as industrial assets. Informative Path Planning methodologies have been successfully
applied making robots able to autonomously acquire information and explore unknown surroundings.
Rapidly-exploring Information Gathering approaches have been validated in real-world applications,
proving they are the way to go when aiming for Information Gathering tasks. In fact, RIG can plan paths
for robots with several degrees of freedom and rapidly explore complex workspaces by using the state-
of-the-art Voronoi-biased expansion. Nevertheless, it is an efficient solution when most of the area is
unknown but its effectiveness decreases as the exploration/gathering evolves. This paper introduces
an innovative informed expansion for IG tasks that combines the Kernel Density Estimation technique
and a rejection sampling algorithm. By learning online the distribution of the acquired information
(i.e., the discovered map), the proposed methodology generates samples in the unexplored regions of
the workspace, and thus steers the tree toward the most promising areas. Realistic simulations and
an experimental campaign, conducted in the underwater robotics domain, provide a proof-of-concept
validation for the developed informed expansion methodology and demonstrate that it enhances the
performance of the RIG algorithm.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction and background

In the last years, mobile robots have emerged as fundamental
ools for gathering knowledge of the environment, frequently
nspecting areas of interest, and performing complex tasks in
azardous scenarios, reducing the costs of monitoring campaigns
nd, most importantly, the risks for humans. In this context,
nnovative breakthrough solutions for pushing the boundaries of
obots autonomy have been developed. As the level of auton-
my grows, mobile robots are increasingly being used not only
y researchers but also by science users, industries, and non-
rained people in a wide variety of applications, ranging from
earch and rescue, industrial assets inspections, explorations and
onitoring [1–5].
Therefore, in all domains, i.e., ground [6], aerial [7], and ma-

ine [8,9], mobile robots are tasked to autonomously acquire
nformation about the environment. To tackle the challenging
G task, several Informative Path Planning (IPP) methodologies
ave been proposed in the last few years. Despite the different

∗ Corresponding author at: Department of Industrial Engineering (DIEF),
niversity of Florence (UNIFI), via di Santa Marta, 3, Florence, 50139, Italy.

E-mail addresses: leonardo.zacchini@unifi.it (L. Zacchini),
lessandro.ridolfi@unifi.it (A. Ridolfi).
ttps://doi.org/10.1016/j.robot.2023.104449
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
strategies employed, these solutions aim at planning safe and
feasible paths for the robot that permit the collection of as much
information as possible during the survey/inspection with a given
payload sensor. When operating in unknown or rapidly chang-
ing scenarios, IPP online solutions that do not rely on a priori
knowledge, consider the sensor measurements, and react to the
perceived environment shall be employed [2,10]. In particular,
in such conditions, IPP algorithms have to compute and update
optimal or sub-optimal inspection paths, according to a certain
cost/gain function, given the data available at each time step. The
planned paths must comply with the robot motion constraints.
Additionally, given the limited computational resources generally
available onboard on mobile robots and the constrained planning
time imposed by real-time applications, IPP algorithms should be
computationally efficient.

IPP solutions are generally classified as myopic, i.e., greedy
solutions that only evaluate the next robot pose, and non-myopic,
where the effects of more actions are predicted. Regarding the
former class, various candidates selection criteria could be uti-
lized [6,11,12]. Although they have shown remarkable results
[4,13], they require a greedy heuristic for deterministically
selecting the Next Best Viewpoint (NBV) that influences the
outcomes [14]. On the other hand, non-myopic solutions, by
predicting the effects of several possible actions, can provide
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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etter results than myopic counterparts and can escape from local
inima [15]. These latter class of algorithms can generally be cat-
gorized as: Evolutionary Algorithm (EA)-based [16,17], Graph-
ased [18,19] and Random tree-based [15,20]. Inspired by natural
volution processes, EAs have successfully been employed in var-
ous scenarios. Nevertheless, they either discretize the workspace
r need a fixed endpoint and have a high computational burden.
imilarly, Graph-based methods utilize a discretized environ-
ent, whose density has a huge impact on the achievable results.
ampling-based algorithms overcome the aforementioned draw-
acks. Inspired by the asymptotically optimal Rapidly-exploring
andom Tree (RRT*), Rapidly-exploring Random Graph (RRG), and
robabilistic RoadMap (PRM*), they can solve the informative
lanning problem using iterative sampling, outperforming other
pproaches [14]. Such algorithms, namely RIG [14], operate in
he continuous space, implement the motion constraints easily,
nd, thanks to the limited computational burden, can run onboard
n real-time on mobile robots without requiring dedicated hard-
are. Besides, IG solutions based on RRT algorithm, by efficiently
nd rapidly exploring the workspace, can find satisfying solutions
ven with a high dimensional environment and can deal with
obots with several degrees of freedom. Consequently, RRT-based
G methodologies emerged as the best approach for several real-
orld applications. Thus, this work’s focus has shifted to such a
lass of algorithms, and, for the sake of simplicity, the term RIG
ill be used to denote this category in the following.
In [2], the quadruped robot ANYmal autonomously mapped an

ndustrial structure by using an RIG algorithm for planning the
urvey. In the context of aerial robotics, Papachristos [21] and
ircher [7], just to mention a few, made use of an RIG strategy for
uiding Micro Aerial Vehicles (MAV) explorations of indoor areas.
imilarly, in [22], the task of simultaneously exploring and object
earching with MAVs was tackled. In detail, at each time step, an
RT was expanded and the utility function used to select the best
ath considered both the area exploration and the localization
f objects of interest, detected through a Convolutional Neural
etwork (CNN). Finally, the authors developed and tested an RIG-
ased inspection methodology for the underwater domain [9].
he solution was used to make an Autonomous Underwater Ve-
icle (AUV) able to autonomously inspect unknown underwater
reas and was validated with real experiments at sea.
Although different scenarios and applications were tackled,

he aforementioned works highlight that the RIG approaches can
e the way to go when aiming for autonomously exploring and
athering knowledge of the environment. They can be easily
pplied to different scenarios, plan feasible paths and consider
arious sensors. As stated above, these solutions were inspired
y the RRT algorithm, and its optimal version RRT⋆, initially
esigned for motion planning tasks [23]. Starting from the robot
ctual pose, a tree, whose nodes represent robot configurations,
s expanded by iteratively sampling new configurations in the
orkspace. Then, the closest node to the sampled configuration

s found. The tree is expanded by propagating the closest node
oward the newly sampled configuration according to the robot
otion constraints. Finally, the expected information that can be
cquired by the novel generated node is computed by using a sen-
or acquisition model and a utility function. The path composed
s a sequence of connected nodes, i.e., the tree branch, expected
o acquire more information, according to the utility function, is
elected as the best solution. The strategy is usually applied in a
eceding horizon manner by executing only the first node, i.e., the
BV.
Of paramount importance, is the ability of RRT-based algo-

ithms to explore rapidly and efficiently the workspace thanks
o the Voronoi-biased expansion strategy. When a new configu-

ation is sampled, a uniform distribution over the workspace is

2

employed, and by selecting the closest node for the expansion,
tree nodes that correspond to larger Voronoi regions are more
likely to be selected. As shown in [24], such a strategy ensures
that RRT-based algorithms well explore the workspace better
than a naive solution where nodes are randomly selected for the
expansion. Thus, the sampling policy of the expansion phase plays
a fundamental role in generating well-spawned nodes and finding
good solutions.

In IG applications, the limited computational resources gener-
ally available on mobile robots can make the information gain es-
timate the most computational burden part and the performance
bottleneck of the algorithm. Indeed, by spending a considerable
amount of time on information gain calculation, the tree expan-
sion within a given computational time slot, imposed by real-time
needs, is limited, largely affecting the performance of the RIG [25].

Consequently, three ideas could be pursued to enhance the
performance of these solutions. The first two are represented by
efficient algorithms that allow to keep and update already gener-
ated nodes and faster evaluation methodologies enabling the al-
gorithm to create more configurations. They can be achieved with
efficient and optimized implementations and/or by exploiting
information gain learning-based approximations. Alternatively,
informed expansion strategies that guide the tree toward the
most promising areas can be used. While some efforts have
already been made for the two former approaches, e.g., [15,26,27],
the latter is still an open point.

In the context of motion planning, several efforts have been
made to develop innovative strategies for sampling new con-
figurations to enhance the performance of RRT algorithms. For
instance, a common strategy for steering the tree toward the so-
lution is randomly considering the goal configuration as a sample.
Thus, a trade-off between the exploration of the workspace and
the rapidity of obtaining a solution to the task can be achieved.
Then, in [28], an informed expansion strategy was proposed. A
subset of states that can improve a solution was defined and used
to sample the new configurations, enhancing the performance of
the algorithm in finding the short paths.

Turning to IG applications, the tree exploration properties
are of utmost importance. Evaluating the information gain of
a configuration is time expensive, and considering the limited
computational time of real-world applications, it is crucial to
utilize the available resources for the most promising nodes. Thus,
generating well-spawned configurations is pivotal during the tree
expansion. Voronoi-based expansion, which has been utilized in
various works [7,9,21], by sampling using a uniform distribution,
is an efficient solution when most of the area is unknown, but it
loses its effectiveness as the exploration goes on since to generate
a branch that leads the robot to gather new information, more
nodes shall be generated [29].

To overcome this limitation, informed sampling methodolo-
gies have recently been investigated. Frontier points were ex-
ploited in the novel solution for 3D reconstructions proposed
in [25]. By exploiting surface frontiers points, complete and
accurate reconstructions were achieved. However, the method
required a connected surface and created a set of unconnected
configurations, needing a separate path-planner to guide the
robot to the NBV.

A sampling strategy to bias the exploration to the most in-
formative regions was proposed in [30,31]. In detail, the authors
proposed a sampling-based planning algorithm that allowed a
multi-robot target localization and tracking. The solution, tested
only in simulation, utilized a complex strategy and is based
on prior assumptions such as static landmarks. Besides, it re-
quires considerable efforts to make it applicable to real assets and
suitable for dealing with exploration tasks.

For what concerns the exploitation of online learning strate-

gies, interesting approaches have been investigated recently.
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n [32], Gaussian Processes (GPs) were used to predict the most
nformative areas for sampling. Then, in [33], extension of [34],
fast GP-based occupancy mapping solution was proposed. In
ddition, based on that representation, the authors developed
n algorithm for driving the robot toward the most promising
egion. Nevertheless, a selection criterion for greedy information
ain-based exploration was considered.
Finally, a similar approach to the one proposed in this paper

as introduced in [29]. To enhance the exploration performance
f IG algorithms, Schmid and colleagues introduced an inno-
ative learning methodology to a sampling-based exploration
aradigm. In detail, conditional variational autoencoders were
xploited to directly learn from a standard occupancy map an
nformed distribution, accounting for information gain, kinematic
easibility, collision avoidance, and dynamics-based motion cost.
evertheless, the complex methodology was designed only for
ocal planning purposes. Thus, the authors developed a two-stage
lobal–local planning approach, where for the former, a standard
lgorithm was implemented.

ontribution
In this paper, an intelligent tree expansion for IG is addressed.

he main contribution to the state of the art is represented by
novel-informed expansion that steers the tree toward unex-
lored areas. The here-introduced methodology learns online the
istribution of the acquired data (in the context of this research,
orresponds to discovered map), which is used to sample new
onfigurations in unexplored regions. It combines the KDE tech-
ique [35] for the learning stage and a rejection sampling algo-
ithm for biasing the RIG expansion. The KDE is a non-parametric
ethod to estimate, given a set of samples, the probability den-
ity function of a random variable using kernels as weights. It is
powerful solution that does not require a high computational
urden. It has found extensive use in statistics and machine
earning [36,37], but, to the best of the authors’ knowledge, its
xploitation in the context of IPP has yet to be deepened.
The developed approach allows using a single-stage planning

aradigm for exploration tasks that can run on compact robots
nd do not require additional assumptions. The solution is vali-
ated through both simulations and real experiments conducted
n the context of underwater robotics, the research field of the
uthors. It is worth emphasizing that the informed expansion
ethodology has general validity and can find applications in
arious robotics domains. In detail, the developed RIG algorithm
as utilized for making an AUV able to autonomously conduct
nderwater inspections in an unknown area with a Forward-
ooking Sonar (FLS). The performance of the RIG solution using
he novel informed expansion strategy is compared with the
tate-of-the-art RRT sampling policy based on a uniform distri-
ution. The comparisons demonstrate that the proposed strategy
nhances the performance of the RIG algorithm.
The remainder of the paper is organized as follows. Section 2

ntroduces the IG fundamental concepts and the notation used
n this work. Section 3 firstly presents the developed IG system
nd the RIG algorithm. Then, it describes the learning solution
or estimating the distribution of the discovered map, and details
he realized informed expansion. The proposed methodology is
alidated with realistic simulations reported in Section 4. The
olution was used to make a compact AUV able to autonomously
xplore an area of interest. In addition, the IG system was tested
n a real experimental campaign, detailed in Section 5. Finally,
ection 6 concludes the paper and discusses avenues for future

orks.

3

2. Information gathering planning preliminaries

In this section, the IG task is formulated and useful preliminary
concepts are introduced. Sampling-based IPP algorithms try to
compute the path P⋆ that allows the robot to maximize the in-
formation gathered G⋆P⋆ , which corresponds to solve the following
optimization problem:

max
P∈W

GP

s.t. P = {ξi}
ξi = f (ξi−1, ui−1)
ξ ∈ W ,

(1)

where a path P is of a sequence of robot configurations {ξi}, W
represents the workspace.

Regarding the robot motion model f , dynamic or kinematic
models could be employed. While kinematic models only use
geometric equations that relate the vehicle positions and veloci-
ties, dynamic models consider the force and torques that create
the motion. In the context of this work, to enable the use of a
rewiring strategy, which consists of a routine that checks whether
a new node could improve the cost of neighbor nodes (described
in detail in the following Section), a kinematic model has been
favored. In fact, a steering function, which returns the optimum
path between two states, is needed. When using dynamic motion
constraints, computing a steering function means addressing a
two-point Boundary Value Problem (BVP). That is, it corresponds
to solving a differential equation under certain boundary condi-
tions [38], which is generally a difficult problem. Therefore, in this
work, the Dubins vehicle model, which is of particular interest
in planning tasks since it can be used for both generating new
configurations and works as a steering function for the rewiring
routine, has been utilized. More details regarding the AUV motion
models can be found in the Appendix.

When operating in unknown environments, IPP strategies are
usually applied in a receding horizon fashion, meaning that the
maximization problem in Eq. (1) is solved, at each step, according
to the available data. Then, only the first move is performed, new
data are acquired, and the process is iteratively repeated. Gen-
erally speaking, the IG solution aims at computing and updating
online a path for the robot so that it can explore the workspace
W , initially assumed unknown.

To conduct autonomous exploration, in order to monitor the
IG process and safely navigate in unknown environments, robots
create a map of the environment that reflects its structure. Oc-
cupancy grid mapping paradigms, developed as a robust repre-
sentation of the surrounding, has shown remarkable results in
the last years in several robotic domains and applications. In the
context of this research, the mapping solution described in [9],
which makes use of the well-known Octomap framework [39],
was considered. According to the occupancy mapping theory, the
workspace is partitioned in 3D independent cells mi, so for the
map m holds m = {mi}. Each cell mi has a probability Po of being
occupied, whose value can determine the cell status, i.e., un-
mapped, free, or occupied. Thus, the goal of the IG methodology
can be considered as the problem of guiding the robot so that
each cell is classified as free or occupied.

Occupancy mapping paradigms allow to evaluate the informa-
tion gathered by a configuration through a ray casting routine.
By knowing the sensor Field of View (FoV) and range, the set
of rays Rr is determined. Each ray r ends when it reaches the
maximum sensor range, the limit of the map or it hits an occupied
voxel. Thus, the expected information obtainable from a robot
configuration ξ is computed as:

Iξ =
∑ ∑

I(x), (2)

∀r∈Rr ∀x∈Xr
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here I(x) denotes the Volumetric Information (VI) contained in a
oxel x, Xr represents the set set of voxels traversed by the ray r.
he information gain for a path P should consider all the voxels
P that can be mapped by following the path P; in a compact

notation:

GP =
∑
∀x∈XP

I(x). (3)

Regarding the VI formulation, occupancy mapping paradigms
allow considering the map uncertainty. In this research, an
entropy-based formulation was exploited:

I(x) = −Po(x) ln (Po(x))− P̄o(x) ln
(
P̄o(x)

)
, (4)

where P̄o(x) = 1 − Po(x). It is worth mentioning that, in such
formulation, unmapped voxels, which due to the non-informative
prior assumption of the mapping framework have an occupancy
probability of Po(x) = 0.5, match the highest VI value.

3. Informed information gathering planning

In this Section, the novel methodology for biasing the tree
expansion toward unexplored areas is introduced. Firstly, the
utilized framework for autonomous IG and the developed RIG
algorithm are presented. Then, the focus shifts on the innovative
informed expansion methodology to steer the tree toward the
promising areas. The realized strategy for learning the distri-
bution of the discovered map is based on the KDE technique.
New configurations can then be sampled according to the learned
distribution, biasing the tree expansion toward unexplored areas.

3.1. Receding-horizon information gathering framework

The developed receding-horizon IG system is detailed in this
section. The system block diagram is depicted in Fig. 1. The
Mission Manager monitors the robot status and supervises the
exploration/inspection survey. It requires to the IPP module to
compute the IG path P . To this end, the IPP module, by utiliz-
ing the RIG algorithm described in the next section, solves the
maximization problem of Eq. (1) by expanding from the robot
actual configuration a tree of possible views. Here, the proposed
informed expansion strategy comes into play. As described in
the following, the discovered map is used to train online the
KDE estimator. Then, the RIG algorithm utilizes the learned dis-
tribution to steer the tree toward the most promising areas by
generating as many nodes as possible, drawn with the informed
sampling policy, within the assigned computational time slot.
The expected information gain for each view, and so for each
path, is computed as reported in Section 2 through a ray casting
procedure on the map, built and updated by the Mapping sys-
tem utilizing the measurements of the payload sensor and the
estimated robot pose. Once the best IG path P has been found,
the first configuration that composes the path is selected as the
NBV. The robot navigates toward the NBV, and when it reaches
the designed configuration, the Mission Manager closes the loop
by triggering the IPP module again. The previously computed IG
path is used to initialize the new tree expansion, realizing the
receding-horizon manner. Finally, the Guidance, Navigation and
Control (GNC) module includes strategies and algorithms that the
robot uses to estimate its position and track the planned IG path.

3.2. RIG algorithm

The RRT-based IG algorithm used by the IPP module is detailed
in Algorithm 1. It takes as input the robot actual configuration ξt
and the best path computed at the previous call Pt−1 (if available).
A new tree containing ξ is created (line 4, Algorithm 1), and, if
t

4

Fig. 1. Block diagram of the IG system architecture. The arrows depict the data
workflow. The Mission Manager supervises the survey by monitoring the robot’s
pose and triggers the IPP module to plan the IG path, exploiting the map created
by the Mapping module. To this end, the robot estimated pose is used to update
the map with new measurements provided by the utilized sensor, represented
by the Payload Sensor block. Given the computed path P , the NBV is selected
as the first configuration and set as the goal configuration for the robot that
uses the guidance, navigation, and control algorithms (GNC block) to estimate
its pose and track the path.

the algorithm had already been activated, the remainder of the
previously computed path is evaluated on the updated map and
it is added to the tree (lines 6–8, Algorithm 1). Then, given the
computational maximum time, the algorithm expands the tree
(lines 10–21, Algorithm 1). The expansion consists of two phases:
a generation step, where a new node is created and added to the
tree, and then a rewiring step, where possible connections that
can maximize the information gathering are tested. The RIG algo-
rithm proposed in Algorithm 1 allows running the generation and
the rewiring procedures in parallel. At each step, it generates a
new node ξn and computes its visibility (i.e., the set of observable
voxels) (line 14, Algorithm 1), while it runs the rewiring routine
for finding the best connections for the node created at previous
iteration ξp (line 15, Algorithm 1). The here proposed algorithm,
in contrast to classic formulations [7,9,14], allows running the
two routines, i.e., generateNode() and rewireNode(ξ ), concur-
ently, reducing the time required for a step of the algorithm, and
hus increasing the number of nodes that can be generated within
he maximum computational time slot.

The former procedure is detailed in Function generateNode:
configuration ξs is sampled (line 4, Function generateNode),

and a new node is computed by expanding the closest tree
node ξn toward the direction of the sampled configuration (lines
5–6, Function generateNode). It is worth mentioning that the
sampling strategy is of utmost importance. RIG solutions usually
exploit a uniform distribution over the workspace that leads to a
Voronoi-biased expansion that guarantees that the tree explores
the workspace rapidly and efficiently (see [24]). In fact, nodes
corresponding to larger Voronoi regions are more likely to be se-
lected for the expansion. Finally, once the node pose ξnew has been
alculated, if the motion between ξn and ξnew is safe and feasible
(line 7, Function generateNode), its visibility can be evaluated
(line 8, Function generateNode). Due to the submodularity of IPP
objective functions [40], which arises from the spatial correlation
of the measurement locations (i.e., the tree nodes), to allow the
use of the rewiring routine, the function computeVisibility(ξ )
computes the set of visible voxels, which depends only on the
robot pose.

Regarding the rewiring routine, it is summarized in Func-
tion rewireNode. Briefly, given a node ξ , the set of the nearest
neighbors is retrieved (line 5, Function rewireNode). Then, the
rewiring strategy firstly looks for the node parent that max-
imizes the gain (lines 6–15, Function rewireNode), and then,
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valuates whether the new node could improve the expected
ain of other paths, corresponding to tree branches (lines 16–26,
unction rewireNode).
To this end, once a node has been associated to a path its

ain is computed by considering the voxels already seen along
he path (function computeGain(·, ·) in Function rewireNode):

Pξ = GPeλϕ (∆ψ(ξ0,ξ))eλd( distance (ξ0,ξ)), (5)

here GP is calculated according to Eq. (3), λϕ ∈ R and λd ∈ R
re penalization factors for curvy and long paths, respectively.
The RIG algorithm ends selecting the most promising path Pt ,

nd the first node becomes the NBV ξt+1 (lines 22–23, Algorithm
).

Algorithm 1 RIG algorithm

1: INPUT:Robot configuration ξt , Previous best path Pt−1
2: OUTPUT: Next best configuration ξt+1
3: ITERATION:
4: Initialize a new tree T with ξ0 = ξt
5: Initialize ξp = Null
6: if Pt−1! = Null then
7: addPath(T , Pt−1)
8: updatePathGain(Pt−1)
9: end if

10: while time < timemax do
11: if ξp = Null then
12: ξn ← generateNode()
13: else
14: ξn ← generateNode()
15: rewireNode(ξp)
16: end if
17: if nodeIsValid(ξp) then
18: addNode(T , ξp)
19: end if
20: ξp ← ξn
21: end while
22: Pt ← getBestPath(T )
23: ξt+1 ← getNBV(Pt )
24: DeleteT
25: RETURN: ξt+1

Function generateNode(·)
1: INPUT:
2: OUTPUT: New configuration ξnew
3: FUNCTION:

4: ξs ← sampleNewConfiguration()
5: ξn ← getNearest(T , ξs)
6: ξnew ← randomPropagation(ξs, ξn)
7: if ( isMotionValid(ξnew , ξn)) then
8: computeVisibility(ξnew)
9: setNodeValidity(ξnew, True)

10: return ξnew
11: else
12: generateNode()
13: end if

3.3. KDE for learning the discovered map distribution

In the context of motion planning, solutions for improving the
lanning results (shorter paths in less computational time) based
n defining the sampling set of most promising configurations
or achieving an informed tree expansion have been proposed,
s in [28] among the others. However, in the motion planning
ask, the endpoint is established and its knowledge is of utmost
mportance. Consequently, such solutions cannot be extended
5

Function rewireNode(ξ )
1: INPUT: ξ
2: OUTPUT:
3: FUNCTION:

4: gb ← getGain(ξ )
5: Vp ← getNeighbors(T , ξ )
6: for all ξp ∈ Vp do
7: if (isMotionValid( ξp, ξ )) then
8: g ← computeGain(ξp, ξ )
9: if isGainBetterThan(g , gb) then

10: setParent(ξ, ξp)
11: setGain(ξ, g)
12: gb ← g
13: end if
14: end if
15: end for
16: for all ξc ∈ Vp do
17: if ( isMotionValid(ξ , ξc)) then
18: gc ← getGain(ξc)
19: g ← computeGain(ξ, ξc)
20: if isGainBetterThan(g , gc) then
21: setParent(ξc, ξ )
22: setGain(ξc, g)
23: updateChildrenGain(ξc)
24: end if
25: end if
26: end for
27: return

to the challenging IG task, where the robot must decide where
to go to explore the scenario (maximize the knowledge of the
environment).

In this research work, a novel RIG expansion strategy aware
of the already acquired data is proposed. The solution is based
on learning online the density function of the discovered map
and utilizing this knowledge to guide the tree expansion toward
the most promising areas. The learning stage makes use of the
KDE technique, a non-parametric method to estimate the proba-
bility density function of independent and identically distributed
samples, that has found broad use in statistics and machine
learning.

In particular, let (s1, s2, . . . , sn) be independent and identically
istributed samples drawn from some distribution with an un-
nown density function f at any given point s. The KDE estimator
llows to estimate the value of f (s) as:

h(s) =
1
n

n∑
i=1

Kh (s− si) =
1
nh

n∑
i=1

K
(
s− si
h

)
, (6)

where K is the kernel, which in the context of this research a
Gaussian Kernel was considered, and h is the bandwidth, a tuning
parameter.

The KDE technique is a simple yet powerful method that can
be exploited for various purposes. It does not require a high
computational burden or long training time. Thus, it can be run
online even on mobile robots with limited hardware capabilities.

As far as this work is concerned, as discussed above, the KDE
technique is used to learn the distribution of the discovered
map. In detail, considering an occupancy mapping paradigm, by
utilizing as samples the instantiated map cells {mi}

n
i=1, i.e. the

discovered map, the value of density function of a point p ∈ R3

can be estimated:

fh(p) =
1
nh

n∑
K

(
p− pmi

h

)
. (7)
i=1
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here pmi ∈ R3 denotes the position of the cell mi, and K is a
Gaussian Kernel.

Consequently, thanks to Eq. (7), the robot can estimate the
density function of the discovered map. In particular, the higher
the value of f̂h(p), the closer the point p is to an already explored
area. As detailed in the next section, Eq. (7) is used with a re-
jection sampling algorithm to generate samples in non-explored
regions.

3.4. Informed tree expansion toward unexplored regions

The proposed KDE technique for learning the distribution of
the map provides the opportunity to develop an informed map-
aware tree expansion strategy that is more likely to find paths
that steer the robot toward non-explored regions than by using
the standard Voronoi approach.

A sampling strategy shall be designed. Given a distribution,
samples are typically drawn by using different techniques so
that they are distributed accordingly. As this work is concerned,
the goal is to generate samples that do not belong to the given
distribution. In particular, since Eq. (7) estimates the distribution
of the discovered map, a sampling policy that aims at generating
observations in the non-explored regions is required.

To this end, the estimated probability density function given
by Eq. (7) was employed for implementing a rejection sampling
algorithm [41]. The rejection sampling algorithm is a basic sam-
pling approach that allows drawing random numbers from var-
ious distributions. It was used since Eq. (7) only estimates f̂h(p),
nd an explicit form of f is not available, and thus, approaches
uch as the inverse transform sampling cannot be exploited.
The developed map-aware sampling procedure utilizes a sim-

le workflow, reported in Function kdeSampling. It samples a
onfiguration ξs with a uniform distribution over the workspace
denoted as U(W)), and a value u ∈ U[0,max{̂fh(mi)}

nd
i=1], where

(mi)}
nd
i=1 denote the map discovered cells and U denotes the

uniform distribution. Then, f̂h(ξs) is evaluated, and if u > f̂h(ξs),
hich means that the configuration ξs does not belong to the
istribution f , i.e., it is in an unexplored region, the configuration
ξs is accepted, otherwise it is rejected and process is repeated
ntil a good candidate is found.

Function kdeSampling(̂fh)

1: INPUT: Learned map distribution f̂h
2: OUTPUT: Configuration ξ
3: FUNCTION:

4: Initialize ξ = Null
5: while ξs = Null do
6: ξs ∼ U(W)
7: u ∼ U[0,max{̂fh(mi)}

nd
i=1]

8: if u > f̂h(ξs) then
9: ξ ← ξs

10: end if
11: end while
12: return ξ

This algorithm allows the robot, which has learned the dis-
ribution of the discovered map, to sample configurations in
he most promising areas for gathering knowledge of the en-
ironment. Such configurations can be used to steer the RIG
xpansion.
To this end, the function sampleNewConfiguration() (line 4,

Function generateNode), which in IG applications usually exploits
only a uniform distribution, has been modified as follows. At
each call, the function samples a value p ∼ U[0, 1]. Then,
s

6

f ps is smaller than a pre-defined threshold ts ∈ [0, 1], ξs is
generated using the KDE-based methodology so that it biases
the tree toward the unknown region. Otherwise, it is randomly
sampled with a uniform distribution over the workspace. For
the sake of clarity, the procedure is summarized in Function
informedSampling.

Finally, by replacing the function sampleNewConfiguration
ith informedSampling, the RIG informed expansion is realized.
It is worth highlighting that the threshold ts allows modifying

he behavior of the expansion procedure. While small values pro-
ote the use of the standard uniform distribution, which leads to

he Voronoi-bias and thus a rapid exploration of the workspace,
ith a threshold close to 1, the here proposed informed expan-
ion is more likely to be used, and the tree is steered toward
he most promising areas. By selecting intermediate values, a
rade-off between the two behavior can be achieved.

Function informedSampling(̂fh)

1: INPUT: Learned map distribution f̂h
2: OUTPUT: Configuration ξ
3: FUNCTION:

4: ps ∼ U[0, 1]
5: if ps < ts then
6: ξ ← kdeSampling (̂fh)
7: else
8: ξ ∼ U(W)
9: end if

10: return ξ

4. Validation

To demonstrate the proposed informed tree expansion
methodology it has been applied to the underwater domain, the
main research field of the authors, with the aim of providing a
proof-of-concept field implementation. The IG planning system
was used to make a compact AUV able to autonomously explore
an area of interest. In detail, the task of inspecting the sea bottom
with an FLS guaranteeing to cover adequate portions of the area
was addressed.

Regarding the FLS-based mapping solution, a detailed descrip-
tion of the system exploited in this work can be found in [9].
Briefly, the mapping solution is based on the Octomap framework
and allows to create a reconstruction of the seabed from FLS
images.

Firstly, the KDE-based strategy for learning the map distri-
bution and sampling configurations in unexplored regions was
validated. Seabed reconstructions with a resolution of 0.5 m were
simulated. Three examples are depicted on the left side of Fig. 2.
A visualization of the estimated map distributions by means of
the KDE technique is reported in the middle column. Regarding
the utilized KDE estimator, the mlpack library was used [42].
In detail, a Gaussian kernel was employed, and the bandwidth
was set to 0.5, corresponding to the map resolution. Finally, the
histogram of 5k samples generated by using the above-described
rejection sampling algorithm (Function kdeSampling) is reported
on the right side of Fig. 2. The histograms show that the proposed
methodology can sample new configurations in areas where the
robot has not gathered data yet, and thus can be used to steer the
RIG algorithm.

Then, the IG system described Section 3 was validated with re-
alistic simulations performed through the Unmanned Underwater
Vehicle Simulator (UUV Simulator) [43]. The simulation setup is
as follows. A dynamic model of FeelHippo AUV, the robot utilized
for the experimental campaign and described in the next section,
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i

Fig. 2. On the left side, the occupancy map of the simulated seabeds, whose distributions were estimated with the KDE approach (middle column). On the right
side, the histogram of 5k samples drawn in the unexplored region.
was implemented and the BlueView M900 2D FLS, mounted on
the vehicle, was simulated. For the sake of completeness, the
sensor has a horizontal FoV 130◦ and a vertical FoV of 20◦, and
t is mounted in front of the vehicle with a tilt angle of 30◦ w.r.t.
7

the horizontal plane. The range was set to 10 m. To make the
simulations as realistic as possible, the AUV was tasked to inspect
an area of 36 × 34 m, as the one utilized for the experimental
campaign. Besides, underwater seabed inspections are usually



L. Zacchini, A. Ridolfi and B. Allotta Robotics and Autonomous Systems 166 (2023) 104449

c
m
2
i
t

u
w
c

1
N
i
e

s
p
c
r
p
t
r
t
e
i
b
t
t
m

t
o
a
p
a
l
t
o
u
s
F
a
s
i
t

a
d
i
t
t
w
(
b

r
a
r
a
a

a
t

onducted with the vehicle flying at a constant altitude, here 2
eters from the seabed. Thus, a robot pose is described by the
D position and the heading angle, i.e., ξ = (x, y, ψ). Further
nformation about the robot motion models can be found in
he Appendix.

For what concerns the RIG algorithm, it was implemented
sing the Open Motion Planning Library (OMPL) [44] in C++ and
as integrated with the FeelHippo AUV software. The maximum
omputing time for the algorithm was set to 2 s.
The simulation study was performed on a laptop fitted with

6 GB RAM, an Intel Core i7-8750H processor (CPU), and an
vidia GeForce GTX 1050 Ti card (GPU). It is worth highlight-
ng that the developed planning methodology was executed by
xploiting only the CPU.
Regarding the computing time slot, it has been empirically

elected. The planning time is a trade-off between the pro-
osed framework’s performance and the online computation
onstraints. Increasing the computational time allows the algo-
ithm to expand the tree more, i.e., creating and evaluating more
ossible inspection paths. On the other hand, when selecting
he computational time for real-world applications, to avoid the
obot stopping waiting for a new path to be computed, which in
he context of marine robotics leads to an unnecessary waste of
nergy, the computational time shall be constrained. Finally, it
s worth noting that the proposed learning stage was performed
efore the planning routine and was fast enough not to decrease
he number of nodes generated in the tree. Thus, the computing
ime slot is almost entirely utilized for creating and evaluating as
any nodes as possible.
This setup allowed to provide a proof-of-concept validation of

he informed RIG expansion. Fig. 3 highlights the effectiveness
f the developed learning-sampling methodology. On the top, is
snap of one of the performed surveys using the informed ex-
ansion strategy. In detail, the green lines delimit the inspection
rea. The gray voxels depict the discovered sea bottom, the yellow
ines represent the generated tree, and the blue line highlights
he selected best path. On the left-bottom side, a representation
f the discovered map distribution learned online by the robot
sing the KDE technique. Such a distribution is employed by the
ampling algorithm to generate samples in unexplored regions.
or the sake of clarity, the histogram of 1k samples generated
ccordingly is reported on the right-bottom side. The learning-
ampling method was used to generate the RIG tree, reported
n yellow on the top side of the image, which is clearly steered
oward the most promising areas.

Turning to quantitative analysis, three configurations of the
lgorithm were tested. The Voronoi-based expansion (the stan-
ard RRT strategy) was compared with the hereby proposed
nformed expansion that utilizes the KDE methodology for es-
imating the discovered map. In addition, a balanced solution
hat makes use of both the Voronoi and the informed expansions
as investigated. With regard to the informed sampling strategy
Function informedSampling), such configurations are achieved
y considering the thresholds ts = 0, ts = 1, and ts = 0.5,

respectively.
Being the IG system fully probabilistic, for each algorithm

configuration, denoted as RIG - Voronoi (ts = 0), RIG - Informed
(ts = 1), and RIG - Balanced(ts = 0.5), 10 simulations with
andom starting AUV positions and orientation were performed,
nd the performance was evaluated in terms of the path length
equired to achieved the 80%, 90%, and 95% of coverage of the
rea. The mean values of the 10 runs were considered. The results
re summarized in Table 1.
Thanks to the developed IG system, the AUV managed to

utonomously acquire the data over the area of interest. None of

he runs failed and the 95% of coverage was achieved.

8

Table 1
Simulation outcomes.
(a) Results for 80% of coverage

Method Coverage level 80%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 85.69 12.88
RIG - Informed 79.63 10.23
RIG - Balanced 75.15 11.99

(b) Results for 90% of coverage

Method Coverage level 90%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 116.98 21.04
RIG - Informed 99.18 10.68
RIG - Balanced 100.34 7.67

(c) Results for 95% of coverage

Method Coverage level 95%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 140.00 26.93
RIG - Informed 120.71 20.31
RIG - Balanced 118.54 12.58

The proposed informed expansion enhances the performance
of the RIG algorithm. The considered coverage levels are achieved
with shorter paths when the KDE methodology is used for gen-
erating the samples for expanding the tree toward unexplored
regions than exploiting the state-of-the-art Voronoi bias.

Table 1 shows that the best solution is using a balanced
expansion strategy. That is, the planning algorithm has an equal
probability (50-50 chance) of using either the Voronoi-biased
or the Informed expansion at each iteration. Thus, a trade-off
between the exploration of the workspace and a guided expan-
sion toward the goal, i.e., unexplored regions, is exploited. Using
only the here proposed KDE-based methodology for sampling
new configuration improves the performance compared to the
Voronoi bias. However, only focusing on the expansion toward
new areas prevents the tree from exploring the space. Thus, it
limits the IG algorithm performance.

In fact, as shown in Table 1, the Balanced and Informed
strategies showed similar performance, better than the standard
Voronoi approach, in covering the 80% and 90% of the area of
interest. The mean length is significantly decreased. The RIG -
Informed achieved a reduction of about 6 m and 16 m (7% and
13.7% of the total mean path length) than the RIG - Voronoi for
covering the 80% and 90% of the area, respectively. The RIG -
Informed showed the best results. It reduced the path length of
about 10 m and 16 m, 11.7% and 13.7% of the mean path length.

The higher the target coverage level, the more the RIG ben-
efits from the developed Informed expansion solution. In fact,
when the 95% of coverage is demanded, which is the most chal-
lenging task, the KDE-based sampling strategy leads to a mean
path length reduction of about 20 m (15% of the total mean
path length, see Table 1) with respect to the state-of-the-art
Voronoi strategy, proving the advantages of the proposed expan-
sion methodology.

For the sake of completeness, for each algorithm configuration,
an example of the tree expansion is reported. In detail, Fig. 4 re-
ports the use of the Voronoi-biased expansion, while Fig. 5 shows
the effect of the proposed Informed strategy. Finally, Fig. 6 depicts
the balanced approach and highlights its impact. This latter so-
lution combines the benefits of the aforementioned strategies. It
drives the tree toward the unexplored regions while maintain-
ing a fast exploration of the workspace. These images help to
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Fig. 3. The proposed learning-sampling methodology utilized to develop an informed expansion. On the top, a snap collected during one of the survey depicting the
inspection area (delimited by the green lines) and the discovered map, reported in gray. The map distribution learned online by the robot with the KDE strategy
is shown on the left-bottom side. On the right, the histogram of 1k samples generated in the non-explored area thanks to the learning-sampling methodology is
reported. The RIG informed expansion is realized by means of this learning-sampling, which allows to steer the tree (shown in yellow) toward most promising
regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
represent and analyze the effect of the presented solutions. As
discussed above, by using a uniform distribution for generating
new samples, the Voronoi-biased expansion (Fig. 4) ensures that
the tree rapidly covers the area of interest. However, it does not
consider the already discovered map, and since it could generate
non-informative branches, it could lead to longer paths. In fact,
as shown in Fig. 4, generated inspection tree (in yellow) is well-
distributed over the area of interest, but it has various branches
over the already discovered map that do not allow the robot to
acquire any information. On the other hand, the here proposed
informed expansion methodology can overcome this limitation.
As depicted in Fig. 5, it steers the tree toward new areas, focusing
the RIG algorithm on looking in the most promising areas. Nev-
9

ertheless, by using only the informed strategy, the RIG algorithm
generates greedy paths that do not explore the workspace and
head only toward unexplored regions. The Balanced configuration
takes advantage of two strategies. Fig. 6 highlights its effects
and helps understand the achieved results. It allows the tree to
explore rapidly and efficiently the workspace and simultaneously
generate samples in the most informative areas, enhancing the
performance of the RIG algorithm. Fig. 6 depicts this behavior: the
generated tree, shown in yellow, is well-distributed over the area
of interest, and the branches are steered toward the unexplored
regions. It is worth noting that this does not hold for the state-of-
the-art Voronoi-based expansion, where various branches of the
tree end on non-informative regions, see Fig. 4.
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Fig. 4. Examples of the generated inspection tree (in yellow) by using the
Voronoi-bias during the expansion. Each yellow point represents an AUV
configuration. The green lines delimit the inspection area, while the blue one
depicts the selected inspection path, i.e., the best branch. The Voronoi bias
ensures that the tree rapidly explores the workspace. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. The tree expansion when only the KDE-based Informed strategy is
exploited. The tree is biased through non-explored regions.

Fig. 6. Four snapshots depicting the tree generated using the balanced expan-
sion approach. By randomly exploiting both the Voronoi and the Informed bias,
it enhanced the performance of conducted autonomous coverage surveys.
10
Table 2
FeelHippo AUV main features.
Weight [kg] 35
Dimensions [mm] 600 × 640 × 500
Controlled DOFs 5
Thrusters 6
Maximum depth [m] 35
Maximum longitudinal speed [m/s] 1
Battery life [h] 4

5. Experimental results

An experimental campaign for testing and validating the pro-
posed IG system and the informed RIG algorithm was conducted
in July 2021 at the Naval Support and Experimentation Center
(Centro di Supporto e Sperimentazione Navale - CSSN) basin in
La Spezia, Italy. The robot utilized for sea trials was FeelHippo
AUV [45], a compact and lightweight vehicle developed by the
Department of Industrial Engineering of the University of Flo-
rence (UNIFI DIEF), Italy. FeelHippo AUV main characteristics are
summarized in Table 2, while a hardware overview is reported in
Fig. 7. In detail, it is equipped with the following suite of sensors:

• 7th Generation Intel i7 U-series Processor (2.60 GHz) (main
computer);
• NVIDIA Jetson Nano (payload computer);
• U-blox 7P precision Global Navigation Satellite System (GNSS
• Orientus Advanced Navigation Attitude and Heading Refer-

ence System (AHRS);
• KVH DSP 1760 single-axis high precision Fiber Optic Gyro-

scope (FOG);
• Nortek DVL1000 Doppler Velocity Log (DVL), measuring lin-

ear velocity and acting as Depth Sensor (DS);
• EvoLogics S2CR 18/34 acoustic modem;
• Teledyne BlueView M900 2D FLS.

The main computer (Intel processor), was used to run on-
line the IG planning system and KDE-based learning technique,
implemented in C++ using the OMPL and the mlpack libraries.
Regarding the GNC strategies utilized by FeelHippo AUV, depicted
during the conducted experimental campaign in Fig. 8, the inter-
est reader can find detailed information in [46–48]. Briefly, for
clarity, in the context of this research work, the AUV localization
relied on the following navigation strategy. The non-linear ob-
server proposed in [47] was used to compute the vehicle attitude
exploiting IMU and FOG data. Then, the attitude estimate was
used with DVL measurements in a dead reckoning fashion to
calculate the AUV position, initialized with GNSS measurements
when the vehicle was on the sea surface. As shown in [46,47,
49], this strategy can achieve accurate AUV localization by using
high-grade sensors.

Since conducting experimental sea trials is challenging, and
time and cost expansive, two configurations of the view planning
algorithm were tested during the experimental campaign. The
RIG - Balanced, that fuses the Voronoi-bias with the developed
informed strategy and emerged as the best solution during the
validation process, was compared with the RIG - Voronoi that uti-
lizes the state-of-the-art Voronoi-based expansion. The algorithm
maximum computing time was 2 s.

Thus, 5 coverage surveys of an area of 36 × 34 m for each
onfiguration were conducted. The surveys were performed au-
onomously by FeelHippo AUV utilizing the BlueView M900 2D
LS, which was mounted in front of the vehicle with a tilt angle
f 30◦ w.r.t. the horizontal plane and whose range was set to
0 m. As for the simulations, the surveys were evaluated in terms
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Fig. 7. FeelHippo AUV hardware overview.

Fig. 8. FeelHippo AUV during the conducted experimental campaign, au-
tonomously performing an underwater survey thanks to the developed IG
system.

of path length required to achieved the 80%, 90%, and 95% of
coverage of the area, Table 3 reports the mean value as well as
the standard deviation of the 5 trials.

Firstly, it is worth highlighting that by using the proposed
IG strategy, the AUV monitors the acquired data and can ensure
to gather information over the area of interest without knowing
the scenario in advance, avoiding expensive repeated attempts.
Besides, a skilled operator to design the AUV mission is not
required: the robot actively considers as feedbacks the measure-
ments of the payload sensor and decides the best actions to
fulfill the task. Thus, an AUV exploiting the developed IG system
simplifies the data gathering process and could be an excellent
solution for science users and non-trained people for exploring
the environment.

Being fully probabilistic, the results can vary. As expected from
the simulations, the RIG - Balanced outperformed the state-of-the-
rt RIG - Voronoi in all the benchmarks, see Table 3. By mixing
he uniform distribution and the map-aware sampling policy,
he balanced configuration guides the expansion of the tree to-
ard unexplored regions while guaranteeing it well-explores the
orkspace. In fact, thanks to the proposed KDE-based method-
logy, the vehicle learns where to sample new configurations
n the most promising areas and enhances the RIG algorithm
erformance. The RIG - Balanced reached a mean path length
eduction of 18.38 m, 31.80 m, and 18.40 m (21.5%, 25.7%, and

2.7% of the total mean path length) for the 80%, 90%, and 95% of

11
Table 3
Experimental results.
(a) Results for 80% of coverage

Method Coverage level 80%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 85.49 5.91
RIG - Balanced 67.12 11.58

(b) Results for 90% of coverage

Method Coverage level 90%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 123.56 21.63
RIG - Balanced 91.76 14.84

(c) Results for 95% of coverage

Method Coverage level 95%

Path length Path length
mean [m] standard deviation [m]

RIG - Voronoi 145.08 5.93
RIG - Balanced 126.68 11.00

coverage, respectively. These results are in accordance with the
validation experiments reported in Table 1. The more the area
is covered, the more challenging the task, and the more the RIG
benefits from the proposed expansion methodology.

It is worth highlighting that the proposed informed expansion
strategy, based on learning the discovered map distribution, was
run online on the main computer mounted on FeelHippo AUV. It
does not require dedicated hardware and can be used even on
compact and lightweight robots.

In conclusion, the conducted experimental campaign demon-
strates, through several trials, the effectiveness of the novel in-
formed expansion methodology that can be easily implemented
and used on a real system acting in unknown environments.

6. Conclusions and future trends

This paper proposes an informed tree expansion for IG tasks.
While in the context of motion planning several solutions that
define the regions for sampling the most promising configura-
tions and steering the tree toward the goal have been developed
in the last years, a goal-oriented RIG expansion has not been
investigated yet. In this work, for the first time to the best of
the author’s knowledge, a novel informed expansion strategy that
steers the tree toward unexplored areas by learning online the
distribution of the discovered map is proposed.

In particular, the KDE technique, which has found a large
use in statistics and machine learning, is exploited in the learn-
ing stage to estimate the distribution density function of the
acquired data, which, in the context of this work, is the dis-
covered occupancy map. The estimated density function is com-
bined with a rejection sampling algorithm, allowing to draw
new samples in the unexplored regions of the workspace. The
learning-sampling methodology realizes an informed expansion:
by biasing the expansion with the configurations sampled with
the proposed strategy the tree is steered toward the most promis-
ing regions where new information can be gathered. That is,
the robot learns where to sample the configurations for guiding
the RIG algorithm, improving the performance, i.e., reducing the
traveled path for exploring the workspace.

A proof-of-concept validation was provided with realistic sim-
ulations as well as an experimental campaign, conducted in the
context of underwater robotics, the research field of the authors.
The developed RIG algorithm was utilized for making an AUV able
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o autonomously conduct underwater inspections in an unknown
rea with an FLS. The performance of the RIG solution using the
ovel informed expansion strategy is compared with the state-
f-the-art RRT sampling policy based on a uniform distribution,
hich leads to a Voronoi-biased expansion.
Simulations as well as real experimental results, collected

uring sea trials carried out in July 2021 at the CSSN basin in
a Spezia, Italy, demonstrate that the proposed strategy enhances
he performance of the developed RIG algorithm. In particular, the
esults highlight that the state-of-the-art Vornoi-based expansion
as outperformed by the informed approach. However, mixing
he two strategies emerged as the best configuration. In fact,
sing both the uniform distribution and the map-aware sampling
olicy offers a good trade-off between a goal-guided expansion
nd the exploration of the workspace.
The developed informed expansion strategy paves the way

o several future trends. Firstly, the here proposed methodology
ould be applied to different domains and scenarios. In fact, it
ould improve the exploration capabilities of aerial and ground
obots in various applications. Then, the integration of the in-
ormed expansion strategy with an object detection solution for
xploration and simultaneous object search tasks could be inves-
igated. Besides, the learning strategy for estimating the distribu-
ion of the discovered map can be utilized for a fast information
ain evaluation procedure [50] or developing a collision checking
outine for validating the safety of planned paths.
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ppendix. AUV motion modeling for planning

Generally, the pose of an AUV in 3D is expressed by means of
ix variables, and its motion can be expressed through kinematic
nd dynamic models. According to [51], by considering the AUV
s a rigid body, the AUV pose with respect to the North-East-
own (NED) frame (⟨N⟩) is expressed with η =

[
Nη⊤1 η⊤2

]⊤
∈ R6,

here Nη1 ∈ R3 indicates the position of the vehicle with respect
to the NED frame and η2 ∈ R3 its orientation. The AUV linear and
ngular velocities with respect to the body reference frame (⟨b⟩)

are represented with bν =
[
bν⊤1

bν⊤2
]⊤, where bν⊤1 = [u v w],

denotes the linear velocities and bν⊤2 = [p q r] are the angular
counterparts along the axes of the body frame, namely surge,
sway, and heave. Thus, the vehicle kinematic model is expressed
as:(

Ṅη1

)
=

[
J1

(
η2

)
03×3( )](

bν1
b

)
, (8)
η̇2 03×3 J2 η2 ν2

12
where
J1

(
η2

)
=

NRN
b = Rz(ψ)Ry(θ )Rx(φ)

=

⎡⎣cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφcψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ sφcθ cφcθ

⎤⎦ , (9)

and

J2
(
η2

)
=

⎡⎢⎣1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ

cφ
cθ

⎤⎥⎦ . (10)

In a compact notation, Eq. (8) can be expressed as:

˙ = J(η)ν, (11)

here

(η) =

[
J1

(
η2

)
03×3

03×3 J2
(
η2

)] . (12)

In several applications, AUVs usually conduct surveys at con-
tant depth or altitude. Vehicles such as FeelHippo AUV have
he roll and pitch dynamics hydrostatically stable, and given
hat the missions considered in this work do not excite these
egrees of freedom, the AUV navigates with roll and pitch angles
lmost zero with negligible variations. Additionally, to reduce
nergy consumption, FeelHippo AUV usually moves about the
urge axis and only rotates about the heave axis, i.e., it only
hanges its orientation. As a consequence of these statements, the
inematic motion on a horizontal plane of FeelHippo AUV can be
epresented as a simple car-like vehicle:
ẋ
ẏ
ψ̇

⎤⎦ =
⎡⎣u cos(ψ)
u sin(ψ)

r

⎤⎦ . (13)

While kinematic models only use geometric equations that re-
late the vehicle positions and velocities, dynamic models consider
the force and torques that create the motion. As a consequence,
this latter class of models describes the AUV motion constraints
more accurately. Further information about these models can
be found in [51]. As far as this work is concerned, since the
IPP problem was tackled, only the kinematic model was con-
sidered. In fact, to allow the use of a rewiring strategy, which
consists of a routine that checks whether a new node could
improve the cost of neighbor nodes, a steering function, which
returns the optimum path between two states, is needed. When
using motion constraints, computing a steering function means
addressing a two-point BVP. That is, it corresponds to solving
a differential equation under certain boundary conditions [38],
which is generally a difficult problem.

Describing the AUV motion with kinematic model of Eq. (13),
the configuration space (C) is C = SE(2), i.e., a configuration ξ ∈
SE(2). Assuming that the vehicle navigates with a constant surge
speed u, and by considering that it has a maximum turning rate
rmax, which defines a minimum turning radius Rmin, the AUV kine-
matic motion can be described with the Dubins vehicle model.
In particular, by using this model, the shortest path between two
configurations consists of circular arcs of maximum curvature and
straight line segments. Thus, the shortest path can be obtained
by combining three possible maneuvers: straight (S), right turn
(R), and left turn (L). Thus, the shortest path will always be at
least one of the six combinations: RSR, RSL, LSR, LSL, RLR, LRL.
The Dubins vehicle model is of particular interest in planning
tasks since it can be used for both generating new configurations,
which in RRT-based solutions corresponds to expanding the tree,
and works as a steering function for the rewiring routine.

In conclusion, as a consequence of these considerations, the

robot motion was modeled by using the Dubins vehicle model.
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