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Abstract

A comprehensive analysis of Sobolev-type inequalities for the Ornstein-Uhlenbeck operator in the Gauss 
space is offered. A unified approach is proposed, providing one with criteria for their validity in the class of 
rearrangement-invariant function norms. Optimal target and domain norms in the relevant inequalities are 
characterized via a reduction principle to one-dimensional inequalities for a Calderón type integral operator 
patterned on the Gaussian isoperimetric function. Consequently, the best possible norms in a variety of spe-
cific families of spaces, including Lebesgue, Lorentz, Lorentz-Zygmund, Orlicz and Marcinkiewicz spaces, 
are detected. The reduction principle hinges on a preliminary discussion of the existence and uniqueness 
of generalized solutions to equations, in the Gauss space, for the Ornstein-Uhlenbeck operator, with a just 
integrable right-hand side. A decisive role is also played by a pointwise estimate, in rearrangement form, 
for these solutions.
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1. Introduction

The present paper deals with norm estimates for functions in the Gauss space in terms of the 
Ornstein-Uhlenbeck operator. Norms depending on global integrability properties of functions, 
namely rearrangement-invariant function norms, are considered.

Specifically, we are concerned with inequalities of Sobolev type of the form

‖u − m(u)‖Y(Rn,γn) ≤ c‖Lu‖X(Rn,γn) (1.1)

for some constant c and for all functions u : Rn → R such that Lu ∈ X(Rn, γn). Here, (Rn, γn)

denotes the Gauss space, namely the space Rn equipped with the Gauss measure γn obeying

dγn(x) = 1

(2π)
n
2
e− |x|2

2 dx for x ∈ Rn, (1.2)

and L stands for the Ornstein-Uhlenbeck operator, formally defined as

Lu = �u − x · ∇u, (1.3)

where � and ∇ are the classical Laplace and gradient operator. Moreover, X(Rn, γn) and 
Y(Rn, γn) are rearrangement-invariant spaces, and m(u) stands for either the mean value or the 
median of u over (Rn, γn).

Being the infinitesimal generator of the Ornstein-Uhlenbeck semigroup in the Gauss space 
is one of the reasons that makes the operator L of primary importance in the Gaussian setting. 
It, therefore, plays a role parallel to that of the Laplace operator—the infinitesimal generator of 
the heat kernel—in the Euclidean space. The Ornstein-Uhlenbeck operator enters various fields 
and has hence been extensively investigated in the literature. For an introduction to its theory, we 
refer to the monograph by Urbina-Romero [42], the lecture notes by Lunardi et al. [26], and the 
survey papers by Sjögren [37] and Bogachev [8].

Inequalities of the form (1.1) can be regarded as Gaussian analogues of Sobolev inequalities 
for the Laplacian in the Euclidean framework. Gaussian Sobolev inequalities typically differ 
from their Euclidean counterparts because of the behavior of the density of the Gauss measure 
near infinity. This feature also shapes inequalities for the Ornstein-Uhlenbeck operator. A general 
trait of the latter inequalities is that the improvement of the degree of integrability for a function 
u guaranteed from that of Lu in the space (Rn, γn) is considerably lesser than that entailed by 
�u in domains of finite Lebesgue measure in Rn. For instance, no inequality of the form (1.1)
holds with Y(Rn, γn) = L∞(Rn, γn), whatever X(Rn, γn) is. By contrast, unlike the Euclidean 
inequalities, constants in the Gaussian inequalities are dimension-free. This accounts for their 
use in questions of probability theory, where the dimension n is usually sent to infinity, and for 
the derivation of Sobolev-type inequalities in infinite dimensional spaces – see e.g. the classical 
papers [21,33,36,43].

The analysis of Sobolev inequalities in the Gauss space was pioneered by Gross in the paper 
[24], where a sharp first-order inequality for the L2(Rn, γn) norm of the gradient was established. 
A vast amount of literature on Gaussian Sobolev-type inequalities has flourished over the years 
on the wake of Gross’ work. A very limited sample of contributions on this topic includes [1,2,
6,7,10,11,15,17,18,21,22,31,34,36]. In particular, inequalities involving the Ornstein-Uhlenbeck 
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operator are derived in [5,19,41]. The latter papers deal, in fact, with even more general second-
order elliptic operators but focus on a different class of functions, which are defined in open 
subsets � �Rn and vanish on ∂�.

Our purpose is to offer a unified approach in detecting the optimal spaces X(Rn, γn) and 
Y(Rn, γn) in inequalities of the form (1.1). More precisely, we are aimed at characterizing the 
optimal (smallest possible) target space Y(Rn, γn) in inequality (1.1) associated with a given 
domain space X(Rn, γn), and, conversely, the optimal (largest possible) domain space X(Rn, γn)

associated with a given target space Y(Rn, γn), within certain classes of rearrangement-invariant 
spaces. One main result of this paper provides us with necessary and sufficient conditions for the 
existence of these optimal spaces in the class of all rearrangement-invariant spaces and exhibits 
an expression of their norms.

A critical step in our method is a reduction principle on the equivalence of any inequality of 
the form (1.1) to a one-dimensional inequality for a Calderón type operator modeled upon the 
isoperimetric function of the Gauss space. This principle also enables us to determine optimal 
targets and domains in inequalities for special families of rearrangement-invariant spaces, such 
as Orlicz spaces, Lorentz-Zygmund spaces, Marcinkiewicz spaces.

The point of departure for the reduction principle is, in turn, a pointwise inequality for the 
decreasing rearrangement of a function u in terms of that of Lu. Inequalities of this kind for 
the Laplacian in Euclidean domains are a special case of a classical result of Talenti [40]. They 
rest upon differential inequalities on level sets of functions and on the Euclidean isoperimetric 
inequality, which were also earlier used by Maz’ya [28,29] in the proof of estimates for solu-
tions to boundary value problems for classes of elliptic equations in even more general contexts. 
Inequalities in the same vein for solutions to Dirichlet problems, with homogeneous boundary 
conditions, for Lu (and more general differential operators whose ellipticity is governed by the 
Gaussian density) on subsets of the Gauss space are studied in [5], and are also reproduced 
in [27].

Although the proof of the rearrangement estimate to be exploited here follows along the same 
lines as those of the contributions mentioned above, some technical issues arise. They are due to 
the fact that functions u defined on the entire space Rn are considered and, especially, that Lu is 
assumed to belong to an arbitrary rearrangement-invariant space, and hence can possibly suffer 
from very weak integrability properties. This calls for an extension of the Ornstein-Uhlenbeck 
operator L beyond its natural domain via a definition patterned on those introduced in the theory 
of elliptic partial differential equations on Euclidean domains, with merely integrable right-hand 
sides. With this regard, an additional result of independent interest will be presented concerning 
the existence and uniqueness (up to additive constants) of a generalized solution u to the equation

Lu = f in (Rn, γn), (1.4)

for every f ∈ L1(Rn, γn). Under this assumption on f , an optimal regularity estimate for u and 
∇u in Marcinkiewicz-type spaces is also offered.

Our discussion begins with equation (1.4). The existence and uniqueness of the solution, and 
a fundamental rearrangement estimate, are addressed in Section 3, after recalling the necessary 
background on the functional setting in Section 2. Section 4 contains the reduction principle and 
the characterization of the optimal target and domain in inequality (1.1) in the class of all rear-
rangement-invariant spaces. The rest of the paper is devoted to identifying such optimal spaces in 
customary and less conventional families of rearrangement-invariant spaces. Specifically, Orlicz 
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spaces are considered in Section 5, Lorentz and Lorenz-Zygmund spaces are the subjects of 
Section 6, and Marcinkiewicz type spaces are the content of the final Section 7.

2. Function spaces

Measure spaces Let (R, ν) be a σ -finite non-atomic measure space. We denote by M(R, ν) the 
set of all ν-measurable functions on R taking their values in [−∞, ∞]. Moreover, we denote by 
M+(R, ν) the subset of all nonnegative functions in M(R, ν) and by M0(R, ν) the collection 
of all functions in M(R, ν) which are finite almost everywhere on R. If R is an interval with 
endpoints a, b ∈ [−∞, ∞], a < b, and ν is the one-dimensional Lebesgue measure, then we 
simply write M(a, b), M+(a, b) and M0(a, b). Furthermore, the Lebesgue measure of a set 
E ⊂ Rn will be denoted by |E|.

Rearrangements The decreasing rearrangement of a function φ ∈ M(R, ν) is the function 
φ∗ : (0, ν(R)) → [0, ∞] defined as

φ∗(s) = inf
{
t ∈ R : ν ({x ∈R : |φ(x)| > t}) ≤ s

}
for s ∈ (0, ν(R)). (2.1)

The signed decreasing rearrangement φ◦ : (0, ν(R)) → [−∞, ∞] of φ ∈ M(R, ν) is defined as

φ◦(s) = inf
{
t ∈ R : ν({x ∈ R : φ(x) > t}) ≤ s

}
for s ∈ (0, ν(R)). (2.2)

A basic property of the decreasing-rearrangement is the Hardy-Littlewood inequality, which 
tells us that

ν(R)∫
0

φ∗(s)ψ∗(ν(R) − s
)

ds ≤
∫
R

|φ(x)ψ(x)|dν(x) ≤
ν(R)∫
0

φ∗(s)ψ∗(s)ds (2.3)

for every φ, ψ ∈ M(R, ν), provided that ν(R) < ∞. The maximal non-increasing rearrange-
ment of φ is the function φ∗∗ : (0, ν(R)) → [0, ∞], defined by

φ∗∗(s) = 1

s

s∫
0

φ∗(r)dr for s ∈ (0, ν(R)).

The function φ∗∗ is non-increasing, and one clearly has φ∗ ≤ φ∗∗ on (0, ν(R)). The operation 
φ �→ φ∗∗ is subadditive in the sense that

s∫
0

(φ + ψ)∗(r)dr ≤
s∫

0

φ∗(r)dr +
s∫

0

ψ∗(r)dr for s ∈ (0, ν(R)) (2.4)

for every φ, ψ ∈ M+(R, ν). On the other hand, the operation φ �→ φ∗ is not subadditive. Still, 
one has that

(φ + ψ)∗(s) ≤ φ∗(s/2) + ψ∗(s/2) for s ∈ (0, ν(R)) (2.5)
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for every φ, ψ ∈ M+(R, ν). The functions φ, ψ ∈ M(R, ν) will be called equimeasurable if 
φ∗ = ψ∗ on (0, ν(R)).

Some central results in theory of rearrangements are consequences of Hardy’s lemma, which 
states that, given L ∈ (0, ∞], if the functions g1, g2 ∈ M+(0, L) are such that

s∫
0

g1(r)dr ≤
s∫

0

g2(r)dr for s ∈ (0,L),

then

L∫
0

g1(r)h(r)dr ≤
L∫

0

g2(r)h(r)dr

for every nonincreasing function h : (0, L) → (0, ∞).

Mean values and medians Assume that ν(R) < ∞. The mean value of a function φ ∈ L1(R, ν)

is given by

mv(φ) = 1

ν(R)

∫
R

φ(x)dν(x) = 1

ν(R)

ν(R)∫
0

φ◦(s)ds. (2.6)

Also, for φ ∈M(R, ν), we define its median by

med(φ) = φ◦( ν(R)
2

)
. (2.7)

The following lemma provides us with a link between ν-a.e. convergence of a sequence of func-
tions and pointwise convergence of their signed rearrangement.

Lemma 2.1. Assume that the sequence {φk} ⊂ M(R, ν) and the function φ ∈ M(R, ν) are such 
that φk → φ ν-a.e. in R. Then

φ◦(s) ≤ lim inf
k→∞ φ◦

k (s) ≤ lim sup
k→∞

φ◦
k (s) ≤ φ◦(s−) for every s ∈ (0, ν(R)). (2.8)

Here, the notation φ◦(s−) stands for the limit of φ◦ at s from the left.
In particular, if φ◦ is continuous at ν(R)/2, then

lim
k→∞ med(φk) = med(φ). (2.9)

Proof. The proof of the first inequality in (2.8) is analogous to that for the decreasing rearrange-
ment φ∗ given in [4, Chapter 2, Proposition 1.7]. We may thus limit ourselves to proving the last 
inequality. By our assumptions, there exists a set N ⊂ R such that ν(N) = 0 and

lim
k→∞ supφl(x) ≤ φ(x) for x ∈ R \ N. (2.10)
l≥k
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Given t ∈ R, we define the sets

E(t) = {x ∈R \ N : φ(x) > t} and Ek(t) = {x ∈R \ N : φk(x) > t}

for k ∈ N . Fix ε > 0. Inequality (2.10) implies that, if x ∈ E(t − ε)c \ N , then there exists k ∈ N
such that x ∈ El(t)

c for all l ≥ k, namely

E(t − ε)c ⊂
∞⋃

k=1

∞⋂
l=k

El(t)
c or equivalently E(t − ε) ⊃

∞⋂
k=1

∞⋃
l=k

El(t).

Here, the suffix “c” stands for complement in R. Therefore,

ν
(
E(t − ε)

) ≥ ν

( ∞⋂
k=1

∞⋃
l=k

El(t)

)
= lim

k→∞ν

( ∞⋃
l=k

El(t)

)
≥ lim

k→∞ sup
l≥k

ν
(
El(t)

)
. (2.11)

Define the functions μ : R → [0, ∞) as μ(t) = ν(E(t)) and μk : (0, ∞) → [0, ∞) as μk(t) =
ν(Ek(t)) for k ∈ N . Inequality (2.11) reads μ(t − ε) ≥ lim supk→∞ μk(t). Hence, on passing to 
the limit as ε → 0+ one deduces that

μ(t−) ≥ lim sup
k→∞

μk(t). (2.12)

On the other hand, a property analogous to that established in [4, Chapter 2, Proposition 1.7] for 
φ∗ ensures that

μ(t) ≤ lim inf
k→∞ μk(t). (2.13)

Since the function μ is non-increasing, combining inequalities (2.12) and (2.13) implies that 
μk → μ ν-a.e. in R. Since

φ◦(s) = |{t ∈R : μ(t) > s}|,

the last inequality in (2.8) follows from an analogue of (2.12), with μ and μk replaced by φ and 
φk respectively, and the measure ν by the Lebesgue measure.

Finally, equation (2.9) follows from an application of equation (2.8) with s = ν(R)/2. �
Function norms and rearrangement-invariant spaces Let L ∈ (0, ∞]. A function norm is 
defined as a functional ‖ · ‖X(0,L) : M+(0, L) → [0, ∞] satisfying, for all g, h and {gk} ⊂
M+(0,L), and every λ∈ [0,∞):

(P1) ‖g‖X(0,1) = 0 if and only if g = 0 a.e.,
‖λg‖X(0,1) = λ‖g‖X(0,1),
‖g + h‖X(0,1) ≤ ‖g‖X(0,1) + ‖h‖X(0,1);

(P2) If g ≤ h a.e., then ‖g‖X(0,L) ≤ ‖h‖X(0,L);
(P3) If gk ↑ g a.e., then ‖gk‖X(0,L) ↑ ‖g‖X(0,L);
(P4) ‖χE‖X(0,L) < ∞ for every measurable set E ⊂ [0, L] of finite measure;
419
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(P5) There exists a constant c such that 
∫
E

g(s) ds ≤ c‖g‖X(0,L) for every g ∈ M+(0, L) and 
every measurable set E ⊂ (0, L) of finite measure.

If, in addition,

(P6) ‖g‖X(0,L) = ‖h‖X(0,L) whenever g∗ = h∗,

then we say that ‖ · ‖X(0,1) is a rearrangement-invariant function norm.
The associate function norm ‖ · ‖X′(0,L) of a function norm ‖ · ‖X(0,L) is defined by

‖g‖X′(0,L) = sup

{ L∫
0

g(s)h(s)ds : h ∈ M+(0,L), ‖h‖X(0,L) ≤ 1

}
(2.14)

for g ∈ M+(0, L). Note that

‖ · ‖(X′)′(0,L) = ‖ · ‖X(0,L). (2.15)

The rearrangement-invariant space X(R, ν) built upon the function norm ‖ ·‖X(0,ν(R)) is defined 
as the collection of all functions φ ∈M(R, ν) such that the quantity ‖φ‖X(R,ν), given by

‖φ‖X(R,ν) = ‖φ∗‖X(0,ν(R)), (2.16)

is finite. The space X(R, ν) is a Banach space, endowed with the norm given by (2.16). The 
space X(0, ν(R)) is called the representation space of X(R, ν).

We shall also employ the notation

X⊥(R, ν) = {
u ∈ X(R, ν) : mv(u) = 0

}
. (2.17)

The associate space X′(R, ν) of a rearrangement-invariant space X(R, ν) is the rearrangement-
invariant space defined via the function norm ‖ · ‖X′(0,ν(R)). The generalized Hölder inequality∫

R

|φ(x)ψ(x)|dν(x) ≤ ‖φ‖X(R,ν)‖ψ‖X′(R,ν) (2.18)

holds for every φ and ψ in M(R, ν). The fundamental function ϕX : [0, ν(R)) → [0, ∞) of a 
rearrangement-invariant space X(R, ν) is defined as

ϕX(t) = ‖χE‖X(R,ν) for t ∈ [0, ν(R)), (2.19)

where E is any subset of R such that ν(E) = t . One has that

ϕX(t)ϕX′(t) = t for t ∈ [0, ν(R)), (2.20)

for every rearrangement-invariant space X(R, ν).
The following lemma extends [31, Lemma 2.1] to arbitrary rearrangement-invariant spaces.
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Lemma 2.2. Let X(R, ν) be any rearrangement-invariant space on a finite measure space 
(R, ν). Then

1
2‖φ − mv(φ)‖X(R,ν) ≤ ‖φ − med(φ)‖X(R,ν) ≤ 3‖φ − mv(φ)‖X(R,ν) (2.21)

for every function φ ∈ X(R, ν).

Proof. Set L = ν(R). Owing to the Hölder inequality (2.18),

|mv(φ) − med(φ)| ≤ 1

L

∫
R

|φ − med(φ)|dν ≤ ϕX′(L)

L
‖φ − med(φ)‖X(R,ν) (2.22)

for φ ∈ X(R, ν). From this inequality and equation (2.20) we deduce that

‖φ − mv(φ)‖X(R,ν) ≤ ‖φ − med(φ)‖X(R,ν) + ‖med(φ) − mv(φ)‖X(R,ν)

≤ ‖φ − med(φ)‖X(R,ν) + ϕX(L)|mv(φ) − med(φ)|

≤ ‖φ − med(φ)‖X(R,ν) + ϕX(L)ϕX′(L)

L
‖φ − med(φ)‖X(R,ν)

= 2‖φ − med(φ)‖X(R,ν),

(2.23)

namely the first inequality in (2.21). As for the second one, we may assume, or replacing φ by 
−φ, if necessary, that med(φ) ≥ mv(φ). Let E = {|φ − mv(φ)| ≥ med(φ) − mv(φ)} and observe 
that

‖φ − mv(φ)‖X(R,ν) ≥ ‖(φ − mv(φ))χE‖X(R,ν) ≥ (med(φ) − mv(φ))‖χE‖X(R,ν) (2.24)

and

‖χE‖X(R,ν) = ϕX(|E|) = |E|
ϕX′(|E|) ≥ |E|

ϕX′(L)
. (2.25)

Since

L

2
≤ |{φ ≥ med(φ)}| ≤ |E|, (2.26)

inequalities (2.24) and (2.25) imply that

med(φ) − mv(φ) ≤ 2
ϕX′(L)

L
‖φ − mv(φ)‖X(R,ν). (2.27)

Hence,
421
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‖φ − med(φ)‖X(R,ν) ≤ ‖φ − mv(φ)‖X(R,ν) + ‖mv(φ) − med(φ)‖X(R,ν)

= ‖φ − mv(φ)‖X(R,ν) + (med(φ) − mv(φ))ϕX(L)

≤ ‖φ − mv(φ)‖X(R,ν) + 2
ϕX(L)ϕX′(L)

L
‖φ − mv(φ)‖X(R,ν)

= 3‖φ − mv(φ)‖X(R,ν).

(2.28)

The second inequality in (2.21) is thus also established. �
Embeddings and boundedness of operators Let X(R, ν) and Y(R, ν) be rearrangement-invari-
ant spaces. We write X(R, ν) → Y(R, ν) to denote that X(R, ν) is continuously embedded into 
Y(R, ν), in the sense that there exists a constant c such that ‖φ‖Y(R,ν) ≤ c‖φ‖X(R,ν) for every 
φ ∈ M(R, ν). Note that the embedding X(R, ν) → Y(R, ν) holds if and only if there exists a 
constant c such that ‖g‖Y(0,ν(R)) ≤ c‖g‖X(0,ν(R)) for every g ∈ M+(0, ν(R)). A property of 
function norms ensures that

X(R, ν) ⊂ Y(R, ν) if and only if X(R, ν) → Y(R, ν).

Let L ∈ (0, ∞]. We say that an operator T is bounded from a rearrangement-invariant space 
X(0, L) into a rearrangement-invariant space Y(0, L), and we write

T : X(0,L) → Y(0,L), (2.29)

if T maps functions from M+(0, L) into functions from M+(0, L), and its norm, defined by

‖T ‖ = sup
{‖T g‖Y(0,L) : g ∈ X(0,L) ∩M+(0,L), ‖g‖X(0,L) ≤ 1

}
,

is finite.
The space Y(0, L) will be called the optimal target space in (2.29), within a certain class of 

rearrangement-invariant spaces if, whenever Z(0, L) is another rearrangement-invariant space 
from the same class such that T : X(0, L) → Z(0, L), then Y(0, L) → Z(0, L). Analogously, 
the optimal domain space X(0, L) in (2.29) within the relevant class obeys Z(0, L) → X(0, L)

whenever T : Z(0, L) → Y(0, L).
Assume that the operators T and T ′, acting from M+(0, L) into M+(0, L), are such that

L∫
0

T g(s)h(s)ds =
L∫

0

g(s)T ′h(s)ds (2.30)

for every g, h ∈ M+(0, L). We then call the operator T ′ adjoint to T . A simple argument in-
volving Fubini’s theorem and the definition of the associate norm shows that

T : X(0,L) → Y(0,L) if and only if T ′ : Y ′(0,L) → X′(0,L) (2.31)

and ‖T ‖ = ‖T ′‖.
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Lorentz–Zygmund spaces A pivotal class of examples of rearrangement-invariant function 
norms is constituted by the Lebesgue norms. The Lebesgue functional ‖ · ‖Lp(0,L), defined as 
usual for p ∈ (0, ∞], is a rearrangement-invariant function norm if and only if p ∈ [1, ∞].

If L < ∞, then a generalization of the Lebesgue functionals is provided by the Lorentz–
Zygmund functionals ‖ · ‖Lp,q;α,β(0,L) : M+(0, L) → [0, ∞] and ‖ · ‖L(p,q;α,β)(0,L) : M+(0, L) →
[0, ∞], defined by

‖g‖Lp,q;α,β (0,L) = ∥∥s
1
p

− 1
q �(s/L)α��(s/L)βg∗(s)

∥∥
Lq(0,L)

and

‖g‖L(p,q;α,β)(0,L) = ∥∥s
1
p

− 1
q �(s/L)α��(s/L)βg∗∗(s)

∥∥
Lq(0,L)

for g ∈ M+(0, L), respectively. Here, p, q ∈ (0, ∞], α, β ∈ R and

�(s) = 1 + log
1

s
, ��(s) = 1 + log

(
1 + log

1

s

)
for s ∈ (0,1).

For finite measure spaces (R, ν), the corresponding Lorentz–Zygmund spaces Lp,q;α,β(R, ν)

and L(p,q;α,β)(R, ν) are (equivalent to) the rearrangement-invariant spaces built upon the func-
tion norms ‖ · ‖Lp,q;α,β (0,ν(R)) and ‖ · ‖L(p,q;α,β)(0,ν(R)), respectively, if and only if one of the 
following conditions holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 < p < ∞, 1 ≤ q ≤ ∞, α ∈ R, β ∈ R

p = 1, q = 1, α > 0, β ∈R

p = 1, q = 1, α = 0, β > 0

p = ∞, 1 ≤ q ≤ ∞, α + 1
q

< 0, β ∈ R

p = ∞, 1 ≤ q ≤ ∞, α + 1
q

= 0, β + 1
q

< 0

p = ∞, q = ∞, α = 0, β = 0

in case of Lp,q;α,β(R, ν), and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 < p < ∞, 1 ≤ q ≤ ∞, α ∈ R, β ∈ R

p = ∞, 1 ≤ q ≤ ∞, α + 1
q

< 0, β ∈ R

p = ∞, 1 ≤ q ≤ ∞, α + 1
q

= 0, β + 1
q

< 0

p = ∞, q = ∞, α = 0, β = 0

in case of L(p,q;α,β)(R, ν). We shall also write Lp,q(logL)qα(log logL)qβ(R, ν) instead of 
Lp,q;α,β(R, ν), and Lp,q(logL)qα(R, ν) instead of Lp,q;α,0(R, ν).
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Orlicz spaces A generalization of the Lebesgue spaces in a different direction is that of the 
Orlicz spaces. They are generated by the so-called Luxemburg functionals, whose definition, 
in turn, rests upon that of Young function. A Young function A : [0, ∞) → [0, ∞] is a con-
vex, left-continuous function such that A(0) = 0 and A is not constant in (0, ∞). The function 
Ã : [0, ∞) → [0, ∞] denotes the Young conjugate of A, and is defined as

Ã(t) = sup{τ t − A(τ) : τ ≥ 0} for t ≥ 0.

The latter is also a Young function and its conjugate is A again. One has that

t ≤ A−1(t) Ã−1(t) ≤ 2t for t ≥ 0, (2.32)

where A−1 denotes the generalized right-continuous inverse of A. The function B , defined as 
B(t) = cA(bt), where b, c are positive constants, is also a Young function and

B̃(t) = cÃ
(

t
bc

)
for t ≥ 0. (2.33)

A Young function A is said to satisfy the �2-condition near infinity if it is finite-valued and there 
exist constants c > 0 and t0 > 0 such that

A(2t) ≤ cA(t) for t ≥ t0.

Moreover, A fulfills the ∇2-condition near infinity if there exist constants c > 2 and t0 > 0 such 
that

A(2t) ≥ cA(t) for t ≥ t0.

These conditions are said to be satisfied globally if they hold with t0 = 0.
A Young function A is said to dominate another Young function B near infinity if there exist 

constants c > 0 and t0 > 0 such that

B(t) ≤ A(ct) for t ≥ t0.

The function A dominates B globally if t0 = 0. The functions A and B are called equivalent near 
infinity [globally] if they dominate each other near infinity [globally].

Given L ∈ (0, ∞] and a Young function A, the Luxemburg functional ‖ · ‖LA(0,L) :
M+(0, L) → [0, ∞] is defined by

‖g‖LA(0,L) = inf

{
λ > 0 :

L∫
0

A

(
g(s)

λ

)
ds ≤ 1

}

for g ∈ M+(0, L). The corresponding Orlicz space LA(R, ν) is built on the function norm 
‖ · ‖LA(0,ν(R)).

When ν(R) < ∞, the alternate notation A(L)(R, ν) will also be employed when convenient 
to denote an Orlicz space associated with a Young function which agrees with A near infinity.
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Also, if φ ∈ LA(R, ν) and E ⊂ R is a measurable set, then we often use the abridged notation

‖φ‖LA(E,ν) = ‖φχE‖LA(R,ν).

For Young functions A and B , the embedding LA(R, ν) → LB(R, ν) holds if and only if 
either ν(R) < ∞ and A dominates B near infinity, or ν(R) = ∞ and A dominates B globally. 
One has that LA(R, ν) = LB(R, ν) up to equivalent norms if and only if either ν(R) < ∞ and 
A and B are equivalent near infinity, or ν(R) = ∞ and A and B are equivalent globally.

One has that

LA(R, ν)′ = LÃ(R, ν)

up to equivalent norms.
We will also need certain weak and strong versions of Orlicz spaces. These will be defined 

in the next paragraph as particular cases of more general families of rearrangement-invariant 
spaces.

Endpoint spaces Let L ∈ (0, ∞]. A function ϕ : [0, L] → [0, ∞) will be called quasiconcave 
if it is non-decreasing, vanishes only at 0, and the function ϕ, defined by

ϕ(s) = s

ϕ(s)
for s ∈ (0,L] (2.34)

and ϕ(0) = 0, is non-increasing on [0, L]. The Lorentz functional ‖ · ‖�ϕ(0,L) : M+(0, L) →
[0, ∞] is defined as

‖g‖�ϕ(0,L) =
L∫

0

g∗(s)dϕ(s)

for g ∈ M+(0, L). The Lorentz endpoint space �ϕ(R, ν) is built on the Lorentz functional 
‖ · ‖�ϕ(0,ν(R)). The Marcinkiewicz functional ‖ · ‖Mϕ(0,L) : M+(0, L) → [0, ∞] is defined by

‖g‖Mϕ(0,L) = sup
s∈(0,L)

ϕ(s)g∗∗(s)

for g ∈ M+(0, L), and the corresponding Marcinkiewicz space is defined through the
Marcinkiewicz functional ‖ · ‖Mϕ(0,ν(R)). A variant of the Marcinkiewicz functional is denoted 
by ‖ · ‖mϕ(0,L), and is obtained on replacing g∗∗ with g∗ in its definition. Namely,

‖g‖mϕ(0,L) = sup
s∈(0,L)

ϕ(s)g∗(s)

for g ∈ M+(0, L). Notice that ‖ · ‖mϕ(0,L) need not be a rearrangement-invariant function norm 
in general. It is however a quasi-norm, in the sense that it satisfies the triangle inequality up to a 
multiplicative constant. The space mϕ(R, ν) will be called the weak type space associated with 
ϕ. We point out that the Lorentz-Zygmund spaces Lp,∞;α,β(R, ν) defined above are weak type 
spaces according to this definition.
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Let us recall that

�ϕ(R, ν)′ = Mϕ(R, ν) and Mϕ(R, ν)′ = �ϕ(R, ν), (2.35)

see e.g. [25, Chapter 5, Section 2]. For every quasiconcave function ϕ, one has

‖χE‖�ϕ(R,ν) = ϕ(s) and ‖χE‖Mϕ(R,ν) = ϕ(s) whenever ν(E) = s ∈ [0, ν(R)].
Thus,

ϕ�ϕ(R,ν) = ϕMϕ(R,ν) = ϕ.

Moreover, if X(R, ν) is a rearrangement-invariant space such that ϕX = ϕ, then

�ϕ(R, ν) → X(R, ν) → Mϕ(R, ν). (2.36)

If A is a Young function, then the function ϕA : (0, ∞) → [0, ∞), defined as

ϕA(s) = 1

A−1( 1
s
)

for s > 0,

is concave, and hence quasiconcave. The weak Orlicz space MA(R, ν) is defined as MϕA
(R, ν)

and the strong Orlicz space �A(R, ν) is defined as �ϕA
(R, ν). Owing to equations (2.35)

and (2.32), one has that

(�A)′(R, ν) = MÃ(R, ν) and (MA)′(R, ν) = �Ã(R, ν), (2.37)

up to equivalent norms. The expressions “weak Orlicz space” and “strong Orlicz spaces” are 
adopted consistently with the embeddings

�A(R, ν) → LA(R, ν) → MA(R, ν), (2.38)

which hold for every Young function A and every measure space (R, ν). Notice that these em-
beddings can actually be strict.

3. Extended domain of the Ornstein-Uhlenbeck operator and key estimates

The Sobolev space W 1,2(Rn, γn) is defined as

W 1,2(Rn, γn) = {
u ∈ L2(Rn, γn) : u is weakly differentiable and |∇u| ∈ L2(Rn, γn)

}
.

Similarly,

W 2,2(Rn, γn)=
{
u∈L2(Rn, γn) : u is twice weakly differentiable and |∇u|, |∇2u|∈L2(Rn, γn)

}
.

The operator L is defined on a function u ∈ W 2,2(Rn, γn) via equation (1.3). One has that 
L : W 2,2(Rn, γn) → L2(Rn, γn). Moreover,
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∫
Rn

∇u · ∇v dγn = −
∫
Rn

vLudγn (3.1)

for every v ∈ W 1,2(Rn, γn), see e.g. [26, Theorem 13.1.3].
Equation (3.1) enables one to extend the operator L, and to define L : WLL2(Rn, γn) →

L2(Rn, γn), where WLL2(Rn, γn) consists of all functions u ∈ W 1,2(Rn, γn) such that there 
exists a function f ∈ L2⊥(Rn, γn) fulfilling∫

Rn

∇u · ∇v dγn = −
∫
Rn

v f dγn (3.2)

for every v ∈ W 1,2(Rn, γn). We then set Lu = f for u ∈ WLL2(Rn, γn).
The operator L can further be extended to the domain D(L), which consist of all func-

tions u ∈ L1(Rn, γn) such that there exists f ∈ L1⊥(Rn, γn) and a sequence of functions 
{uk} ⊂ WLL2(Rn, γn) fulfilling

uk → u a.e. in Rn (3.3)

and

Luk → f in L1(Rn, γn). (3.4)

We then set

Lu = f

for u ∈ D(L). Moreover, given a function space X(Rn, γn), we define

WLX(Rn, γn) = {u ∈ D(L) : Lu ∈ X(Rn, γn)}. (3.5)

Our first result, stated in Theorem 3.1, ensures that the operator

L : D(L)/c → L1⊥(Rn, γn) (3.6)

is bijective, where D(L)/c denotes the quotient space where two functions in D(L) which differ 
by a constant are identified. Theorem 3.1 also provides us with information on the regularity of 
functions in D(L). Their regularity is suitably formulated in terms of membership in spaces of 
functions whose truncations are Sobolev functions, and in weak type spaces.

Given any t > 0, denote by Tt : R →R the function given by

Tt (τ ) =
{

τ if |τ | ≤ t

t sgn(τ ) if |τ | > t.
(3.7)

We set

T 1,2(Rn, γn) = {
u ∈M(Rn, γn) : Tt (u) ∈ W 1,2(Rn, γn) for every t > 0

}
. (3.8)
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If u ∈ T 1,2(Rn, γn), there exists a (unique) measurable function Zu : Rn → Rn such that

∇(
Tt (u)

) = χ{|u|<t}Zu a.e. in Rn (3.9)

for every t > 0 [3, Lemma 2.1]. Here, χE denotes the characteristic function of the set E. One 
has that u ∈ W 1,2(Rn, γn) if and only if u ∈ T 1,2(Rn, γn) and Zu ∈ L2(Rn, γn), and, in this case, 
Zu = ∇u. With abuse of notation, if u ∈ T 1,2(Rn, γn), we shall denote Zu simply by ∇u.

Theorem 3.1 (Bijectivity of the map (3.6) and regularity of functions in D(L)). Assume that 
f ∈ L1⊥(Rn, γn).
Part 1. There exists a unique (up to additive constants) function u ∈ D(L), such that

Lu = f. (3.10)

Moreover, u ∈ T 1,2(Rn, γn) and any sequence {uk} satisfying (3.3) and (3.4) admits a subse-
quence, still indexed by k, such that

lim
k→∞∇uk = ∇u a.e. in Rn. (3.11)

Part 2. Let u be the unique solution to equation (3.10). Then:

(i) u ∈ L1,∞ logL(Rn, γn), and there exists an absolute constant c such that

‖u − med(u)‖L1,∞ logL(Rn,γn) ≤ c‖f ‖L1(Rn,γn); (3.12)

(ii) |∇u| ∈ L1,∞(logL)
1
2 (Rn, γn), and there exists an absolute constant c such that

‖∇u‖
L1,∞(logL)

1
2 (Rn,γn)

≤ c‖f ‖L1(Rn,γn). (3.13)

The spaces L1,∞ logL(Rn, γn) and L1,∞(logL)
1
2 (Rn, γn) are optimal in inequalities (3.12)

and (3.13), respectively, among all weak type spaces.

We now address the question of a minimal integrability condition on f guaranteeing that the 
solution u to the equation Lu = f be a genuine global Sobolev function, and not just a member 
of T 1,2(Rn, γn).

Proposition 3.2. Assume that f ∈ L
1,1; 1

2⊥ (Rn, γn). Then the solution u to the equation Lu = f

obeys u ∈ W 1,1(Rn, γn).

The proof of Theorem 3.1 is based on a priori bounds for sequences of approximating func-
tions as in (3.3), according to a scheme introduced in [3]. These bounds are derived via rear-
rangement estimates for a function u ∈ D(L) and its (generalized) gradient ∇u, in terms of Lu. 
The relevant estimates are the subject of Theorem 3.3 below, which is a variant of a result from 
[5] and relies upon the isoperimetric inequality in the Gauss space.
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Recall that the Gauss perimeter Pγn(E) of a measurable set E ⊂ Rn can be defined as

Pγn(E) = Hn−1
γn

(∂ME),

where

dHn−1
γn

(x) = (2π)−
n
2 e− |x|2

2 dHn−1(x),

∂ME denotes the essential boundary of E and Hn−1 is the (n − 1)-dimensional Hausdorff mea-
sure.

The Gaussian isoperimetric inequality tells us that half-spaces minimize Gaussian perimeter 
among all measurable subsets of Rn with prescribed Gauss measure [9,39].

An analytic formulation of this statement can be given in terms of the isoperimetric function I , 
also called the isoperimetric profile, of the space (Rn, γn). The function I : [0, 1] → [0, ∞) is 
given by

I (s) = 1√
2π

e− �−1(s)2
2 for s ∈ (0,1), (3.14)

and I (0) = I (1) = 0, where � : R → (0, 1) is the function defined as

�(t) = 1√
2π

∞∫
t

e− τ2
2 dτ for t ∈ R. (3.15)

The Gaussian isoperimetric inequality then reads

I (γn(E)) ≤ Pγn(E) (3.16)

for every measurable subset E of Rn. Indeed,

γn({x ∈ Rn : x1 ≥ t}) = �(t) for t ∈R,

and

Pγn({x ∈Rn : x1 ≥ t}) = 1√
2π

e− t2
2 for t ∈R,

where x = (x1, . . . , xn). The function I obeys

�′(t) = −I (�(t)) for t ∈ R. (3.17)

Also,

lim
s→0+

I (s)

s
√

2�(s)
= 1. (3.18)

Moreover, on defining the function � : (
0, 1) → (0, ∞) by
2
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�(s) =
1
2∫

s

dr

I (r)2 for s ∈ (
0, 1

2

)
, (3.19)

one has that

lim
s→0+ 2s�(s)�(s) = 1, (3.20)

see [16, Lemma 4.3].

Theorem 3.3 (Rearrangement estimates for u and ∇u via Lu). Let u ∈ D(L). Then

(
u − med(u)

)∗
±(s) ≤ �(s)

s∫
0

(Lu)∗∓ (r)dr +
1
2∫

s

(Lu)∗∓ (r)�(r)dr for s ∈ (
0, 1

2

]
(3.21)

and

∣∣∇(
u − med(u)

)
±
∣∣∗(s) ≤

⎛⎜⎝2

s

1
2∫

s
2

( r∫
0

(Lu)∗∓(�)d�

)2
dr

I (r)2

⎞⎟⎠
1
2

for s ∈ (
0, 1

2

)
. (3.22)

As premised above, the proofs of Theorems 3.1 and 3.3 are mutually related. The outline is 
as follows. We begin by proving inequalities (3.21) and (3.22) of Theorem 3.3 for the restricted 
class of functions in WLL2(Rn, γn). These estimates are then applied in the proof of Part 1 of 
Theorem 3.1 to obtain suitable a priori estimates for the approximating functions uk entering the 
definition of Lu for u ∈ D(L), and for their gradients. With this part of Theorem 3.1 at our dis-
posal, we are able to pass to the limit in inequalities (3.21) and (3.22) applied to uk , and conclude 
their proof for every u ∈ D(L). This completes the proof of Theorem 3.3. Inequalities (3.21) and 
(3.22) of Theorem 3.3 are a key tool in the proof of estimates (3.12) and (3.13) of Part 2 of 
Theorem 3.1.

Proof of Theorem 3.3 for u ∈ WLL2(Rn, γn). Assume that u ∈ WLL2(Rn, γn) and set, for sim-
plicity, f = Lu. Equation (3.21) is then equivalent to the couple of inequalities:

0 ≤ u◦(s) − u◦ ( 1
2

) ≤ �(s)

s∫
0

f ∗−(r)dr +
1
2∫

s

f ∗−(r)�(r)dr for s ∈ (
0, 1

2

]
(3.23)

and

0 ≤ u◦ ( 1
2

) − u◦(1 − s) ≤ �(s)

s∫
f ∗+(r)dr +

1
2∫
f ∗+(r)�(r)dr for s ∈ (

0, 1
2

]
. (3.24)
0 s
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We pattern their proof on arguments from [5] and [12], which are in turn adapted from [40]. 
On replacing u by u − u◦( 1

2 ), which is still a solution to equation (3.2), we may assume that 
u◦ ( 1

2

) = 0. We choose the test function v in (3.2) as

v =

⎧⎪⎨⎪⎩
1 if u > t + h
u−t
h

if t < u ≤ t + h

0 if u ≤ t

for t ∈ (0, ess supu) and h > 0. Equation (3.2) thus yields

1

h

∫
{t<u≤t+h}

|∇u|2 dγn = − 1

h

∫
{t<u≤t+h}

f (u − t)dγn −
∫

{u>t+h}
f dγn. (3.25)

Taking the limit as h → 0+ in (3.25), we get, by dominated convergence theorem,

− d

dt

∫
{u>t}

|∇u|2 dγn = −
∫

{u>t}
f dγn for a.e. t > 0. (3.26)

Note that the left-hand side of (3.26) is nonnegative. The Hardy-Littlewood inequality tells us 
that

−
∫

{u>t}
f dγn ≤

∫
{u>t}

f− dγn ≤
μ(t)∫
0

f ∗−(s)ds for t > 0, (3.27)

where we have set

μ(t) = γn({x ∈Rn : u(x) > t}) for t ≥ 0. (3.28)

Applying the Cauchy-Schwartz inequality to the difference quotients, we have

− d

dt

∫
{u>t}

|∇u|dγn ≤
(

− d

dt

∫
{u>t}

dγn

) 1
2
(

− d

dt

∫
{u>t}

|∇u|2 dγn

) 1
2

≤ (−μ′(t)
) 1

2

( μ(t)∫
0

f ∗−(s)ds

) 1
2

for a.e. t > 0,

(3.29)

where we have also used (3.26) and (3.27). By the coarea formula we infer that

∫
|∇u|dγn =

∞∫
t

Pγn({u > τ })dτ for t > 0. (3.30)
{u>t}
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Recall that μ(t) ≤ 1
2 , since we are assuming that u◦ ( 1

2

) = 0. Thereby, differentiation of (3.30)
and the isoperimetric inequality (3.16) give

− d

dt

∫
{u>t}

|∇u|dγn = Pγn({u > t}) ≥ I
(
μ(t)

)
for a.e. t > 0. (3.31)

Coupling inequalities (3.29) and (3.31) tells us that

1 ≤ −μ′(t)
I
(
μ(t)

)2

μ(t)∫
0

f ∗−(s)ds for a.e. t ∈ (0, ess supu). (3.32)

By integrating inequality (3.32) over (0, τ), we get

τ ≤
τ∫

0

−μ′(t)
I
(
μ(t)

)2

μ(t)∫
0

f ∗−(s)ds dt ≤
1
2∫

μ(τ)

1

I (σ )2

σ∫
0

f ∗−(s)ds dσ for τ ∈ [0, ess supu). (3.33)

Owing to the definition of the function u◦, equation (3.33) yields

0 ≤ u◦(s) ≤
1
2∫

s

1

I (r)2

r∫
0

f ∗−(�)d� dr for s ∈ (
0, 1

2

]
. (3.34)

If s ∈ ( 1
2 ,1

)
, an analogous argument and the fact that I (s) = I (1 − s) for s ∈ [0, 1] imply that

0 ≤ −u◦(1 − s) ≤
1
2∫

s

1

I (r)2

r∫
0

f ∗+(�)d� dr for s ∈ [ 1
2 ,1

)
. (3.35)

Since, by Fubini’s theorem,

1
2∫

s

1

I (r)2

r∫
0

f ∗±(�)d� dr =
1
2∫

s

1

I (r)2

s∫
0

f ∗±(�)d� dr +
1
2∫

s

1

I (r)2

r∫
s

f ∗±(�)d� dr

=
1
2∫

s

dr

I (r)2

s∫
0

f ∗±(�)d� +
1
2∫

s

f ∗±(�)

1
2∫

�

dr

I (r)2 d�

= �(s)

s∫
0

f ∗±(�)d� +
1
2∫

s

f ∗±(�)�(�)d�
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for s ∈ (
0, 1

2

]
, inequalities (3.23) and (3.24) follow from (3.34) and (3.35), respectively.

Let us now focus on inequality (3.22). Without loss of generality, we may assume that 
med(u) = 0. The function

[0,∞) � t �→
∫

{u+≤t}
|∇u+|2 dγn

is absolutely continuous, since by the coarea formula,

∫
{u+≤t}

|∇u+|2 dγn =
∫

{0≤u≤t}
|∇u+|2 dγn =

t∫
0

∫
{u=τ }

|∇u|dHn−1
γn

dτ.

Thus,

∫
{u+≤t}

|∇u+|2 dγn =
t∫

0

(
d

dτ

∫
{u+≤τ }

|∇u+|2 dγn

)
dτ for t ≥ 0. (3.36)

By inequalities (3.26) and (3.27), with u replaced with u+,

d

dτ

∫
{u+≤τ }

|∇u+|2 dγn ≤
μ(τ)∫
0

f ∗−(s)ds for a.e. τ ≥ 0, (3.37)

where μ(t) is as in (3.28). Note that here we have made use of the fact that the right-hand side 
of (3.28) is not altered for t > 0 if u is replaced with u+. From inequalities (3.37) and (3.32) one 
infers that

d

dτ

∫
{u+≤τ }

|∇u+|2 dx = − d

dτ

∫
{u+>τ }

|∇u+|2 dx ≤ −μ′(τ )

I (μ(τ))2

( μ(τ)∫
0

f ∗−(s)ds

)2

(3.38)

for a.e. τ ≥ 0. Combining equations (3.36) and (3.38) tells us that

∫
{u+≤t}

|∇u+|2 dx ≤
t∫

0

−μ′(τ )

I (μ(τ))2

( μ(τ)∫
0

f ∗−(s)ds

)2

dτ ≤
1
2∫

μ(t)

1

I (σ )2

( σ∫
0

f ∗−(s)ds

)2

dσ (3.39)

for t ≥ 0. On the other hand, by the first inequality in (2.3),

∫
|∇u+|2 dx ≥

1
2∫

|∇u+|∗(s)2 ds ≥
2μ(t)∫

|∇u+|∗(s)2 ds ≥ μ(t)|∇u+|∗(2μ(t)
)2 (3.40)
{u+≤t} μ(t) μ(t)
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for t ≥ t0, where we used that γn({u+ ≤ t}) = 1
2 − μ(t) and we chose t0 such that μ(t0) = 1

4 . 
Inequalities (3.39) and (3.40) yield

μ(t)|∇u+|∗(2μ(t)
)2 ≤

1
2∫

μ(σ)

1

I (σ )2

( σ∫
0

f ∗−(s)ds

)2

dσ, (3.41)

whence inequality (3.22) follows for u+. The argument for u− is analogous. �
Proof of Theorem 3.1, Part 1. Step 1. Let {fk} be a sequence of functions from L2⊥(Rn, γn)

such that fk → f in L1(Rn, γn). We may also assume that

‖fk‖L1(Rn,γn) ≤ 2‖f ‖L1(Rn,γn). (3.42)

For each k ∈N , let uk ∈ W 1,2(Rn, γn) be the unique solution to the equation

Luk = fk (3.43)

such that med(uk) = 0. Thus ∫
Rn

∇uk · ∇v dγn = −
∫
Rn

fkv dγn (3.44)

for every v ∈ W 1,2(Rn, γn) and k ∈ N .
Step 2. We prove that there exists a function u ∈M(Rn, γn) such that

uk → u a.e. in Rn (up to subsequences). (3.45)

We shall do this by showing that {uk} is a Cauchy sequence in measure. To this purpose, observe 
that, given t, τ > 0, one has

γn ({|uk − um| > τ }) ≤ γn ({|uk| > t}) + γn ({|um| > t}) + γn ({|Tt (uk) − Tt (um)| > τ }) (3.46)

for every k, m ∈ N . Choosing the function v = Tt (uk) in equation (3.44) enables us to deduce 
that ∫

Rn

|∇Tt (uk)|2 dγn =
∫
Rn

∇uk · ∇Tt (uk)dγn = −
∫
Rn

fkTt (uk)dγn ≤ 2t‖f ‖L1(Rn,γn) (3.47)

for k ∈ N . Set

μ±
k (t) = γn ({(uk)± > t}) for t ≥ 0.

From inequality (3.33), applied to uk , we obtain that
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t ≤
1
2∫

μ±
k (t)

1

I (s)2

s∫
0

(fk)
∗∓(r)dr ds

≤ 2‖f ‖L1(Rn,γn)

1
2∫

μ±
k (t)

ds

I (s)2 = 2‖f ‖L1(Rn,γn)�
(
μ±

k (t)
) (3.48)

for t > 0. Hence,

γn ({|uk| > t}) = μ+
k (t) + μ−

k (t) ≤ 2�−1

(
t

2‖f ‖L1(Rn,γn)

)
for t > 0. (3.49)

Since limt→∞ �−1(t) = 0, given ε > 0, we have that

γn ({|uk| > t}) < ε and γn ({|um| > t}) < ε for k,m ∈ N (3.50)

if t is sufficiently large. Fix any such t . Since med(uk) = 0, we have that med(Tt (uk)) = 0 as 
well. Hence, by the Sobolev inequality in the Gauss space, cf. e.g. [13] and inequality (3.47),

‖Tt (uk)‖L2(Rn,γn) ≤ c‖∇Tt (uk)‖L2(Rn,γn) ≤ c
√

2t‖f ‖L1(Rn,γn)

for some constant c. Consequently, the sequence {Tt(uk)} is bounded in W 1,2(Rn, γn). By the 
compactness of the embedding [38, Theorem 7.3]

W 1,2(Rn, γn) → L2(Rn, γn),

one has that Tt (uk) converges to some function L2(Rn, γn) (up to subsequences). In particular, 
{Tt (uk)} is a Cauchy sequence in measure. Thus,

γn ({|Tt (uk) − Tt (um)| > τ }) < ε (3.51)

if k, m are sufficiently large. From (3.46), (3.50) and (3.51), we conclude that {uk} is a Cauchy 
sequence in measure. Hence, equation (3.45) follows.

Step 3. We show that

{∇uk} is a Cauchy sequence in measure. (3.52)

To this purpose, note that, given t, τ, δ > 0,

γn ({|∇uk − ∇um| > t})
≤ γn ({|∇uk| > τ }) + γn ({|∇um| > τ }) + γn ({|uk − um| > δ})

+ γn ({|uk − um| ≤ δ, |∇uk| ≤ τ, |∇um| ≤ τ, |∇uk − ∇um| > t}) .

(3.53)
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By estimate (3.22), on setting

ν±
k (t) = γn ({|∇(uk)±| > t}) ,

one infers that

t ≤
⎛⎜⎝ 2

ν±
k (t)

1
2∫

ν
±
k

(t)

2

( s∫
0

(fk)
∗∓(r)dr

)2
ds

I (s)2

⎞⎟⎠
1
2

≤ 2‖f ‖L1(Rn,γn)

(
2

ν±
k (t)

�

(
ν±
k (t)

2

)) 1
2

.

(3.54)
Thus, if we define �(s) = s

�(s)
, an increasing function such that lims→0+ �(s) = 0, we obtain 

from (3.54)

γn ({|∇uk| > t}) = ν+
k (t) + ν−

k (t) ≤ 2�−1

((
2‖f ‖L1(Rn,γn)

t

)2
)

. (3.55)

Hence, we deduce that, given any ε > 0,

γn ({|∇uk| > τ }) < ε and γn ({|∇um| > τ }) < ε for k,m ∈N, (3.56)

provided that τ is sufficiently large. Fix such a τ . Define the set

G = {|uk − um| ≤ δ, |∇uk| ≤ τ, |∇um| ≤ τ, |∇uk − ∇um| > τ
}
.

Then, by (3.44) again, since Tδ(uk − um) ∈ W 1,2(Rn, γn),

t2
∫
G

dγn ≤
∫
G

|∇uk − ∇um|2 dγn ≤
∫

{|uk−um|≤δ}
|∇uk − ∇um|2 dγn

=
∫
Rn

(∇uk − ∇um) · ∇(
Tδ(∇uk − ∇um)

)
dγn

= −
∫
Rn

(fk − fm)Tδ(uk − um)dγn ≤ 4δ‖f ‖L1(Rn,γn).

(3.57)

Choosing δ small enough, we get γn(G) < ε. From Step 2 we already know that {uk} is a Cauchy 
sequence in measure. Thus,

γn ({|uk − um| > δ}) < ε (3.58)

if k, m are large enough. From (3.53), (3.56), (3.57) and (3.58) we deduce that

γn ({|∇uk − ∇um| > δ}) < ε
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if k, m are sufficiently large. Property (3.52) is thus established.
Step 4. We prove that

u ∈ T 1,2(Rn, γn) (3.59)

and

∇uk → ∇u a.e. in Rn (3.60)

(up to subsequences), where ∇u denotes the “surrogate” gradient Zu in the sense of defini-
tion (3.9).

By property (3.52), there exists a measurable function U : Rn → Rn such that

∇uk → U a.e. in Rn (3.61)

(up to subsequences). As shown in Step 2, the sequence {Tt(uk)} is bounded in W 1,2(Rn, γn). 
Therefore, inasmuch as the latter space is reflexive, there exists a function ût ∈ W 1,2(Rn, γn)

such that

Tt (uk) ⇀ ût weakly in W 1,2(Rn, γn), (3.62)

and a.e. in Rn (up to subsequences). Hence, by the uniqueness of the limit,

ût = Tt (u) a.e. in Rn, (3.63)

since Tt (uk) → Tt (u) by (3.45). Consequently, Tt (u) ∈ W 1,2(Rn, γn) and

Tt (uk) ⇀ Tt(u) weakly in W 1,2(Rn, γn). (3.64)

Thanks to the arbitrariness of t , property (3.59) holds, and

∇Tt (u) = χ{|u|<t}∇u a.e. in Rn (3.65)

for t > 0. From equations (3.45) and (3.61) one also deduces that

lim
k→∞∇Tt (uk) = lim

k→∞χ{|uk |<t}∇uk = χ{|u|<t}U a.e. in Rn (3.66)

for t > 0, and, owing to (3.64),

∇Tt (u) = χ{|u|<t}U a.e. in Rn, (3.67)

for t > 0. By (3.67),

U = ∇u. (3.68)

Property (3.60) follows from equations (3.61) and (3.68).
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Step 5. This step is devoted to the proof of the uniqueness of the solution u (up to additive 
constants) to equation (3.10). Assume that u and û are solutions to (3.10). Then there exist se-
quences {fk} and {f̂k} in L2⊥(Rn, γn) such that fk → f and f̂k → f̂ in L1(Rn, γn), the solutions 
uk to (3.43) satisfy uk → u a.e. in Rn, and the solutions ûk to problem (3.43) with fk replaced 
by f̂k satisfy ûk → û a.e. in Rn.

Given any t > 0, we make use of the test function φ = Tt (uk − ûk) in equation (3.44), and in a 
parallel equation with uk and fk replaced by ûk and f̂k . On subtracting the equations so obtained 
one gets that ∫

{|uk−ûk |≤t}
|∇uk − ∇ûk|2 dγn = −

∫
Rn

(fk − f̂k)Tt (uk − ûk)dγn (3.69)

for k ∈ N . The right-hand side of equation (3.69) tends to 0 as k → ∞, since |Tt (uk − ûk)| ≤ t

and fk − f̂k → 0 in L1(Rn, γn). Moreover, the same arguments as in the proofs of Steps 3 and 
4 ensure that ∇uk → ∇u and ∇ûk → ∇û a.e. in Rn (up to subsequences). Therefore, on passing 
to the limit in equation (3.69) as k → ∞, we infer, via Fatou’s lemma, that∫

{|u−û|≤t}
|∇u − ∇û|2 dγn = 0,

whence, by the arbitrariness of t ,

∇u = ∇û a.e. in Rn. (3.70)

Now, observe that, by Step 4, given t, τ > 0, we have

Tτ (u − Tt (û)) ∈ W 1,2(Rn, γn).

An application of the Gaussian–Sobolev inequality to this function tells us that∫
Rn

∣∣Tτ (u − Tt (û)) − med
(
Tτ (u − Tt (û))

)∣∣2 dγn ≤ c

∫
Rn

∣∣∇Tτ (u − Tt (û))
∣∣2 dγn

= c

( ∫
{t<|u|<t+τ }

|∇u|2 dγn +
∫

{t−τ<|u|<t}
|∇u|2 dγn

)
.

(3.71)

Notice that we have also made use of equation (3.70) in the last equality. The choice of the test 
function φ = Tτ (uk − Tt (uk)) in equation (3.44) enables us to obtain that∫

{t<|uk |<t+τ }
|∇uk|2 dγn ≤ τ

∫
{|uk>t}

|fk|dγn. (3.72)

Passing to the limit in (3.72) and making use of Fatou’s lemma tell us that
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∫
{t<|u|<t+τ }

|∇u|2 dγn ≤ τ

∫
{|u>t}

|f |dγn. (3.73)

Thus, the first integral on the rightmost side of inequality (3.71) approaches 0 as t → ∞. A sim-
ilar argument employing the test functions φ = Tτ (uk − Tt−τ (uk)) ensures that also the second 
integral tends to 0 as t → ∞. On the other hand,

lim
t→∞

[
Tτ (u − Tt (û)) − med

(
Tτ (u − Tt (û))

)] = Tτ (u − û) − med
(
Tτ (u − û)

)
a.e. in Rn.

Therefore, passing to the limit in (3.71) as t → ∞ and making use of Fatou’s lemma yield∫
Rn

∣∣Tτ (u − û) − med
(
(Tτ (u − û)

)∣∣2 dγn = 0

for τ > 0. Hence,

Tτ (u − û) − med
(
Tτ (u − û)

) = 0

a.e. in Rn for every τ > 0, and passing to the limit as τ → ∞, we get that

u − û = med(u − û) a.e. in Rn.

Thus, the function u − û is constant on Rn. �
Proof of Theorem 3.3, completed. Let u ∈ D(L). By definition, there exists a sequence {uk} ⊂
WLL2(Rn, γn) fulfilling (3.3) and (3.4). Inequalities (3.23) and (3.24) have already been shown 
to hold with u replaced by uk . Namely, on setting fk = Luk , one has that

0 ≤ u◦
k(s) − u◦

k

( 1
2

) ≤ �(s)

s∫
0

(fk)
∗−(r)dr +

1
2∫

s

(fk)
∗−(r)�(r)dr for s ∈ (

0, 1
2

]
(3.74)

and

0 ≤ u◦
k

( 1
2

) − u◦
k(1 − s) ≤ �(s)

s∫
0

(fk)
∗+(r)dr +

1
2∫

s

(fk)
∗+(r)�(r)dr for s ∈ (

0, 1
2

]
. (3.75)

We claim that med(uk) → med(u). By Lemma 2.1, it suffices to verify that u◦ is continuous 
at 1

2 . Theorem 3.1 ensures that u ∈ T 1,2(Rn, γn) and hence Tt (u) belongs to W 1,2(Rn, γn) and, 
in particular, Tt (u)◦ is continuous, see [20] or [13, Lemma 3.3]. Therefore, as Tt (u)◦ = u◦ on the 
set {|u◦| < t} containing 1

2 for sufficiently large t , the function u◦ is also continuous at 1
2 .

Property (3.3) ensures that(
uk(x) − med(uk)

) → (
u(x) − med(u)

)
for a.e. x ∈ Rn. (3.76)
± ±
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Fatou’s property of rearrangements tells us that

lim inf
k→∞

(
uk − med(uk)

)∗
±(s) ≥ (

u − med(u)
)∗
±(s) for s ∈ (0,1). (3.77)

Moreover,

(
uk − med(uk)

)∗
+(s) = u◦

k(s)−u◦
k(

1
2 ) and

(
uk − med(uk)

)∗
−(s) = u◦

k(
1
2 )−u◦

k(1 − s) (3.78)

for a.e. s ∈ (
0, 1

2

)
. Hence (3.77) and (3.78) yield

lim inf
k→∞ u◦

k(s)−u◦
k

( 1
2

) ≥ (
u−med(u)

)∗
+(s) and lim inf

k→∞ u◦
k

( 1
2

)−u◦
k(1−s) ≥ (

u−med(u)
)∗
−(s)

(3.79)
for s ∈ (

0, 1
2

)
. On the other hand, owing to assumption (3.4), one has that (fk)± → f± in 

L1(Rn, γn). By [4, Chapter 3, Theorem 7.4], the operation of decreasing rearrangement is a 
contraction in L1, thus, one also has that (fk)

∗± → f ∗± in L1(0, 1). As a consequence,

lim
k→∞

s∫
0

(fk)
∗±(r)dr =

s∫
0

f ∗±(r)dr, (3.80)

and

lim
k→∞

1
2∫

s

(fk)
∗±(r)�(r)dr =

1
2∫

s

f ∗±(r)�(r)dr, (3.81)

for every s ∈ (
0, 1

2

]
. Inequality (3.21) then follows from (3.74) and (3.75) via (3.79), (3.80) and 

(3.81).
As for estimate (3.22), it has already been shown to hold if u ∈ WLL2(Rn, γn). Assume now 

that u ∈ D(L) and set f = Lu. Let {fk} be a sequence in L2(Rn, γn) such that mv(fk) = 0, 
fk → f in L1(Rn, γn) and (3.42) holds. Let uk be the solution to equation (3.43). We have that

∣∣∇(
uk − med(uk)

)
±
∣∣∗(s) ≤

⎛⎜⎝2

s

1
2∫

s
2

( r∫
0

(fk)
∗∓(�)d�

)2
dr

I (r)2

⎞⎟⎠
1
2

for s ∈ (
0, 1

2

)
. (3.82)

By equation (3.80),

r∫
0

(fk)
∗∓(�)d� →

r∫
0

f ∗∓(�)d� for r ∈ (0,1).

Moreover, owing to (3.42),
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r∫
0

(fk)
∗±(�)d� ≤ 2‖f ‖L1(Rn,γn) for r ∈ (0,1),

for k ∈ N . Hence, since the function I−2 is integrable in 
(
s, 1

2

)
for every s ∈ (

0, 1
2

)
, by the 

dominated convergence theorem for Lebesgue integrals,

1
2∫

s
2

( r∫
0

(fk)
∗∓(�)d�

)2
dr

I (r)2 →
1
2∫

s
2

( r∫
0

f ∗∓(�)d�

)2
dr

I (r)2 for s ∈ (
0, 1

2

)
. (3.83)

Next, owing to equations (3.76) and (3.60), one has that∣∣∇(
uk − med(uk)

)
±
∣∣ → ∣∣∇(

u − med(u)
)
±
∣∣ a.e. in Rn. (3.84)

Hence, via Fatou’s property of the decreasing rearrangement, we infer that

lim inf
k→∞

∣∣∇(
uk − med(uk)

)
±
∣∣∗(s) ≥ ∣∣∇(

u − med(u)
)
±
∣∣∗(s) for s ∈ (0,1). (3.85)

Thanks to properties (3.83) and (3.85), inequality (3.22) follows on passing to the limit in in-
equality (3.82) as k → ∞. �
Proof of Theorem 3.1: inequalities (3.12) and (3.13). Since the function � is decreasing, in-
equality (3.21) yields

(
u − med(u)

)∗
±(s) ≤ �(s)

s∫
0

f ∗∓(r)dr + �(s)

1
2∫

s

f ∗∓(r)dr ≤ �(s)‖f ‖L1(Rn,γn)

for s ∈ (
0, 1

2

)
. Therefore,(

u − med(u)
)∗

(s) ≤ (
u − med(u)

)∗
+
(

s
2

) + (
u − med(u)

)∗
−
(

s
2

) ≤ 2�
(

s
2

)‖f ‖L1(Rn,γn)

for s ∈ (0, 1). Hence,

‖u−med(u)‖L1,∞ logL(Rn,γn)= sup
s∈(0,1)

s�(s)
(
u−med(u)

)∗
(s) ≤ ‖f ‖L1(Rn,γn) sup

s∈(0,1)

2s�(s)�
(

s
2

)
,

where the last supremum is finite because of (3.20). This proves inequality (3.12).
As far as inequality (3.13) is concerned, estimate (3.22) implies

|∇(u − med(u))±|∗(s) ≤ ‖f ‖L1(Rn,γn)

(
2

s

1
2∫

s
2

dr

I (r)2

) 1
2

= ‖f ‖L1(Rn,γn)

√
2
s
�

(
s
2

)
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for s ∈ (
0, 12

)
. Thus, by inequality (2.5),

|∇u|∗(s) = |∇(u − med(u))|∗(s) = ∣∣∇(
(u − med(u))+ + (u − med(u))−

)∣∣∗(s)
≤ |∇(u − med(u))+|∗( s

2

) + |∇(u − med(u))−|∗( s
2

)
for s ∈ (0, 1), whence we infer that

‖∇u‖
L1,∞(logL)

1
2 (Rn,γn)

= sup
s∈(0,1)

s�(s)
1
2 |∇u|∗(s) ≤ ‖f ‖L1(Rn,γn) sup

s∈(0,1)

2
√

2s�(s)�
(

s
2

)
,

the last supremum being finite by (3.20) again.
We conclude the proof of Theorem 3.1 by showing that the norms on the left sides of (3.12)

and (3.13) cannot be replaced by any stronger weak-type norm.
Fix δ > 0 and define the function gδ : (

0, 1
2

) → [0, ∞) by

gδ = 1

2δ
χ(0,δ).

Also, define the functions uδ : Rn →R and fδ : Rn → R by

uδ(x) = sgn(x1)

1
2∫

�(|x1|)

1

I (s)2

s∫
0

gδ(r)dr ds for x ∈Rn

and

fδ(x) = − sgn(x1)gδ

(
�(|x1|)

)
for x ∈Rn.

One can verify that Luδ ∈ WLL2(Rn, γn) and Luδ = fδ – see e.g. the proof of Theorem 4.1. 
Moreover, by a change of variables,

‖fδ‖L1(Rn,γn) =
∫

{x1>0}
gδ(�(x1))dγn +

∫
{x1<0}

gδ(�(−x1))dγn

= 2

∞∫
0

gδ(�(x1))dγ1 = 2

1
2∫

0

gδ(s)ds = 1,

whence fδ ∈ L1⊥(Rn, γn), since, obviously, 
∫
Rn fδ dγn = 0. Also med(uδ) = 0.

Set Eδ = {
x ∈Rn : �(|x1|) ≤ δ

}
. Then

|uδ(x)| =
1
2∫

1

I (s)2

s∫
gδ(r)dr ds ≥

1
2∫

ds

I (s)2

δ∫
gδ(r)dr = 1

2�(δ) for x ∈ Eδ .
�(|x1|) 0 δ 0
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Thus, |uδ| ≥ 1
2�(δ) in Eδ . Since

γn(Eδ) = 2γn

({x ∈ Rn : x1 > �−1(δ)}) = 2�
(
�−1(δ)

) = 2δ,

one has that

u∗
δ ≥ 1

2�(δ)χ(0,2δ).

Now, assume that ϕ is any quasiconcave function satisfying

lim sup
s→0+

ϕ(s)

s�(s)
= ∞. (3.86)

Then

‖uδ − med(uδ)‖mϕ(Rn,γn)= sup
s∈(0,1)

u∗
δ (s)ϕ(s)≥ sup

s∈(0,δ)

u∗
δ (s)s�(s)

ϕ(s)

s�(s)
≥ 1

2�(δ)δ�(δ) sup
s∈(0,δ)

ϕ(s)

s�(s)
.

In limit as δ → 0+, the latter term tends to infinity thanks to equation (3.86), since δ�(δ)�(δ) →
1
2 , by equation (3.20). The optimality of inequality (3.12) is thus established.

Next, we have that

|∇uδ(x)| = 1

I
(
�(|x1|)

) �(|x1|)∫
0

1

2δ
χ(0,δ) dr for a.e. x ∈ Rn.

Hence

|∇uδ(x)| ≥ 1

2δ

�(|x1|)
I
(
�(|x1|)

)χEδ (x) for a.e. x ∈Rn. (3.87)

To evaluate the measure of the level sets of the function on the right-hand side of equation (3.87), 
define the function G(s) = s/I (s) for s ∈ (

0, 1
2

)
. Computations show that

G′(�(t)) = 1

I (�(t))2

1√
2π

(
e− t2

2 − t

∞∫
t

e− τ2
2 dτ

)

>
1

I (�(t))2

1√
2π

(
e− t2

2 −
∞∫
t

τ e− τ2
2 dτ

)
= 0 for t > 0.

Thereby, the function G is strictly increasing. Since

γn

({
x ∈ Eδ : �(|x1|)

2δI (�(|x1|)) > t

})
= γn

({
x ∈ Rn : �−1(δ) ≤ |x1| ≤ �−1(G−1(2δt)

)})
= 2γ1

((
�−1(δ),�−1(G−1(2δt)

))) = 2
(
δ − G−1(2δt)

)
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for t > 0, one infers that

|∇uδ|∗(s) ≥ inf
{
t ∈ R : 2

(
δ − G−1(2δt)

) ≤ s
}

= 1

2δ
G

(
δ − s

2

)
for s ∈ (0,2δ).

Consequently, by the monotonicity of G,

|∇uδ|∗ ≥ 1

2δ
G

(
δ
2

)
χ(0,δ) = 1

4I
(

δ
2

)χ(0,δ).

Assume that a quasiconcave function ϕ satisfies

lim sup
s→0+

ϕ(s)

s
√

�(s)
= ∞.

Then, by equation (3.18),

‖∇uδ‖mϕ(Rn,γn) = sup
s∈(0,1)

|∇uδ|∗(s)ϕ(s) ≥ sup
s∈

(
0,

δ
2

) |∇uδ|∗(s)s
√

�(s)
ϕ(s)

s
√

�(s)

≥
δ
2

√
�( δ

2 )

4I
(

δ
2

) sup
s∈

(
0, δ

2

) ϕ(s)

s
√

�(s)
→ ∞ as δ → 0+.

This shows that the bound given by (3.13) is the best possible. �
Proof of Proposition 3.2. It suffices to show that the solution u to the equation Lu = f , with 

f ∈ L
1,1; 1

2⊥ (Rn, γn), satisfies

∫
Rn

|∇u|dγn ≤ c

1∫
0

f ∗(s)
√

�(s)ds (3.88)

for some absolute constant c.
Let us first prove estimate (3.88) in the case when u ∈ WLL2(Rn, γn). Assume, without loss 

of generality, that med(u) = 0. As shown in the proof of Theorem 3.3, under these assumptions 
the function u obeys the following inequality:

(
− d

dt

∫
{u>t}

|∇u|dγn

)2

≤ −μ′(t)
μ(t)∫
0

f ∗−(s)ds for a.e. t > 0, (3.89)

where μ(t) = γn({x ∈Rn : u(x) > t}) – see estimate (3.29). Next, by inequality (3.31),

− d

dt

∫
|∇u|dγn ≥ I

(
μ(t)

)
for a.e. t > 0. (3.90)
{u>t}
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Coupling this inequality with estimate (3.89) tells us that

− d

dt

∫
{u>t}

|∇u|dγn ≤ − μ′(t)
I
(
μ(t)

) μ(t)∫
0

f ∗−(s)ds for a.e. t > 0. (3.91)

An integration over (0, ∞) yields

∫
Rn

|∇u+|dγn =
∫

{u>t}
|∇u|dγn =

∞∫
0

(
− d

dt

∫
{u>t}

|∇u|dγn

)
dt

≤
∞∫

0

(
− μ′(t)

I
(
μ(t)

) μ(t)∫
0

f ∗−(s)ds

)
dt ≤

1
2∫

0

1

I (r)

r∫
0

f ∗−(s)ds dr

=
1
2∫

0

f ∗−(s)

1
2∫

s

dr

I (r)
ds ≤ c

1
2∫

0

f ∗−(s)
√

�(s)ds,

for some absolute constant c. Notice that here we used the asymptotic behavior of I from (3.18). 
Since a parallel estimate holds for u− in terms of f+, inequality (3.88) follows.

Now, assume that f ∈ L
1,1; 1

2⊥ (Rn, γn) and let {fk} ⊂ L2(Rn, γn) be a sequence such that 

fk → f in L1,1; 1
2 (Rn, γn) and mv(fk) = 0 for every k ∈ N . For instance, we may take fk =

Tkf − mv(Tkf ). Then, by the uniqueness of the solution to equation (3.10), the sequence of 
functions {uk} ⊂ WLL2(Rn, γn) such that Luk = fk satisfies uk → u a.e. Finally, from Fatou’s 
lemma and estimate (3.88) applied to uk we deduce that

‖∇u‖L1(Rn,γn) ≤ lim inf
k→∞ ‖∇uk‖L1(Rn,γn) ≤ c lim

k→∞‖fk‖
L

1,1; 1
2 (Rn,γn)

= c‖f ‖
L

1,1; 1
2 (Rn,γn)

for some absolute constant c. Inequality (3.88) is thus established. �
4. Reduction principle, and optimal target and domain spaces in Ornstein-Uhlenbeck 
embeddings

The main result of this section is stated in Theorem 4.1, which asserts that the validity of a 
Sobolev-type inequality for the Ornstein-Uhlenbeck operator is equivalent to the boundedness of 
the one-dimensional operator S defined as

Sg(s) = 1

s�(s)

s∫
0

g(r)dr +
1∫

s

g(r)

r�(r)
dr for s ∈ (0,1), (4.1)

for g ∈ M+(0, 1). Note that
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1∫
0

Sg(s)h(s)ds =
1∫

0

g(s)Sh(s)ds for every g,h ∈M+(0,1). (4.2)

Therefore S : X(0, 1) → Y(0, 1) if and only if S : Y ′(0, 1) → X′(0, 1) for any pair of rearrange-
ment-invariant spaces.

In what follows, we shall write A � B if there exists a positive constant c independent of 
appropriate quantities involved in both A and B and such that A ≤ cB . The symbol A � B is 
then defined in the obvious way. If both A �B and A � B hold, then we write A ≈ B .

Theorem 4.1 (Reduction principle for Ornstein-Uhlenbeck embeddings). Let X(Rn, γn) and 
Y(Rn, γn) be rearrangement-invariant spaces. The following statements are equivalent:

(i) There exists a constant c1 > 0 such that

‖u − med(u)‖Y(Rn,γn) ≤ c1‖Lu‖X(Rn,γn)

for every u ∈ WLX(Rn, γn).
(ii) There exists a constant c2 > 0 such that

∥∥∥∥∥ 1

s�(s)

s∫
0

g(r)dr +
1∫

s

g(r)

r�(r)
dr

∥∥∥∥∥
Y(0,1)

≤ c2‖g‖X(0,1) (4.3)

for every nonnegative function g ∈ X(0, 1).

Moreover, the constants c1 and c2 depend only on each other.

Theorem 4.1 enables us to characterize the optimal rearrangement-invariant spaces X(Rn, γn)

and Y(Rn, γn) in Sobolev-type inequalities of the form

‖u − med(u)‖Y(Rn,γn) ≤ C‖Lu‖X(Rn,γn) (4.4)

for every u ∈ WLX(Rn, γn). With slight abuse of notation, inequality (4.4) will often be written 
in embedding form as

WLX(Rn, γn) → Y(Rn, γn). (4.5)

Let us begin with the identification of the optimal target space associated with a given domain. 
This requires the following preliminary result.

Lemma 4.2. Assume that ‖ · ‖X(0,1) is a rearrangement-invariant function norm such that

�� ∈ X′(0,1). (4.6)

Then the functional given by
446



A. Cianchi, V. Musil and L. Pick Journal of Differential Equations 359 (2023) 414–475
∥∥Sg∗∥∥
X′(0,1)

(4.7)

for g ∈M+(0, 1) is a rearrangement-invariant function norm.

Denote by ‖ · ‖XL(0,1) the rearrangement-invariant function norm whose associate norm is 
given by

‖g‖X′
L(0,1) = ∥∥Sg∗∥∥

X′(0,1)
(4.8)

for g ∈ M+(0, 1).

Theorem 4.3 (Optimal target for Ornstein-Uhlenbeck embeddings). Let X(Rn, γn) be a rear-
rangement-invariant space satisfying condition (4.6) and let XL(Rn, γn) be the rearrangement-
invariant space defined via equation (4.8). Then

WLX(Rn, γn) → XL(Rn, γn). (4.9)

Moreover, XL(Rn, γn) is the optimal (smallest) rearrangement-invariant space for which em-
bedding (4.9) holds.

If condition (4.6) is not satisfied, then embedding (4.5) fails for every rearrangement-invariant 
space Y(Rn, γn).

A characterization of the optimal domain space in inequality (4.4) is the subject of Theo-
rem 4.5 below and requires the next lemma.

Lemma 4.4. Assume that ‖ · ‖Y(0,1) is a rearrangement-invariant function norm such that

�� ∈ Y(0,1). (4.10)

Then the functional ‖ · ‖YL(0,1) given by

‖g‖YL(0,1) = ∥∥Sg∗∥∥
Y(0,1)

(4.11)

for g ∈M+(0, 1) is a rearrangement-invariant function norm.

Theorem 4.5 (Optimal domain for Ornstein-Uhlenbeck embeddings). Let Y(Rn, γn) be a rear-
rangement-invariant space satisfying condition (4.10) and let YL(Rn, γn) be the rearrangement-
invariant space defined via equation (4.11). Then

WLYL(Rn, γn) → Y(Rn, γn). (4.12)

Moreover, YL(Rn, γn) is the optimal (largest) rearrangement-invariant space for which embed-
ding (4.12) holds.

If condition (4.10) is not satisfied, then embedding (4.5) fails for every rearrangement-invari-
ant space X(Rn, γn).

The remaining part of this section is devoted to the proofs of the results stated above.
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Proof of Theorem 4.1. First note that (ii) is equivalent to the following condition:

(ii)’ There exists a constant c′
2 > 0 such that

∥∥∥∥∥�(s)

s∫
0

g(r)dr +
1
2∫

s

g(r)�(r)dr

∥∥∥∥∥
Y
(
0, 1

2
) ≤ c′

2‖g‖
X

(
0, 1

2
)

for every nonnegative g ∈ X
(
0, 1

2

)
.

Furthermore, c′
2 and c2 depend only on each other. This follows by a standard argument in re-

arrangement-invariant spaces involving rearrangements and the dilatation operator together with 
the fact that, by equation (3.20), the function �(s) is equivalent to 1/s�(s) near zero.

Let us show that (ii)’ implies (i). Assume that u ∈ WLX(Rn, γn). By Theorem 3.3,∥∥(u − med(u)
)
+
∥∥

Y(Rn,γn)
= ∥∥(u − med(u)

)∗
+
∥∥

Y
(
0, 1

2
)

≤
∥∥∥∥∥�(s)

s∫
0

(Lu)∗−(r)dr +
1
2∫

s

(Lu)∗−(r)�(r)dr

∥∥∥∥∥
Y
(
0, 1

2
)

≤ c′
2‖(Lu)∗−‖

X
(
0, 1

2
) ≤ c′

2‖Lu‖X(Rn,γn)

and, analogously, 
∥∥(u − med(u)

)
−
∥∥

Y(Rn,γn)
≤ c′

2‖Lu‖X(Rn,γn). Thus,

‖u − med(u)‖Y(Rn,γn) ≤ ∥∥(u − med(u)
)
+
∥∥

Y(Rn,γn)
+ ∥∥(u − med(u)

)
−
∥∥

Y(Rn,γn)

≤ 2c′
2‖Lu‖X(Rn,γn),

whence inequality (i) follows.
Conversely, assume that inequality (i) holds and let g be a nonnegative function in X

(
0, 1

2

) ∩
L2

(
0, 1

2

)
. Define the function u : Rn →R as

u(x) = sgn(x1)

1
2∫

�(|x1|)

1

I (s)2

s∫
0

g(r)drds for x ∈ Rn. (4.13)

Then u is weakly differentiable and, thanks to equation (3.17),

∂u

∂x1
(x) = 1

I
(
�(|x1|)

) �(|x1|)∫
0

g(r)dr for a.e. x ∈Rn

and 
∂u = 0 for j = 2, . . . , n. Consequently,

∂xj
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|∇u(x)| = 1

I
(
�(|x1|)

) �(|x1|)∫
0

g(r)dr for a.e. x ∈Rn (4.14)

and

‖∇u‖L2(Rn,γn) =
∥∥∥∥∥ 1

I
(
�(|x1|)

) �(|x1|)∫
0

g(s)ds

∥∥∥∥∥
L2(Rn,γn)

= 2

∥∥∥∥∥ 1

I (s)

s∫
0

g(r)dr

∥∥∥∥∥
L2(0, 1

2
)

≤ c

∥∥∥∥∥ 1

s
√

�(s)

s∫
0

g(r)dr

∥∥∥∥∥
L2(0, 1

2
) ≤ c

∥∥∥∥∥ 1√
�(s)

g(s)

∥∥∥∥∥
L2(0, 1

2
) ≤ c‖g‖

L2(0, 1
2
) < ∞

for some absolute constant c. Hence, u ∈ W 1,2(Rn, γn). Here, we used the asymptotic behavior of 
I from (3.18) and the Hardy inequality [30, Theorem 1.3.2.2]. Therefore u satisfies equation (3.2)
with

f (x) = − sgn(x1)g
(
�(|x1|)

)
for x ∈Rn (4.15)

for any v ∈ W 1,2(Rn, γn), as an integration by parts shows. Thus Lu ∈ WLL2(Rn, γn) and 
Lu = f . We have that

‖Lu‖X(Rn,γn) ≤ ‖f ∗+‖
X

(
0, 1

2
) + ‖f ∗−‖

X
(
0, 1

2
) = 2‖g‖

X
(
0, 1

2
). (4.16)

Moreover, inasmuch as med(u) = 0,

‖u‖Y(Rn,γn) ≥ ‖u+‖Y(Rn,γn) =
∥∥∥∥∥χ{x1>0}

1
2∫

�(x1)

1

I (s)2

s∫
0

g(r)drds

∥∥∥∥∥
Y(Rn,γn)

=
∥∥∥∥∥

1
2∫

s

1

I (r)2

r∫
0

g(�)d�dr

∥∥∥∥∥
Y
(
0, 1

2
) =

∥∥∥∥∥�(s)

s∫
0

g(r)dr +
1
2∫

s

g(r)�(r)dr

∥∥∥∥∥
Y
(
0, 1

2
).

(4.17)

Thus inequality (ii)’ follows, with c′
2 = 2c1, via equations (i), (4.16) and (4.17). Next, assume that 

the nonnegative function g belongs to X
(
0, 1

2

)
. Since, in particular, g ∈ L1

(
0, 1

2

)
, there exists 

a sequence of nonnegative functions gk ∈ L2
(
0, 1

2

)
such that gk ↑ g in L1

(
0, 1

2

)
. If we define 

uk : Rn → R as in (4.13), with g replaced by gk , then, as shown above, uk ∈ WLL2(Rn, γn)

and Luk = fk , where fk(x) = − sgn(x1)gk(�(|x1|)) for x ∈ Rn. Hence, limk→∞ uk(x) exists 
for a.e. x ∈ Rn and the limiting function, u(x) say, obeys the representation formula (4.13). 
Also med(u) = 0, and fk → f in L1(Rn, γn), where f is as in (4.15). Therefore, u ∈ D(L) and 
Lu = f . Inequality (ii)’ then follows again by (4.16) and (4.17). �
Proof of Lemma 4.2. The rearrangement invariance of the functional ‖ · ‖X′

L(0,1) is obvious. 
Properties (P2), (P3) are readily verified. The properties formulated in (P1) are also clearly 
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fulfilled, except the triangle inequality. The latter can be shown as follows. Since the function 
r �→ 1/r�(r) is decreasing on (0, 1), for each fixed s ∈ (0, 1) the function

r �→ min
{

1
s�(s)

, 1
r�(r)

}
is also decreasing on (0, 1). Moreover,

Sg(s) =
1∫

0

g(r)min
{

1
s�(s)

, 1
r�(r)

}
dr for s ∈ (0,1). (4.18)

Thus, by Hardy’s lemma [4, Section 2, Proposition 3.6], the operator g �→ Sg∗ is subadditive on 
M0(0, 1). This implies the triangle inequality for ‖ · ‖X′

L(0,1). Next, observe that

‖χ(0,1)‖X′
L(0,1) = ∥∥Sχ(0,1)

∥∥
X′(0,1)

≈
∥∥∥∥ 1

�(s)
+ ��(s)

∥∥∥∥
X′(0,1)

.

It thus follows from (4.6) that ‖χ(0,1)‖X′
L(0,1) < ∞. Property (P4) is thus also proved. Finally, 

for every g ∈M+(0, 1), one has that

‖g‖X′
L(0,1) = ∥∥Sg∗∥∥

X′(0,1)
≥

∥∥∥χ( 1
2 ,1

)Sg∗
∥∥∥

X′(0,1)
≥

∥∥∥∥∥χ( 1
2 ,1

)(s)
s�(s)

1
2∫

0

g∗(r)dr

∥∥∥∥∥
X′(0,1)

=
1
2∫

0

g∗(r)dr

∥∥∥∥∥χ( 1
2 ,1

)(s)
s�(s)

∥∥∥∥∥
X′(0,1)

≥
1
2∫

0

g∗(r)dr ‖χ
( 1

2 ,1)
‖X′(0,1),

where in the last inequality we used that 1/s�(s) decreases to 1 on (0, 1). Since X′ is a rearran-
gement-invariant space, ‖χ

(0, 1
2 )

‖X′(0,1) < ∞. Consequently,

1∫
0

g(t)dt =
1∫

0

g∗(s)ds ≤ 2

1
2∫

0

g∗(s)ds ≤ 2

‖χ(
0, 1

2
)‖X′(0,1)

‖g‖X′
L(0,1).

This establishes property (P5). The proof is complete. �
Proof of Theorem 4.3. We begin by showing that

S : X(0,1) → XL(0,1). (4.19)

Hence, embedding (4.9) will follow, owing to Theorem 4.1. By equation (4.18) and the mono-
tonicity of the kernel of the operator S, one obtains, via the Hardy–Littlewood inequality, that 
Sg ≤ Sg∗ for every g ∈M0(0, 1). Therefore,
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‖Sg‖X′(0,1) ≤ ‖Sg∗‖X′(0,1). (4.20)

This shows that ‖Sg‖X′(0,1) ≤ ‖g‖X′
L(0,1), namely S : X′

L(0, 1) → X′(0, 1). By property (4.2), 
we hence deduce that S : X(0, 1) → XL(0, 1).

Assume now that ‖ · ‖Z(0,1) is a rearrangement-invariant function norm such that

‖u − med(u)‖Z(Rn,γn) ≤ c‖Lu‖X(Rn,γn)

for some constant c and for every u ∈ WLX(Rn, γn). Then, by Theorem 4.1, one has that 
S : X(0, 1) → Z(0, 1). Hence, S : Z′(0, 1) → X′(0, 1) as well. In particular,

‖g‖X′
L(0,1) = ‖Sg∗‖X′(0,1) ≤ C‖g∗‖Z′(0,1) = C‖g‖Z′(0,1)

for every g ∈ M+(0, 1). This shows Z′(0, 1) → X′
L(0, 1), which in turn implies XL(0, 1) →

Z(0, 1). Therefore, XL(Rn, γn) → Z(Rn, γn). The optimality of the space XL(Rn, γn) in em-
bedding (4.9) is thus established.

Finally assume that condition (4.6) is not satisfied and yet embedding (4.5) holds for 
some rearrangement-invariant space Y(Rn, γn). Then, by Theorem 4.1, S : X(0, 1) → Y(0, 1). 
This in turn implies that S : Y ′(0, 1) → X′(0, 1). Hence, there exists a constant c such that 
‖Sg∗‖X′(0,1) ≤ c‖g∗‖Y ′(0,1) for every g ∈ M+(0, 1). Applying this inequality to the function 
g = χ(0,1), and using the fact that Y ′(0, 1) is a rearrangement-invariant space an hence satis-
fies (P4), tell us that

∞ > c‖χ(0,1)‖Y ′(0,1) ≥ ‖Sχ(0,1)‖X′(0,1) ≈ ∥∥ 1
�(s)

+ ��(s)
∥∥

X′(0,1)
≥ ‖��(s)‖X′(0,1) = ∞.

This contradiction shows that no space Y(0, 1) enjoying this property can exist. �
Proof of Lemma 4.4, sketched. The fact that ‖ · ‖YL(0,1) is a rearrangement invariant function 
norm can be deduced from Lemma 4.2 and a close inspection of its proof. �
Proof of Theorem 4.5, sketched. It follows from Theorem 4.3 and its proof that S : YL(0, 1) →
Y(0, 1) and that YL(0, 1) is the largest space enjoying this property. Embedding (4.12) and the 
optimality of its domain space thus follow from Theorem 4.1.

Now assume that condition (4.10) fails and that embedding (4.5) holds for some rearrange-
ment-invariant function norm ‖ ·‖X(0,1). Then, from Theorem 4.1 again we infer that S :X(0, 1) →
Y(0, 1), and we arrive at an analogous contradiction as in the proof of Theorem 4.3. �
5. Ornstein-Uhlenbeck embeddings in Orlicz spaces

This section is devoted to a description of Sobolev type inequalities for the Ornstein-
Uhlenbeck operator with optimal target and domain in the class of Orlicz spaces. Before pre-
senting our general results, we collect a few embeddings in the following example. They follow 
as special cases of the general results and are yet sufficient to exhibit some peculiar traits of the 
inequalities in question.
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Example 5.1. The following embeddings hold:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

WLL(log logL)α+1 → L(log logL)α if α ≥ 0
WLL1(logL)α → L1(logL)α if α ≥ 0
WLLp(logL)α → Lp(logL)α+p if p ∈ (1,∞) and α ∈R
WL expLβ → expLβ if β > 0
WL exp expLβ+1 → exp expLβ if β > 0
WLL∞ → exp expL,

(5.1)

where all the spaces are over (Rn, γn).

The distinguishing features of the embeddings in (5.1) can be summarized as follows.
First, all the domain spaces and the target spaces in equation (5.1) are not only optimal within 

the class of Orlicz spaces, but also among all rearrangement-invariant spaces. This property is in 
sharp contrast with Sobolev embeddings in Euclidean domains, including those for the Laplace 
operator, where the optimal target and domain rearrangement-invariant space is always better 
(namely, essentially smaller on the target side and essentially larger one the domain side) than 
that in the smaller class of Orlicz spaces.

Next, observe that the norm in the target space can either be stronger, equivalent or weaker 
than that in the domain space. This means that there can be a gain, or a draw or a loss in the 
degree of integrability of a function inherited from that of the Ornstein-Uhlenbeck operator. On 
the contrary, a function vanishing on the boundary of a domain with finite Lebesgue measure 
always enjoys stronger integrability properties than its Laplacian.

Finally, the embeddings above are worth being compared with standard second-order Gaus-
sian Sobolev embeddings. In particular, one has that⎧⎪⎨⎪⎩

W 2Lp(logL)α → Lp(logL)α+1 if p ∈ [1,∞) and α ≥ 0

W 2 expLβ → expL
β

β+1 if β > 0
W 2L∞ → expL,

(5.2)

where all the spaces are over (Rn, γn), see [14, Theorems 7.8 and 7.13, Corollary 7.14]. The 
norms of the target spaces in the embeddings displayed in (5.2) are always weaker than those in 
the respective embeddings with the same domain norms in (5.1), save when p = 1 in the last one 
of (5.2), in which case the norm in the target space is stronger. This phenomenon can be explained 
by the fact that, because of a multiplying factor blowing up near infinity, the first-order term in the 
Ornstein-Uhlenbeck operator plays a dominant role with respect not only to the Laplacian, but 
also to the full Hessian of a function, when norms sufficiently far from the L1(Rn, γn) endpoint 
are taken. Viceversa, when getting close to this endpoint, at which no embedding into a rear-
rangement-invariant space for the Ornstein-Uhlenbeck operator holds, the impact of the missing 
second-order derivatives and the gap between the properties of the Laplacian and the Hessian 
become apparent.

Let us now come to our discussion in full generality. Let A be a given Young function. It is 
not restrictive to assume that ∫

Ã(t)

t2 dt < ∞. (5.3)
0

452



A. Cianchi, V. Musil and L. Pick Journal of Differential Equations 359 (2023) 414–475
Indeed, one can replace, if necessary, A with an equivalent Young function near infinity in such 
a way that condition (5.3) is fulfilled. This replacement leaves the Orlicz space built upon A
unchanged, up to an equivalent norm. Define AL : [0, ∞) → [0, ∞) by

AL(t) =
t∫

0

G−1
L (τ )

τ
dτ for t ≥ 0, (5.4)

where GL : (0, ∞) → [0, ∞) is given by

GL(t) =
∥∥∥∥ 1

τ�(τ )

∥∥∥∥
LÃ

( 1
t
,∞) for t > 0 (5.5)

and �(t) = max{�(t), 1}.

Theorem 5.2 (Reduction principle for embeddings in Orlicz spaces). Let A and B be Young 
functions. Then

WLLA(Rn, γn) → LB(Rn, γn) (5.6)

if and only if

B is dominated by AL (5.7)

and

Ã is dominated by B̃L, (5.8)

where AL is the Young function given by equation (5.4), and B̃L is the Young function defined by 
the same equation, with A replaced with B̃.

In particular, if A ∈ ∇2, then inequality (5.6) holds if and only if condition (5.7) is fulfilled, 
and if B ∈ �2, then inequality (5.6) holds if and only if condition (5.8) is fulfilled.

We shall derive this theorem as a corollary of a more general result for weighted Hardy-
type integral operators. Let ω : (0, ∞) → (0, ∞) be a weight, namely a nonnegative measurable 
function. We consider the Hardy-type operator defined as

g �→
1∫

s

g(r)ω(r)dr for s ∈ (0,1), (5.9)

for g ∈ M+(0, 1). It immediately follows via Fubini’s theorem that its adjoint operator is given 
by

g �→ ω(s)

s∫
g(r)dr for s ∈ (0,1), (5.10)
0
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for g ∈ M+(0, 1).
With the choice of the special weight

ω(r) = 1

r�(r)
for r > 0, (5.11)

the operator S defined in (4.1) takes the form

Sg(s) = ω(s)

s∫
0

g(r)dr +
1∫

s

g(r)ω(r)dr for s ∈ (0,1), (5.12)

for g ∈ M+(0, 1). Theorem 4.1 thus enables us to transfer the study of Ornstein-Uhlenbeck 
Sobolev-type embeddings to the analysis of boundedness properties of the operators (5.9) and 
(5.10) with ω as in (5.11).

The method that will be developed is applicable to a large class of weights ω satisfying the 
mild assumptions that

ω is decreasing and s �→ sω(s) is increasing in (0,∞). (5.13)

A weight w fulfilling conditions (5.13) will be called an admissible weight in what follows.
Given a Young function A, we define the Young function Aω : [0, ∞) → [0, ∞) by

Aω(t) =
t∫

0

G−1
ω (τ)

τ
dτ for t ≥ 0, (5.14)

where Gω : (0, ∞) → [0, ∞) is given by

Gω(τ) = ‖ω‖
LÃ

( 1
τ
,∞) for τ > 0. (5.15)

Clearly, if ω is as in (5.11), then Gω = GL and Aω = AL.
The definition of the function Aω arises from the following basic result.

Lemma 5.3. Let ω be an admissible weight and let A be a Young function such that

ωχ(1,∞) ∈ LÃ(0,∞). (5.16)

Then the function Aω defined by (5.14) is a Young function, and

Aω(t) ≤ G−1
ω (t) ≤ Aω(2t) for t ≥ 0. (5.17)

Proof. Condition (5.16) ensures that Gω is finite-valued. By the definition of Luxemburg norm 
and a change of variables one has that
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Gω(τ)

τ
= 1

τ
inf

{
λ > 0 :

∞∫
1/τ

Ã

(
ω(t)

λ

)
dt ≤ 1

}
= inf

{
λ > 0 :

∞∫
1/τ

Ã

(
ω(t)

λτ

)
dt ≤ 1

}

= inf

{
λ > 0 : 1

τ

∞∫
1

Ã

(
ω(t/τ)

λτ

)
dt ≤ 1

}
for τ > 0.

(5.18)

Owing to assumption (5.13), the function Ã
(

ω(t/τ)
λτ

)
is decreasing in τ for every t and λ, and 

therefore Gω(τ)/τ is decreasing. This implies that G−1
ω (τ)/τ is increasing and, consequently, 

Aω is a Young function. Furthermore, inequalities (5.17) follow from the monotonicity of the 
function G−1

ω (τ)/τ . �
The Young function Aω enters the definition of the optimal Orlicz target space for the opera-

tor (5.9) on the domain LA(0, 1). This is the content of the following result.

Theorem 5.4. Let A and B be Young functions, let ω be an admissible weight, and let Aω be the 
Young function given by (5.14). Then there exists a constant c such that

∥∥∥∥∥
1∫

s

g(r)ω(r)dr

∥∥∥∥∥
LB(0,1)

≤ c‖g‖LA(0,1) (5.19)

for every g ∈ LA(0, 1) if and only if

B is dominated by Aω. (5.20)

The next theorem can be derived from Theorem 5.4 via a duality argument.

Theorem 5.5. Let A and B be Young functions, let ω be an admissible weight, and let B̃ω be the 
Young function associated with B̃ as in (5.14). Then there exists a constant c such that∥∥∥∥∥ω(s)

s∫
0

g(r)dr

∥∥∥∥∥
LB(0,1)

≤ c‖g‖LA(0,1) (5.21)

for every g ∈ LA(0, 1) if and only if

Ã is dominated by B̃ω. (5.22)

The proof of Theorem 5.4 consists of two steps. First, in Proposition 5.6 we show that con-
dition (5.20) characterizes the boundedness of the operator in (5.9) between LA and the weak 
Orlicz space MB . Second, in Proposition 5.7 we prove a self-improving property which ensures 
that the boundedness into a Marcinkiewicz space LB can be lifted to the Orlicz space LB .

A similar scheme appeared earlier in the literature in the treatment of various Sobolev and 
Hardy-type inequalities, starting with the pioneering work of V. Maz’ya in the early sixties of the 
last century, as recorded in [30].
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For technical reasons, we first prove a version of our results for Orlicz spaces defined on 
(0, ∞) instead of (0, 1).

Proposition 5.6. Let A and B be Young functions and let ω be an admissible weight. The follow-
ing conditions are equivalent.

(i) There exists a constant c1 such that∥∥∥∥∥
∞∫
t

g(τ )ω(τ)dτ

∥∥∥∥∥
MB(0,∞)

≤ c1‖g‖LA(0,∞) (5.23)

for every g ∈ LA(0, ∞).
(ii) A satisfies condition (5.16) and there exists a constant c2 such that

B(t) ≤ Aω(c2t) for t ≥ 0, (5.24)

where Aω is the Young function given by (5.14).

Moreover, the constants c1 and c2 depend only on each other.

Proof. Thanks to property (2.31), inequality (5.23) is equivalent to

∥∥∥∥∥ω(t)

t∫
0

g(τ)dτ

∥∥∥∥∥
LÃ(0,∞)

≤ c′
1‖g‖

�B̃(0,∞)
(5.25)

for every g ∈ �B̃(0, ∞), where c′
1 > 0 depends only in c1. In turn, inequality (5.25) is equivalent 

to ∥∥∥∥∥ω(t)

t∫
0

g∗(τ )dτ

∥∥∥∥∥
LÃ(0,∞)

≤ c′
1‖g∗‖

�B̃(0,∞)
(5.26)

for every g ∈ �B̃(0, ∞). The latter equivalence is a consequence of inequality (2.3) and of the 
fact that the norm in �B̃(0, ∞) is rearrangement invariant.

Next, by [32, Proposition 3.4], inequality (5.26) is equivalent to the same inequality restricted 
to characteristic functions of the form χ(0,ρ) for ρ > 0. Namely,

∥∥∥∥∥ω(t)

t∫
0

χ(0,ρ)(r)dr

∥∥∥∥∥
LÃ(0,∞)

≤ c′
1‖χ(0,ρ)‖�B̃(0,∞)

for ρ > 0. (5.27)

By equations (2.38) and (2.32),

1ρB−1( 1 ) ≤ ‖χ(0,ρ)‖ B̃ ≤ ρB−1( 1 ) for ρ > 0. (5.28)
2 ρ � (0,∞) ρ
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Notice that

ω(t)

t∫
0

χ(0,ρ)(τ )dτ = χ(0,ρ)(t)tω(t) + χ(ρ,∞)(t)ρω(t) for t, ρ > 0.

Thanks to properties (5.13) of the weight ω,

ρ‖ω‖
LÃ(ρ,∞)

≥ ρ‖ω‖
LÃ(ρ,2ρ)

≥ ρω(2ρ)‖χ(ρ,2ρ)‖LÃ(0,∞)

≥ 1
2ρω(ρ)‖χ(0,ρ)‖LÃ(0,∞)

≥ 1
2‖sω(s)‖

LÃ(0,ρ)
for ρ > 0,

whence

ρ‖ω‖
LÃ(ρ,∞)

≤
∥∥∥∥∥ω(t)

t∫
0

χ(0,ρ)(τ )dτ

∥∥∥∥∥
LÃ(0,∞)

≤ 3ρ‖ω‖
LÃ(ρ,∞)

for ρ > 0.

Altogether, inequality (5.27) holds if and only if there exists a constant c′
2 > 0 such that

Gω

( 1
ρ

) = ‖ω‖
LÃ(ρ,∞)

≤ c′
2B

−1( 1
ρ

)
for ρ > 0. (5.29)

Since B is a Young function, B−1 is finite-valued and, consequently, condition (5.16) follows 
from (5.29). Inequality (5.29) implies that B(t) ≤ G−1

ω (c′
2t) for t > 0, an equivalent form of 

(5.24), owing to inequalities (5.17). �
Proposition 5.7. Let A and B be Young functions and let ω be an admissible weight. Assume 
that there exists a constant c1 such that

∥∥∥∥∥
∞∫
t

g(τ )ω(τ)dτ

∥∥∥∥∥
MB(0,∞)

≤ c1‖g‖LA(0,∞) (5.30)

for every g ∈ LA(0, ∞). Then there exists a constant c2, depending only on c1, such that

∥∥∥∥∥
∞∫
t

g(τ )ω(τ)dτ

∥∥∥∥∥
LB(0,∞)

≤ c2‖g‖LA(0,∞) (5.31)

for every g ∈ LA(0, ∞).

Proof. Denote by R the operator defined as

Rg(t) =
∞∫

g(τ)ω(τ)dτ for t > 0, (5.32)
t
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for g ∈ M+(0, ∞).
Assume that A and B obey (5.30). Let N ∈ (0, 1] and set

AN(t) = A(t)

N
and BN(t) = B(t)

N
for t ≥ 0.

Clearly, AN and BN are Young functions. We shall show that

‖Rg‖MBN (0,∞) ≤ c′
2‖g‖LAN (0,∞) (5.33)

for g ∈ LAN (0, ∞), where the constant and c′
2 > 0 is independent of N . By Proposition 5.6, 

inequality (5.30) implies

B(t) ≤ Aω(c′
1t) for t ≥ 0 (5.34)

for some constant c′
1 > 0, where Aω is defined by (5.14). Let (GN)ω and (AN)ω be the functions 

associated with GN and AN as in (5.15) and (5.14), respectively. Since ÃN(t) = Ã(Nt)/N for 
t ≥ 0, we have that

(GN)ω(t)=inf

{
λ > 0 : 1

N

∞∫
1/t

Ã

(
Nω(r)

λ

)
dr ≤ 1

}
=inf

{
λ > 0 :

∞∫
1/Nt

Ã

(
Nω(Nr)

λ

)
dr ≤ 1

}

≤ inf

{
λ > 0 :

∞∫
1/Nt

Ã

(
ω(r)

λ

)
dr ≤ 1

}
= Gω(Nt) for t > 0,

where the inequality follows since Nω(Nr) ≤ ω(r) for N ≤ 1 and r > 0. Therefore,

G−1
ω (t) ≤ N(GN)−1

ω (t) for t > 0,

and, consequently,

Aω(t) ≤ N(AN)ω(t) for t ≥ 0.

Inequality (5.34) yields

BN(t) = 1

N
B(t) ≤ 1

N
Aω(c′

1t) ≤ (AN)ω(c′
1t) for t ≥ 0,

which in turn implies (5.33) by Proposition 5.6.
Let g ∈M+(0, ∞) be such that

∞∫
0

A
(
g(s)

)
ds ≤ 1. (5.35)

On setting
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N =
∞∫

0

A
(
g(s)

)
ds,

we have that ‖g‖LAN (0,∞) ≤ 1 and, by inequality (5.33),

‖Rg‖MBN (0,∞) ≤ c′
2. (5.36)

By the definition of the Marcinkiewicz norm, inequality (5.36) implies that

c′
2 ≥ ‖Rg‖MBN (0,∞) ≥ sup

τ∈(0,∞)

(Rg)∗(τ )

B−1
N (1/τ)

= sup
t∈(0,∞)

t

B−1
N

(
1/|{Rg ≥ t}|) .

The latter inequality is equivalent to

|{Rg ≥ t}|B
(

t
c′

2

)
≤

∞∫
0

A
(
g(s)

)
ds for t > 0, (5.37)

for every g ∈M+(0, ∞) satisfying condition (5.35).
We conclude the proof by showing that the weak type estimate (5.37) implies strong type 

estimate

∞∫
0

B

(
Rg(s)

4c′
2

)
ds ≤

∞∫
0

A
(
g(s)

)
ds (5.38)

for every g ∈M+(0, ∞) obeying (5.35). To this end, we use a classical discretization argument. 
Given g ∈ M+(0, ∞), let {sk} be a sequence in (0, ∞) such that

Rg(sk) = 2k for k ∈Z. (5.39)

If Rg is bounded, then k ranges from −∞ to the smallest K ∈ Z such that Rg(sK) ≤ 2K . Then, 
sK = 0 and sk is given by (5.39) for k < K . In the latter computations, K thus denotes either 
∞ or an integer. Since the function Rf is non-increasing, the sequence {sk} is non-increasing as 
well. Thereby

Rg(s) ≤ Rg(sk+1) = 2k+1 for s ∈ [sk+1, sk)

and

∞∫
0

B

(
Rg(s)

4c′
2

)
ds =

∑
k<K

sk∫
sk+1

B

(
Rg(s)

4c′
2

)
ds

≤
∑
k<K

sk∫
sk+1

B

(
2k+1

4c′
2

)
ds =

∑
k<K

(sk − sk+1)B

(
2k−1

c′
2

)
.

(5.40)
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Next, we define gk = gχ[sk,sk−1) for k < K − 1. If s ∈ [sk+1, sk), then

Rgk(s) =
∞∫
s

g(r)χ[sk,sk−1)(r)ω(r)dr ≥
sk−1∫
sk

g(r)ω(r)dr = Rg(s1) − Rg(sk−1) = 2k−1.

Hence, {Rgk ≥ 2k−1} ⊇ [sk+1, sk). Coupling this piece of information with the weak type esti-
mate (5.37), with g replaced by gk and t = 2k−1, enables us to infer that

(sk − sk+1)B
(

2k−1

c′
2

)
≤ |{Rgk ≥ 2k−1}|B

(
2k−1

c′
2

)
≤

∞∫
0

A
(
gk(s)

)
ds ≤

sk−1∫
sk

A
(
g(s)

)
ds. (5.41)

Inequalities (5.40) and (5.41) yield inequality (5.38), which, in turn, implies (5.31). �
The following result is a straightforward consequence of Propositions 5.6 and 5.7.

Theorem 5.8. Let A and B be Young functions, let ω be an admissible weight, and let Aω be the 
Young function given by (5.14). The following conditions are equivalent.

(i) There exists a constant c1 such that

∥∥∥∥∥
∞∫
t

g(τ )ω(τ)dτ

∥∥∥∥∥
LB(0,∞)

≤ c1‖g‖LA(0,∞) (5.42)

for every g ∈ LA(0, ∞).
(ii) The function A satisfies condition (5.16) and there exists a constant c2 such that

B(t) ≤ Aω(c2t) for t ≥ 0. (5.43)

Moreover, the constants c1 and c2 depend only on each other.

We are now in a position to prove Theorem 5.4.

Proof of Theorem 5.4. Throughout this proof, c denotes a constant whose value may differ at 
various occurrences. Assume that Aω and B satisfy condition (5.20), i.e. there exists t0 ≥ 0 such 
that B(t) ≤ Aω(ct) for t ≥ t0. Let Â and B̂ be Young functions that agree with A and B near 
infinity, and such that Â obeys condition (5.16) and

B̂(t) ≤ Âω(ct) for t ≥ 0. (5.44)

Here, Âω denotes the Young function associated with Â as in (5.14). By Theorem 5.8, condi-
tion (5.44) ensures that
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∥∥∥∥∥
∞∫
t

g(τ )ω(τ)dτ

∥∥∥∥∥
LB̂(0,∞)

≤ c‖g‖
LÂ(0,∞)

(5.45)

for every g ∈ LÂ(0, ∞). Observe that, if g ∈ LÂ(0, 1), then an application of inequality (5.45)
to its extension by 0 outside (0, 1) yields an analogous inequality with LÂ(0, ∞) and LB̂(0, ∞)

replaced with LÂ(0, 1) and LB̂(0, 1). Since the latter spaces agree with LA(0, 1) and LB(0, 1)

(up to equivalent norms), inequality (5.19) follows.
Conversely, assume that inequality (5.19) holds. We may assume that A satisfies condi-

tion (5.16), since the function A can be modified near zero, if necessary, without changing the 
corresponding Orlicz space LA(0, 1), up to equivalent norms. By property (2.31),

∥∥∥∥∥ω(s)

s∫
0

g(r)dr

∥∥∥∥∥
LÃ(0,1)

≤ c‖g‖
LB̃(0,1)

(5.46)

for every g ∈ LB̃(0, 1). Next, setting g = χ(0,ρ) for ρ ∈ (0, 1) in inequality (5.46) results in

ρ‖ω‖
LÃ(ρ,1)

≤
∥∥∥∥∥ω(s)

s∫
0

χ(0,ρ)(r)dr

∥∥∥∥∥
LÃ(0,1)

≤ c‖χ(0,ρ)‖LB̃(0,1)
≤ cρB−1( 1

ρ

)
for ρ ∈ (0,1).

Since, owing to assumption (5.16), ‖ω‖
LÃ(1,∞)

< ∞, we have that

Gω

( 1
ρ

) = ‖ω‖
LÃ(ρ,∞)

≤ cB−1( 1
ρ

)
for ρ ∈ (0,1). (5.47)

Hence, equation (5.20) follows. �
Proof of Theorem 5.2. Owing to Theorem 4.1, embedding (5.6) holds if and only if the opera-
tor S is bounded between LA(0, 1) and LB(0, 1). In turn, the operator S is bounded if and only 
if both the operator R, defined as in (5.9) with ω given by (5.11), and its adjoint R′, having 
the form (5.10), are bounded. Now, Theorem 5.4 asserts that R is bounded from LA(0, 1) into 
LB(0, 1) if and only if condition (5.7) holds. Condition (5.8) is therefore necessary and suffi-
cient for the boundedness of R′. Note that condition (5.16) agrees with (5.3) with the special 
choice (5.11).

To prove the assertion concerning the case when A ∈ ∇2, observe that

S ≈ R ◦ P, (5.48)

with absolute equivalence constants, where P is the averaging operator given by Pg(s) =
1
s

∫ s

0 g(r) dr for s ∈ (0, 1) and g ∈M+(0, 1). Indeed,

RPg(s) =
1∫

1

r

r∫
g(�)d�ω(r)dr
s 0
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=
s∫

0

g(�)d�

1∫
s

ω(r)

r
dr +

1∫
s

g(�)

1∫
�

ω(r)

r
dr d�

≈ ω(s)

s∫
0

g(�)d� +
1∫

s

g(�)ω(�)d� = Sg(s) for s ∈ (0,1).

Here, we have made use of the fact that, if ω is given by (5.11), then

1∫
�

ω(r)

r
dr ≈ ω(�) for � ∈ (

0, 1
2

)
, (5.49)

with absolute equivalence constants. Therefore, inequality (5.6) holds if and only if R ◦ P is 
bounded from LA(0, 1) into LB(0, 1). If A ∈ ∇2, then the operator P is bounded on LA(0, 1), 
see e.g. [23]. Consequently, inequality (5.6) holds provided that R is bounded from LA(0, 1)

into LB(0, 1), and this boundedness is equivalent to condition (5.7). Conversely, the necessity of 
(5.7) is a consequence of the first part of the statement.

The assertion about the case when B ∈ �2 can be verified via a duality argument. Since S
is self-adjoint, inequality (5.6) holds if and only if S is bounded from LB̃(0, 1) into LÃ(0, 1). 
Since B ∈ �2, we have that B̃ ∈ ∇2. Hence, P is bounded on LB̃(0, 1). Therefore, thanks to 
condition (5.48) again, inequality (5.6) holds if R is bounded from LB̃(0, 1) into LÃ(0, 1). This 
fact is guaranteed under condition (5.8). The necessity of the latter condition (5.8) follows from 
the first part of the statement. �
6. Ornstein–Uhlenbeck embeddings in Lorentz-Zygmund spaces

Here we exploit our general results to derive Sobolev inequalities for the Ornstein–Uhlenbeck 
operator in Lorentz-Zygmund spaces. This is the subject of the following theorem.

Theorem 6.1 (Optimal embeddings for Lorentz–Zygmund spaces). Let p, q ∈ [1, ∞] and α, β ∈
R. Then

WLLp,q;α,β →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1,1;0,β−1 if p = q = 1, α = 0, β ≥ 1

L1,1;α,β if p = q = 1, α > 0, β ∈R

Lp,q;α+1,β if p ∈ (1,∞), α ∈R, β ∈ R

L∞,∞;α,β if p = q = ∞, α < 0, β ∈ R

L∞,∞;0,β−1 if p = q = ∞, α = 0, β ≤ 0,

(6.1)

where all the spaces are over (Rn, γn). Moreover, in each case, the target space is optimal 
(smallest) among all rearrangement-invariant spaces, and, simultaneously, the domain is op-
timal (largest) among all rearrangement-invariant spaces.

Let us mention that some cases of the embeddings in (6.1) can be found in [19]. However, 
their optimality is not discussed in that paper.
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In this section, without further explicit reference, we shall repeatedly use well-known charac-
terizations of the associate spaces of Lorentz–Zygmund spaces, which can be found for instance 
in [35, Section 9.6]. We will also use without further warnings the fact that the function Sg is 
non-increasing for every function g ∈M+(0, 1).

Proof of Theorem 6.1. Let β ≥ 0 and set X(0, 1) = L1,1;0,β+1(0, 1). Then condition (4.6) is 
satisfied, and by equation (4.8) one has that

‖g‖X′
L(0,1) = ‖Sg∗‖L∞,∞;0,−β−1(0,1) = sup

s∈(0,1)

��(s)−β−1Sg∗(s)

for g ∈ M+(0, 1). Next,

g∗(r) ≤ ‖g‖L∞,∞;0,−β(0,1) ��
β(r) for r ∈ (0,1),

whence

‖g‖X′
L(0,1) = sup

s∈(0,1)

1

��(s)β+1

⎛⎝ 1

s�(s)

s∫
0

g∗(r)dr +
1∫

s

g∗(r)
r�(r)

dr

⎞⎠

≤ sup
s∈(0,1)

1

��(s)β+1

⎛⎝ 1

s�(s)

s∫
0

��β(r)dr +
1∫

s

��β(r)

r�(r)
dr

⎞⎠‖g‖L∞,∞;0,−β(0,1)

� ‖g‖L∞,∞;0,−β(0,1)

for g ∈ M+(0, 1), up to a constant depending on β . This proves the embedding

XL(Rn, γn) → L1,1;0,β(Rn, γn). (6.2)

In order to establish the converse embedding, we define the function η : (
0, e1−e

) → (0, 1) by

η(s) = ��−1( 1
2��(s)

)
for s ∈ (

0, e1−e
)
, (6.3)

where ��−1 denotes the inverse of the function ��. Then η is increasing and η
((

0, e1−e
)) = (0, 1). 

Moreover, one has

��(η(s)) = 1
2��(s) for s ∈ (

0, e1−e
)

and

��(η−1(τ )) = 2��(τ) for τ ∈ (
0,1

)
.

Thus,
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‖g‖X′
L(0,1) ≥ sup

s∈(0,e1−e)

1

��(s)β+1

η(s)∫
s

g∗(r)
r�(r)

dr

≥ sup
s∈(0,e1−e)

g∗(η(s)
) 1

��(s)β+1

η(s)∫
s

dr

r�(r)

= sup
s∈(0,e1−e)

g∗(η(s)
)
��(s)−β−1[��(s) − ��

(
η(s)

)]
= 1

2 sup
s∈(0,e1−e)

g∗(η(s)
)
��(s)−β = 1

2 sup
τ∈(0,1)

g∗(τ )��
(
η−1(τ )

)−β

= 2−1−β sup
s∈(0,1)

g∗(s)��(s)−β = 2−1−β‖g‖L∞,∞;0,−β(0,1).

This chain implies the embedding L1,1;0,β(Rn, γn) → XL(Rn, γn). Coupling the latter embed-
ding with (6.2) yields

XL(Rn, γn) = L1,1;0,β(Rn, γn),

up to equivalent norms. Owing to Theorem 4.3, this shows that the target space in the first em-
bedding in (6.1) is optimal among all rearrangement-invariant target spaces.

Now let α > 0, β ∈ R and X(0, 1) = L1,1;α,β(0, 1). Then condition (4.6) is satisfied again, 
and

‖g‖X′
L(0,1) = ‖Sg∗‖L∞,∞;−α,−β(0,1)

= sup
s∈(0,1)

⎛⎝ 1

s�(s)α+1��(s)β

s∫
0

g∗(r)dr + 1

�(s)α��(s)β

1∫
s

g∗(r)
r�(r)

dr

⎞⎠ .

On the other hand,

g∗(r) ≤ ‖g‖L1,1;α,β (0,1) �(r)
α��(r)β for r ∈ (0,1).

Therefore,

‖g‖X′
L(0,1)

≤ sup
s∈(0,1)

⎛⎝ 1

s�(s)α+1��(s)β

s∫
0

�(r)α��(r)β dr + 1

�(s)α��(s)β

1∫
s

��(r)β

r�(r)1−α
dr

⎞⎠‖g‖L1,1;α,β (0,1)

� ‖g‖L1,1;α,β (0,1),

up to a constant depending on α and β . The embedding

XL(Rn, γn) → L1,1;α,β(Rn, γn) (6.4)
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is thus established. In order to prove the converse embedding, define the function σ : (0, e1−e) →
(0, 1) as

σ(s) = ��−1(��(s) − 1
)

for s ∈ (0, e1−e). (6.5)

Then σ is increasing and σ
(
(0, e1−e)

) = (0, 1). Thus,

‖g‖X′
L(0,1) ≥ sup

s∈(0,e1−e)

1

�(s)α��(s)β

σ(s)∫
s

g∗(r)
r�(r)

dr ≥ sup
s∈(0,e1−e)

g∗(σ(s)
)

�(s)α��(s)β

σ(s)∫
s

dr

r�(r)

= sup
s∈(0,e1−e)

g∗(σ(s)
)
�(s)−α��(s)−β

[
��(s) − ��

(
σ(s)

)]
= sup

s∈(0,e1−e)

g∗(σ(s)
)
�(s)−α��(s)−β = sup

s∈(0,1)

g∗(s)�
(
σ−1(s)

)−α
��

(
σ−1(s)

)−β
.

Since

σ−1(r) = ��−1(��(r) + 1
)

for r ∈ (0,1),

one has that

�
(
σ−1(r)

) = e�(r) and ��
(
σ−1(r)

) = 1 + ��(r) for r ∈ (0,1).

Consequently,

‖g‖X′
L(0,1) � sup

s∈(0,1)

g∗(s)�(s)−α��(s)β = ‖g‖L∞,∞;−α,β (0,1),

up to a constant depending on α and β . This yields the converse embedding to (6.4). Altogether, 
we obtain

XL(Rn, γn) = L1,1;α,β(Rn, γn),

up to a constant depending on α and β . Thanks to Theorem 4.3, this shows that the target space 
in the second embedding in (6.1) is optimal among all rearrangement-invariant target spaces.

Assume that p ∈ (1, ∞), q ∈ [1, ∞], α, β ∈ R, and X(0, 1) = Lp,q;α,β(0, 1). Then (4.6) is 
satisfied and

‖g‖X′
L(0,1) = ‖Sg∗‖

Lp′,q′;−α,−β(0,1)

≈
∥∥∥∥∥ s

1
p′ − 1

q′ −1

�(s)α+1��(s)β

s∫
0

g∗(r)dr

∥∥∥∥∥
Lq′

(0,1)

+
∥∥∥∥∥ s

1
p′ − 1

q′

�(s)α��(s)β

1∫
s

g∗(r)
r�(r)

dr

∥∥∥∥∥
Lq′

(0,1)

for g ∈ M+(0, 1), with equivalence constants depending on p, q, α, β . From classical weighted 
Hardy-type inequalities – see e.g. [30, Theorems 1.3.2.2 and 1.3.2.3] – we deduce that
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‖g‖X′
L(0,1) �

∥∥∥s
1
p′ − 1

q′ �(s)−α−1��(s)−βg∗(s)
∥∥∥

Lq′
(0,1)

for g ∈ M+(0,1),

up to a constant depending on p, q, α, β . Since g∗∗ ≥ g∗, one also has that

‖g‖X′
L(0,1) �

∥∥∥s
1
p′ − 1

q′ �(s)−α−1��(s)−βg∗(s)
∥∥∥

Lq′
(0,1)

for g ∈M+(0,1),

up to a constant depending on p, q, α, β . Altogether,

‖g‖X′
L(0,1) ≈

∥∥∥s
1
p′ − 1

q′ �(s)−α−1��(s)−βg∗(s)
∥∥∥

Lq′
(0,1)

for g ∈M+(0,1),

with equivalence constants depending on p, q, α, β . Thus, XL(Rn, γn) = Lp,q;α+1,β(Rn, γn), 
up to equivalent norms, and the optimality of this target in the third embedding in (6.1) follows 
by Theorem 4.3.

Let α < 0 and let X(0, 1) = L∞,∞;α,β(0, 1). Then condition (4.6) is fulfilled and

‖g‖X′
L(0,1) = ‖Sg∗‖L1,1;−α,−β(0,1) = ‖�(s)−α��(s)−βSg∗(s)‖L1(0,1)

≈
1∫

0

1

s�(s)1+α��(s)β

s∫
0

g∗(r)dr ds +
1∫

0

1

�(s)α��(s)β

1∫
s

g∗(r)
r�(r)

dr ds

=
1∫

0

g∗(r)
1∫

r

ds

s�(s)1+α��(s)β
dr +

1∫
0

g∗(r)
r�(r)

r∫
0

ds

�(s)α��(s)β
dr

≈
1∫

0

g∗(r)
1∫

r

ds

s�(s)1+α��(s)β
dr ≈ ‖g‖L1,1;−α,β (0,1),

with equivalence constants depending on α and β . Hence X′
L(Rn, γn) = L1,1;−α,−β(Rn, γn), 

whence XL(Rn, γn) = L∞,∞;α,β(Rn, γn). By Theorem 4.3, the target space in the fourth em-
bedding in (6.1) is optimal.

Let β ≤ 0 and let X(0, 1) = L∞,∞;0,β(0, 1). Then (4.6) is satisfied and

‖g‖X′
L(0,1) = ‖Sg∗‖L1,1;0,−β(0,1) = ‖��(s)−βSg∗(s)‖L1(0,1)

≈
1∫

0

1

s�(s)��(s)β

s∫
0

g∗(r)dr ds +
1∫

0

1

��(s)β

1∫
s

g∗(r)
r�(r)

dr ds

=
1∫

0

g∗(r)
1∫

r

ds

s�(s)��(s)β
dr +

1∫
0

g∗(r)
r�(r)

r∫
0

ds

��(s)β
dr

≈
1∫
g∗(r)

1∫
ds

s�(s)��(s)β
dr ≈

1∫
g∗(r)��(r)1−β dr = ‖g‖L1,1;0,1−β(0,1)
0 r 0
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with equivalence constants depending on β . Therefore, X′
L(Rn, γn) = L1,1;0,1−β(Rn, γn), and 

hence XL(Rn, γn) = L∞,∞;0,β−1(Rn, γn). This implies, via Theorem 4.3, the optimality of the 
target space in the fifth embedding in (6.1).

We have shown that all the embeddings in (6.1) hold, and that each target space is optimal 
(smallest possible) among all rearrangement-invariant spaces. To finish the proof, we need only 
to verify that also the domain spaces are optimal. Owing to the fact that the operator S is self-
adjoint, the optimality of a domain in an embedding is equivalent to that of the target in the 
embedding where the domain space and the target space are replaced by the associate of the 
target space and the associate of the domain space, respectively. Hence, the optimality of the 
domain spaces follows from that of the target spaces via a well-known characterization of the 
respective associate spaces. We omit the details, for brevity. �
7. Ornstein–Uhlenbeck embeddings in Marcinkiewicz spaces

We conclude our discussion by exhibiting optimal Ornstein–Uhlenbeck embeddings where 
either the domain, or the target is a Marcinkiewicz space. This is the content of the following 
result.

Theorem 7.1 (Optimal embeddings for Marcinkiewicz spaces). Let ϕ and θ be quasiconcave 
functions on (0, 1).

(i) Assume that

1∫
0

��(s)dϕ(s) < ∞. (7.1)

Let ψ : (0, 1) → [0, ∞) be the function given by

ψ(s) =
s∫

0

dr

ϕ(r)�(r)
+ s

1∫
s

dϕ(r)

r�(r)
for s ∈ (0,1). (7.2)

Then

WLMϕ(Rn, γn) → Mψ(Rn, γn), (7.3)

and Mψ(Rn, γn) is the optimal rearrangement-invariant target space in (7.3). Here, ϕ and 

ψ denote the functions associated with ϕ and ψ as in (2.34).
(ii) Assume that

sup
s∈(0,1)

��(s)θ(s) < ∞. (7.4)

Then the functional given by
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‖g‖Z(0,1) = sup
s∈(0,1)

θ(s)

⎛⎝1

s

s∫
0

g∗∗(r)
�(r)

dr +
1∫

s

g∗(r)
r�(r)

dr

⎞⎠ (7.5)

for g ∈M+(0, 1) is a rearrangement-invariant function norm. Moreover,

WLZ(Rn, γn) → Mθ(R
n, γn), (7.6)

and Z(Rn, γn) is the optimal rearrangement-invariant domain space in (7.6).

Proof. (i) Set X(0, 1) = Mϕ(0, 1). We use the description of the optimal rearrangement-invari-
ant target XL given in Theorem 4.3. By the monotonicity of Sg∗, the definition of S and Fubini’s 
theorem, we have that

‖g‖X′
L(0,1) = ‖Sg∗‖�ϕ(0,1) =

1∫
0

Sg∗(s)dϕ(s) =
1∫

0

(
1

s�(s)

s∫
0

g∗(r)dr +
1∫

s

g∗(r)
r�(r)

dr

)
dϕ(s)

=
1∫

0

g∗(s)
( 1∫

s

dϕ(r)

r�(r)
+ ϕ(s)

s�(s)

)
ds =

1∫
0

g∗(s)
( 1∫

s

dϕ(r)

r�(r)
+ 1

ϕ(s)�(s)

)
ds

for every g ∈M+(0, 1). This amounts to saying that ‖ · ‖X′
L(0,1) = ‖ · ‖�ψ(0,1), where

ψ(s) =
s∫

0

1∫
r

dϕ(�)

��(�)
dr +

s∫
0

dr

ϕ(r)�(r)
(7.7)

=
s∫

0

s∫
r

dϕ(�)

��(�)
dr + s

1∫
s

dϕ(r)

r�(r)
+

s∫
0

dr

ϕ(r)�(r)
(7.8)

=
s∫

0

dϕ(r)

�(r)
+ s

1∫
s

dϕ(r)

r�(r)
+

s∫
0

dr

ϕ(r)�(r)
for s ∈ (0,1). (7.9)

Let 0 < s1 < s2 < 1. Then

s2∫
s1

dϕ(r) = ϕ(s2) − ϕ(s1) = s2

ϕ(s2)
− s1

ϕ(s1)
≤ s2

ϕ(s2)
− s1

ϕ(s2)
≤

s2∫
s1

dr

ϕ(r)
. (7.10)

Hence, the first integral on the rightmost side of equation (7.7) is bounded by the third one. The 
conclusion hence follows via property (2.35).

(ii) By Theorem 4.5, the optimal rearrangement domain space Z(0, 1) = YL(0, 1) associated 
with the target space Y(0, 1) = Mθ(0, 1) obeys
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‖g‖Z(0,1) = sup
s∈(0,1)

θ(s)
(
Sg∗)∗∗

(s)

for g ∈ M+(0, 1). Moreover, for every g ∈ M+(0, 1) and s ∈ (0, 1),

(
Sg∗)∗∗

(s) = 1

s

s∫
0

(
1

r�(r)

r∫
0

g∗(�)d� +
1∫

r

g∗(�)

��(�)
d�

)
dr

= 1

s

s∫
0

g∗∗(r)
�(r)

dr + 1

s

s∫
0

s∫
r

g∗(�)

��(�)
d� dr +

1∫
s

g∗(r)
r�(r)

dr

= 1

s

s∫
0

g∗∗(r)
�(r)

dr + 1

s

s∫
0

g∗(r)
�(r)

dr +
1∫

s

g∗(r)
r�(r)

dr

≈ 1

s

s∫
0

g∗∗(r)
�(r)

dr +
1∫

s

g∗(r)
r�(r)

dr,

with absolute equivalence constants, inasmuch as, in the last but one line, the second integral is 
bounded by the first one. Hence, the conclusion follows. �
Theorem 7.2 (Optimal embeddings for Marcinkiewicz spaces – examples). One has⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

WLL(1,∞;0,β) → L(1,∞;0,β−1) if β > 1
WLL(1,∞;α,β) → L(1,∞;α,β) if α > 0 and β ∈R
WLL(p,∞;α,β) → L(p,∞;α+1,β) if p ∈ (1,∞) and α,β ∈R
WL expLβ → expLβ if β > 0

WL exp expLβ → exp expL
β

β+1 if β > 0
WLL∞ → exp expL if β > 0,

(7.11)

where all the spaces are over (Rn, γn). Moreover, all target spaces and all domain spaces are 
optimal in (7.11) among rearrangement-invariant spaces.

Proof. We begin by showing the optimality of target spaces in (7.11) via formula (7.2) from 
Theorem 7.1.

First, when β > 1, we have that L(1,∞;0,β) = Mϕ with ϕ(s) = s��(s)β for s ∈ (0, 1). Since 
ϕ(s) = ��(s)−β for s ∈ (0, 1),

dϕ(s) ≈ s−1�(s)−1��(s)−β−1ds for s ∈ (0,1).

Hence,

1∫
��(s)dϕ(s) ≈

1∫
ds

s�(s)��(s)β
< ∞.
0 0
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Thus, condition (7.1) is satisfied. The function ψ given by (7.2) obeys

ψ(s) ≈
s∫

0

dr

r�(r)��(r)β
+ s

1∫
s

dr

r2�(r)2��(r)β+1 ≈ ��(s)1−β + �(s)−2��(s)−β−1 ≈ ��(s)1−β

for s ∈ (0, 1). Thus, ψ(s) ≈ s��(s)β−1 for s ∈ (0, 1), whence Mψ = L(1,∞;0,β−1), and, by 
Theorem 7.1 (i), the first embedding in (7.11) holds and its target space is optimal among all 
rearrangement-invariant spaces.

If α > 0 and β ∈ R, then L(1,∞;α,β) = Mϕ , where ϕ(s) = s�(s)α��(s)β for s ∈ (0, 1). One 
has that ϕ(s) = �(s)−α��(s)−β and dϕ(s) ≈ s−1�(s)−α−1��(s)−βds for s ∈ (0, 1). Hence

1∫
0

��(s)dϕ(s) ≈
1∫

0

��(s)1−β

s�(s)α+1 ds < ∞.

Thus, condition (7.1) is satisfied. The function ψ from (7.2) satisfies

ψ(s) ≈
s∫

0

r−1�(r)−α−1��(r)−βdr + s

1∫
s

r−2�(r)−α−2��(r)−βdr

≈ �(s)−α��(s)−β + �(s)−α−2��(s)−β ≈ �(s)−α��(s)−β

for s ∈ (0, 1). Thereby, ψ(s) ≈ ϕ(s) for s ∈ (0, 1), whence Mψ = L(1,∞;α,β).

Next, assume that p ∈ (1, ∞) and α, β ∈ R. Then L(p,∞;α,β) = Mϕ , where ϕ(s) =
s

1
p �(s)α��(s)β for s ∈ (0, 1). We have that ϕ(s) = s

1− 1
p �(s)−α��(s)−β and dϕ(s) ≈

s
− 1

p �(s)−α��(s)−βds for s ∈ (0, 1). Consequently,

1∫
0

��(s)dϕ(s) ≈
1∫

0

��(s)1−β�(s)−αs
− 1

p ds < ∞.

Therefore, condition (7.1) is satisfied. The function ψ given by (7.2) fulfills

ψ(s) ≈
s∫

0

dr

r
1
p �(r)α+1��(r)β

+ s

1∫
s

dr

r
1
p

+1
�(r)α+1��(r)β

≈ s
1− 1

p �(s)−α−1��(s)−β

for s ∈ (0, 1). Thus, ψ(s) ≈ s
1
p �(s)α+1��(s)β for s ∈ (0, 1), whence Mψ = L(p,∞;α+1,β).

If β > 0, then expLβ = Mϕ , where ϕ(s) = �(s)
− 1

β for s ∈ (0, 1). Therefore, ϕ(s) = s�(s)
1
β

and dϕ(s) ≈ �(s)
1
β ds for s ∈ (0, 1). Hence,
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1∫
0

��(s)dϕ(s) ≈
1∫

0

��(s)�(s)
1
β ds < ∞.

Condition (7.1) is satisfied, and the function ψ from (7.2) obeys

ψ(s) ≈
s∫

0

�(r)
1
β
−1dr + s

1∫
s

r−1�(r)
1
β
−1dr ≈ s�(s)

1
β
−1 + s�(s)

1
β ≈ s�(s)

1
β

for s ∈ (0, 1). Therefore, ψ(s) ≈ ϕ(s) for s ∈ (0, 1), whence Mψ = expLβ .

If β > 0, then exp expLβ = Mϕ , where ϕ(s) = ��(s)
− 1

β for s ∈ (0, 1). We have that ϕ(s) =
s��(s)

1
β and dϕ(s) ≈ ��(s)

1
β ds for s ∈ (0, 1). Condition (7.1) is fulfilled, since

1∫
0

��(s)dϕ(s) ≈
1∫

0

��(s)
1+ 1

β ds < ∞.

The function ψ given by (7.2) satisfies

ψ(s) ≈
s∫

0

��(r)
1
β

�(r)
dr + s

1∫
s

��(r)
1
β

r�(r)
dr ≈ s�(s)−1��(s)

1
β + s��(s)

1
β
+1 ≈ s��(s)

1
β
+1

for s ∈ (0, 1). Thus, ψ(s) ≈ ��(s)
− β+1

β for s ∈ (0, 1), whence Mψ = exp expL
β

β+1 .
As for the last embedding, we have that L∞ = Mϕ , where ϕ(s) = 1 for s ∈ (0, 1). Then 

ϕ(s) = s and dϕ(s) = ds for s ∈ (0, 1), and

1∫
0

��(s)dϕ(s) =
1∫

0

��(s)ds < ∞.

Thus, condition (7.1) is satisfied, and

ψ(s) ≈
s∫

0

dr

�(r)
+ s

1∫
s

dr

r�(r)
≈ s�(s)−1 + s��(s) ≈ s��(s)

for s ∈ (0, 1). Consequently, ψ(s) ≈ ��(s) for s ∈ (0, 1), whence Mψ = exp expL.
We have thus shown that the embeddings in (7.11) hold and that the target spaces are op-

timal. It remains to prove the optimality of the domain spaces By Theorem 7.1 (i), given a 
domain space of Marcinkiewicz type Mϕ , its optimal rearrangement-invariant target space is 
also a Marcinkiewicz space Mθ . Hence,

WLMϕ → Mθ. (7.12)
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Now, thanks to Theorem 7.1 (ii), there exists an optimal rearrangement-invariant domain space 
X for the target Mθ . By the optimality of X, we have that Mϕ → X. Our goal will be to show that 
the converse embedding X → Mϕ holds as well. To this end, it suffices to prove the inequality 
between their fundamental functions ϕX � ϕ. Indeed, then one has

X → MϕX
→ Mϕ,

where the first embedding holds owing to (2.36), whereas the second follows immediately from 
the definition of the Marcinkiewicz functional. With formula (7.5) at hand, we have that

ϕX(a) � sup
s∈(0,1)

θ(s)

s

s∫
0

χ∗∗
(0,a)(r)

�(r)
dr = sup

s∈(0,1)

θ(s)

s

( s∫
0

χ(0,a)(r)

�(r)
dr + a

s∫
a

χ(a,1)(r)

r�(r)
dr

)

≈ max

{
sup

s∈(0,a)

θ(s)

�(s)
, a sup

s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

]}
for a ∈ (0, 1). Consequently, the domain space in (7.12) is optimal if

sup
s∈(0,a)

θ(s)

�(s)
� ϕ(a) or a sup

s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

]
� ϕ(a) (7.13)

for every a ∈ (0, 1). The remaining part of this proof is devoted to showing that equation (7.13)
is fulfilled for each embedding in (7.11). Note also that condition (7.4) is satisfied for each of 
them.

Let β > 1 and θ(s) = s��(s)β−1 for s ∈ (0, 1). Fix a ∈ (0, e1−e) and let η be the function 
defined by (6.3). Then,

a sup
s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

] ≥ a��
(
η(a)

)β−1[
��(a) − ��(η(a))

] = 2−βa��(a)β.

Since ϕL(1,∞;0,β) (a) ≈ a��(a)β for a ∈ (
0, e1−e

)
, the second inequality in (7.13) follows. Alto-

gether, this proves that the domain space in the first embedding in (7.11) is optimal.
As for the second embedding, let α > 0, β ∈ R, and θ(s) = s�(s)α��(s)β for s ∈ (0, 1). Let σ

be the function defined by (6.5). Then, for every a ∈ (
0, e1−e

)
,

a sup
s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

] ≥ a�
(
σ(a)

)α
��

(
σ(a)

)β[
��(a) − ��(σ (a))

] ≈ a�(a)α��(a)β.

This shows that the second embedding in (7.11) has an optimal domain.

Concerning the third embedding, let p ∈ (1, ∞), α, β ∈ R, and θ(s) = s
1
p �(s)α+1��(s)β for 

s ∈ (0, 1). Hence, for every a ∈ (0, 1),

sup
s∈(0,a)

θ(s)

�(s)
≥ a

1
p �(a)α��(a)β = ϕL(p,∞;α,β) (a).

Hence, the optimality of the domain in the third embedding in (7.11) follows.
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Let us focus on the fourth embedding. Assume that β > 0, and let θ(s) = �(s)−β for s ∈ (0, 1). 
If σ is again the function given by equation (6.5), then we have that

a sup
s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

]
� a

σ(a)
�
(
σ(a)

)−β[
��(a) − ��(σ (a))

] ≈ �(a)−β = ϕexpLβ (a)

for a ∈ (
0, e1−e

)
, whence we deduce that the fourth embedding in (7.11) has an optimal domain.

If β > 0 and θ(s) = ��(s)
−1− 1

β for s ∈ (0, 1), then the optimality of the fifth embedding 
follows from the fact that

a sup
s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

]
� a

η(a)
��

(
η(a)

)−1−β[
��(a) − ��(η(a))

]
≈ ��(a)

− 1
β = ϕexp expLβ (a)

for a ∈ (
0, e1−e

)
, where η is the function given by (6.3).

Finally, in the last embedding we have that θ(s) = ��(s)−1 for s ∈ (0, 1), whence

a sup
s∈(a,1)

θ(s)

s

[
��(a) − ��(s)

]
� a

η(a)
��

(
η(a)

)−1[
��(a) − ��(η(a))

] ≈ 1 = ϕL∞(a)

for a ∈ (
0, e1−e

)
. This implies that the domain in the last embedding in (7.11) is optimal. �
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