
Insight - Physics 2024, 7(1), 652.
https://doi.org/10.18282/ip652

Article

Euclidean black holes and spin connection

P. Valtancoli1,2

1 Dipartimento di Fisica, Polo Scientifico Universitá di Firenze, 50019 Sesto Fiorentino, Italy; valtancoli@fi.infn.it
2 INFN, Sezione di Firenze, 50019 Sesto Fiorentino, Italy

CITATION

Valtancoli P. Euclidean black holes
and spin connection. Insight - Physics.
2024; 7(1): 652.
https://doi.org/10.18282/ip652

ARTICLE INFO

Received: 29 August 2024
Accepted: 19 November 2024
Available online: 5 December 2024

COPYRIGHT

Copyright © 2024 Author(s).
Insight - Physics is published by
PiscoMed Publishing Pte. Ltd. This
work is licensed under the Creative
Commons Attribution (CC BY)
license.
https://creativecommons.org/
licenses/by/4.0/

Abstract: The Euclidean method is usually discussed in the context of the metric
avoiding the typical delta of the conical singularity. We introduce a new way to
calculate the Hawking temperature using the vierbein and spin connection. The
conical singularity is seen globally through an effect on parallel transport, the so called
holonomy of the spin connection. The period of the Euclidean time is calculated
requiring that the holonomy of the spin connection is trivial at the event horizon.
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1. Introduction
The complex rotation of the time coordinate to imaginary values gives many

insights into the quantum nature of space-time. In a generic curved space-time there is
no preferred time coordinate and the Wick rotation does not make much sense. Only
in the special case of static or stationary space-times such as the Schwarzschild metric
or the Kerr metric equipped with Killing vectors it is possible to rigorously define the
Wick rotation.

Indeed the analytic continuation of the time coordinate to imaginary values
t → it is an effective method to discuss the close link between black holes and
thermodynamics. The Euclidean method produces results in agreement with those
obtained by completely different techniques and correctly reproduces both the
Hawking temperature and the entropy of black holes at the semiclassical level [1–5].
Among these alternative techniques we can cite ’t Hooft’s brick wall method [6],
according towhich the entropy of a black hole can be linked to a thermal gas of quantum
field theory excitations which propagate outside the horizon. ’t Hooft introduced the
so-called brick wall, a fixed boundary near the horizon within which quantum fields do
not propagate. In [7] it has been shown that Pauli Villars’ regularization automatically
implements a cutoff in the ’t Hooft computation making the introduction of the brick
wall unnecessary.

But the natural way to formulate the thermodynamics of black holes is to use the
Euclidean path integral approach. The Wick rotation of the time coordinate is usually
discussed within the metric formalism [8]. Avoiding the conical singularity that is
naturally formed by sending t → it, leads to the periodicity of Euclidean time with a
period linked to the inverse of the Hawking temperature. Gibbons and Hawking [1],
using this periodicity of Euclidean time, computed the path integral of the action of the
classical Euclidean gravity rediscovering the correct expression of the entropy of the
black hole. Unfortunately this method is difficult to implement for black holes with
many parameters.

The purpose of this article is to explore Wick rotation using the vierbein and
spin connection formalism following explicitly the method outlined in [9] and making
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some improvements to it. At the vierbein level we achieve the same aim with a
global measurement of the conical singularity by parallel transport, i.e. calculating
the holonomy of the spin connection. The key point is that the Wick rotation in the
tangent space of space-time maps the null generators of event horizon to a single point
in the Euclidean space. Therefore to avoid the conical singularity we have to require
that the Wick rotated holonomy of the spin connection is trivial at the event horizon.
This condition reproduces the correct Hawking temperature of the black hole and, as
we shall see, is in general faster to apply than the metric formalism. The choice of the
path to compute the holonomy is practically dictated by which component µ of the spin
connection ωab

µ survives at the horizon.
The article is organized as follows. In Section 2 we first discuss the BTZ black

hole in 2 + 1 dimensions of which we give a detailed analysis of how to derive the
Hawking temperature from the spin connection. We find that in addition to a Euclidean
time period there is an extra period of the angle coordinate ϕ. The calculation can be
done in two different ways but in the end the same result is obtained.

In Section 3 we extend these results to the black hole with angular momentum in
3+1 dimensions, the Kerr metric, in which we obtain results analogous to the simplest
case in 2+1 dimensions. In this case the method is faster than working directly within
the metric formalism.

2. BTZ black hole
The Euclidean method is usually discussed within the metric formalism avoiding

the conical singularity that appears in the analytic continuation of the time coordinate to
imaginary values t → it. The aim of our article is to demonstrate that theWick rotation
of black hole metrics can be understood using the first order formalism ( vierbein and
spin connection ). This method is particularly useful in the case of black holes with
angular momentum. Let us first consider the BTZ black hole whose metric is defined
by:

ds2 = −N2 dt2 + N−2 dr2 + r2 ( dϕ + Nϕ dt )2

N2 = −M +
r2

l2
+

J2

4r2
Nϕ = − J

2r2

M =
r2+ + r2−

l2
J =

2r+r−
l

(1)

The BTZ black hole contains two special rays r+ and r−, the outer one r+ is the
event horizon while r− is the inner horizon , analogous to an ergosphere.

The corresponding vierbein is defined by:

σ0 = N(r) dt

σ1 =
dr

N(r)

σ2 = rdϕ − J

2r
dt

(2)

The spin connection ωab
µ can be expressed as a linear combination of the
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components of the vierbein (Equation (2)):

ω01 =
∂

∂r
N(r) σ0 − J

2r2
σ2

ω12 = −
[

J

2r2
σ0 +

N(r)

r
σ2

]
ω02 = − J

2r2
σ1

(3)

As we can see, most of the coefficients in front of the components of the vierbein
are either constant or tend to zero in the limit r → r+. Only ω01 contains a coefficient
which becomes singular in the limit r → r+.

Wick rotation in the case of black hole metrics with angular momentum is more
complicated than usual, because in addition to transform the time coordinate it is also
necessary to modify the angular momentum

t → itE

J → −iJE r− → −ir−
(4)

to keep the metric real:

ds2 = N2
E dt2E +

dr2

N2
E

+ r2 ( dϕ − JE
2r2

dtE )2

N2
E =

(r2 − r2+)(r
2 + r2−)

l2r2
= −M +

r2

l2
−

J2
E

4r2

(5)

The corresponding vierbein is defined by

σ0
E = NE(r) dtE

σ1
E =

dr

NE(r)

σ2
E = rdϕ − JE

2r
dtE

(6)

and the spin connection has some sign of difference from the Minkowskian case
(Equation ( 3 )):

ω01
E =

∂

∂r
NE(r) σ

0
E +

JE
2r2

σ2
E

ω12
E = −

[
JE
2r2

σ0
E +

NE(r)

r
σ2
E

]
(7)

ω02
E =

JE
2r2

σ1
E

In the Euclidean case we obtain that the time coordinate is periodic. In the case of
the metric formalism this is obtained by avoiding the conical singularity, but in the case
of theBTZ black hole this requires some complicated manipulations on the metric. At
the level of the vierbein we realize this with a global measure of the conical singularity
by parallel transport, i.e. the holonomy of the spin connection. The period is obtained
by requiring that the holonomy of the spin connection be trivial on the event horizon
r = r+
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exp
[∫

γ
ωab
E |r=r+

]
= e2πi = 1 (8)

The spin connection is an antisymmetric matrix in the Lorentz indices (ab),
therefore it is diagonalizable with all imaginary eigenvalues. If we have only one
non-zero contribution

ω01 = −ω10 = λ1 (9)

then what physically matters are the eigenvalues

ωab = U−1

 iλ1

−iλ1

0

U (10)

where U is a matrix with constant coefficients.

If we have two non-zero contributions,

ω01 = −ω10 = λ1

ω12 = −ω21 = λ2

(11)

then what matters are the eigenvalues

ωab = U−1

 i
√

λ2
1 + λ2

2

−i
√

λ2
1 + λ2

2

0

U (12)

The choice of the path γ is strongly suggested by which component µ of ωab
µ

survives in the limit r → r+. Furthermore, we require that the path γ chosen to
compute the holonomy satisfies

∫
γ σi → 0 for r → r+. This implies that in particular

σ2
E |r=r+ = 0 and therefore, in addition to varying the Euclidean time, the angle ϕ

must also be varied.
In this case the only contributing component of the spin connection isω01, because

the factor ( ∂
∂r
N(r)) is singular in the limit r → r+ and overall you get a finite

contribution:

NE(r)

(
∂

∂r
NE(r)

)
|r=r+ ∆tE = 2π (13)

We obtain that Euclidean time is periodic with period∆tE linked to the inverse of
the Hawking temperature. The temperature formula is the one compatible with Wick
rotation r− → −ir−:

∆tE =
2πl2r+
r2+ + r2−

TH =
r2+ + r2−
2πl2r+

(14)

Furthermore from the condition that σ2
E |r=r+ = 0

σ2
E |r=r+ = 0 → ∆ϕ =

JE
2r2+

∆tE =
2πlr−
r2+ + r2−

(15)
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we obtain that the variation of the coordinate ϕ necessary to obtain a trivial holonomy
is linked to the factor r− and therefore if the angular momentum is zero this too
disappears.

Alternatively, the problem can be solved by diagonalizing the Euclidean metric (
Equation ( 5 )):

t′E = r+ tE + l r− ϕ

ϕ′ = r+ ϕ − r−
tE
l

(16)

from which we obtain

g00 =
r2 − r2+

l2(r2+ + r2−)
g02 = 0 g22 =

r2 + r2−
(r2+ + r2−)

(17)

In this case the vierbein takes the following form

σ0
E =

1

(r2+ + r2−)
3

2

{[
r2+ NE(r) + r2−

(
r2 − r2+

lr

)]
dt′E + l r+r−

[
r2 + r2−

lr
− NE(r)

]
dϕ′

}
σ1
E =

dr

NE(r)

σ2
E =

1

(r2+ + r2−)
3

2

{
r+r−

[
r2 − r2+

lr
− NE(r)

]
dt′E + l

[
r2− NE(r) + r2+

(
r2 + r2−

lr

)]
dϕ′

} (18)

and the corresponding spin connection is

ω01
E =

1

(r2+ + r2−)
3

2

{[
r2+(r

2 + r2−)

l2r
+

r2−
l

NE(r)

]
dt′E − r+r−

[
(r2 − r2+)

lr
− NE(r)

]
dϕ′

}
ω02
E =

r+r−
lr2NE(r)

dr

ω12
E =

1

(r2+ + r2−)
3

2

{
r+r−

[
(r2 + r2−)

l2r
− NE(r)

l

]
dt′E . −

[
r2−(r

2 − r2+)

lr
+ r2+ NE(r)

]
dϕ′

} (19)

If we evaluate the spin connection for r = r+ we have two non-zero contributions:

ω01
E |r+ =

1√
r2+ + r2−

r+
l2

dt′E

ω02
E |r+ = 0 (20)

ω12
E |r+ =

1√
r2+ + r2−

r−
l2

dt′E

The eigenvalues of ωab
E are ( applying Equation (12) )

ωab
E = U−1

 i
l2

− i
l2

0

U (21)

From the triviality condition of the holonomy of the spin connection we obtain
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the following system:

∆t′E = 2πl2

∆ϕ′ = 0
(22)

This system of periods is particularly advantageous because the effect of angular
momentum is minimized since the period is purely temporal. The diagonalization of
the metric has decoupled the time variable t′E from the angular variable ϕ′. Going back
to the old variables (Equation (16) ) we get a system that gives as a result

∆tE =
2πl2r+
r2+ + r2−

∆ϕ =
2πlr−
r2+ + r2−

(23)

the same calculated before. Thus we have a verification that the spin connection
holonomy formula gives consistent results in various coordinate systems.

3. Kerr metric
The case of the Kerr metric has been briefly analyzed in [1]. A detailed study

of the conical singularity within the metric formalism can be found in [4]. We will
now analyze this case in the context of the spin connection holonomy which is a faster
method following explicitly [9]. The Kerr metric in the Boyer-Lindquist coordinates
is defined by

ds2 = −∆

ρ2
(dt− a sin2 θdϕ)2 +

sin2 θ
ρ2

((r2 + a2)dϕ − adt)2+

+
ρ2

∆
dr2 + ρ2dθ2 a =

J

M

∆ = r2 − 2Mr + a2

ρ2 = r2 + a2cos2θ

(24)

Solving the equation∆ = 0 we obtain the external and internal horizons (r± =

M ±
√
M2 − a2). Solving the equation gtt = 0 we obtain the rays in which the

temporal component changes sign (rE± = M ±
√
M2 − a2 cos2 θ).

The associated vierbein is

σ0 =

√
∆

ρ
(dt− a sin2 θdϕ)

σ1 =
ρ√
∆

dr

σ2 = ρdθ

σ3 =
sin θ
ρ

((r2 + a2)dϕ − adt)

(25)

and the spin connection
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ω01 = − 1

ρ3

[
−2Mr2 + a2 [ M + r + (M − r) cos 2θ ]

2
√
∆

σ0 + ra sin θσ3

]
ω02 = −a cos θ

ρ3
[ a sin θσ0 +

√
∆ σ3 ]

ω03 = − a

ρ3
[ r sin θσ1 −

√
∆ cos θσ2 ]

ω12 = − 1

ρ3
[ a2 sin θ cos θσ1 + r

√
∆σ2 ]

ω13 = − r

ρ3
[ a sin θσ0 +

√
∆σ3 ]

ω23 = −cot θ
ρ3

[ a
√
∆ sin θσ0 + (r2 + a2)σ3 ]

(26)

Also in this case only ω01 contributes to the holonomy because the coefficient in
front of σ0 is proportional to ( 1√

∆
) and therefore singular in the limit r → r+, while

the other coefficients are all regular.
To perform the Wick rotation we must again transform both time and angular

momentum:

ds2E =
∆

ρ2
( dtE + a sin2 θdϕ )2 +

sin2 θ
ρ2

( (r2 − a2)dϕ − adtE )2+

+
ρ2

∆
dr2 + ρ2dθ2 t → itE J → −iJE a → −ia

∆ = r2 − 2Mr − a2

ρ2 = r2 − a2cos2θ

(27)

from which the Euclidean vierbein is

σ0
E =

√
∆

ρ
(dtE + a sin2 θdϕ)

σ1
E =

ρ√
∆

dr

σ2
E = ρdθ

σ3
E =

sin θ
ρ

((r2 − a2)dϕ − adtE)

(28)

The Euclidean spin connection now reads:

ω01
E =

1

ρ3

[
2Mr2 + a2 [ M + r + (M − r) cos 2θ ]

2
√
∆

σ0
E + ra sin θσ3

E

]
ω02
E =

a cos θ
ρ3

[ a sin θσ0
E +

√
∆ σ3

E ]

ω03
E =

a

ρ3
[ r sin θσ1

E −
√
∆ cos θσ2

E ]

ω12
E =

1

ρ3
[ a2 sin θ cos θσ1

E − r
√
∆σ2

E ]

ω13
E = − r

ρ3
[ a sin θσ0

E +
√
∆σ3

E ]

ω23
E = −cot θ

ρ3
[ a

√
∆ sin θσ0

E + (r2 − a2)σ3
E ]

(29)

We impose again that σ3
E |r=r+ = 0 and therefore in addition to the Euclidean
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time we must vary the angular variable ϕ

∫ ∆tE ,∆ϕ

0
σ3
E |r=r+ = 0 → ∆ϕ =

a

r2+ − a2
∆tE (30)

The condition σ3
E |r=r+ = 0 is necessary for two reasons:

1) To eliminate unwanted terms in the calculation of the holonomy of the spin
connection;

2) In the particular case of the Kerr metric, to give a second very important constraint
to the unknowns ∆tE , ∆ϕ in addition to the banality of the spin connection,
otherwise the calculation would remain indeterminate.
We need to calculate the following intermediate contribution:∫ ∆tE ,∆ϕ

0

1

2
√
∆

σ0
E |r=r+ =

1

2ρ

(
∆tE + a sin2 θ ∆ϕ

)
=

ρ ∆tE
2(r2+ − a2)

(31)

The trivial holonomy condition has as its only non-zero contribution ω01
E from

which

exp
[∫ ∆tE

0
ω01
E |r=r+

]
= 1 (32)

we get the final solution

∆tE =
2π(r2+ − a2)

r+ −M
∆ϕ =

2πa

r+ −M
(33)

the Wick rotation of the Hawking temperature formula for the Kerr metric. We have
verified that the solution (33) coincides with the results known in the literature. Since
the Kerr metric is not diagonalizable, it is also not possible to reabsorb the period ∆ϕ

into the temporal period ∆tE , as instead we did in the case of the BTZ black hole.
Maybe this property has a deep thermodynamical meaning, but we haven’t been able
to elaborate it.

4. Conclusions
To define the Wick rotation it is necessary to have a local definition of time,

exploiting the isometries of the metric. This is surely possible in the case of black
holes, and the Wick rotation is a natural method to calculate their thermodynamical
properties. Usually this is analyzed directly by developing the Euclidean metric around
the horizon of the black hole and avoiding the conical singularity that appears in the
analytic continuation. In this work we have introduced an alternative method based
on the vierbein and the spin connection. In this case we realize the conical singularity
globally through parallel transport. To avoid the conical singularity we have to require
that the holonomy of the spin connection is trivial. This analysis confirms the necessity
of a periodic Euclidean time with period related to the temperature of the black hole.
The mechanism by which appear non trivial contributions to the spin connection
is simple. The spin connection can be expressed in the basis of the vierbein with
generally constant coefficients. Normally the integral of the vierbein when computing
the parallel transport is null on the event horizon. Only in the case in which the
coefficient in front of the vierbein component is singular at the event horizon, we
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obtain a non-trivial holonomy, which then gives the physical condition for calculating
the period of Euclidean time. In this article we have studied both the BTZ black hole
in 2 + 1 dimensions and the Kerr metric, finding similar structures. By imposing the
condition of trivial holonomy of the spin connection we found that in addition to a
Euclidean time period (linked to the temperature of the black hole) there is an extra
period of the angular coordinate ϕ. The latter is linked to the presence of the angular
momentum but it is not clear whether it corresponds to another thermodynamical
property of the black hole. The metric of the BTZ black hole can be diagonalized,
and the calculation can be done in two different ways, but our method always gives the
same answer. In the case of the Kerr metric it is not possibile to diagonalize the metric
but our calculation confirms the known results.

We believe that in the case of black holes with many parameters the spin
connection analysis is simpler. Moreover this correspondence between the conical
singularity of the metric and the holonomy of the spin connection can be generalized
from black hole horizons to any type of horizon. In the future we could study how to
derive the entropy of the black hole and its quantum corrections with the path integral
method through the vierbein and the spin connection. We hope that the proposed
scheme will be useful in clarifying how the Euclidean method is applied in general.
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