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Abstract

This paper analyses coordination in tacit collusion when �rms' discount factor is

private information. We consider an in�nitely repeated duopoly where two states of

the world randomly occur, with di�erent incentives for collusion. Depending on its own

discount factor, a �rm chooses cooperative behaviour in both states (patient), in none

of the states (impatient) or in one state (mildly patient). The presence of di�erent

states a�ects the strategic role of beliefs. A mildly patient �rm has an incentive in

�faking patience� to get the deviation pro�t. Interestingly, this e�ect prevents or delays

collusion when the belief in patience is strong.
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1 Introduction

In recent years, the analysis of tacit collusion became an object of interest for industrial

economists.1 While explicit collusion requires that competitors directly communicate with

each other to coordinate their actions, tacit collusion implies coordination without com-

munication, and it is a primary concern of antitrust authorities. It usually takes the form

of �concerted practices�, which implies a collusive behaviour without any formal agreement

or decision. In addition, the rapid advancements in machine learning and the increasing

algorithmic competition in online markets made the analysis of tacit collusion particularly

relevant. Indeed, algorithms may be employed to elicit how competitors set their market

strategies, by observing the competitor's behaviour, or analysing the code of other algo-

rithms. Hence, algorithms help to achieve coordination and in turn tacit collusion (Ezrachi

and Stucke, 2015, Gal, 2019, and Schwalbe, 2019, among others).2

To model tacit collusion, one important question is how �rms coordinate their actions

without setting explicit agreements. Indeed, starting a collusive behaviour also represents

the signal for the competitor of the willingess to coordinate, at the risk that the rival will

not answer in kind. By contrast, waiting for the competitor to signal its intent to collude

will delay the time where a collusive pro�t is reached. In this view, Harrington and Zhao

(2012) examine tacit collusion in an in�nitely repeated prisoners' dilemma where a �rm's

discount factor is private information. They �nd that, the longer cooperation takes to

occur, the lower the probability of cooperation in future periods. In this context, common

wisdom suggests that the belief on the competitor's patience plays a crucial role to reach

a cooperative solution. In a similar setting, Lefez (2017) models a transition phase which

allows to sustain collusion and where prices gradually increase over time before reaching the

highest sustainable level.

Following the issue of coordination, a relevant question is whether tacit collusion is

1An overview of the literature can be found in Green et al. (2014).
2Calvano et al. (2019) survey the developments on the literature on algorithmic pricing in industrial

organization.
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sustainable in the presence of changes in the market opportunities. Such changes may be

due to a demand or supply shocks, which a�ect all the industry.3 For instance, a market

characterised by a stable demand may be one where it is easy to sustain collusion, whereas

demand instability might hinder it (Motta, 2004). Also demand growth is one of the main

relevant factors to explain collusion (Ivaldi et al., 2003).

The uncertainty on pro�ts opportunities translates into the uncertainty on the competi-

tor's patience: a rival may sustain collusion under certain market conditions but not under

others. The implicit assumption is that �rms may discount pro�t di�erently, which seems

the case in the real world (Haan et al., 2009). This may occur for di�erent reasons: one is

the fact that small �rms could be �nancially constrained and face higher interest rates. The

second is related to time preference of managers: they may strongly discount future pro�ts

if they are close to retirement or if they expect to change company soon. Or they may have

a longer-term discount factor at the beginning of their appointment (Harrington, 1989). In

addition, when collusion is tacit, a change of events complicates coordination. This paper

is devoted to investigate this aspect.

We analyse tacit collusion through an in�nitely repeated duopoly game where a �rm's

discount factor is private information, and where two states of the world randomly occur

over time. The di�erence among states re�ects a di�erence in terms of payo�s. In particular,

in one state (the �good state�) the incentive of collusion is stronger than in the other (the

�bad state�). Moreover, the payo�s in the di�erent states of the world are such that a not too

patient �rm may collude in one state of the world and defect in the other. This entails the

presence of potentially three classes of �rms:4 �patient�, adopting a cooperative behaviour

in both states; �impatient� never cooperative; and the �mildly patient�, who cooperate in

the good state but defect in the bad state.

When the game starts, each �rm tries to learn the competitor's class through its actions.

3Similarly, Garrod (2012) analyses the implementation of a price matching punishment when costs
stochastically �uctuate in two states of the world.

4Throughout the paper, a �rm's type is determined by its discount factor, while a �rm's class depends
on whether its discount factor lies above or below certain thresholds.
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In this initial phase of the game (learning phase), the �rm's belief about the competitor's

class is updated at any period. Once the competitor's class is revealed, collusion may emerge

(collusion phase). Along the paper, we �rst describe the game with public information. We

then introduce incomplete information by artici�ally assuming that the learning phase lasts

one period. This exercise has expositional purposes, as it highlights the features of this

game in a simpler setting. Finally, we let the length of the learning phase be determined in

equilibrium.

The assumption of di�erent states in�uences the strategic role of beliefs. Suppose that,

in the learning phase, a patient �rm has a strong belief that the competitor is patient too.

Suppose also the competitor is in fact mildly patient, and behaves like (or �pretends to be�)

a patient �rm. If the patient �rm agreed to play a cooperative strategy in the collusion

phase, the mildly patient competitor would defect in the bad state. Therefore, the mildly

patient competitor has an incentive in pretending to be patient. Throughout the paper, we

will refer to this e�ect as �faking patience�.

Using the standard wording of signalling games, in the presence of faking patience, the

equilibrium is pooling between a patient and a mildly patient �rm in the good state, and

separating in the bad state.

We show that the faking patience e�ect increases with the �rm's belief about the com-

petitor's patience. In turn, since �rms rationally predict this kind of behaviour, a strong

belief in patience surprisingly will not lead to a fully collusive equilibrium. In particular,

in the simplifying case with one learning phase period, the equilibrium strategy will exhibit

cooperation in the good state and non-cooperation in the bad state of the world. Conversely

with endogenous learning phase, this e�ect delays the beginning of the collusion phase, and

again it occurs for high beliefs on the competitor's patience.

The starting point of our analysis is Harrington and Zhao (2012). Like the present pa-

per, they analyse tacit collusion in an in�nitely repeated prisoner's dilemma with incomplete

information on the discount factors, where the game develops in a learning phase and in a
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collusion phase. Harrington and Zhao (2012) assume that every �rm's state is persistent

across time (it never changes). By contrast we allow them to change state of the world in

each period. This is what happens in several industries, where states cannot be assumed

to be persistent across time but, instead, vary from one period to the next. In addition,

this approach allows us to investigate the e�ects of shocks in the endurance of the collu-

sion. Moreover, given the presence of only one state of the world, Harrington and Zhao

(2012) focus on mixed strategies in the learning phase: otherwise, with pure strategies, the

competitor's type will be immediately known. Conversely, we focus on pure strategy to

highlight the features of the equilibria, albeit our analysis can be easily extended to the

mixed strategy case.5

Related literature The analysis of tacit collusion has focused on its sustainability by

introducing �price matching punishments� strategies (Lu and Wright, 2010, Garrod, 2012),

its emergence in experimental markets (Fonseca and Normann, 2012) or when consumers

may experiment products before purchase (Piccolo and Pignataro, 2018), and the choice

between cartel formation and tacit collusion (Garrod and Olczak, 2017).

Together with the literature on tacit collusion, the present paper is also related to the

theory of repeated games, where incomplete information has been examined in several ele-

ments of the game (Mailath and Samuelson, 2006). Strands of the literature analysed uncer-

tainty about discount factors (Bodoh-Creed, 2019, Kartal, 2018, Kranton, 1996), technology

(Athey and Bagwell, 2008, inter alia) payo�s (Peski, 2014, 2008, Fudenberg and Yamamoto,

2011, 2010, Wiseman, 2005, inter alia) or actions (Abreu et al., 1990, Fudenberg et al., 1994,

Ghosh and Ray, 1996, Kandori and Obara, 2006, inter alia). The present paper is mainly

linked to those contributions that focused on uncertainty about the competitor's discount

factor. In Watson (2002) and (1999), players are in a partnership, and in each period choose

the level of interaction among each other and whether to cooperate. The level of interaction

5The analysis with mixed strategies is available upon request. Yet, this extension would require further
analytical complications without adding much insight.
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can be seen, for instance, as an investment in a joint project. In equilibrium, players �start

small� (i.e., make a low investment) to learn about the rival's patience.

This paper is also connected to Rotemberg and Saloner (1986), Haltiwanger and Har-

rington (1991) and Bagwell and Staiger (1997), who investigate the relationship between

collusion and the business cycle. These papers examine collusive pricing in markets with

demand shocks and wonder if and when collusion is procyclical or countercyclical. For in-

stance, in Rotemberg and Saloner (1986), the stochastic nature of cooperation is modeled

by incorporating a random variable in the inverse demand function which also leads to the

existence of di�erent states of nature playing a signi�cant role in �rms' competition over

time. Following these contributions, a change of states here may be interpreted as a demand

shock. Moreover, although Rotemberg and Saloner (1986) refer to �implicit collusion�, �rms'

coordination is not explicitly modelled.

Yet, our results are consistent with the �ndings of Rotemberg and Saloner (1986): eco-

nomic boosts obstruct collusion. In addition, the paper shows the presence of situations in

which tacit collusion comes up systematically during downturns, while it is abandoned in the

favourable economic cycles. This is represented by the equilibrium where a semi-cooperative

strategy is played. In other words, albeit Rotemberg and Saloner (1986)'s wisdom tells that

economic �uctuations hinder collusion, we show that certain cooperative relationships can

be �exible to economic shocks, and come back in more opportune periods. This is easier

when collusion is tacit, so no explicit agreement is taken and can be broken, and yet collusion

in fact occurs.

The remainder of the paper is organised as follows. Section 2 introduces the model.

Section 3 develops the analysis where discount factors are unknown. Section 4 shows the

cooperative results, while Section 5 concludes. All formal proofs can be found in Appendix

B.
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2 The model

Consider a two-player, two-state prisoner's dilemma

2

C D

1 C 1, 1 −l, (1 + gs)

D (1 + gs) ,−l 0, 0

(1)

with players i ∈ {1, 2}, states s ∈ {ℓ, h} and payo� functions us1, u
s
2 given in matrix (1),

in which gs > 0 for every s and l > 0. The action set of any player i in any state s

is X = {C,D}, where action C stands for �cooperate�, while action D is �defect�. Our

parameter normalisation is standard in the analysis of prisoners' dilemma, see Kandori

(1992), Ellison (1994), and, more recently, Camera and Gio�ré (2014, 2017), among others.

We also assume

gs − l < 1 for every s ∈ {ℓ, h},

which is sometimes part of the de�nition of Prisoners' Dilemma (Roth and Keith, 1978).

The latter condition entails that, if players maximise the sum of their payo�s, they prefer

the action pro�le (C,C) to pro�les (D,C) or (C,D) in any state. This condition is not

strictly necessary but aims at focusing on players who try to sustain (C,C) in each period.

As standard in the literature, a player may be interpreted as a �rm competing in a sym-

metric Cournot or Bertrand duopoly:6 to do so, condition gs > l ensures that the prisoners'

dilemma is indeed a representation of a duopoly game. 7 The condition implies that the

6Harrington and Zhao (2012) provide two detailed examples that a prisoner's dilemma represents duopoly
competition.

7Condition gs > l amounts to

usi (Di, Cj)− usi (Ci, Cj) > usi (Di, Dj)− usi (Ci, Dj) ,

for every s and i, j ∈ {1, 2}. This condition tells that the gain to deviate from collusion is at least as large
as the gain to deviating when the competitor also plays D.
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incentive to defect is stronger against a cooperator than against a defector.8 Following this

interpretation, taking action C represents setting the collusive price, while action D implies

setting the competitive price.

The prisoners' dilemma is in�nitely repeated. Time is discrete and, in each period

t = 1, 2, . . . , one of two states of nature can be realised. We assume perfect monitoring,

so that the past actions and states are common knowledge. On the other hand, a �rm's

discount factor is private information.

Payo�s are symmetric among �rms, but change according to the state of the world.

Without loss of generality, we are interested in a situation where the incentive to deviate

is stronger in one state, say state s = h (�high� incentive) than in the other s = ℓ (ℓ �low�

incentive), so that gh > gℓ. This approach wants to depict the e�ect of demand evolution

on collusion, which depends on the kind of demand shocks. A classic example regards

the situation where a positive demand shock may lure �rms to break collusion to reap an

unusually high pro�t (Motta 2004, Rotemberg and Saloner 1986).

States evolve according to a Markov process. In the present analysis, the transition

from state ℓ to state h can be interpreted as a boom in demand, and vice versa. The game

may start with any initial state s ∈ {ℓ, h}. The transition from a particular state does

not depend on the current period or the action implemented, nor on the current state: the

probabilities that the game transits from any state s to state ℓ and h are equal to p ∈ (0, 1)

and 1− p, respectively.9 Throughout the paper, we will make the following assumption:

Assumption 1 Let p > gℓ

gh
.

Assumption 1 helps to focus on the most interesting case, where all possible equilibrium

con�gurations occur (see footnote in Section 2.1.2). The economic interpretation is that the

incentive to collude in the h state is su�ciently high.

8Heller and Mohlin (2017) call a prisoner's dilemma �o�ensive� if this condition holds.
9The analysis can be extended by considering the state transition based on the current state. However,

this generalization does not add much to the results.
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2.1 Publicly known discount factors

First, we consider the game where the �rms' discount factor is public information. This

analysis is convenient to later de�ne the �rms' classes according to their intrinsic degree

of patience (see Section 2.1.3). Moreover, the strategy pro�les for the game with complete

information are also used in the second phase of the game with unknown discount factors,

once that �rms are aware of the level of patience of their competitors (see Section 3 for

details).

2.1.1 Strategy pro�les

In this section we consider the strategy pro�les that will be examined in Section 2.1.2 and

the conditions for which these are subgame perfect. We focus the analysis on pure strategies.

The strategy pro�le is denoted by σ = (σi : i ∈ {1, 2}), where strategy σi determines �rm

i's action for every period and every state depending on the history of the period.

We restrict our analysis considering three strategy pro�les in which �rms (i) play action

D in any state forever (non-cooperative strategy pro�le σn), (ii) cooperate only in state ℓ,

defect in state h and transit to playing action D forever if they observe a deviation from the

described behaviour in the history (semi-cooperative strategy pro�le σsc),
10 (iii) cooperate

by playing action C in any state and transit to playing action D forever if they observe

deviation in the history (cooperative strategy pro�le σc). The formal de�nition of these

strategy pro�les is given in Appendix A.

2.1.2 Expected payo�s

Let δi denote the discount factor of a �rm i's payo�. We are interested in �nding the

conditions under which the pure strategy pro�les described above are subgame perfect.

10A semi-cooperative strategy type is also found in Fershtman and Pakes (2000), who model collusion
in a setting with heterogeneous �rms and entry, and were di�erent states of the world may occur. They
�nd that, in periods of low demand, there may be an incentive to adopt a noncollusive strategy. Unlike the
present analysis, this strategy aims at driving competitors out of the industry.
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The strategy pro�le is subgame perfect if a vector of restricted strategies form the Nash

equilibrium in the subgame in every period and every state of the game.

In each period, the payo� function of any �rm i ∈ {1, 2} in state s is us : X ×X → R,

given by the payo� matrix (1). A �rm's discounted payo� in an in�nitely repeated Prisoner's

dilemma when a strategy pro�le σ is implemented is

V (σ, δi) =
∞∑
t=1

δt−1
i Πt−1U s

i,t(σ),

where V (σ, δi) = (V ℓ(σ, δi), V
h(σ, δi))

′, U s
i,t(σ) = (uℓi,t(σ), u

h
i,t(σ))

′ is a vector, with ()′ rep-

resenting the transpose vector, usi,t(σ) is the payo� of the �rm i in period t and state s,

corresponding to the strategy pro�le σ. Finally, Π is the transition matrix

Π =

p 1− p

p 1− p

 .

We also de�ne vector p = (p, 1− p). We denote the discounted payo�s of �rm i in equilibria

σn, σsc and σc as V
s
n (δi), V

s
sc(δi) and V

s
c (δi), respectively, where subscripts n, sc and c stand

for �non-cooperative�, �semi-cooperative� and �cooperative� equilibrium, while superscript

s ∈ {ℓ, h} indicates the state of the game in the �rst period. In Appendix A, we provide

the formal derivation and we prove the following preliminary result.

Lemma 1 For every δi ∈ (0, 1), Vc(δi) > Vsc(δi) > Vn(δi).

In words, each component of vector Vc(δi) (Vsc(δi)) is larger than the corresponding

component of vector Vsc(δi) (Vn(δi)). We are now in a position to examine the critical value

of δ for which each strategy pro�le is a subgame perfect equilibrium (see Appendix A).
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We also de�ne

δ̃ ≡ gℓ

p+ gℓ
, (2)

δ̂ ≡ gh

1 + gh
, (3)

where δ̃, δ̂ ∈ (0, 1) ,and δ̂ > δ̃ by Assumption 1.11 The next proposition summarises the

conditions on the discount factors for which each particular strategy pro�le is a subgame

perfect Nash equilibrium (SPNE).

Proposition 1 Let �rm i's discount factor δi be public information, and let Assumption

1 hold. A cooperative strategy pro�le is SPNE i� δi ⩾ δ̂ for every i ∈ {1, 2}. A semi-

cooperative strategy pro�le is SPNE i� δi ⩾ δ̃ for every i ∈ {1, 2}. A non-cooperative

strategy pro�le is SPNE for every δi ∈ (0, 1), i ∈ {1, 2}.

2.1.3 Firm's classes

Based on Proposition 1 and Assumption 1, we de�ne the �rms' classes according to their

discount factors, as follows.

De�nition 1 De�ne a �rm's class as yi ∈ {I,M, P}. A �rm i belongs to class

1. I (impatient) if δi = δI ∈
(
0, δ̃

)
,

2. M (mildly patient) if δi = δM ∈
[
δ̃, δ̂

)
, and

3. P (patient) if δi = δP ∈
[
δ̂, 1

)
.

Figure 1 shows a �rm's class according to De�nition 1, while Table 1 depicts the possible

equilibria according to which �rms' classes are competing in the duopoly. The cooperative

11If δ̃ ⩾ δ̂, the interval
(
δ̃, 1

]
, where the semi-cooperative strategy pro�le is SPNE, is contained into

(
δ̂, 1

]
,

where also the cooperative strategy pro�le is SPNE. Hence, by Lemma 1, a semi-cooperative strategy pro�le
is never played because the �rms' payo�s in σsc are lower than in σc.
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Figure 1: A �rm's class according to its discount factor

strategy pro�le is SPNE if and only if both �rms are of class P . Otherwise, a �rm which

is not of class P will deviate from the cooperative strategy pro�le because defection is

pro�table. A semi-cooperative strategy pro�le is SPNE if (i) both �rms are of class P , (ii)

both �rms are of class M or (iii) if one is of class P and the other is of class M . If at least

one of two �rms is of class I, then neither a cooperative nor a semi-cooperative strategy

pro�le is SPNE.

Table 1. Equilibria with publicly known discount factor

Firms' classes Equilibrium strategies

both I; I and M ; I and P σn

both M and M and P σn, σsc

both P σn, σsc, σc

2.1.4 Example

Here we propose a numerical simulation. Consider the game represented by matrices

s = ℓ :

2

C D

1 C 1, 1 −0.3, 1.4

D 1.4,−0.3 0, 0

, s = h :

2

C D

1 C 1, 1 −0.3, 2

D 2,−0.3 0, 0

Let the probabilities of transition from state s to state ℓ and state h be p = 0.7 and

1−p = 0.3, respectively. Assumption 1 is also true: we obtain the discount factors δ̃ ≈ 0.363

and δ̂ = 0.5. Thus, let �rms M and P have discount factors δM = 0.45 and δP = 0.9

respectively. We will use this ongoing example over the paper to ease the exposition of our
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results.

3 Unknown discount factors

We now turn the analysis on the case where a �rm's discount factor is private information.

Possibly, this game may exhibit several classes of equilibria. In what follows, we focus on

a speci�c class that seems the most natural, given the scope of the analysis. As long as

the competitor's patience is unknown, a �rm with a certain level of patience will play both

to (i) infer the competitor's class, and (ii) to signal its availability to cooperate. Once the

competitor's class is known, a �rm may elaborate a collusive strategy, if possible.

Following Harrington and Zhao (2012), this situation is modelled in a game that develops

in two phases. The �rst phase is learning, where the �rms' discount factors are private

information, so that they try to recognize the competitor's class. In this phase, �rms'

strategies are Markovian: they are based on beliefs on the competitor's class, and not on

the game history. The second phase is collusion, where the competitor's class is known: in

this part of the game, any �rm uses a strategy from the set {σc,i, σsc,i, σn,i} in the same way

as in the case with public information on the discount factors.

3.1 Learning phase

In this section, we describe how the process of learning the competitor's class takes place.

Let T be the last period of the learning phase. In what follows, we focus on the case in

which T is �nite. In period t ∈ T , a �rm believes the competitor to be of class P with

probability αt, to be of class M with probability βt, and to be of class I with probability

γt = 1− αt − βt. We de�ne the strategies for every t = 1, . . . , T : a �rm chooses its strategy

in period t based on symmetric beliefs αt and βt. We assume that the initial beliefs about

the other �rm's class in period 1, α1 ∈ (0, 1) and β1 ∈ (0, 1) are given and known, and that

α1 + β1 ∈ (0, 1).
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We denote a �rm i's strategy in the learning phase as ψi (yi) ∈ Ψ(yi) as a function of its

class. The set of Markovian strategies of a �rm of class P is Ψ(P ) = {qst , t = 1, . . . , T, s =

ℓ, h}, where qst : [0, 1] × [0, 1] → {0, 1} is a function of αt and βt. Given the focus on pure

strategy, �0� corresponds to choosing action D while �1� corresponds to choosing action C.

Conversely, the set of Markovian strategies of a �rm of class M is Ψ(M) = {rst , t =

1, . . . , T, s = ℓ, h}. Similar to class-P �rms, strategy rℓt : [0, 1]× [0, 1]→ {0, 1} is a function

of αt and βt, where �0� corresponds to action D while �1� corresponds to action C.

Finally, we de�ne the set of Markovian strategies for an impatient �rm i, yi = I as

Ψ(I) = {zst , t = 1, . . . , T, s = ℓ, h}, where zst : [0, 1]× [0, 1]→ 0 for every period t and every

state s. Strategy zst prescribes a �rm of class I to choose action D in any state s = ℓ, h with

probability 1 in any period.

Hence a �rm i's pure strategy ψ(yi) determines a probability of choosing action C in

every period t and state s as follows, depending on the �rm's class:

ψ(yi) =



qst∈{0, 1} if yi = P, s = ℓ, h;

rst∈{0, 1} if yi =M, s = ℓ;

rst = 0 if yi =M, s = h;

zst = 0 if yi = I, s = ℓ, h.

Based on the de�nition of the �rms' strategies in the learning phase, we may state that, if

a �rm chooses action C in state h, it has revealed its class as P , because P is the only class

who may choose action C in state h with positive probability. Conversely, if a �rm chooses

action C in state ℓ, it may be identi�ed as a P or M class because only �rms of these two

classes may choose action C in state ℓ with positive probability.

We use Bayes rule to update beliefs αt and βt over time, t = 2, . . . , T + 1. The rule of

de�ning beliefs for period t+ 1 depends on the state s which appeared in period t. If state

s is realized at period t, then in the next period t + 1, the belief that the competitor is of

14



class P is

αt+1 =


αℓ
t+1, if s = ℓ,

αh
t+1, if s = h.

The same rule applies to βt+1 and γt+1. Updating follows the standard procedure when

strategies are pure (see Appendix A for details).

3.2 Collusion phase

The collusion phase begins when a competitor's class is public information.12 To be more

precise, it begins when a �rm interested in collusion has su�cient information on the com-

petitor's class. In particular, a �rm of class P needs full information on the competi-

tor's class, this because it chooses among two colluding strategy (cooperative and semi-

cooperative).

On the other hand, a �rm of class M is going to play a semi-cooperative strategy

irrespective on whether the competitor is of class M or P : therefore its collusion phase

starts when it knows that the competitor is not of class I. Firms I defect regardless of the

phase of the game.

We now determine how �rms choose their strategies in the collusion phase. Here, the

strategy of �rm i is a mapping from a �rm's class and beliefs on the other �rm's class by

the end of the learning phase to the set {σc,i, σsc,i, σn,i}.

At the end of the learning phase, the beliefs that the competitor is of class P or M are

αT+1 and βT+1, respectively. Thus the strategy of �rm i is a function of class yi and beliefs

αT+1, βT+1 such that:

12Naturally, the collusion phase starts as soon as one of the players reveals her type (Harrington and
Zhao, 2012).
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σi (yi, αT+1, βT+1) =



σc,i, if yi = P, αT+1 = 1,

σsc,i, if yi = P, βT+1 = 1,

or yi =M, αT+1 + βT+1 = 1,

σn,i, if yi ∈ {P,M}, αT+1 + βT+1 = 0,

or yi = I.

(4)

The �rst two lines of strategy (4) are intuitive: a �rm of class P plays cooperation or

semi cooperation if it is sure that the competitor is of class P or M , respectively.

The third line deserves some explanation: to an M -class �rm, it does not matter if the

competitor is P or M : it will play semi cooperation in both cases. What matters if the

competitor is of class I, as in this case the �rm will choose non cooperation. Therefore, an

M -class �rm will start the collusion phase and play semi cooperation as long as it is sure

that the competitor is not of class I (γT+1 = 0, which implies αT+1 + βT+1 = 1).

In the last two lines, non cooperation is played by �rms of P or M class if they are sure

than the competitor is of I class, and always by �rms of class I.

3.3 Payo� and equilibrium concept

The payo� of �rm i = 1, 2 of class yi ∈ {I,M, P} is the sum of its payo�s in the two phases

of the game and it is a function of her class, initial beliefs and the strategies of �rm 1 and

2 in the learning phase:13

Φi(ψi, ψj, α1, β1|yi) =
T∑
t=1

δt−1
i Πt−1Ui(ψi,t, ψj,t)

+ δTi Π
TV (δi, (σ1(l1, αT+1, βT+1), σ2(l2, αT+1, βT+1))), (5)

13We omit players' strategies in the collusion phase as the arguments of the function because they are
uniquely de�ned by the rule (4) given the strategies ψi, ψj .

16



where ψi ∈ Ψ(yi). The �rst part in the RHS of (5) is the payo� of the learning phase,

while the second part is the payo� of the collusion phase. In (5), σi(li, αT+1, βT+1) and

σj(lj, αT+1, βT+1) are de�ned by (4).

The strategy set of a �rm in the two-phase game consists of the strategy in the learning

and in the collusion phases. The solution concept is close to Markov Perfect Bayesian Equi-

librium (MPBE) with the following modi�cation. The strategy of any �rm is Markovian14

only during the learning phase when �rms' classes are not common knowledge, and in the

collusion phase �rms' strategies are from the set {σc,i, σsc,i, σn,i}, as described in (4). To

avoid confusion, we use the name of the solution concept as Partial Markov Perfect Bayesian

Equilibrium (PMPBE) given in Harrington and Zhao (2012).

De�nition 2 A strategy pro�le ψ∗ = (ψ∗
1, ψ

∗
2) is PMPBE if, for each i ∈ {1, 2}, yi ∈ {M,P}

and ψi ∈ Ψ(yi), the following inequality holds:

Φi(ψ
∗, α1, β1|yi) ⩾ Φi

(
(ψi, ψ

∗
−i), α1, β1|yi

)
, (6)

where α1 ∈ (0, 1), β1 ∈ (0, 1), α1 + β1 ∈ (0, 1).

4 Cooperative outcomes

In this section we characterise the equilibria according to which at the second phase of

the game the cooperative or semi-cooperative strategy pro�les may occur (depending on

the �rms' classes). For completeness, the equilibria yielding a non-cooperative outcome are

outlined in Appendix A.

In the �rst part of the section, we consider the case where the learning phase is limited

to one period. This restriction is strong, but allows us to highlight some features of the

14The Markov property is that the strategy in the learning phase in any time period t depends only on
the beliefs on the competitor's class, while it does not depend on the period and the history of the game.
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equilibria that may be then found, in the second part, in the more general version where

the length of the learning phase is endogenously determined.

4.1 One-period learning phase

In this section we limit the length of the learning phase T to one period. We present �rst

this simplifying case for expositional purposes, as it helps highlighting the role of beliefs

in this problem. Qualitatively similar results are obtained when we relax this assumption,

but the analysis and the equilibrium conditions are more cumbersome. Nonetheless, the

exogenous duration of the learning phase may be dictated by external conditions. For

instance, extraordinary market conditions might force to anticipate the collusive behaviour,

even if coordination is not fully completed.

Assuming a one-period learning phase also requires imposing some restrictions on the

strategy in the collusion phase, as it might be not possible to tell the competitor's class

after only one learning period. These restrictions are necessarily discretionary: to �x ideas,

we assume that �rms adopt a somewhat �prudent� strategy: if the competitor's class is

unknown after T = 1, a P -class �rm plays σsc if it is sure that the competitor is not of

class I, and a P - or M -class �rm plays σn if it is not completely sure that the competitor

is either patient or mildly patient.

The assumptions of a prudent behaviour requires a modi�cation in the strategy choice

of the collusion phase as follows:

σi(yi, αT+1, βT+1) =



σc,i, if yi = P, αT+1 = 1,

σsc,i, if yi = P, αT+1 + βT+1 = 1, ←−

or yi =M, αT+1 + βT+1 = 1,

σn,i, if yi ∈ {P,M}, αT+1 + βT+1 < 1, ←−

or yi = I.

(7)
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Notice that, compared to equation (4), the only lines that di�er ar those indicated by arrows

←−. The results would be qualitatively similar by assuming di�erent behaviours.

We �nd the conditions when a PMPBE exists in the learning phase. We sort the equi-

libria by the type of equilibria adopted in the learning phase. For convenience, thresholds

A1, A2, A3 and A4 are de�ned in the proof (see Appendix B), where A1 < A2.

Proposition 2 Suppose T = 1. Then the following equilibria exist:

1. If the initial state is s = ℓ:

1.i (qℓ1, r
ℓ
1) = (1, 0) is a PMPBE for α1 ∈ [A1;A2].

1.ii
(
qℓ1, r

ℓ
1

)
= (1, 1) is a PMPBE for α1 + β1 ⩾ A3.

2. If the initial state is s = h:

2.i
(
qh1
)
= 1 is a PMPBE for α1 ⩾ A4.

(i) Equilibria with initial state s = ℓ. (ii) Equilibria with initial state s = h.

Figure 2: Equilibrium region.

Example. Going back to the numerical simulation in Section 2.1.4, we have A1 ≈ 0.03,

A2 ≈ 0.39, A3 ≈ 0.63 and A4 ≈ 0.03.

Figure 2 depicts the regions of PMPBE for initial state ℓ and h, in the space of ini-

tial beliefs (α1, β1). In the blank regions, only a non-cooperative equilibrium occurs (see

Appendix A).
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The rule of updating beliefs are outlined in Appendix A and helps to understand the

strategy pro�le in the collusion phase. Suppose, for instance, that the game starts with

state ℓ and pro�le (qℓ1, r
ℓ
1) = (1, 0) is chosen. If action C is observed, the updated beliefs

are α2 = 1, β2 = γ2 = 0, thus it is possible to recognize the competitor's class as P . The

equilibrium is separating between one P - and an M -class �rm.

Hence, if two �rms of class P meet, the equilibrium (qℓ1, r
ℓ
1) = (1, 0) leads to the cooper-

ative strategy pro�le σc in the collusion phase. If even one of the two �rms is not of class

P , equilibrium (qℓ1, r
ℓ
1) = (1, 0) implies that the non-cooperative strategy pro�le σn will be

implemented in the collusion phase. Indeed, since �rms belonging to the mildly patient

and the impatient class adopt the same strategy, a patient �rm cannot recognise from the

learning phase if the competitor is a mildly patient one, thus the semi-cooperative strategy

is never used in the collusion phase.

When the game starts at state ℓ and pro�le (qℓ1, r
ℓ
1) = (1, 1) is implemented, i.e., �rms

of class M and P cooperate with probability 1, the beliefs of a competitor's class after

observing C are:

α2 =
α1

α1 + β1
, β2 =

β1
α1 + β2

, γ2 = 0.

In this case there are positive probabilities that the competitor is either P or M : the

equilibrium is pooling.

Hence the strategy of �rms P orM during the collusion phase is semi-cooperative (σsc,i)

according to the rule outlined in equation (7), which allows cooperation in future states ℓ

and deviation in future states h. This result emerges as a �rm does not recognize whether

the competitor is of class P or M .

When the game starts with state h, a �rm of class M defect like an I-class �rm, thus

it cannot be identi�ed. Hence the belief β1 does not play any role in determining the

equilibrium. However, a class P competitor is identi�ed with certainty. Hence if the �rms

are both P , they choose cooperative strategies σc,i in the collusion phase.

The next corollary compares the equilibrium payo�s in the parameter ranges where
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multiple equilibria occur, as a re�nement in the equilibrium choice.

Corollary 1 Suppose the game starts from state s = ℓ, and α1, β1 satisfy the conditions:

α1 ∈ [A1, A2] and α1 + β1 ∈ [A3, 1]. Then the payo� of an M-class �rm in equilibrium

(qℓ1, r
ℓ
1) = (1, 1) is weakly greater than its payo� in equilibrium (qℓ1, r

ℓ
1) = (1, 0).

Corollary 1 suggests equilibrium (1, 1) as a re�nement of multiple equilibria in state ℓ.

This result intuitively suggests that, when the beliefs that the competitor is P or M are

both low (lower than A3), it is unlikely to reach a result of full cooperation. Indeed, the

outcome is a semi-cooperative strategy pro�le in the collusion phase.

The next proposition summarises some comparative statics on the equilibrium payo�s

with respect to beliefs.

Proposition 3 The equilibrium payo�s of classes P and M �rms are increasing functions

of α1. The payo�s of P and M class �rms in equilibrium (qℓ1, r
ℓ
1) = (1, 1) are increasing

functions of β1.

Proposition 3, together with Corollary 1, state a surprising result: a strong belief that

the competitor is of class P does not lead to a cooperative strategy pro�le (fully collusive

equilibrium) in the collusion phase. This is immediately evident by looking at Figure 2. A

high α1 gives a strong incentive to an M -class �rm to fake patience, that is, it induces to

act as a P class to lure the competitor into choosing a cooperative strategy in the second

phase.

Indeed, if a cooperative strategy is played by a �rm of class P and state h occurs at some

period, then theM -class �rm would deviate from cooperation, thus tricking her competitor.

Given that �rms are aware of the �faking patience� e�ect, a semi-cooperative equilibrium

occurs: cooperation in state ℓ, non-cooperation in state h.
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4.2 Endogenous learning phase

In this section we generalise the previous results by endogenising the duration of the learning

phase. Several equilibria emerge: in what follows, we aim at showing that the faking patience

e�ect may occur for some con�gurations. For the sake of exposition, we focus our attention

to those strategies that allow to identify the class of any �rm in the shortest number of

periods among the set of strategies that we consider.

Notice that this case qualitatively encompasses all those equilibria in which the learning

phase lasts whaveter number of periods, while the state of the world remains the same but in

the last period. This is because, even though the beliefs update during the learning phase,

yet it is necessary to alternate in the states of the world to fully distinguish the competitor's

type, and thus begin the collusion phase.

4.2.1 Initial state s = ℓ

A natural structure of the strategy pro�les satisfying our requirement is the following. In

the �rst period, �rms of both class P andM use strategy C to verify whether the competitor

is an I-class �rm. If so, the game transits to state ℓ or h in which �rms of class P and M

use di�erent strategies to reveal their class in period 2, i.e., their classes will be identi�ed

with probability 1.

Accordingly, assume that, in the �rst period, �rms of classes P and M adopt strategies

qℓ1 = rℓ1 = 1. In period 2 and

� s = ℓ, strategies are qℓ2 = 1, rℓ2 = 0;

� s = h, �rm P 's strategy is qh2 = 1.

Using these strategies, �rms' classes are revealed not later than in period 2. The following

proposition summarises the conditions on the initial beliefs for which the described strategies

form a PMPBE. To ease the exposition, coe�cients A5, A6, A7, A8, A9 and A10 are de�ned

in the proof (see Appendix B), with A5, A7, A8 > 0.
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Proposition 4 Let the initial state be s = ℓ, and suppose that the following conditions hold:

 i. l ≤ min {A5α1 + A6β1, A7α1 + A8β1}

ii. β1

α1
∈ [A9, A10]

Then the following strategies are PMPBE:

P :
(
qℓ1, q

ℓ
2, q

h
2

)
= (1, 1, 1) , M :

(
rℓ1, r

ℓ
2

)
= (1, 0) .

The equilibrium described in Proposition 4 shows the emergence of faking patience in

the �rst period, where a �rm of classM cooperates and, by doing so, does not reveal herself.

On the other hand, in the second period the M -class �rm would defect in state h, and by

doing so it reveals its type and the learning phase ends afterwards, by playing the semi-

cooperative equilibrium in the collusion phase. Intuitively, the faking patience e�ect is also

what delays entering the collusion phase. Proposition 4 may help explaining the results

whenever the learning phase lasts more than two periods. Suppose that a �rm of type M

keeps playing rℓt = 1 for all periods t until a change of state takes place. In this case the

learning phase goes on until state h occurs.

Unlike the example where the learning phase lasts one period, the conditions of Propo-

sition 4 are harder to interpret. We may however take a closer look at coe�cients of α1 in

condition i. As shown in Appendix B, they are unambiguously positive, suggesting that an

increase in α1 increases the chance that the two conditions hold.

In words, the higher the belief that the competitor is patient, the higher the change of

faking patience, the less likely the reaching of full cooperation. By contrast, the coe�cients

of β1 in i. are ambiguous, as well as those of α1 and β1 in ii. To �x ideas, in Section 4.2.3

we verify this intuition through our numerical simulation in Section 4.2.3.

23



4.2.2 Initial state s = h

We examine the strategy pro�le according to which a �rm of class P chooses action C in

the initial state, qh1 = 1. Therefore, if at least one of two �rms chooses action C in period

1, the learning phase is over, and the collusion phase starts from period 2. If both �rms

choose action D, then the learning phase transmits to period 2, and �rms can be either of

type M or I, according to the following beliefs:

α2 = 0, β2 =
β1

1− α1

, γ2 =
1− α1 − β1

1− α1

.

Notice that these classes of �rms keep playing D until state ℓ is realized because of the

Markovian property of the strategies.

Next, consider the case where state ℓ occurs in the second period. A �rm of class I keeps

playing D. On the other hand, a �rm of class M may choose action C (strategy rℓ2 = 1)

or action D (strategy rℓ2 = 0). If it uses strategy rℓ2 = 0, the beliefs remain the same and

the strategy rℓt will be equal 0 until in�nity because of the Markovian property15. Thus we

focus on the conditions for which strategy rℓ2 = 1 is a part of PMPBE.

Proposition 5 Let the game start with state s = h, and suppose


β1 ⩾

l (1− α1)

l − gℓ + δMp
1−δM

,

β1 ⩽
α1

(
l − gh + δP

1−δP

)
− l

l − gℓ + δP p
1−δP

.

Then the following strategies are PMPBE:

P :
(
qh1
)
= (1) , M :

(
rht , r

ℓ
t+1

)
= (0, 1) ,

from t = 1 onwards until s = h.

15Hence, this strategy of player M is a part of a PMBE with in�nite learning phase.
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4.2.3 Example

We highlight the features of the equilibria in Propositions 4 and 5 by extending the numerical

simulation proposed in Section 2.1.4. If the game starts from state s = ℓ, conditions of

Proposition 4 amounts to



0.3 ≤ min {8.9α1 + 5.3β1, 0.86α1 + 0.15β1} ,

β1
α1

⩽ min {7.66, 5.66} ,

β1
α1

⩾ −0.395,

then the strategy pro�le qℓ1 = 1, rℓ1 = 1 in period 1 and qh2 = 1 in period 2 is PMPBE.

The region of (α1, β1) where the system is satis�ed (yellow color) is depicted on Figure

3, case (i), and it is where the �faking patience e�ect� delays to reach cooperation or semi-

cooperation. Similar to the case of one-period learning phase, the region of existence exhibits

a combination of high values of α1 and β1. If the game starts from state s = h, the conditions

(i) The game starts with state s = ℓ. (ii) The game starts with state s = h.

Figure 3: Equilibrium region.

of Proposition 5 are equivalent to


1− α1 − β1

β1
⩽ 0.57,

8.3α1 − 6.3β1 ⩾ 0.3.

The range of parameters for which the strategy pro�le qh1 = 1 and rℓt = 1 for every t > 1
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in the learning phase given in Proposition 5 is PMPBE in the game starting with s = h is

depicted in Figure 3, case (ii) (orange area).

5 Concluding remarks

In this paper we have analysed tacit collusion in an in�nitely repeated prisoners' dilemma

where a �rm's discount factor is private information. We have shown that the presence of

di�erent states of the world drastically a�ects the strategic role of beliefs. A competitor

that shifts from cooperation to deviation according to the state of the world has an incentive

in faking patience in the good state. Since this behaviour is expected and increases with

the belief in patience, the latter loses its role in determining cooperation. In case when the

length of the learning phase is endogenously determined, the faking patience e�ect may still

emerge by hampering coordination and delaying collusion.

These results are relevant for managers who are willing to engage in colluding behaviour.

From the regulator though, it is hard to draw policy conclusions, given that tacit collusion

is not illegal,16 and anyway it is hard to be detected and proved in court. Thus the main

message of the paper is the fact that, contrary of what one would expect from the standard

wisdom (Motta, 2003), the belief that the competitor is patient might in fact delays collusion.

An interesting extension might investigate the implementation of di�erent strategy con-

cepts. In the present analysis, we have considered grim trigger strategies. These seemed

to be natural in the presence of incomplete information on the other player's discount fac-

tor (Maor and Solan, 2015). Future research may analyse equilibria using another trigger

strategies such as tit-for-tat strategies (Axelrod and Hamilton, 1981), in which at every

current stage the �rm chooses an action that the competitor played at the previous stage.

In this case though, the pro�le of these strategies is not subgame perfect. Alternatively, the

16In reality, this is not so clear. There are a few cases where �rms have been prosecuted for colluding
implicitly. Yet, collusion was di�cult to prove. Examples are the GE and Westinghouse Harvard case, and
the paper pulp case in Europe.
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trigger strategies with limited number of punishing periods can also be used to construct

the punishment of a deviating player.
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Appendices

Appendix A

Strategy pro�les

The strategy pro�le is given by

σ = (σi : i ∈ {1, 2}) . (8)

In (8), σi = {σs
i,t}∞t=1, where σ

s
i,t+1 : H(t) → X is an action of �rm i in period t + 1 and

state s ∈ {ℓ, h}. H(t) = ((s(1), x(1)), . . . , (s(t), x(t))) is a history of period t, where s(t) is

the state in period t and x(t) is the action pro�le played in state s(t) in period t.

De�nition 3 A non-cooperative strategy of �rm i is denoted as σn,i = {σs
i,t}

s=ℓ,h
t=1,...,∞ such

σs
i,t+1(H(t)) = D for every s = ℓ, h, t = 1, . . . ,∞ and any history H(t).

We call the pro�le σn = (σn,i : i ∈ {1, 2}) as non-cooperative strategy pro�le.

De�nition 4 A semi-cooperative strategy of �rm i is denoted as σsc,i = {σs
i,t}

s=ℓ,h
t=1,...,∞ such

that

σs
i,t+1(H(t)) =


C, if s = ℓ and H(t) = Hsc(t),

D, otherwise,

while Hsc(t) is a history of period t containing only the elements (ℓ, (C,C)) and (h, (D,D)).

We call the pro�le σsc = (σsc,i : i ∈ {1, 2}) as semi-cooperative strategy pro�le, according

to which �rms choose action C in state ℓ and actionD in state h if the deviation from history

Hsc(t) is not observed. Otherwise, �rms switch to playing action D in any state forever.
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De�nition 5 A cooperative strategy of �rm i is denoted as σc,i = {σs
i,t}

s=ℓ,h
t=1,...,∞ such that

σs
i,t+1(H(t)) =


C, if H(t) = Hc(t),

D, otherwise,

and Hc(t) = ((s(1), (C,C)), . . . , (s(t), (C,C))) is a history at period t according to which

both �rms choose action C in all periods before t+ 1.

We call the pro�le σc = (σc,i : i ∈ {1, 2}) as cooperative strategy pro�le, which prescribes

�rms to choose action C in period t + 1 if the history shows past cooperation (i.e., no

deviations are observed in the previous periods). If a �rm observes deviation from action

pro�le (C,C), then it chooses action D forever.

Expected payo�s

In this section we derive the value of the expected payo�s. For convenience, de�ne

Π̃(δi) ≡
1

1− δi

1− δi(1− p) δi(1− p)

δip 1− δip

 .

We can easily calculate the �rm's payo� in any equilibria σn, σc or σsc:

1. The discounted payo� of �rm i in equilibrium σn is

Vn(δi) =

V ℓ
n(δi)

V h
n (δi)

 =

0

0

 . (9)

2. The discounted payo� of �rm i in equilibrium σc

Vc(δi) =

V ℓ
c (δi)

V h
c (δi)

 = P̃ (δi)

1

1

 =

 1
1−δi

1
1−δi

 . (10)
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3. The discounted payo� of �rm i in equilibrium σsc

Vsc(δi) =

V ℓ
sc(δi)

V h
sc(δi)

 = P̃ (δi)

1

0

 =

1−δi(1−p)
1−δi

δip
1−δi

 . (11)

We obtain these formulas by calculating the payo� of �rm i according to the pro�le

de�nitions. The discounted payo� of �rm i in equilibrium σn is

Vn(δi) =

V ℓ
n(δi)

V h
n (δi)

 =

δipVn(δi)
δipVn(δi)


or in vectorial form, Vn(δi) = δPVn(δi). This equation gives:

Vn(δi) =

0

0

 .

Second, we calculate the discounted payo� of �rm i in equilibrium σc that is:

Vc(δi) =

V ℓ
c (δi)

V h
c (δi)

 =

1

1

+ δi

p 1− p

p 1− p


V ℓ

c (δi)

V h
c (δi)

 .

Rewriting this equation in vectorial form, we obtain equation (10).

Third, we calculate the discounted payo� of �rm i in equilibrium σsc that is:

Vsc(δi) =

V ℓ
sc(δi)

V h
sc(δi)

 =

1

0

+ δi

p 1− p

p 1− p


V ℓ

sc(δi)

V h
sc(δi)

 .

Rewriting this equation in a vectorial form, we obtain equation (11).

Notice that, in expressions (9), (10) and (11), matrix P̃ (δi) is the same.
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Bayesian updating

First, consider the updating rule for state s = ℓ. If a �rm chooses C in period t, it is

identi�ed as class17


P with prob. αℓ

t+1 =
αtq

ℓ
t

αtqℓt + βtrℓt
;

M with prob. βℓ
t+1 = 1− αℓ

t+1 =
βtr

ℓ
t

αtqℓt + βtrℓt
.

(12)

Instead, a class I �rm is the only one that never plays C in this state. Thus detecting

collusion in s = ℓ entails that the competitor does not belong to this class for certainty,

γℓt+1 = 0.

If a �rm chooses D in state ℓ, it is identi�ed as class18



I with prob. γℓt+1 = 1− αℓ
t+1 − βℓ

t+1 =
1− αt − βt

1− αtqℓt − βtrℓt
;

P with prob. αℓ
t+1 =

αt(1− qℓt)
1− αtqℓt − βtrℓt

;

M with prob. βℓ
t+1 =

βt(1− rℓt)
1− αtqℓt − βtrℓt

.

(13)

Next, consider the updating rule for state h. As already discussed, if a �rm chooses C, it is

identi�ed as class P with probability 1: only patient �rms collude in state h. On the other

hand, if a �rm chooses D, it is identi�ed as class19



I with prob. γht+1 = 1− αh
t+1 − βh

t+1 =
1− αt − βt
1− αtqht

;

P with prob. αh
t+1 =

αt(1− qht )
1− αtqht

;

M with prob. βh
t+1 =

βt
1− αtqht

.

(14)

17The probabilities αℓ
t+1 and βℓ

t+1 are de�ned if αtq
ℓ
t + βtr

ℓ
t ̸= 0. If αtq

ℓ
t + βtr

ℓ
t = 0, it is impossible to

observe action C in state s = ℓ.
18The probabilities αℓ

t+1, β
ℓ
t+1 and γ

ℓ
t+1 are de�ned if αtq

ℓ
t + βtr

ℓ
t ̸= 1. If αtq

ℓ
t + βtr

ℓ
t = 1, it is impossible

to observe action D in state s = ℓ.
19The probabilities αh

t+1, β
h
t+1 and γ

h
t+1 are de�ned if αtq

h
t ̸= 1. If αtq

h
t = 1 (αt = qht = 1), it is impossible

to observe action D in state h.
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Non-cooperative outcomes

In this section we show the non-cooperative results. In this case, the non-cooperative

strategy pro�le σn is formed by rule (4) in the collusion phase of the game. We classify the

equilibria according to which the non-cooperative strategy pro�le is played in the collusion

phase regardless of the �rms' classes. Like in the main text, we consider �rst the case where

the learning phase lasts one period: the results are summarised in the following proposition.

Proposition 6 Suppose T = 1. Then the strategy pro�les (qℓ1, r
ℓ
1) = (0, 0) and (qh1 ) = (0)

are PMPBE if the initial state is s = ℓ and s = h respectively.

Proof. Consider the initial state ℓ and the strategy pro�le
(
qℓ1; r

ℓ
1

)
= (0, 0). A �rm P

obtains the following payo� if it does not deviate from (0, 0):

δPpVn(δP ). (15)

If it deviates from pro�le (0, 0) (qℓ1 = 1), it gets:

δPpVn(δP )− l, (16)

so that (15) is always greater than (16). A deviation of a class M cannot be pro�table

either.

Consider the initial state h and the strategy pro�le
(
qh1
)
= (0). A �rm P obtains the

following payo� if it does not deviate from (0):

δPpVn(δP ). (17)

If it deviates from pro�le (0) (qh1 = 1), it gets:

δPpVn(δP )− l. (18)
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Therefore, the strategy pro�le (qh1 , r
h
1 ) = (0, 0) when the game starts from ℓ and

(
qh1
)
= (0)

when the game starts from h are PMPBE.

We now turn to the case where the learning phase is endogenously determined. Let the

initial state be h. Consider the strategy qh1 = 0 of �rm P in period 1 in state s = h. In this

case, all �rms use action D and, after this period, the beliefs are not updated: α2 = α1,

β2 = β1, γ2 = γ1. If in any further periods only state s = h is realized, then the strategy of

�rm of type P is qht = 0 because of the Markovian property of the strategy.

The beliefs can be changed only if state s = ℓ is realized in the game. Let state ℓ be

realized in period t > 1. If in this state �rms use strategies qℓ1 = 0 and rℓ1 = 0, then the

beliefs do not change and again αt = α1, βt = β1. Therefore, using the Markovian property,

we get by induction qℓt = rℓt = 0 for any t. These strategies determine a subgame perfect

equilibrium with in�nite learning phase when �rms always adopt action D in any state. The

existence of a similar PMPBE can be proved when the game starts from state ℓ and �rms

use actions D in this state and then in the �rstly appeared state h they also use actions D.

The ongoing discussion can be summarised as follows.

Proposition 7 For any initial probabilities α1 > 0, β1 > 0 such that α1 + β1 < 1, there

always exists PMPBE in which the �rms' strategies for both initial states ℓ and h are as

follows: qℓt = rℓt = 0 and qht = 0, t = 1, 2, . . . (�rms of all classes choose action D in any

state forever). In this case the learning phase lasts forever.

Appendix B. Proofs

Proof of Lemma 1

This is easily derived by expected �rms' payo�s Vn(δi), Vc(δi) and Vsc(δi) given in Appendix

A.
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Proof of Proposition 1

First, we prove that cooperative strategy pro�le is SPNE i� δi ⩾ δ̂ = gh

1+gh
. This is equivalent

to �nding conditions under which the deviation from any state from strategy pro�le (C,C)

is not pro�table, i.e. 1

1

+ δiPVc ≥

1 + gℓ

1 + gh

+ δiPVn,

which implies gℓ

gh

 ≤
 δi

1−δi

δi
1−δi

 .

Taking into account that gℓ < gh, we obtain

δi ⩾
gh

1 + gh
= δ̂.

Second, we prove that semi-cooperative strategy pro�le is SPNE i� δi ⩾ δ̃ = gℓ

p+gℓ
. This

is equivalent to �nding conditions under which the deviation from state ℓ from strategy

pro�le (C,C) is not pro�table:

1 + δipVsc ≥ 1 + gℓ + δipVn,

which implies

gℓ ≤ p
δi

1− δi
.

We obtain

δi ⩾
gℓ

p+ gℓ
= δ̃.

Proof of Proposition 2

Before proving the proposition, it is convenient to introduce the following strategy pro�le,

as it may emerge in the case of deviation. We will next proceed with the proof.
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Deviating strategy pro�le

De�nition 6 A �deviating strategy pro�le� is denoted as σd = (σd,i, σc,j), where σd,i =

{σs
i,t}

s=ℓ,h
t=1,...,∞ such that

σs
i,t+1(H(t)) =


C, if s = ℓ and H(t) = Hc(t)

D, if s = ℓ and H(t) ̸= Hc(t)

D, if s = h

.

In this pro�le, �rm j plays strategy σc,j given by De�nition 5 while �rm i applies strat-

egy σd,i. This pro�le may occur when �rm j has a belief that the competitor i will play

cooperatively while it will in fact defect in state s = h. In turn, when �rm j observes a

deviation from the cooperative strategy pro�le, it reacts with D in all stages afterwards

according to strategy σc,j.

Denote by Vd(δi) an expected payo� of deviating �rm i in strategy pro�le σd. We

compute the expected payo� Vd,i(δi) of a deviating �rm i which is:

Vd(δi) =

V ℓ
d(δi)

V h
d (δi)

 ,

where V s
d (δi) is the payo� of �rm i in the subgame starting from state s. If the subgame

starts from state ℓ, �rm i gets

V ℓ
d(δi) = 1 + δ(pV ℓ

d(δi) + (1− p)V h
d (δi)).

If the subgame starts from state h, �rm i defects and gets
(
1 + gh

)
. Then it will be punished

by playing (D,D) in any state from the next stage until in�nity. Its total payo� will be

V h
d (δi) =

(
1 + gh

)
+ δpVn(δi) = 1 + gh.
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From these two equations we obtain

Vd(δi) =

1+δi(1−p)(1+gh)
1−δipl

1 + gh

 .

Initial state s = ℓ. Strategy pro�le (qℓ1, r
ℓ
1) = (1, 0) Begin from a �rm of class P . If it

does not deviate from (1, 0), it gets

α1 (1 + δPpVc(δP )) + (1− α1) (δPpVn(δP )− l) . (19)

If it deviates from pro�le (1, 0) (qℓ1 = 0), it gets:

α1(1 + gℓ + δPpVn(δP )) + (1− α1)δPpVn(δP ). (20)

The deviation is not pro�table if (19) is larger or equal to (20), taking into account δP ⩾ δ̂.

Now consider the �rm of class M . Its payo� in pro�le (1, 0) is

α1(1 + gℓ + δMpVn(δM)) + (1− α1)δMpVn(δM). (21)

If it deviates from pro�le (1, 0) (playing rℓ1 = 1), it gets:

α1(1 + δMpVd(δM)) + (1− α1)(δMpVn(δM)− l), (22)

where V d(δM) is the payo� of an M -class �rm when it cooperates in s = ℓ and defects

in state s = h (which is pro�table according to its discount factor). The deviation is not

pro�table if (21) is larger or equal than (22), taking into account inequality δ̃ ⩽ δM ⩽ δ̂ from

Proposition 1. The strategy pro�le (1, 0) is a PMPBE when one of the following systems
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has a solution: 
α1 ⩾

l

l − gℓ + δP
1−δP

,

l − gℓ + δMpVd(δM) ⩽ 0,

or 

α1 ⩾
l

l − gℓ + δP
1−δP

,

l − gℓ + δMpVd(δM) > 0,

α1 ⩽
l

l − gℓ + δMpVd(δM)
.

Now we need to verify the sign of expression:

l − gℓ + δMpVd(δM). (23)

First, consider expression δMpVd(δM). We can easily conclude that

pVd(δM) > pVsc(δM),

and equivalently

δMpVd(δM) > δMpVsc(δM). (24)

Therefore

l − gℓ + δMpVd(δM) ⩾ l

if δMpVsc(δM) ⩾ gℓ,

which is always veri�ed for δM . Therefore, the expression (23) is positive.

Simplifying the systems and considering δP ⩾ δ̂, we obtain condition

α1 ∈ [A1, A2], (25)
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where

A1 ≡
l

l − gℓ + δP
1−δP

,

and

A2 ≡
l

l − gℓ + δM (1+gh)−pgh

1−δMp

,

and 0 < A1 < A2.

Initial state s = ℓ. Strategy pro�le (qℓ1, r
ℓ
1) = (1, 1) Again, we begin from a �rm of

class P . If it does not deviate from strategy (1, 1), it gets:

(α1 + β1)(1 + δPpVsc(δP )) + (1− α1 − β1)(δPpVn(δP )− l). (26)

If it deviates from (1, 1) (q1 = 0), it gets:

(α1 + β1)(1 + gℓ + δPpVn(δP )) + (1− α1 − β1)δPpVn(δP ). (27)

The deviation is not pro�table if (26) is larger than or equal to (27), taking into account

δP ⩾ δ̂ from Proposition 1.

Consider next a �rm of class M . Its payo� in pro�le (1, 1) is

(α1 + β1)(1 + δMpVsc(δM)) + (1− α1 − β1)(δMpVn(δM)− l). (28)

If it deviates from pro�le (1, 1) (rℓ1 = 0) it gets:

(α1 + β1)(1 + gℓ + δMpVn(δM)) + (1− α1 − β1)δMpVn(δM). (29)

The deviation is not pro�table if payo� (28) is larger than or equal to (29), taking into

account δ̃ ⩽ δM ⩽ δ̂. Thus, the strategy pro�le (1, 1) is a PMPBE if the following system
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has a solution: 
(α1 + β1)

[
l − gℓ + δPpVsc(δP )

]
⩾ l,

(α1 + β1)
[
l − gℓ + δMpVsc(δM)

]
⩾ l.

Since δM < δP , the system is equivalent to the following inequality:

β1 ⩾ A3 − α1. (30)

where

A3 ≡
l

l − gℓ + δMpVsc(δM)
=

l

l − gℓ + δMp
(1−δM )

.

Initial state s = h. Strategy pro�le (qh1 ) = (1) If the game starts in state h, the

strategy pro�le (qh1 ) = (1) is a PMPBE if the following inequality holds:

α1

[
l − gh + δPpVc(δP )

]
⩾ l.

Since δP ⩾ δ̂, then δPpVc(δP ) ⩾ gh, so that:

α1 ⩾
l

l − gh + δPpVc(δP )
=

l

l − gh + δP
1−δP

≡ A4. (31)

Proof of Corollary 1

The payo� of an M �rm in pro�le (1, 0) is

α1(1 + gℓ + δMpVn(δM)) + (1− α1)δMpVn(δM)

and in pro�le (1, 1) is

(α1 + β1)(1 + δMpVsc(δM)) + (1− α1 − β1)(δMpVn(δM)− l).
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The payo� of an M �rm in pro�le (1, 1) is not less than his payo� in pro�le (1, 0) if

α1

[
gℓ − l − δMpVsc(δM)

]
+ β1 [−δMpVsc(δM)− l − 1] + l ⩽ 0.

or

(α1 + β1)(l − gℓ + δMpVsc(δM)) ⩾ l − β1
(
1 + gℓ

)
. (32)

Taking into account that α1 + β1 ⩾ A3, we may state that

(α1 + β1)
[
l − gℓ + δMpVsc(δM)

]
⩾ l.

The latter inequality guarantees that (32) is satis�ed because
(
1 + gℓ

)
> 0.

Proof of Proposition 3

Consider the payo�s of �rms of classs P andM as functions of parameter α1. By Proposition

2, there are three equilibria:

1. Equilibrium (qℓ1, r
ℓ
1) = (1, 0): the payo� of a �rm of class P is

α1(1 + δPpVc(δP )) + (1− α1)(δPpVn(δP )− l) = α1(1 + δPpVc(δP ))− l(1− α1).

It is a linear function of α1 with coe�cient 1+ l+ δPpVc(δP ) which is positive because

1 > −l for every δ ∈ (0, 1).

The payo� of an M -class �rm is

α1(1 + gℓ + δMpVn(δM)) + (1− α1)δMpVn(δM) = α1(1 + gℓ).

It is also a linear function of α1 with coe�cient 1 + gℓ > 0.
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2. Equilibrium (qℓ1, r
ℓ
1) = (1, 1): we begin with the �rm of class P . Its payo� is

(α1 + β1)(1 + δPpVsc(δP )) + (1− α1 − β1)(δPpVn(δP )− l).

It is a a linear function of α1 with coe�cient 1 + l + δPpVsc(δP ) which is positive for

every δ ∈ (0, 1).

Then, the payo� of a �rm of class M is

(α1 + β1)(1 + δMpVsc(δM)) + (1− α1 − β1)(δMpVn(δM)− l).

This is a linear function of α1 with coe�cient 1+ l+ δMpVsc(δM) which is positive for

every δ ∈ (0, 1).

The derivatives of the payo�s of the P and M �rms with respect to β1 equal the

corresponding derivatives subject to α1. Therefore, the payo�s are also increasing

functions of β1.

3. Equilibrium (q1) = (1) in initial state s = h: the payo� of the �rm of class P is

α1(1 + δPpVc(δP )) + (1− α1)(δPpVn(δP )− l).

It is a linear function of α1 with coe�cient 1 + l + δPpVc(δP ) which is positive for

every δ ∈ (0, 1).

Proof of Proposition 4

Period 1, state ℓ. If �rm P follows the described strategy qℓ1 = 1, his payo� will be

α1 [1 + δPpVc(δP )] + β1 [1 + δPp(δPpVsc(δP )− l) + δP (1− p)(δPpVsc(δP )− l)]

+ (1− α1 − β1) [δPpVn(δP )− l] .
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If he deviates to strategy qℓ1 = 0, his class will be identi�ed as I and his payo� will be

α1

[
1 + gℓ + δPpVn(δP )

]
+ β1

[
1 + gℓ + δPpVn(δP )

]
+ (1− α1 − β1)δPpVn(δP ).

Remembering that p = (p, 1− p), the deviation of �rm P in period 1 is not pro�table if

α1

[
l − gℓ + δPpVc(δP )

]
+ β1

[
l (1− δP )− gℓ − δPp+ δPpVsc(δP )

]
⩾ l.

We call

A5 ≡
[
l − gℓ + δPpVc(δP )

]
= l − gℓ + δP

1− δP
,

A6 ≡ l − gℓ − lδP +
δ2Pp

1− δP

It is easy to verify that A5 > 0.

If �rm M follows the described strategy rℓ1 = 1, his payo� will be

α1

[
1 + δMp(1 + gℓ + δMpVsc(δM)) + δM(1− p)(1 + gh + δMpVsc(δM))

]
+ β1 [1 + δMpδMpVsc(δP ) + δM(1− p)(δMpVsc(δM))]

+ (1− α1 − β1) [δMpVn(δM)− l] .

If he deviates to strategy rℓ1 = 0, his class will be identi�ed as I and his payo� will be

α1

[
1 + gℓ + δMpVn(δM)

]
+ β1

[
1 + gℓ + δMpVn(δM)

]
+ (1− α1 − β1)δMpVn(δM).

The deviation of �rm M in period 1 is not pro�table if

α1

[
l − gℓ + δMpVsc(δM) + δMpg

ℓ + δM(1− p)(1 + gh)
]

+ β1
[
l − gℓ + δMpVsc(δM)− δMp

]
⩾ l.
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We call

A7 ≡ l − gℓ + δM

[
p

1− δM
+ pgℓ + (1− p)(1 + gh)

]
,

A8 ≡ l − gℓ + δ2Mp

1− δM
.

It is easy to notice that A7, A8 > 0.

Period 2. State ℓ. If in period 1 the �rms' classes are not revealed, i. e. only action

C was observed, then the learning phase continues and the updated beliefs are

α2 =
α1

α1 + β1
, β2 =

β1
α1 + β1

.

If �rm P uses strategy qℓ2 = 1, his payo� will be

α2 [1 + δPpVc(δP )] + β2 [δPpVsc(δP )− l] .

If he deviates to strategy qℓ2 = 0, his class will be identi�ed as M and his payo� will be

α2

[(
1 + gℓ

)
+ δPpVsc(δP )

]
+ β2 [0 + δPpVsc(δP )] .

The deviation of �rm P in period 2, state ℓ, is not pro�table if

α2

[
δPp(Vc(δP )− Vsc(δP ))− gℓ

]
− β2l ⩾ 0,

taking into account the expressions of α2 and β2, we obtain condition

β1
α1

⩽
δPp(Vc(δP )− Vsc(δP ))− gℓ

l
.
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where the RHS can be simpli�ed as

δPp(Vc(δP )− Vsc(δP ))− gℓ

l
=

1

l

(
δP (1− p)
1− δP

− gℓ
)
. (33)

If �rm M uses strategy rℓ2 = 0, his payo� will be

α2

[
1 + gℓ + δMpVsc(δM)

]
+ β2 [δMpVsc(δM)] .

If he deviates to strategy rℓ2 = 1, his class will be identi�ed as P and his payo� will be

α2 [1 + δMpVd(δM)] + β2 [δMpVsc(δM)− l] .

The deviation of �rm M in period 2, state ℓ, is not pro�table if

α2

[
gℓ + δMp(Vsc(δM)− Vd(δM))

]
+ β2l ⩾ 0,

taking into account the expressions of α2 and β2, we obtain condition

β1
α1

⩾ A9 ≡
δMp(Vd(δM)− Vsc(δM))− gℓ

l
.

Period 2. State h. If in period 2, a P -class �rm uses strategy qh2 = 1, his payo� will

be

α2 [1 + δPpVc(δP )] + β2 [δPpVsc(δP )− l] .

If he deviates to strategy qh2 = 0, his class will be identi�ed as M and his payo� will be

α2

[
1 + gh + δPpVsc(δP )

]
+ β2δPpVsc(δP ).
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The deviation of �rm P in period 2, state h, is not pro�table if

α2

[
δPp(Vc(δP )− Vsc(δP ))− gh

]
− β2l ⩾ 0.

Taking into account the expressions of α2 and β2, we obtain condition

β1
α1

⩽
δPp(Vc(δP )− Vsc(δP ))− gh

l
,

where the RHS can be simpli�ed as

A10 ≡
1

l

(
δP (1− p)
1− δP

− gh
)

(34)

Comparing equations (33) and (34) we get

1

l

(
δP (1− p)
1− δP

− gℓ
)
>

1

l

(
δP (1− p)
1− δP

− gh
)
,

So that β1

α1
⩽ A10 is a su�cient condition.

Combining all conditions in the system we prove the proposition.

Proof of Proposition 5

The deviation to strategy rℓ2 = 0 is not pro�table when

β2
(
1 + δMpVsc(δM)

)
+ γ2

(
δMpVn(δM)− l

)
⩾ β2

(
1 + gℓ + δMpVn(δM)

)
+ γ2

(
δMpVn(δM)

)
.

Taking into account that β2 =
β1

1−α1
and γ2 =

1−α1−β1

1−α1
, we obtain:

β1 ⩾
l (1− α1)

l − gℓ + δMpVsc(δM)
.

The fact that an M -class �rm adopts C in period 2 and state ℓ a�ects in turn the choice
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of a competitor of class P : we now examine the condition under which qh1 = 1 is a part of

PMPBE if the M �rm chooses rℓ2 = 1 in period 2 and state ℓ. The deviation of �rm P to

strategy qh1 = 0 is not pro�table if

α1

[
δPp(Vc(δP )− Vn(δP ))− gh

]
+ β1δPp(Vn(δP )− Vsc(δP ))− (1− α1)l ⩾ 0,

which is equivalent to inequality

β1 ≤
α1[l − gh + δPpVc(δP )]− l

δPpVsc(δP )
.
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