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SUMMARY
Fear responses are functionally adaptive behaviors that are strengthened as memories. Indeed, detailed
knowledge of the neural circuitry modulating fear memory could be the turning point for the comprehension
of this emotion and its pathological states. A comprehensive understanding of the circuits mediatingmemory
encoding, consolidation, and retrieval presents the fundamental technological challenge of analyzing activity
in the entire brain with single-neuron resolution. In this context, we develop the brain-wide neuron quantifi-
cation toolkit (BRANT) for mapping whole-brain neuronal activation at micron-scale resolution, combining
tissue clearing, high-resolution light-sheet microscopy, and automated image analysis. The robustness
and scalability of this method allow us to quantify the evolution of activity patterns across multiple phases
of memory in mice. This approach highlights a strong sexual dimorphism in recruited circuits, which has
no counterpart in the behavior. The methodology presented here paves the way for a comprehensive char-
acterization of the evolution of fear memory.
INTRODUCTION

Fear responses are functionally adaptive behaviors that can be

induced by a direct encounter with a threat or with situations pre-

viously associated with a threat. Indeed, given its high survival

value, the capability to remember potential threats is highly

conserved across species.1 Although ‘‘fear’’ refers to a human

emotion, with a specific connotation in our minds not directly

accessible in other animals, we can nevertheless study defen-

sive responses induced by aversive events in animal models us-

ing standard behavioral paradigms like contextual fear condi-

tioning (CFC) and inhibitory avoidance (IA).2 Fear induces many

changes at different levels, from molecular and cellular to circuit

ones.3,4 These permanent changes represent the physical trace

of memory, commonly referred to as ‘‘engram.’’ In the last years,

neuroscientists have made many steps forward in the knowl-

edge of themolecular and cellular mechanisms underlyingmem-

ory formation, consolidation, and retrieval.4–7 Furthermore,

several brain areas, most prominently the hippocampus, the
This is an open access article under the CC BY-N
amygdala, and the prefrontal cortex, have been identified as

important centers for memory processing.2 However, several

studies highlighted the involvement of many other regions,8–10

supporting the hypothesis that memory is distributed and

dispersed across the entire brain; from this perspective, the

study of a single or a few brain areas limits the comprehension

of mechanisms underlying fear memory. The study of limited

brain regions leads to a fragmented view that makes the global

vision rarely interpretable; therefore, many significant questions

about fear mechanisms and dynamics have yet to be explained.

The paucity of studies addressing fear memory substrates at

the brain-wide level is mainly due to the technical limitations in

large-scale analysis of neuronal activity. From a methodological

point of view, understanding how neuronal networks drive this

type of memory requires techniques for whole-brain activation

mapping. In this respect, a promising strategy is to tag activated

neurons in vivo through immediately early gene (IEG) approaches

and image them subsequently ex vivo by 3D optical tools

such as light-sheet microscopy (LSM). The coupling of clearing
Cell Reports 42, 112908, August 29, 2023 ª 2023 The Author(s). 1
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techniques, like CLARITY,11 iDISCO,12 or CUBIC,13 with LSM

has enabled the brain-wide mapping of cFos+ neurons activated

in different behavioral contexts.13,14,15 However, IEG transgenic

tools16–19 label the entire neuronal cell, including axons and den-

drites, making image analysis more challenging as compared to

anti-cFos immunostaining, which is confined to the nucleus.19 In

this respect, subcellular resolution is needed to disentangle the

contribution from neuronal processes and somata. Since the

data size scales with the third power of the sample linear dimen-

sions, even a moderate increase in spatial resolution (e.g., 23)

leads to a large increase of in the amount of data to be processed

(83 in our example). Unfortunately, available analysis tools14 are

not capable of routinely handling TB-sized datasets, limiting

brain-wide activation analysis to anti-cFos immunostaining. On

the other hand, the ability to quantify cells labeled through

IEG-based transgenic strategies would enable further investiga-

tion on the same animal after tagging of activated neurons.17,15

From a clinical point of view, the study of fear memory requires

scalable methods to analyze large cohorts of subjects. This is

necessary to clarify how different neuronal circuits are disrupted

in disease states such as in post-traumatic stress disorder

(PTSD). Indeed, understanding howmemory works and changes

over time would imply analysis of multiple time points and of

diverse experimental classes.

The lifetime prevalence of PTSD is about 10%–12% in women

and 5%–6% inmen.20Women have a two/three times higher risk

of developing PTSD compared with men.21 In spite of this strik-

ing difference in prevalence and risk between male and female

subjects, sex difference studies are only partially considered in

the field of neuroscience since researchers typically favor male

mice rather than female mice in their studies, with a ratio of 5.5

to 1.22 This disproportion does not consider the sex statistical

differences in the lifetime of many pathologies, suggesting

serious implications for healthcare in women. The factors that in-

fluence the different lifetimes in PTSD vary from biological to

psychological ones.21 Also, in the context of whole-brain map-

ping, the few studies published hitherto focused only on the

male population.15,23–26

Here, we present BRANT (brain-wide neuron quantification

toolkit), a new pipeline for whole-brain mapping, exploiting

TRAP mice,16 high-resolution LSM, and terabyte-scale image

processing. Using BRANT, we analyze the evolution of whole-

brain neural circuits recruited upon aversive memory in females
Figure 1. Experimental pipeline
(A) Schematic representation of various steps constituting the experimental pip

drives permanent expression of tdTomato in activated neurons. After perfusion,

tion RAPID-enabled LSM. High-resolution imaging was fundamental for cell dete

Atlas. tdTomato+ neurons are automatically detected and quantified across all b

(B) Virtual slice extracted from a whole-brain tomography; scale bar, 1,000 mm (le

scale bar, 50 mm. Low- and high-resolution zoom ins, corresponding to voxel siz

counting in this subvolume obtained with bcFind and ClearMap (right).

(C) Comparison of the localization performance (precision, recall, and F-1 score

(ClearMap HR).

(D) Data throughput of bcFind and ClearMap in 3D automated analysis.

(E) One channel image registration to the Atlas. Gamma correction is applied to th

Atlas registration.

(F) The point cloud obtained with bcFind (left) is finally warped to the reference atl

which they belong.
and males. We find strong sexual dimorphism in the evolution of

whole-brain networks underlying fear memory, both at the levels

of activation patterns and of functional connectivity.

RESULTS

BRANT enables scalable, high-resolution analysis of
neuronal activity patterns in behaviorally relevant
cohorts
Any method aiming at complementing behavioral analysis with

physiological or anatomical data must be applicable to dozens

of samples, allowing its use in a statistically significant number

of animals for each behavioral group. With this important

constraint in mind, we developed BRANT, a scalable and user-

friendly pipeline for 3D analysis of whole-brain activation pat-

terns that combines FosTRAP transgenic strategy,16 CLARITY/

TDE,27 high-resolution RAPID-enabled LSM,28 and 3D auto-

mated data analysis29 (Figure 1A). BRANT was validated using

a classical paradigm, i.e., step-through passive IA. After the

behavioral task, mice are injected with 4-hydroxytamoxifen (4-

OHT) to drive Cre-mediated recombination in cFos-expressing

neurons.16

Importantly, since the reporter fluorescent protein (tdTomato)

is not confined to the soma but is expressed in the entire neuron,

high-resolution imaging is required to disentangle dense envi-

ronments (Figure 1B). To this aim, 3D whole-brain reconstruc-

tions were achieved by optimizing clearing and imaging proto-

cols. All brains were made optically transparent using a

modified CLARITY/TDE protocol allowing moderate expansion

of tissue (27% linearly).30 This isotropic change in sample size

offered the possibility to discriminate single cells in densely

labeled structures. Samples were then imaged using a

custom-made LSM with confocal line detection, able to recon-

struct mesoscopic samples with microscale resolution.31

Through a system for real-time stabilization of light-

sheet alignment, called RAPID, we were able to maintain high

resolution across the entire sample volume28 (Video S1). Since

RAPID operates simultaneously with image detection, no acqui-

sition overhead is introduced.

Each brain reconstruction comprises about 16 terabytes of

raw data with a voxel size of 0.65 3 0.65 3 2 mm3. This data

size is incompatible with a cohort study, as it would require stor-

age capabilities in the order of 1 petabyte for a single study. For
eline. FosTRAP mice underwent the step-through IA task. Injection of 4-OHT

all brains were processed with CLARITY/TDE and imaged with a high-resolu-

ction and 3D automated analysis. All brains were registered to the Allen Brain

ehavioral groups.

ft). The red square identifies a small region zoomed in on the other subpanels;

es of 4 3 4 3 4 and 0.65 3 0.65 3 2 mm3, respectively (center). Results of cell

) of bcFind and ClearMap at low resolution (ClearMap LR) and high resolution

e FosTRAP image; scale bar, 300 mm. Image with high contrast is used for the

as (right). In the right image, points are colored according to the brain region to
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this reason, the acquired datasets were first compressed by a

factor of 20 using the 16-bit lossy JPEG-2000 format, thus

reducing disk usage while still retaining overall good image qual-

ity and detail level. Images were then stitched using ZetaStitcher

(https://lens-biophotonics.github.io/ZetaStitcher/), a custom-

made Python software for large volumetric stitching specifically

developed for LSM. An important feature of ZetaStitcher is

VirtualFusedVolume, an application programming interface

(API) that provides seamless and effective access to high-reso-

lution data by simply providing the spatial coordinates of the

subvolume of interest within the virtually fused volume. In this

way, large volumes can be programmatically processed in

smaller chunks in a distributed environment and without user

intervention, a key requirement to process the large datasets

produced by high-resolution LSM. Fluorescently labeled acti-

vated neurons were detected using BrainCell Finder (bcFind).29

This 3D automated analysis relies on a deep-learning approach,

based on a U-Net architecture, widely used in the image analysis

field,32 to recognize specific structures in complex datasets.

Indeed, since tdTomato is expressed also in neuronal pro-

cesses, the application of standard methods based on thresh-

olds and blob detectors is not feasible (Figure 1B). The task of

our U-Net is to transform raw images, containing many disturb-

ing objects (like axons, dendrites, and vessels), into ideal images

that include only small spheres at the location of neuronal

bodies. In the images transformed by the U-Net, a basic blob de-

tector algorithm can then effectively localize the fluorescent cell

bodies. The performance of this method was evaluated on 3,383

manually labeled cells, measuring the number of true positives

(TP, cells detected both by the human annotator and the algo-

rithm), false positives (FP, cells detected by the algorithm alone),

and false negatives (FN, cells detected by the human annotator

but missed by the algorithm). We obtained precision = TP/(TP +

FP) equal to 0.84, recall = TP/(TP + FN) 0.74, and F1 score = 0.78.

F1 is defined as the harmonic mean of precision and recall,

1/F1 = (1/P + 1/R)/2. We compared the accuracy of bcFind

with that obtained using ClearMap, a widely used software for

cFos+ cell detection in cleared brains.14 To simulate the typical

application settings of the method, we tested it also on images

downscaled to a standard voxel size of 43 43 4 mm3 (Figure 1C).

ClearMap analysis showed poor performance both with high-

(precision: 0.36, recall: 0.78, F1: 0.49) and low-resolution data

(precision: 0.69, recall: 0.35, F1: 0.46). This is not surprising since

the method has been developed to detect spherical-like objects

(like cFos-stained nuclei) and not complex neuronal cells. Pa-

rameters used for BRANT U-Net and for ClearMap are reported

in Tables S1 and S2, respectively.
Figure 2. Behavioral task and neuronal activity analysis

(A) Schematic representation of the experimental paradigm. Animals are handled

shock (0.3 mA, shock duration 2 s, delay after closing door 0.5 s). Memory retentio

time points, mice were divided in three experimental classes: training, test 24 h,

(B) The comparisons of acquisition and retention latency times are analyzed by tw

**p < 0.01, training n = 6 males and n = 4 females, test 24 h n = 5 males and n = 6 f

means ± SEM of 4–6 animals for each group.

(C–E) PLS analysis of cFos expression between the two sexes in all experime

normalized by standard deviation calculated with bootstrap (right), identify regions

lines reflect, respectively, salience scores of 1.64 (p < 0.1), 1.96 (p < 0.05), and 2
Given that raw data amount to about 16 terabytes per brain,

another fundamental feature is computational scalability. bcFind

can be operated in batch mode on a computing cluster, enabling

image processing at a rate that is ultimately limited only by

computational power. In our case, using a cluster with 8 GPUs

(NVIDIA GeForce RTX 2080Ti), we were able to process data

at about 240 GB/h, about 1 order of magnitude faster than the

reported speed of ClearMap14 (Figure 1D). Importantly, this is

not a comparison about the absolute speed of both algo-

rithms—i.e., these data do not mean that bcFind is faster than

ClearMap when using the same resources—but rather is a com-

parison about the capabilities of the two software to effectively

run on large-scale parallelized environments—meaning that in

practical settings, bcFind is faster when used on terabyte (TB)-

sized datasets.

To compare cell counts across multiple subjects, 3D brain da-

tasets are spatially aligned to the Allen Brain Reference Atlas us-

ing Advanced Normalization Tools (ANTs).33 Different from previ-

ous reports, we did not acquire a secondary channel for atlas

registration but rather applied a strong gamma correction to

reduce the contrast between tissue autofluorescence and the

signal from fluorescent protein (Figures 1E and 1F). We found a

registration accuracy of about 300 mm (see STAR Methods),

which is comparable to that obtained by ClearMap.14 Notably,

the approach implemented here reduces the cost and

complexity of the microscope used since only one camera is

needed in the microscope and the size of acquired datasets is

not duplicated. Of note, all brain areas were included and group-

ed for this study, manually selecting 48 non-overlapping macro

areas. We decided to use larger areas (the Allen Reference Atlas

has more than 1,000 subregions) based on the measured regis-

tration accuracy to avoid misassignment of cells.

In conclusion, the combination of fast high-resolution imaging

and scalable 3D analysis for processing subcellular information

is the core of this pipeline, enabling quantification of active

neuronal ensembles in behaviorally relevant cohorts (Videos S2

and S3).

BRANT analysis reveals sexually dimorphic patterns of
brain activation in different phases of aversive memory
BRANTwas applied to study the time evolution of neuronal activ-

ity over the course of fear memory (Figure 2A). In order to answer

our biological question, we used step-through IA as a behavioral

paradigm in which mice learn to associate a particular context

(i.e., white/black box) with an aversive event (i.e., a mild foot

shock). Differently from the standard CFC, IA implies decision-

making since mice can decide whether to step into the dark
for 3 days before training. During the training session, all mice receive a foot

n test is performed 24 h or 7 days after training. By the 4-OHT injection at three

or test 7 days.

o-way ANOVA, followed by Bonferroni’s post hoc comparisons tests (*p < 0.05,

emales, and test 7 days n = 4 males and n = 4 females). Data are expressed as

ntal classes: training (C), test 24 h (D), and test 7 days (E). Salience scores,

that maximally differentiate between these conditions. The gray, red, and blue

.58 (p < 0.01).
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Table 1. List of brain regions

Abbreviation Long name Brain region

FRP frontal pole isocortex

MO somatomotor areas isocortex

SS somatosensory areas isocortex

GU gustatory areas isocortex

VISC visceral areas isocortex

AUD auditory areas isocortex

VIS visual area isocortex

ACA anterior cingulate area isocortex

PL prelimbic area isocortex

ILA infralimbic area isocortex

ORB orbital area isocortex

AI agranular insular area isocortex

RSP retrosplenial area isocortex

PTLp posterior parietal

association areas

isocortex

Tea temporal association areas isocortex

PERI perirhinal area isocortex

ECT ectorhinal area isocortex

OLF olfactory areas olfactory areas

DG dentate gyrus hippocampal formation

CA1 field CA1 hippocampal formation

CA2 field CA2 hippocampal formation

CA3 field CA3 hippocampal formation

RHP retrohippocampal region hippocampal formation

CLA claustrum cortical subplate

EP endopiriform nucleus cortical subplate

LA lateral amygdalar nucleus cortical subplate

BLA basolateral amygdalar

nucleus

cortical subplate

BMA basomedial amygdalar

nucleus

cortical subplate

PA posterior amygdalar

nucleus

cortical subplate

STRd striatum dorsal region striatum

STRv striatum ventral region striatum

LSX lateral septal complex striatum

sAMY striatum-like amygdalar

nuclei

striatum

PALd dorsal pallidum pallidum

PALv ventral pallidum pallidum

PALm medial pallidum pallidum

PALc caudal pallidum pallidum

DORsm thalamus, sensory motor thalamus

DORpm thalamus, polymodal

association

thalamus

PVZ periventricular zone hypothalamus

PVR periventricular region hypothalamus

MEZ hypothalamic medial zone hypothalamus

LZ hypothalamic lateral zone hypothalamus

Table 1. Continued

Abbreviation Long name Brain region

ME median eminence hypothalamus

MB midbrain midbrain

P pons pons

MY medulla medulla

CB cerebellum cerebellum

The list of brain regions used for activation analysis.
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compartment when they are subsequently tested for memory

retention.2 Indeed, the latency time to enter the dark compart-

ment is used as a directmeasurement ofmemory. This task relies

on a single training session and produces robust memory that is

easily quantifiable and long lasting.Byusing IA,we selected three

experimental groups based on three different memory phases

describing the evolution of fear memory, from encoding to

retrieval: a training group was selected to study fear encoding,

while test groups at 24 h and 7 days after training were selected

to explore the recent and long-term fear memory retrieval,

respectively (Figure 2A). As expected, latency times of training

groups (in which the latency to enter the shock compartment is

measured in the habituation period) were significantly different

compared with the latency times of the respective test groups.

Statistical analyses indicate that latency times were influenced

only by the experimental class and not by sex (two-way

ANOVA, followed by Bonferroni’s post hoc comparisons tests)

(Figure 2B). Indeed, there was no significant difference in training

performances in any group examined or between various test

groups (Figure 2B). This indicates that all mice, independently

from their sex, formed a memory of the training experience

even though the shock intensity (0.3 mA) was weaker than that

classically used.34,35 The value of shock intensity was selected

within a range in which the behavioral outcome at retrieval shows

distinct inter-subject variability, with the aim to point out the

contribution of neuronal activation resulting from the decision-

making process. (Figure S1). Although the results from IA did

not highlight any differences between male and female groups,

the quantification of activated neurons (cFos) in 48 brain regions

(for a complete listing of brain regions, see Table 1) revealed a

strong sexual dimorphism in the underlying neuronal activity

pattern. To obtain a statistically robust comparison of the activa-

tion patterns between male and female subjects, we performed

mean-centered partial least squares (PLS) analysis.36 This

method identifies a set of latent variables (‘‘contrasts’’) in the

space formed by the different experimental conditions and a cor-

responding set of ‘‘saliences,’’ i.e., the contribution of different

brain areas in differentiating the samples between the different

contrasts. Notably, differently from pairwise comparison of cell

counts between different experimental classes, this method

does not require correction for multiple sample comparisons, re-

sulting in overall higher statistical power.36

The vectors of PLS contrasts that discriminate between sexes

have different structures at different time points (training and test

24 h and test 7 days after training), revealing distinct patterns of

cFos expression betweenmales and females in our experimental

groups (Figures 2C–2E).



Figure 3. Pairwise correlation of latency time

with neuronal activity in each brain area

Pearson correlation heatmaps. Here, heatmaps

represent the correlation between the number of

tdTomato+ neurons in each region and the latency

time mice spend to step through into the dark

compartment. On the right side of the plot, different

colors correspond to different significant degrees

(1 � p values).
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Using this unbiased analysis, a strong sexual dimorphism in

the recruitment of several brain areas in each memory phase

was observed. This dimorphism emerges not only in regions

classically considered to be involved in aversive memory such

as the prefrontal cortex, the amygdala, and the hippocampus

but also in brain areas less known for their contribution in this

function such as the pallidum, the striatum, the thalamus, and

other subcortical regions. The differences of cFos expression

(Figures 2C–2E) in all brain regions seem to fade over time,

from the training group to the test 7 days group. Indeed,

7 days after training, there is an alignment of cFos patterns be-

tween sexes with only 3 brain areas (frontal pole [FRP], prelimbic

area [PL], pons [P]) being significantly different with p <0.05 (Fig-

ure 2E). At training and test 24 h after training, malemice showed

an increased cFos expression in the cerebral cortex (somatosen-

sory area [SS], gustatory area [GU], visceral area [VISC], agranu-

lar insular area [AI], ectorhinal area [ECT]), while female mice

showed this in subcortical regions, with the exception of the thal-

amus, which is always more activated in the male group at all

time points (Figures 2C and 2D). Notably, hippocampal regions

showed a general trend of increased activity in females as

compared with males at all time points, although these differ-

ences were less evident at 7 days. In particular, the CA2 showed

significantly higher activation in females compared with males at

both training and 24 h test, while the CA1 displayed a marked in-

crease at training and the CA3 at test 24 h. At 7 days after

training, male mice are associated with an increased cFos

expression in the P and other evolutionary older brain regions,

while female mice are associated with increased cFos expres-

sion in the associative cortex (FRP and PL) (Figure 2E). An inter-

esting case is represented by the median eminence that is more

activated at training in males but at test 24 h in females

(Figures 2C and 2D).

These data indicate that males and females activate, on

average, different neuronal patterns in distinct phases of aver-

sive memory, highlighting a strong sexual dimorphism that is,

notably, not reflected in behavioral differences.

Neuronal activity correlates with behavioral outcome in
different brain regions in females and males
BRANT application showed how activity patterns involved in fear

memory differ in male and female mice. The results obtained by
PLS, based on tdTomato+ neuron quantifi-

cations in each brain region, showed the

areas that account more for the difference

in activity between experimental groups,

each one corresponding to a specific
memory phase. Thus, this analysis highlights variations between

different experimental classes at the population level but is not

appropriate to investigate the inter-subject variability inside the

same experimental group. Indeed, latency times were signifi-

cantly dispersed, underlining variable behavioral responses be-

tween different mice (Figures 2A and S1). To investigate whether

neuronal activation of specific areas can be accounted for the

behavioral variability observed, we performed a cross-correla-

tion analysis between regional counts and latency times (Fig-

ure 3). This analysis led to the identification of strong correlations

or anti-correlations (p < 0.01) for different areas in different

experimental classes. Importantly, brain regions that correlate

with behavior are different for both sexes, underlining a sexual

dimorphism also in this type of analysis (Figure 3). As expected,

the amygdala, the hippocampus, and the prefrontal cortex are

correlated with the step-through latency times, but also, the acti-

vation of areas such as the pallidum, the striatum, the pons, and

other regions less known to be involved in fear memory corre-

lates with the time mice spent in the bright cage before stepping

through into the dark compartment.

For male and female training groups, latency times are not

directly related to fear but instead to the exploration of the envi-

ronment. For this reason, in linewith the literature, the brain areas

more correlated with these latency times are the CA1, the den-

tate gyrus (DG), and the retrohippocampal region (RHP), relevant

for specific contextual information2,37,38; the striatum ventral re-

gion (STRv), which supports the rapid discrimination of uncertain

threats that is necessary for the first contextual exploration39; the

PL, which regulates fear expression40; the PERI, which encodes

the delay between conditioned and unconditioned stimuli41; and

the cerebellum (CB), which participates in movement and is an

important autonomic control center as part of an integrated

network regulating fear.42 Notably, the CB is anti-correlated

with training latency times, suggesting that its activation leads

to reduced explorative behavior. Here, male subjects show a sig-

nificant correlation between behavior and neuronal activation

only in the STRv, a region anti-correlated with latency times in fe-

male mice. On the other hand, in female subjects, strong corre-

lation is observed in the CA1, the DG, the RHP, the PL, and the

PERI, while a clear anti-correlation is found in the CB.

Latency times during test sessions are usually considered in IA

as a measure of fear memory retention.2 24 h after training, a
Cell Reports 42, 112908, August 29, 2023 7
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striking sexual dimorphism is observed in the orbital area (ORB)

and the perirhinal area (PERI), where higher activation correlates

with longer and shorter latency times in females and males,

respectively. In general, we observe that, in female mice, asso-

ciative cortical areas are more activated when animals wait

longer before crossing to the dark compartment. These data

are in line with previous literature highlighting the crucial role

played by the associative cortex in the formation of fear mem-

ory.43,44 Sexual dimorphism tends to be less pronounced in

deeper brain areas, like the basomedial amygdalar nucleus

(BMA) and the striatum-like amygdalar nucleus (sAMY), where

both male and female mice show a negative correlation between

latency times and activated cell counts. These results are

coherent with the role of the BMA in fear memory2 and of the

sAMY in supporting affective evaluation and learning.45,46 Inter-

estingly, female mice show significant correlation in the ventral

pallidum (PALv). This finding, together with recent literature,9 un-

derlines an important yet hitherto neglected role of the PALv in

fear memory. The olfactory area (OLF) posterior amygdalar nu-

cleus (PA), an amygdalar region well known for its role in fear

memory42,47–49; the periventricular zone (PVZ), which is an

important autonomic control center in response to stress expo-

sure50; and the median eminence (ME) and midbrain (MB) are

instead characterized by a distinct anti-correlation with step-

through latency.

In males, latency times 7 days after training show strong cor-

relation with the posterior parietal association area (PTLp) and

anti-correlation with the lateral septal complex (LSX). This finding

confirms the involvement of the LSX in memory and emotional

responses: indeed, previous reports show that this region is acti-

vated during aversive situations8,51,52 and projects to brain re-

gions involved in behavioral and cardiovascular responses to

aversive stimuli.53 In addition, the involvement of the globus pal-

lidus, already observed 24 h after training, is confirmed. Female

subjects show a completely different pattern of correlation with

behavior. Latency times are significantly anti-correlated with

activation of the FRP and the PL, areas that are significant sexu-

ally dysmorphic in the PLS analysis too. Notably, a recent study

highlighted the role of the FRP in decision-making as that of the

whole prefrontal region.54 The correlation of latency times is pos-

itive also in the OLF RHP and in most amygdalar regions, areas

that are well known to be involved in fear.42,47–49 Interestingly, at

7 day retrieval, the PA shows an opposite correlation between

sexes. Focusing on the hippocampal area, we observe a general

trend of anti-correlation in both sexes that, however, is restricted

to the CA in females and to the DG in males.

Network analysis shows strong sexual dimorphism in
the evolution of functional connectivity
Widely accepted theories affirm that memory is distributed

across multiple brain regions that are functionally con-

nected.15,55 To estimate average functional connectivity in

different behavioral groups, we performed a Pearson cross-cor-

relation analysis between normalized activation counts of

different brain areas, among subjects of the same experimental

group (Figure S2). To consider potential effects of the finite accu-

racy of the cell detection algorithm, we performed Monte Carlo

simulations of cross-correlations in the presence of noise in acti-
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vation counts. We found significant variability in correlation

strength (Figure S3A); however, stronger (anti-)correlations ap-

peared more stable, as the average standard deviation of corre-

lations with p <0.05 (anti-)correlations is close to 0.05. Thus, the

correlations and anti-correlations with p <0.05 reasonably iden-

tify those that will not exceed p = 0.1, taking into account noise in

activation count. Considering only those (anti-)correlations (Fig-

ure S3B), we identified a network of brain areas that show a sta-

tistically significant tendency to be active together (for correla-

tions) or in a mutually exclusive manner (for anti-correlations)

(Figure 4). Thus, brain areas are the nodes of this network, while

the edges represent putative functional connections identified

by super-threshold cross-correlation.

Interestingly, female and male activity networks showed a

different evolution over time (Figure 4A). In order to quantitatively

analyze differences in organization, we compared a number of

connectivity features in male and female networks. The distribu-

tion of nodes degree56 was similar for the two sexes at both

training and test 7 days, while 24 h after training, the female

network was characterized by a large increase in connectivity

(Figure 4B). Interestingly, in male mice, we observe a decrease

of the relative contribution of positive correlations from training

(83%) to test 7 days (64%) with a minimum at test 24 h (61%),

while females show the opposite trend (53% at training, 63%

at test 7 days) with a peak at 24 h after training (76%; Figure S4A).

If we restrict our analysis to the isocortex, we observe that the in-

traregional connectivity (normalized on the global average node

degree) follows a trend similar to the global connectivity. These

results suggests that engram migration to the cortex, which is

a cornerstone of system consolidation theories,25,55,57 occurs

with different spatiotemporal patterns in males and females but

that both sexes tend to converge to the same network structure

(Figure S4B).

The sexual dimorphism observed in network evolution is

confirmed by small-world analysis. For each network, we evalu-

ated the small-world coefficient s of the giant component (i.e.,

isolated nodes were not considered), defined as (C/Cr)/(L/Lr),

with C and L being the average clustering coefficient and the

average shortest path lengths of the graph, respectively. Cr

and Lr are the corresponding values for an equivalent random

graph. s is equal to one in graphs with a structure similar to

random ones, whereas it is higher than one when the network

is small world, i.e., when non-neighboring regions are separated

by a small number of steps compared with a random network. At

training and test 7 days, we observed a network presenting

small-word features for both sexes. Conversely, the network of

the 24 h group largely resembles a random graph for the female

group but not for the male group (Figure 4C). This finding sup-

ports the hypothesis that the circuitry of male and female mice

evolves toward an organized cortical network following different

pathways.

Hubs of functional connectivity change over time in a
sexually dimorphic manner
In addition to global properties of the connectivity graph, we as-

sessed the role of different nodes by measuring their degree and

betweenness. The degree of a node is the number of connec-

tions it has with the other nodes in the network, whereas



Figure 4. Fear memory networks in male and female mice

(A) Network graphs were generated by considering only the strongest correlations (see STAR Methods). Gray circles represent the 48 selected regions (listed in

Table 1). The lines between the nodes represent significant positive (red) or negative (blue) correlations (see STAR Methods for thresholding details).

(B) Violin plot of the connectivity of all the nodes in the networks shown in (A).

(C) Violin plots of sigma values for the networks shown in (A), calculated for N = 100 generations of random graphs (see STAR Methods).
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Figure 5. Spatiotemporal evolution of functional connectivity hubs

3D rendering of a reference mouse brain where hubs of specific time points are depicted with different colors. At 24 h after training, the functional hub for the

female group is represented by the ME. The ME is a small nucleus in the brain’s center, here colored in violet. Each color represents a single brain region ac-

cording to Table 1.
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betweenness is defined as the probability of finding the node in

the shortest path between any randomly chosen pair of nodes in

the network. In other words, the degree is a direct measure of the

influence of the node in the network (the higher the degree, the

more the activity of the node correlates with that of other nodes),

while the betweenness states the importance of the node for

connectivity (i.e., if a node with high betweenness is removed,

many paths between other nodes are cut). We considered as

hubs those nodes that are simultaneously above the 80th

percentile of degree and betweenness values (Figure S5).

We found that region involvement as a hub shows distinct time

evolution in males and females (Figure 5; Table 2). In male sub-

jects, we observed a hub evolution involving both cortical and

subcortical areas. At the subcortical level, hubs move along a

rostro-caudal axis, from the CA2 and the OLF at training to the

hypothalamic lateral zone (LZ) at test 24 h and to the medulla

(MY) at test 7 days. At the cortical level, we observe a transition

from sensorimotor cortices (VISC at training and somatomotor

area [MO] at test 24 h) to associative areas (AI). This migration to-

ward the associative cortex is in line with the standard theory of

memory consolidation.2 Conversely, in female subjects, network

hubs persist in subcortical regions across the entire time span

investigated, moving from the basolateral amygdalar nucleus

(BLA) and the striatum dorsal region (STRd) at training to the

ME at test 24 h and the medial palladium (PALm) at test 7days.

At training, we found also two cortical hubs (SS and ORB). The

SS is a region processing proprioceptive stimuli, suggesting a

role of this hub in elaborating the unconditioned stimulus (foot

shock).

These results are partially in line with the PLS analysis. Indeed,

several hubs are significantly more active in their respective sex,

including the VISC and the periventricular region (PVR) at

training, the ME, the MO, and the PERI at test 24 h, and the
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PALm at test 7 days. Notably, at training, we observe hubs

that are more recruited in the other sex, i.e., the CA2 is a hub

for males (but is more recruited in females) and the SS is a hub

for females (but is more recruited in males). Hubs at test

7 days for males do not show any preferential activation between

sexes (Figure 2C).

Finally, we observed a common feature of both male and fe-

male networks: hub regions at training at test 7 days are

distinct from areas where activation significantly correlates

with step-through latency times. Conversely, at test 24 h, the

PERI and the ME appear as hubs for males and females,

respectively, and also show negative correlation between

neuronal activation and latency times (Figure 3). Overall, these

results suggest that hubs do not directly modulate behavior but

rather orchestrate downstream circuits mediating behavioral

output.

DISCUSSION

Memory, as many other cognitive processes, involves complex

neuronal circuits that are distributed across the entire brain and

change with time.58 Thus, from a technical perspective, it is

important to have tools that allow scalable, unbiased, and

quantitative analysis of brain activity at the organ level yet

with single-cell resolution. The classical procedure to reach

this aim consists in serial sectioning of the tissue, immunostain-

ing against cFos (or another IEG), and analysis of tissue sli-

ces.59 Although this protocol has been exploited to charac-

terize the networks recruited during contextual25 or tone fear

conditioning,23 a massive amount of work is required to pro-

cess each murine brain and thus is impractical for routine use

in many laboratories. Automated 3D imaging, such as serial

two-photon sectioning (STP)60 and LSM,61 has emerged in



Table 2. Putative functional connectivity hubs

Training Test 24 h Test 7 days

Male LA, CA2, OLF, VISC MO, PERI, LZ MY, AI

Female BLA, STRd, SS, PVR, ORB ME PALm

Functional connectivity hubs in male and female mice at different time

points, defined as those regions in the top 20th percentile of both

betweenness and degree.
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the last decade as a potential game changer for whole-brain

analysis at the cellular level, and indeed, it has been exploited

to map neuronal activation in different contexts,14,62 including

fear memory.15,26 However, STP is usually employed in a sam-

pling scheme, failing to cover the entire tissue volume.62 On the

other hand, LSM-based pipelines, like ClearMap, are typically

limited to a resolution of several mm per voxel, preventing their

use in densely labeled regions (Figure 1). Here, we presented

BRANT, a combination of high-resolution LSM and scalable

computational analysis. On the optics side, the use of RAPID

autofocusing guarantees high contrast and resolution across

the entire sample.28 On the image processing side, the archi-

tecture provided by ZetaStitcher allows programmatic access

to small chunks of data in an otherwise extra-large tissue vol-

ume (several teravoxels) for subsequent quantification, and

the use of a deep-learning method for cell detection (bcFind)

enables superior accuracy when applied to neurons labeled

in their entirety (compared to nuclear staining of anti-cFos

immunohistochemistry). In this study, we quantitatively

compared BRANT with ClearMap, one of the most widely

used tool for automated cell detection. Several other tools

have emerged in the last decade for this task (Table S3). How-

ever, each of them shows intrinsic limitations that might prevent

its application to a large-scale brain-wide study like the one

presented here. On the one hand, a large number of tools

have been designed for small imaging datasets and lack the

computational structure to scale properly to the TB-sized im-

ages.14,63–70 On the other hand, quantification algorithms vali-

dated on large-scale datasets are either based on standard im-

age filters,14,66 are designed to work with simple nuclear

staining, or need an additional background channel.69 Overall,

the innovations introduced in this work enable routine and scal-

able analyses that were not possible using previously reported

methodology. Importantly, BRANT is based on fully open-

source software available on GitHub and can thus be used

and improved by the entire community in a collaborative spirit.

The lack of scalable methods for whole-brain mapping has

limited the analysis of brain-wide activation patterns in fear

memory to a handful of studies.6,23–26 Most reports about fear

memory refer to one or few nuclei or areas. Consequently, the

obtained results are specific to those neuronal regions, which

in turn makes it difficult to form an overview when integrating

the data. Indeed, small changes in the experimental setting

(from the behavioral task to the age and sex of animals) can

lead to contrasting outcomes, making it difficult to obtain a

comprehensive view of brain circuits underlying memory forma-

tion, consolidation, and retrieval. Additionally, this problem is

even more accentuated considering the limited literature about

female subjects and sex differences. Actually, sexual dimor-
phism studies may improve the translationability in fear memory

research, as females are two timesmore likely thanmen to expe-

rience any anxiety-related condition.71 Since fear is considered

one of the best conserved emotional mechanism,2,71 it is likely

that differences in neuronal activation patterns between sexes

observed in animals are reflected in humans. For this reason, it

is essential for researchers to include females in both human

and animal studies.

The majority of previous studies about sexual dimorphisms

have mainly highlighted differences in brain anatomy62,72–74

and in cellular physiology.75 The identification of these anatom-

ical or molecular differences is a useful starting point for the

comprehension of neural circuits underlying sex-specific behav-

iors, but brain-scale functional studies are needed to disentangle

the shape of different circuits recruited during the evolution of

aversive memory.

In this context, our study demonstrated that fear memory is

associated with the recruitment of sex-specific networks. It is

noteworthy how this difference is emphasized during the 24 h

retrieval, suggesting that female mice augment their brain-wide

functional connectivity state to evolve more quickly to a network

similar to the starting conditions, with preferential involvement of

different brain regions.

Interestingly, the functional network of male mice changes

over time, recruiting distinct regions but not increasing the num-

ber of nodes and connections at each memory phase. Overall,

these data suggest that fear learning and retrieval are mediated

by distinct subsystems in the two sexes, challenging the use of a

male-predominant literature for understanding aversive memory

in females. Generally, this study could pave the way for a better

understanding of those neuro-psychiatric disorders that exhibit

sex differences in lifetime prevalence such as PTSD, anxiety,

and depression.76–80

Here, BRANT was applied to understand the time evolution of

brain circuits underpinning fear memory in an IA paradigm with a

mild foot shock. Due to the limited number of whole-brain

studies about fear memory, and the lack of involvement of fe-

male subjects, comparing our results with previous reports23,25

is not straightforward because fear memory can be assessed

in rodents by using diverse behavioral tasks. Indeed, the IA

behavioral paradigm presented here might recruit a different cir-

cuitry with respect to context or auditory fear conditioning since

decision-making—to step through the gate toward the dark

compartment—is an important component, absent in the above

mentioned paradigms. In addition, using a mild foot shock

(0.3 mA), we explored an aversive rather than traumatic memory.

Nevertheless, our results confirm the unified engram complex

theory,15 proving that memory evolution recruits dynamical net-

works across the entire brain.

In this fragmented context—both on the brain region stud-

ied and on the behavioral task used—the scalable and

comprehensive analysis enabled by BRANT can play an

important role. Indeed, this pipeline exploits well-described

protocols and open-source software, offering to any lab the

possibility to perform whole-brain activation analysis at high

throughput, allowing cell-resolution brain mapping on behav-

ioral cohorts. Here, this method highlighted a sexual dimor-

phism in the evolution of fear memory, but it is readily
Cell Reports 42, 112908, August 29, 2023 11
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adaptable for broader applications such as drug discovery or

other biological purposes. The advantage of using micrometer

resolution on a brain-wide scale and 3D automated analysis

could revolutionize the way of studying brain connectivity

and functions.

Limitations of the study
Due to the pharmacokinetics of 4-OHT, TRAP-mediated recom-

bination covers a time frame of about 6 h, larger than the behav-

iorally relevant timescale.16 Thus, not all the neurons labeled are

recruited by the behavioral test. In addition, c-Fos itself tags only

a part of the activated neurons.81

The 3D U-Net used for cell detection has very good perfor-

mances when compared with other methods used in the field

(Figure 1C), but in absolute terms, the F1 score could be signif-

icantly improved. The use of more advanced architectures, like

residual models82 or attention mechanisms,83 can be explored

to boost accuracy.

Registration to the reference atlas has an accuracy of about

300 mm, which is insufficient to compare neuronal activation be-

tween small structures (e.g., cortical layers). To solve this aim,

future studies might employ reference atlases built upon light-

sheet imaging,84 providing a template closer to our images in

terms of shape and contrast.

Limited accuracy of cell detection and atlas registration might

introduce errors in downstream analysis. Only a simplified anal-

ysis of the effects of this uncertainty is reported here. A thorough

study of how counting and registration errors are propagated is

beyond the scope of this resource.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Phosphate buffer saline tablets Sigma Aldrich P4417

Acrilamide BIO-RAD 1610140

Bisacrilamide BIO-RAD 1610142

Sodium dodecyl sulfate Sigma Aldrich L3771

Boric acid Sigma Aldrich B6768

VA044 Wako 011–19365

Triton X- Sigma Aldrich X100

2-20 Thiodiethanol Sigma Aldrich 166782

4-Hydroxytamoxifen Sigma Aldrich H6278

Corn oil Sigma Aldrich C8267

Critical commercial assays

Step through Inhibitory Avoidance Ugo Basile 40550

Experimental models: Organisms/strains

Mouse: FosTRAP mice (B6.129(Cg)-

Fostm1.1(cre/ERT2)Luo/J 3 B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J)

The Jackson Laboratory 007909

Software and algorithms

OriginPro OriginLab https://www.originlab.com/

ImageJ Fiji https://imagej.net/

ZetaStitcher This manuscript https://github.com/lens-biophotonics/

SPIMlab.

BrainCell Finder Silvestri et al.28 https://github.com/lens-biophotonics/

BCFind

Vaa3D Peng et al.85 https://github.com/Vaa3D

ANTs Avants et al.33 https://github.com/ANTsX

Other

sCMOS Camera for image acquisition Hamamatsu Orca Flash 2.0 v4

RAPID autofocus camera Alkeria Celera One CO5-S

Galvanometer scanner Cambridge Technology 6220H

Illumination Objective Nikon Plan Fluor EPI 10X NA 0.3

Detection Objective Olympus XLPLN10XSVMP

Quartz cuvette Starna Scientific 3/Q/15/TW

Linear translation stage Physik Instrumente M-122.2DD
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents may be directed to and will be fulfilled by the lead contact, Dr. Ludovico Silvestri

(silvestri@lens.unifi.it).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Normalized densities of TRAPped cells in the different brain regions are publicly available in Supplementary Material (Table S4).
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Software and alghoritms used in this paper are publicly available as of the date of publication. links are listed in the key resources

table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the Italian Ministry of Health (Authorization n. 512–2018_FC). Alternatives to in vivo

techniques were not available, but all experiments were conducted according to principles of the 3Rs.

METHOD DETAILS

Animals
Male and female FosTRAP mice (B6.129(Cg)-Fostm1.1(cre/ERT2)Luo/J3 B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J) were used for this

work.16 They were housed in groups of 3 or 4 with food and water ad libitum and weremaintained in a room under controlled light and

dark cycle (12/12 h; light starts at 7:00 a.m.), temperature (22 ± 2�C), and humidity (55 ± 10%). Adult mice (aged between 3 months

and 6months) were divided in three groups: training (n = 6 males, n = 4 females), test 24h (hours) (n = 5 males, n = 6 females) and test

7d (days) (n = 4 males, n = 4 females).

Behavioral task
All mice were trained and tested using the behavioral paradigm, step-through inhibitory avoidance (IA). Behavioral procedures

were performed in a sound-attenuated room, during the light cycle. Mice were manipulated on the three days previous to training

session, and were left in the experimental room from the day before the experiment for habituation. Each mouse was subjected to

the task separately. The apparatus consists of an automatic controller and a box (47 3 18 3 25 cm, Ugo Basile, Comerio, Italy)

which is divided into two separate compartments by a sliding door. The start compartment is brightly-illuminated while the escape

one is dark and connected to the shocker. During the training session, every mouse was gently placed in the brightly-illuminated

compartment, facing the door and allowing free access to the dark compartment. The apparatus is designed to exploit the natural

behavior of mice to move into the dark. For this reason, they rapidly stepped through the door and immediately receive a 0.3 mA

mild foot-shock lasting 2 s. Latency was measured using an automated tilting-floor detection mechanism. After the foot-shock,

mice were immediately removed from the dark box, and received the 4-OHT injection. The retention test was carried out 24 h

or 7 d after the training session. All mice were trained, randomly assigned to be tested 24h or 7d after training. During the test

sessions, trained animals were placed again into the light compartment and latency (s) to entered the dark compartment was re-

corded. The procedure is thus identical to the training session, but mice do not receive shocks. Five minutes is the maximal la-

tency time given for stepping in the dark. At the end of 300 s, mice that do not step through are removed from the apparatus. After

removal from the system, all animals received the 4-OHT injection. The latency to step through was considered a direct measure-

ment of memory.

Delivery of 4-OHT
Micewere handled and got used to needle pain with saline solution daily for at least 3 days prior to the 4-OHT injection. 4-OHT (Sigma

H6278) was first dissolved in absolute ethanol to give a final concentration of 20 mg/mL. This stock was then mixed with corn oil

(Sigma C8267) at 37�C in order to get an emulsion. The injectable oil formulation was obtained using the Eppendorf ThermoMixer

C. The emulsion was heated and shaken for 2 h until the ethanol was entirely evaporated. At this time, the drug was totally dissolved

in corn oil and kept at 37�C. 4-OHT (50 mg/kg) was delivered by intraperitoneal (i.p.) injection with a 22 gauge needle.

Ex-vivo brain processing
Oneweek after 4-OHT injection, animals were deeply anesthetized with isoflurane (1.5%–2%) and transcardially perfusedwith 50mL

of ice-cold 0.01 M phosphate buffered saline (PBS) solution (pH 7.6), followed by 75 mL of freshly prepared paraformaldehyde (PFA)

4% (w/v, pH 7.6). Brains were extracted and prepared according to the CLARITY/TDE protocol (Chung et al., 2013; Costantini et al.,

2015). Immediately after perfusion, brains were post-fixed in PFA overnight at 4�C. The day after, samples were incubated in a hydro-

gel solution (containing 10% acrylamide (v/v), 2.5% bis-acrylamide (v/v) and 0.25% VA044 (w/v) in PBS) at 4�C for 3 days, allowing a

sufficient diffusion of the solution into the tissue. Samples were then degassed, replacing oxygen inside the vials with nitrogen, and

incubated in awater bath at 37�C for 3 h in order to initiate polymerization of the hydrogel. After 3 h, embedded brainswere placed in a

clearing solution (containing 4.4% (w/v) sodium dodecyl sulfate (SDS) and 1.2% (w/v) boric acid in ultra-pure water, pH 8.5) at 37�C.
Clearing solution was changed every 2–3 days. Specimens were gently shaken throughout the whole clearing period, which typically

takes 3–4weeks.When the samples appeared sufficiently transparent, they were incubated 1 day in PBSwith 0.1 Triton X-(PBST, pH

7.6) and 1 day in PBS (pH 7.6), removing the excess SDS. Finally, murine brains optically cleared with serial immersions of mixtures

containing 20% and 40% 2-20 Thiodiethanol (TDE) in PBS, each for 1 day while rotating. The last mixture (40% TDE) was used as an

index-matching solution for our imaging (Di Giovanna et al., 2019).
Cell Reports 42, 112908, August 29, 2023 17
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Light-sheet microscopy
The custom-made light-sheet microscope, exploiting RAPID autofocusing, has been described in detail in our previous works.28,31 In

brief, the sample is illuminated from the side using a virtual light sheet createdwith a galvanometer scanner (6220H, Cambridge Tech-

nology), coupled via a 4f system to an air objective (Plan Fluor EPI 10X NA 0.3, Nikon) covered with a protective coverslip. Light

emitted from the specimen is detected orthogonally to the illumination plane using an immersion objective corrected for clearing so-

lutions (XLPLN10XSVMP10XNA 0.6, Olympus). Then, it is bandpass-filtered to isolate fluorescence light and projected by a tube lens

onto the chip of a scientific complementary metal-oxide-semiconductor (sCMOS) camera (Orca Flash 2.0, Hamamatsu) operating in

rolling-shutter mode to guarantee confocal line detection. During imaging, the sample was fixed in a refractive index-matched quartz

cuvette (3/Q/15/TW, Starna Scientific) and moved using a set of high-accuracy linear translators (M-122.2DD, Physik Instrumente).

Sample-induced defocus is measured in real-time using RAPID,28 and correction was implemented by moving the objective with an

additional linear translation stage (M-122.2DD, Physik Instrumente). Since an entire mouse brain is too thick to be imaged with

our objective, which has a working distance of 8 mm, we imaged the two-halves separately, with an overlap thickness of about

1 mm (Figure S6A). The entire system was controlled by custom software written in C++, available at https://github.com/

lens-biophotonics/SPIMlab.

Image analysis
Tiled images acquired with LSM were stitched together using ZetaStitcher (https://github.com/lens-biophotonics/ZetaStitcher). As

well as generating a low-resolution view of the entire imaging volume (with voxel side 25 mm), this software includes an application

programming interface (VirtualFusedVolume) to access the high-resolution volume. Images were then visualized using FIJI/ImageJ

(https://fiji.sc). The two different brain halves were spatially registered with an affine transformation using Advanced Normalization

Tools (ANTs) on the low-resolution reconstructions (Figure S6B).

Whole-brain cell detection
Fluorescently labeled neurons were localized in the whole-brain images using BrainCell Finder29 (https://github.com/

lens-biophotonics/BCFind). In brief, patches of the original dataset (accessed via VirtualFusedVolume) were fed into a UNet with

four contraction layers of 3D convolutions with an exponentially increasing number of filters, and four expansion layers of transposed

3D convolutions with a decreasing number of filters. UNet training was carried out with binary cross-entropy loss and Adam opti-

mizer. The goal of this network is to perform semantic deconvolution, that is, to transform the original image into an ideal one in which

cell bodies are clearly visible, while other structures such as dendrites and axons are removed. The networkwas previously trained on

a ground-truth dataset in which a human expert has localized the centers of neuronal somata. The training dataset was composed of

221 image stacks for a total volume of approximately 6.8mm3 and 190166manually labeled cells. The stacks were randomly selected

from different samples and different areas of the brain, to train the network to recognize the large variability in cell shape that can be

found across the sample. The images deconvolved by the network are then processed with a standard blob detection algorithm (dif-

ference of Gaussians, DoG) to identify the center of bright structures, which in this case are the neurons. The overall performance of

the method is evaluated by comparing the list of neuron centers found by the software with the human-annotated ground-truth test

set of 57 image stacks for a total volume of approximately 1.8 mm3 and 10786 manually labeled cells. Again, these stacks were

randomly selected from different samples and different areas of the brain, to test network performance in different contexts. If

two neuron centers from the two annotations (automatic and manual) are closer than 10 mm (approximately half of the average diam-

eter of a neuron), they are considered to be the same cell, that is, a true positive (TP). If a center is present only in the manual anno-

tation, it is considered a false negative (FN), whereas if it is present only in the results of the algorithm, it is considered a false positive

(FP). The counting of true positives, false positives and false negatives was carried out using the maximum bipartite matching algo-

rithm.86 We evaluated localization performance using the formulas precision = TP/(TP + FP) and recall = TP/(TP + FN), and the

F1-score, which is defined as the harmonic mean of precision and recall. For our test set, the precision was 0.80, the recall was

0.64 and the F1-score was 0.71. All annotations of cell positions were performed using Vaa3D (https://github.com/Vaa3D). Param-

eters of the U-Net structure and training are summarized in Table S1.

Spatial registration to reference atlas
The downsampled version of the whole-brain dataset was spatially registered to the Allen reference atlas using ANTs,33 with a

sequence of affine and diffeomorphic (that is, symmetric normalization) transformations (Figure S7A). In detail, images first underwent

a strong gamma correction (with exponent 0.3) to reduce dynamic range and increase the relative contribution of tissue autofluor-

escence over labeled cells. Then, affine registration between single brains and reference atlas was computed. To reliably assess

non-linear deformations introduced by clearing, 3 gross brain regions (cerebellum, hippocampi and olfactory bulbs) were manually

segmented. A diffeomorphic transformation was then computed to match the segmented areas with the corresponding ones in the

reference atlas. Since this step is needed only to correct large-scale deformations, it is computed on further downsampled versions

of the data (100 mm voxel side). Eventually, fine registration to the atlas was computed using a diffeomorphic transformation between

the real image and the reference image. This sequence of transformations (including alignment of back and front brain halves) were

applied to the point clouds produced by the BrainCell Finder, to represent the position of activated neurons in the reference space.

Each cell was then assigned to a selected brain area based on its position. To evaluate registration accuracy, 10 reference points
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were manually marked in 10 different aligned brains and in the reference atlas (Figure S7B). Then, the Euclidean distance between

pairs of corresponding points (samples vs. atlas) was calculated for each point and each sample (100 measures in total). The root-

mean-square average value of the distance (0.30 ± 0.08 mm, mean ± s.d.) was considered as the alignment error.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral statistical analysis was performed in OriginLab (2022). The comparisons of acquisition and retention latency times are

analyzed by two-way ANOVA (variables: sex and experimental class), followed by Bonferroni’s post-hoc comparisons tests. The level

of significance was set at *p < 0.05, **p < 0.01 (training n = 6 males and n = 4 females, test 24h n = 5males and n = 6 females and test

7d n = 4 males and n = 4 females). Data are shown as mean ± SEM of 4–6 animals for each group (Figure 2B).

Partial least square analysis
The effect of each experimental group on regional cell counts were evaluated using Task PLS.36,87 Briefly, a dummy matrix with as

many columns as the number of subjects and as many lines as the experimental classes was prepared, with 1 in the matrix elements

corresponding to the right matching subject-class and 0 elsewhere. This wasmultiplied by the regional count matrix (asmany lines as

the subjects, asmany columns as the brain areas analyzed) normalized by the volume of each area and by the total number of labeled

cells per animal, and the product was processed using singular value decomposition. The resulting left and right matrices contained

the contrasts and the saliences, respectively. These identify latent variables in the spaces of experimental classes and in the space of

cell counts that best explain the variability observed in the data. Statistical error was calculated using the bootstrap technique by

resampling 1000 times with replacement. The reported saliences are the raw ones divided by the standard deviation of the bootstrap

results, and can thus be interpreted as z-values. In this sense, the dashed lines in Figure 2C represent different significance levels

(p < 0.1, p < 0.05, p < 0.01).

Functional network generation
The inter-regional correlation25 was calculated for each group of mice in order to quantify the co-variation of activated cell counts in

48 brain regions across mice of each group. As fro the PLS, counts normalized by area volume and by total number of labeled cells

per animal were used. The functional connections between different regions were identified by imposing a suitable threshold for the

inter-regional correlation. A Monte Carlo simulation was performed to estimate the propagation of error in the correlation coefficient

arising from uncertainties in the experimental counts. In each simulation iteration, Gaussian noise was introduced to the experimen-

tallymeasured counts. Specifically, a total of 100 simulations were conducted, wherein a randomly sampled valuewas added to each

count. The random values were sampled from a Gaussian distribution with a mean centered on the experimentally measured value ci
and a variance equal to 0.06 ✕ ci. The standard deviation of the p values was estimated as the standard deviation of the values ob-

tained from the simulations. The threshold was defined to identify cross-correlations with a p value of less than 0.05, which was a

conservative estimate for p values smaller than 0.1 considering neuron counting error. Starting from the correlation matrix and the

given threshold value, the corresponding adjacency matrix was computed for each group of mice. Each adjacency matrix defines

a corresponding network where the nodes are the 48 brain regions and the links are the functional connections between the regions:

positive links correspond to excitatory functional connections and negative links to inhibitory functional connections. The degree

centrality of the nodes was calculated by counting the number of connections of each node without considering the sign of the con-

nections, and was normalized on themaximum number of potential connections (in this case 47). The betweenness centrality and the

small world coefficient swere calculated by means of the algorithms betweenness_centrality and sigma of the Python package net-

workx based on88–90 and,91 respectively.
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