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Abstract—A Visual Odometry system relies on one or more
cameras to estimate the motion of an agent. These systems are
mainly applied in the real world (e.g. UAVs, Autonomous Cars,
etc.) because systems based on cameras are cheaper and easier to
install and operate than other alternatives such as LiDARs, and
more informative than IMUs. It is then evident that the camera is
a critical component of these agents and malfunctions may lead
to system failures, from out of trajectory to collisions. In this
paper, we show that problems with the lenses, which are realistic
in the operational environment of a camera-bearing agent, can
alter the proper behavior of the system. Then, we propose a
research roadmap to make the system robust to such failures.

Index Terms—Visual Odometry, KITTI, Failure Injection;

I. INTRODUCTION

A Visual Odometry (VO) system estimates the motion of an
agent (e.g., automobile, UAVs, mobile phones) using only the
input of single or multiple cameras attached to it [1]. Usually,
this system is crucial to the agents’ behavior, especially in
autonomous systems. On such systems a camera malfunction
may lead to the inability of the system to deliver a correct
motion, possibly compromising the autonomous navigation
task in unsafe ways. In this paper, we investigate the effects
of common camera lens failures on a monocular feature-based
VO system and propose possible mitigations.

II. SYSTEM DESCRIPTION

For the experiments, we use a hybrid feature-based VO
system. The system is classified as feature-based because it
extracts and matches keypoints from the images and uses them
to estimate the camera motion. We also call it a hybrid system
because some traditional modules are replaced by Deep Neural
Networks (DNNs). In this pipeline, we use DNNs for feature
detection and matching, with traditional motion estimation
from the keypoints matches. For these experiments we use
the DNNs Superpoint [2] for feature detection and Superglue
[3] for feature matching. The system receives a pair of images
and predicts the camera’s pose (position and orientation) after
the changes in the features matched between the images.

We use a hybrid VO system because they can leverage the
robustness of deep learning to enhance traditional VO systems
[4]. Therefore, they are more robust against camera failures
when compared to a traditional pipeline that uses classic
feature detectors (ORB, SIFT, etc.) and feature matchers
(Brute-Force, Nearest-Neighbours, etc.).

III. FAILURE MODE

RGB cameras are a widely known and well-established
technology that has seen significant advancements over the
years. As a result, finding a reliable RGB camera is relatively
straightforward nowadays. However, despite these improve-
ments, cameras can still encounter failures, particularly when
subjected to external factors like harsh lighting conditions
or adverse weather, such as heavy rain [5]. While some
of these failures can be easily tested using common image
augmentation libraries, there are other failure scenarios that
are more challenging to simulate, making VO algorithms
susceptible to such shortcomings.

To address this issue, the objective of our study is to test
a VO system against specific camera lens failures and devise
potential solutions or mitigations for these failures. To conduct
our experiments, we use the KITTI dataset [6], a reference
dataset consisting of diverse driving scenarios captured as
sequences of images. To simulate camera lens failures, we
introduce a patch into the target image sequence. Given that
our target model compares images in pairs, we ensure that the
same patch persists throughout the entire sequence.

To facilitate our experiment campaign and rigorously eval-
uate the performance of the VO system under normal and
failure scenarios, we create an environment for injecting
these failures, following the structure proposed in [7]. This
setup allows us to compare the system’s performance during
nominal runs with those containing the injected failed images,
providing valuable insights into the impact of lens failures on
VO accuracy.

We select the following failures (visualized in Figure 1):

• Broken/Scratched Lens: a lens may break, for example,
because of mechanical stresses due to vehicle jolts or
the impact of gravel throw-up by the tires of nearby
vehicles. The camera regularly outputs the image, but it
will include an additional line (in case of a scratch) or
more complicated patterns (Fig. 1b);

• Condensation: when the outside air temperature drops
sharply, condensation may appear on the lenses. Conden-
sation, or humidity, degrades the images (Fig. 1c). The
image is acquired, but it may have defects due to halos
on the lenses.



Fig. 1. Failure Types

• Dirt: this failure (Fig. 1d) concerns debris of various
kinds and sizes (most typically, dust and dirt) which
deposits on the internal or external lenses.

• Ice: ice can be the cause of several camera malfunctions.
It can break the external materials of the camera lens
and camera body. Furthermore, the external lens can be
covered with a blanket of ice that prevents the acquisition
of images (Fig. 1e);

• Rain: it refers to the case in which there are small spots
on the images due to the deposit of water drops on the
external lens (Fig. 1f).

IV. EXPERIMENTAL CAMPAIGN AND FAILURE EFFECTS

To perform the experimental campaign we need metrics to
evaluate the model’s predictions against the ground truth. We
choose the following metrics [8]:

• Absolute Trajectory Error (ATE): is the average deviation
from ground truth trajectory per frame.

• Relative Pose Error (RPE): measures the local accuracy
of the trajectory over a fixed time interval. The RPE
corresponds to the drift of the trajectory and is usually
divided into translation and rotation components.

We perform the following experimental campaign. First,
we execute the system without any faults and we collect
the metrics. Then, we use our failure injection framework to
perform a series of runs with the different types of faults. The
framework works as follows:

• Generates a failure patch from an original pool of patches,
making use of data augmentation to increase the diversity
(mostly rotation and cropping);

• Selects an injection point;
• Applies the failure patch on all the original frames from

the injection point to the end of the sequence;
• Runs the VO system on the injected sequence;
• Collects the run metrics;
We use the 11 sequences of KITTI which provide the ground

truth trajectory. The sequences have different lengths (from
271 to 4661 frames, sampled at 10Hz) and provide different

kinds of environments, like residential, urban, or highway,
resulting in different levels of difficulty. We choose to inject
the failures at approximately 30% of each sequence. For every
fault type, we perform 15 runs. In total, we have 11 nominal
runs and 825 runs on injected sequences.

From the results, we can do some preliminary observations:
the rain and condensation create the most impact on the ATE,
and this is expected since these faults are generating a lot of
noise with respect to the original image. Ice and lens breakage
are more localized faults and cause a significant accuracy loss
only when the impacted area is bigger. The dirty lens failure
has no significant detrimental impact on ATE, and also in some
cases, it improves the overall trajectory accuracy. This only
happens in some selected sequences that are particular either
because they are very simple (just a vehicle moving forward
on a straight line), or very complex (keypoints are distant from
the vehicle itself).

V. PROPOSED SOLUTION

To improve the robustness of the VO system, we are
researching the following two strategies:

• Data Augmentation: the first solution we propose is to
fine-tune the DNNs using data with injected failures. To
avoid overfitting, this can be done using a different dataset
and evaluated with failures that were not used in the
training step.

• Self-Supervised Learning: the second option is to use
a self-supervised strategy to train a DNN to learn to
reconstruct images with injected failures. In this way,
the model will learn weights that are robust to the noise
applied. Then, we can use this same DNN to learn
the VO task. We expect that the resulting model can
accurately predict camera motion even in the presence
of lens failures.
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