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Abstract: Food intake regulation is a complex mechanism involving the interaction between central
and peripheral structures. Among the latter, the gastrointestinal tract represents one of the main
sources of both nervous and hormonal signals, which reach the central nervous system that integrates
them and sends the resulting information downstream to effector organs involved in energy home-
ostasis. Gut hormones released by nutrient-sensing enteroendocrine cells can send signals to central
structures involved in the regulation of food intake through more than one mechanism. One of these
is through the modulation of gastric motor phenomena known to be a source of peripheral satiety
signals. In the present review, our attention will be focused on the ability of the glucagon-like peptide
2 (GLP-2) hormone to modulate gastrointestinal motor activity and discuss how its effects could be
related to peripheral satiety signals generated in the stomach and involved in the regulation of food
intake through the gut–brain axis. A better understanding of the possible role of GLP-2 in regulating
food intake through the gut–brain axis could represent a starting point for the development of new
strategies to treat some pathological conditions, such as obesity.

Keywords: glucagon-like peptide-2 (GLP-2); gastric motility; food intake; peripheral satiety signals;
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1. Introduction

The regulation of the hunger-satiety cycle is a complex mechanism of interplay among
signals originating from both central and peripheral structures that are mainly integrated at
the hypothalamic level [1]. In particular, in the arcuate nucleus, two neuronal populations
that exert antagonistic functions in the control of food intake and energy balance have been
described: one co-expressing Neuropeptide Y (NPY) and Agouti-related protein (AgRP),
and the other co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-
regulated transcript (CART). These neuronal populations express several types of receptors
whose activation might cause orexigenic or anorexigenic effects [2,3]. Peptides synthesized
by such neuronal populations have been considered essential biomarkers of metabolic
disorders occurring in obese subjects, while disruption of these neurons is considered one
of the causes of obesity [4]. The arcuate hypothalamic nucleus is recognized as the main
integrative center of signals coming from other hypothalamic areas involved in feeding
behavior or from extra hypothalamic nuclei [5], such as the nucleus tractus solitarius (NTS),
as well as from the periphery. Hypothalamic integration of information from the pancreas,
adipose tissue, and gastrointestinal tract plays a key role in the neuroendocrine control of
food intake, translating this into a feeding behavior [3,6–9].

The gastrointestinal tract represents also a source of both nervous and hormonal
signals which play important roles in the peripheral regulation of the hunger-satiety
cycle [9–12]. Several hormones released by nutrient-sensing enteroendocrine cells can
send anorexigenic signals to central structures involved in the regulation of food intake
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by engaging more than one mechanism [9,13]. Many peptide hormones, entering the
systemic circulation, can directly reach the hypothalamic arcuate nucleus, likely through
an incomplete blood–brain barrier [14]. Therefore, they may exert their effects through
the direct activation of POMC/CART neurons and/or inactivation of NPY/AgRP ones,
on which the presence of specific receptors has been identified [3,15]. Furthermore, as
better described below, the hormones of intestinal origin can send signals to the central
structures involved in the regulation of food intake through the activation of the gut–brain
axis. Finally, the observation that some of the intestinal hormones that influence the
hunger-satiety cycle by acting at a central level also influence the gastric motor responses
responsible for peripheral satiety signals is an interesting feature since peripheral effects
may represent additional mechanisms to the central ones in regulating food intake. While
this double mechanism has been recognized for some gut-derived anorexigenic hormones
(e.g., GLP-1, CCK, and PYY), it has not been completely clarified for GLP-2, which has
demonstrated the ability to induce gastrointestinal motor changes in addition to its central
anorexigenic effects [16].

In the present review, our attention will be focused on the ability of GLP-2 to modulate
gastrointestinal motor responses and discuss how its effects could be related to peripheral
satiety signals originating from the stomach and involving the central structures regulating
food intake through the gut–brain axis. A better understanding of the possible role of
GLP-2 in influencing food intake through the gut–brain axis could provide insights into
the development of new therapeutic approaches in the treatment of some pathological
conditions, such as obesity. In fact, some forms of obesity, characterized by dysregulation of
the hunger-satiety cycle, are imputable to alterations of peripheral signaling that promote
hyperphagia and weight gain [17] and are susceptible to bariatric therapy as a result [18].

2. Mechanisms through Which Gut-Derived Hormones May Activate the Gut–Brain
Axis to Generate Satiety Signals

In addition to their direct action on receptors in the central nervous system (CNS)
via the classic bloodstream way, gut-derived hormones can indirectly send anorexigenic
signals to the hypothalamic nuclei, activating vagal afferent fibers from the gastrointestinal
tract [18]. The latter mechanism implies the presence of specific receptors on the terminal
afferent vagal fibers located in the gut mucosa which have been described for many different
regulatory peptides [19]. These signals reach the hypothalamus through the interposition of
the NTS [14]. A further mechanism involving the gut–brain axis is represented by the ability
of peptide hormones of intestinal origin to exert their anorexigenic effects through the
modulation of those gastric motor phenomena known to be a source of peripheral signals
involved in the control of food intake at a central level [18,20]. Both gastric accommodation
and gastric emptying play an important role in the regulation of organ distension [21].
Gastric wall distension, by causing stretch and tension, stimulates the mechanosensitive
receptors which, in turn, activate the vagal afferent nerve fibers. These latter induce satiety
signals to the hypothalamic regions involved in the regulation of food intake, through the
interposition of the NTS [9,22].

Delayed gastric emptying, which plays a critical role in regulating short-term food
intake, has been reported to be associated with increasing sensation of satiety and stopping
food consumption in humans [23] due to gastric wall distension. This information fits
well with the observation that obese subjects present with faster gastric emptying [24,25].
Moreover, gastric emptying determines the rate of arrival of nutrients in the small in-
testine which, in turn, regulates satiety. As gastric emptying occurs, chyme enters the
small intestine where the presence of nutrients is mainly detected by specialized receptors
expressed on the apical side of open-type enteroendocrine cells which respond by releas-
ing hormones [26–28]. Some anorexigenic hormones reach the stomach to slow gastric
emptying, inducing gastric distension and thus contributing to a satiety sensation [29].
Furthermore, some hormones, in response to the arrival of nutrients, mainly lipids and
proteins, reach the ileal portion and inhibit its motor responses. This generates a feedback
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response at the stomach level to induce delayed gastric emptying, a mechanism that is
known as the physiological ileal brake reflex [18]. The latter is the result of the activation of
enteroendocrine cells and mucosal afferent nerves and is regulated by hormones released
from either the proximal gut portion, such as GLP-1 and CCK, or the distal one, as PYY [8].

An illustration summarizing the main mechanisms through which gut hormones may
regulate food intake to induce anorexigenic effects is reported in Figure 1.
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Figure 1. Schematic representation of the main mechanisms through which gut hormones may
influence hypothalamic structures to induce anorexigenic effects. Purple lines (bloodstream); green
lines (nervous fibers); and EECs (enteroendocrine cells).

Therefore, the action of intestinal anorexigenic hormones in regulating food intake
can be exerted directly at the central level or indirectly at the peripheral level through
changes in gastric motor responses which contribute to the sense of satiety. In this view,
GLP-2 has been reported to exert some central anorexigenic effects and also to influence
gastrointestinal motor responses which could be associated with peripheral satiety signals
generated by the stomach and involved in the regulation of food intake, as discussed below.

3. Glucagon-Like Peptide 2

Glucagon-like peptide 2 and glucagon-like peptide 1 (GLP-1) derive from proglucagon,
which is a 158 amino acid precursor protein predominantly expressed in the pancreas, gut,
and distinct neuronal populations of the hindbrain [30]. In the brain and the intestine,
proglucagon is cleaved by the action of the prohormone convertase 1/3 (PC1/3) into GLP-1,
GLP-2, glicentin, glicentin-related polypeptide (GRPP), and oxyntomodulin (OXM) [30–32].
A schematic overview of tissue-specific proglucagon processing in the gut, brain, and
pancreas is reported in Figure 2.
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Figure 2. Schematic representation of tissue-specific proglucagon processing in the intestine, brain,
and pancreas. The proglucagon gene is transcribed to generate proglucagon messenger RNA (mRNA),
which is subsequently translated to the precursor protein, proglucagon.

In the brain and enteroendocrine intestinal L-cells, proglucagon is processed by pro-
hormone convertase 1/3 (PC1/3) to generate glucagon-like peptides-1 (GLP-1) and -2
(GLP-2), intervening peptide-2 (IP-2), glicentin, and oxyntomodulin.

In pancreatic alpha-cells, proglucagon is processed into glicentin-related pancreatic
polypeptide (GRPP), glucagon, intervening peptide 1 (IP1), and major proglucagon frag-
ment (MPGF) by the processing enzyme prohormone convertase 2 (PC2).

GLP-2 is a 33 amino acid peptide mainly expressed in the gut, together with GLP-1, by
enteroendocrine L-type cells of the distal small intestine and colonic mucosa [30,33–35]. In
this regard, the classical definition of L cells as a homogeneous population has recently been
revised [36] as important differences between them have been reported along the length of
the intestine and also between different species. Furthermore, some subpopulations of L-
cells express other peptides in addition to glucagon-like ones [27]. Enteroendocrine L-type
cells are activated in response to luminal nutrient content [37], mostly fat and glucose [38,39].
However, there are also several regulating mechanisms underlying L cell secretion, such as
circulating hormones (e.g., CCK and some adipokines), paracrine/neuronal substances,
as well as gut microbiota with its metabolites [14,27]. The same diet nutrients may cause
changes in the gut microbiota composition which in turn influences gut anorexigenic
hormone release, thus influencing food intake [40].

GLP-2 has been reported to colocalize with GLP-1 in the same mammalian secretory
granule [41] from which it is co-secreted in a 1:1 ratio [42] and the molecular mechanisms
that link hormone exocytosis to the circulating patterns of glucagon-like peptides are only
recently beginning to be fully understood [27]. Despite the distal localization of L-cells,
GLP-1 and GLP-2 plasma levels (as well as other L-cell-derived hormones) rapidly rise
following ingestion [43], suggesting the existence of a proximal gut signal also regulating
hormone release from the L cells of the distal small intestine [43]. Circulating GLP-2 and
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GLP-1 are quickly degraded by dipeptidyl peptidase IV (DPP-IV) [44,45], resulting in
half-lives of ∼7 and 1–2 min, respectively [30,46–48]. Due to their short circulating half-life,
the native glucagon-like peptides have only limited pharmacological potential [49], so
DPP-IV-resistant analogs as well as DPP-IV inhibitors have been considered for possible
therapeutic strategies [50,51]. In this view, GLP-2 analogs have demonstrated their efficacy
in the management of short small bowel syndrome (SBS) [52–54].

In addition to intestinal L-cells, GLP-2 is also secreted by brainstem neurons that
innervate the paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH) [55].
Moreover, the presence of GLP-2 immunoreactive fibers has also been revealed in the
arcuate nucleus (ARC) and PVN [56], hypothalamic areas involved in the regulation of
food intake and energy balance, thus suggesting a role for GLP-2 as a neurotransmitter in
these areas.

The expression of the specific G protein-coupled GLP-2 receptor (GLP-2R) is predomi-
nant in the gastrointestinal tract and CNS of humans and rodents. Its presence has been
widely described in the DMH and ARC and particularly in a rodent subpopulation of
POMC-expressing neurons [3,29,57] that are known to be implicated in the regulation of
energy balance by integrating long-term adiposity and short-term satiety endocrine signals.
The GLP-2R expression has also been reported in extra-hypothalamic areas such as the
NTS [58]. The presence of the GLP-2R in other brain areas involved in the regulation of
energy balance, including the brainstem (dorsal motor nucleus of vagus nerve [DMV])
and hippocampus (parabrachial neurons), suggests the role of GLP-2 in metabolic regu-
lation [29,57,59–61]. Interestingly, GLP-2Rs have been localized on cell bodies of vagal
afferents of the nodose ganglion in the rat [62]. GLP-2R signaling in the CNS has been
reported to be involved in the regulation of several physiological processes, including
feeding behavior and gastrointestinal functions (see below).

A schematic representation of the GLP-2R activation following nutrient stimulation of
GLP-2 release from L cells is reported in Figure 3.

Effects of GLP-2 in the Regulation of Food Intake

Among its multiple functions, GLP-2 has also been reported to influence food in-
take by exerting anorexigenic effects. Mice lacking GLP-2R in POMC neurons showed
hyperphagia, supporting a central action of GLP-2 in satiety regulation [60]. Appetite
suppression has been observed in mice following activation of the hypothalamic GLP-2R
by intracerebroventricular administration of GLP-2 [60] or of a degradation-resistant GLP-2
analog [63]. This hormone effect has been proposed to occur, at least in part, through the
activation of the melanocortin receptor-4 (MC4-R) signaling pathway [60]: blockade of
MC4R abolished the inhibitory effects on food intake of GLP-2 injection into the NTS in
fasted rats has been reported [64]. These observations further support the central inhibitory
effects of the hormone on food intake in rodents. Of note, in rodents, the inhibitory effects
of GLP-2 on food intake were abolished by the loss of the GLP-1R [65], whereas these
effects were increased following the loss of GLP-1R signaling [58]. These results indicate
the existence of an interplay between the two hormones in the regulation of food intake.
Moreover, inhibition of food intake due to GLP-2 injection in the DMH of fasted rats also
occurs through the involvement of a specific GLP-2 signaling pathway: the effects of locally
delivered GLP-2 can be blocked by Exendin(9–39), a specific GLP-1 receptor antagonist,
but not the MC4-R antagonist SHU9119, revealing that GLP-2 inhibition of food intake in
DMH could be blocked functionally by Exendin(9–39) [66].

Despite all the reported observations, conflicting results have been found in animals
and humans regarding the actual ability of GLP-2 to modulate feeding, and the mechanisms
activated by the hormone are still a matter of debate. No influence on appetite or post-
prandial feeling of satiety has been shown following peripheral administration of GLP-2 in
lean, healthy individuals [67,68], whereas inhibition of feeding either by central [56,58] or
peripheral [69–71] injection of the hormone has been observed in animals. GLP-2 has been
also proposed as a neurotransmitter in controlling feeding behavior [69] and may mediate
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preproglucagonergic neuron-induced synaptic transmission linking the hypothalamus and
the brain stem [55].

Although it has been reported that GLP-2 controls energy homeostasis [57], at least in
part through the regulation of food intake [72], the involvement of GLP-2 in the hunger-
satiety cycle remains subject to debate, and more investigations are certainly required in
humans, at variance with the well-established central anorexigenic effects of GLP-1 [73].
Interestingly, the observation that GLP-2 inhibits ghrelin secretion in humans [74] may
support the involvement of GLP-2 in the short-term regulation of the hunger-satiety cycle.
The effects of GLP-2 on gastrointestinal motility may also indicate its ability to generate
peripheral satiety signals from the stomach, which could agree with its central anorexigenic
action as detailed in Section 5.
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Figure 3. A schematic representation of the activation of the GLP-2R in the gut and brain following the
release of GLP-2 from L cells stimulated by nutrients entering the intestinal lumen, which are detected
and sensed by receptors on the apical border. SCFA (short-chain fatty acids); LCFA (long-chain fatty
acids); cAMP (cyclic adenosine monophosphate); and PKA (protein kinase A).

4. The GLP-2 Effects in the Gastrointestinal Tract
4.1. GLP-2 and Metabolism

Most of the peripheral regulatory functions of GLP-2 are exerted in the digestive
apparatus, where GLP-2R expression has been described [34,61,75,76]. Initially, GLP-2 was
identified as an intestinotrophic hormone able to promote the growth and repair of the
mouse small intestine [77]. The same effect was later observed in short-bowel jejunostomy
patients [78], contributing to the subsequent development of GLP-2 analogs to treat SBS [54].
In the gastrointestinal tract of both humans and animals, GLP-2 signaling modulates the
secretion of different enzymes involved in the digestion and uptake of nutrients [46,79–81]
to control metabolism and promote a positive energy balance [72]. In particular, GLP-2
signaling facilitates the absorption of fatty acids [82], amino acids [83], and glucose [84].
For the latter, peripheral administration of GLP-2 has also been shown to increase the
expression of glucose transporters in the mouse small intestine [85]. Moreover, positive
effects on glucose metabolism by the hormone have also been observed in obese mice [79].
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GLP-2 signaling increases dietary lipid absorption, promotes chylomicron release in
rodents [82], is implicated in regulating hepatic insulin sensitivity in mice [29], and plays a
lipogenic role in the mouse and hamster liver [86]. A particular feature of GLP-2 concerns
its ability to regulate lipid handling in the intestine: studies in humans and rodents showed
that exogenous GLP-2 not only enhances dietary fat absorption during the postprandial
state but also releases intestinally stored lipids during the post-absorptive state through
both local and central mechanisms (see [28]). In both these effects of GLP-2, VIP and
nitric oxide (NO) have been suggested to be involved [87,88] and, more specifically, an
up-regulation of neuronal NOS (nNOS) expression has been observed [89]. Among the
multiple GLP-2R signaling pathways [28,35] NO and VIP have been reported to be recruited
in many actions of the hormone in the gastrointestinal tract. In this view, GLP-2 has also
been reported to increase intestinal blood flow in both healthy humans [90,91] and in
patients with SBS [92] by involving NO and VIP. The observation that the hormone-induced
enhancement of intestinal blood flow was attenuated in rodents [93] and humans [91] by co-
infusion with nitric oxide synthase (NOS) inhibitors proved that this effect was, at least in
part, NO-dependent and agrees with the presence of GLP-2R on enteric neurons expressing
endothelial NOS [75]. On the other hand, it has been shown that such neurons also express
VIP [75] which, as NO, is known for regulating mucosal blood flow. Both these vasoactive
neurotransmitters are reported to be important mediators in the increase in blood flow by
GLP-2 (see [28]). Furthermore, it has been hypothesized that the increased mesenteric blood
flow, following enhanced NO production, might contribute to the increased chylomicron
secretion by GLP-2 even if the exact mechanisms through which GLP-2 modulates intestinal
lipid handling are still not fully elucidated [28].

4.2. GLP-2 and Anti-Inflammatory Activity

GLP-2 signaling has also been reported to promote anti-inflammatory functions
through the activation of the GLP-2R in human islets [94]. The hormone injection decreased
mucosal inflammatory cytokine production in an animal model of enterocolitis [95] while
hepatic anti-inflammatory action of GLP-2 was shown in multidrug resistance 2 knockout
mice [96] and in obese mice [97]. In the latter, chronic administration reduced inflammation
also in the brain [98]. In this view, endogenous GLP-2 has been suggested to exert beneficial
effects against some metabolic disorders in both humans and animals [28,72,86,99,100]. The
anti-inflammatory effects occurred, at least in part, via VIP release from enteric neurons in a
rat animal model of inflammatory bowel disease [101–103]. Moreover, GLP-2 was reported
to increase the proportion of neurons expressing VIP in cells derived from primary cultures
of submucosal enteric neurons [104] similar to what was reported in the colon submucosal
plexus of a rat model of colitis [102].

In addition to VIP, some of the GLP-2 protective effects have been reported to be
mediated by NO. Of note, other than in promoting intestinal growth [105], the NO pathway
appears to be involved in the effects of the hormone in preventing cisplatin-induced dam-
age in the gastrointestinal tract of mice: the GLP-2 analog ([Gly(2)]GLP-2) was reported to
counteract the morphological and functional damages induced by cisplatin treatment and
protect nNOS neurons in mice gastric fundus [106] and distal colon [107]. GLP-2 also atten-
uates chemotherapy-induced mucositis, reduces epithelial permeability, improves intestinal
barrier function, and decreases meal-stimulated gastric acid secretion as well as gastroin-
testinal motility [108], making the hormone a suitable agent for the treatment not only of
SBS but also inflammatory bowel diseases and chemotherapy-induced mucositis [28].

4.3. GLP-2 and the Microbiota

Among its different functions, intestinal microbiota has been reported to play a role in
the regulation of food intake since some of its metabolites can increase enteroendocrine
L cell anorexigenic hormone secretion [27,40]. Alterations in gut microbiota composition
have been shown to promote significant changes in satiety signals, acting both locally and
via the gut-microbiota–brain axis, likely promoting hyperphagia and thus obesity [40].
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Therefore, targeting the gut microbiota might represent a strategy to counteract overweight,
in addition to other highlighted beneficial effects, such as improving the activity and
efficacy of anticancer drugs [109]. In this view, the protective effects of some bacteria have
been reported towards cisplatin in mice experimental models [110]. It has been recently
observed that a diet enriched in prebiotics also prevented cisplatin-induced changes in
mucus secretion in mice, likely protecting the microbiota [111].

Interestingly, gut dysbiosis may also alter gut barrier function, the so-called ‘leaky gut’,
which by translocation of pathogens into circulation may represent a contributing cause
of obesity-associated systemic inflammation [16,112]. It has recently been reported that
chronic enteropathy-related dysbiosis in dogs may contribute to reduced plasma GLP-2
concentrations, suggesting that the association between GLP-2 secretion and microbiome
indices may direct future research on the treatment of enteropathies [113]. Thus, the
protection of the intestinal barrier integrity exerted by GLP-2 and by substances that
counteract dysbiosis could represent an interesting strategy to attenuate inflammation in
obesity and its associated comorbidities.

The major functions of GLP-2 on the gastrointestinal tract in both humans and animals
are summarized in Table 1, which also includes the effects of the hormone on gastrointesti-
nal motor responses discussed in the following paragraphs.

Table 1. Effects of GLP-2 signaling on the gastrointestinal tract.

Effects of GLP-2 Signaling Route of Administration Species References

Increased small intestinal weight and jejunal crypt-villus height Subcutaneous Mouse [77]

Increased villus height and crypt depth Subcutaneous Human [78]

Increased jejunal amino acid absorption Isolated preparations Mouse [83]

Increased glucose uptake Intravenous Piglet [84]

Increased expression of glucose transporters Peripheral administration Mouse [85]

Increased fatty acids absorption Intraperitoneal Mouse and hamster [82]

Increased plasma levels of free fatty acids and triglyceride Intravenous Human [80]

Increased plasma levels of chylomicron and triglyceride Subcutaneous Human [91]

Mobilization of intestinally stored lipids Intraduodenal Mouse and hamster [87]

Mobilization of intestinally stored lipids Intraperitoneal Rat [114]

Decreased mucosal inflammatory cytokine production Subcutaneous Rat [95]

Reduction in pro-inflammatory cytokines and crypt cell apoptosis Subcutaneous Rat [101]

Increased intestinal blood flow Intravenous Human [90]

Increased intestinal blood flow Subcutaneous Human [91]

Increased intestinal blood flow Subcutaneous Human [92]

Increased intestinal blood flow Intravenous Piglet [84]

Increased intestinal blood flow Jugular vein Rat [93]

Prevention of cisplatin-induced morphological changes in the gastric fundal strips Intraperitoneal Mouse [106]

Prevention of cisplatin-induced morphological changes in isolated distal colon Intraperitoneal Mice [107]

Reduced antral motility Intravenous Pig [115]

Gastric emptying inhibition Intracerebroventricular Mouse [60]

Gastric emptying inhibition Central Human [116]

Decreased gastric emptying rate Peripheral Mouse [69]

Gastric smooth muscle relaxation Isolated whole organ Mouse [117]

Gastric smooth muscle relaxation of fundal strips In vitro Mouse [117]

Increased amplitude of the neurally induced relaxation of gastric fundal strips In vitro Mouse [118,119]

Counteracted cisplatin-induced increase in the amplitude of contractions in the gastric
fundal strips Intraperitoneal Mouse [106]

Inhibition of duodenal contractions Isolated whole preparation or segment Mouse [76]

Depression contractility of ileal segments In vitro Mouse [120]

Inhibition of contractility in isolated colonic segments In vitro Mouse [121]
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5. Effects of GLP-2 in the Modulation of Gastrointestinal Motility as a Possible Source
of Peripheral Satiety Signals Generated by the Stomach through the Gut–Brain Axis

Several centrally acting hormones can, through efferent innervation, lead to changes in
the gastric motor functions known to be involved in the regulation of food intake, such as
motility, tone, or emptying [21,122]. Gastric emptying rates can be slowed by the hypotha-
lamus which, through the brainstem nuclei (such as the NTS and the dorsal motor nucleus
of the vagus), stimulates vagal efferent fibers that activate intramural gastric nitrergic
neurons to decrease gastric motility [18,123]. On the other hand, many hormones that act
centrally to influence the hunger-satiety cycle have also been reported to modulate gastric
functions and particularly motor responses, even in isolated preparations [19,124–126].
These motor responses, in turn, may generate peripheral signals that reach the central
structures involved in the regulation of food intake. Therefore, the hunger-satiety cycle
may be influenced by a hormone-driven bidirectional gut–brain axis.

Although many studies support both central and peripheral roles for GLP-2 in the
regulation of gastric motility, contrasting results have been reported in humans and animals.
In pigs and mice, reduced antral motility following intravenous infusion of GLP-2 [115] and
suppressed gastric emptying by intracerebroventricular activation of GLP-2R signaling [60]
were reported. These hormonal effects were coupled with loss of appetite and occurred, at
least in part, through the activation of the MC4-R signaling pathway [60,66]. Interestingly,
mice lacking GLP-2R in POMC neurons showed accelerated rates of gastric emptying
besides hyperphagia, thus supporting a central role for GLP-2 in either slowing gastric
emptying or satiety regulation [60]. Therefore, activation of central GLP-2R appears to
play an important role in both the reduction in food intake and gastric emptying rate
in rodents. A decreased gastric emptying rate in mice has been reported [69] following
peripheral administration of the degradation-resistant analog of GLP-2, [Gly2]GLP2 [35].
The localization of GLP-2Rs on cell bodies of vagal afferents of the nodose ganglion in the
rat [62] suggests that GLP-2 from the gut may signal to the hypothalamic nuclei involved
in the regulation of food intake, not only directly by crossing the blood–brain barrier, but
also through the activation of vagal afferent pathways.

Contrasting results on the ability of GLP-2 to affect gastric emptying have been
reported in humans: while peripheral administration of GLP-2 resulted in no effect [67],
GLP-2 infusions caused a dose-dependent increase in antral emptying time, although less
powerfully than GLP-1 [116]. These discrepant results have been ascribable to the different
methodological approaches [33] or to the rapid degradation of peripherally administered
native GLP-2 [67–69] by the ubiquitous enzyme DPP-IV [127].

GLP-2 and Enteric Nervous System

An important role in the control of gastric motility is played by intrinsic motor neu-
rons, which supply the smooth muscle and whose nervous fibers release a variety of
either excitatory or inhibitory neurotransmitters [128,129]. Among them, acetylcholine is
known to be one of the major excitatory neurotransmitters released from cholinergic fibers,
whereas NO and VIP are considered the main inhibitory neurotransmitters released by
non-adrenergic, non-cholinergic (NANC) fibers supplying the smooth muscle and causing
gastric relaxation [130,131]. Gastric smooth muscle motor responses are indeed the result
of a balance between excitatory and inhibitory nervous activity that may be modulated by
hormonal influences.

The first experimental evidence that GLP-2 can induce gastric relaxation in vitro acting
on the mouse stomach was provided by Amato and collaborators [117]. Particularly, by
recording intraluminal pressure from isolated preparations, they observed that GLP-2
decreased fundus tone, an effect that could actually be regarded as an additional peripheral
mechanism contributing to the central anorexigenic actions of the hormone reported in
rodents [57]. Notably, inhibition of fundus tone increases murine gastric capacity which
may underline the short-term inhibition of food intake by GLP-2 [132]. Furthermore, the
decrease in the proximal gastric tone caused by GLP-2 could also delay the flow through
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the pylorus, thus prolonging the gastric emptying time, as suggested by Amato and
collaborators [117].

The peripheral effects of GLP-2, through which it modulates rodent gastric fundus
motility, are likely due to a neuromodulatory action of GLP-2 on the enteric nervous sys-
tem. In agreement, GLP-2R protein and mRNA expression was described, other than in
enteroendocrine, subepithelial cells and myofibroblasts, in myenteric neurons of humans,
rodents, and pigs [75,133,134]. In human preparations, GLP-2R immunoreactivity was
detected in the cell bodies of the myenteric neuron but not in the nerve fibers supplying
circular and longitudinal muscle layers [134]. In rodents, GLP-2 has been reported to cause
gastric fundus relaxation by increasing the release of the two major NANC inhibitory
neurotransmitters, VIP and NO. A prejunctional neuronal release of VIP by GLP-2 has been
reported to occur in either isolated whole stomachs or gastric circular muscle strips, as
proved by the reduced relaxant effects of the hormone following VIP receptor desensiti-
zation in mice [117]. Subsequent experiments carried out in the longitudinal strips from
mouse gastric fundus showed that the hormone exerted a neuromodulatory action by
influencing the component of the neurally induced relaxant responses [119] ascribable to
VIP release [131,135].

In addition to VIP, GLP-2 has been reported to facilitate smooth muscle relaxation
through NO as many other hormones do [118,136–139]. In fact, the hormone involvement
in the circuits that regulate gastric emptying through myenteric inhibitory neurons that
release NO has been demonstrated in humans and animals [122,140]. Moreover, in animals,
the ability of NO to control the gastric pyloric sphincter, where nitrergic nerves are very nu-
merous [141], has been reported [142], thus supporting its role also in regulating the transit
of chyme from the stomach into the duodenum. GLP-2 was found to depress the amplitude
of the contractile responses in longitudinal strips from the mouse gastric fundus and to
enhance the amplitude of that component of the neurally induced relaxant response [118]
ascribable to NO release from NANC inhibitory neurons [143]. Thus, GLP-2 induces proxi-
mal stomach relaxation also by modulating the nitrergic neurotransmission, likely through
the up-regulation of NO production [143]. Immunohistochemical experiments revealed an
increased nNOS immunoreactivity in the nerve structures after GLP-2 exposure of gastric
specimens [118]; co-localization of GLP-2Rs with the two constitutive NOS isoforms (eNOS
and nNOS) in myenteric and submucosal neurons of the stomach [75]; and colocalization
of GLP-2 with NOS or VIP in the myenteric plexus of different mammalian species [144],
including human gastric fundus [145].

The above-reported effects of GLP-2 in the stomach may agree with its involvement in
the generation of peripheral satiety signals involved in the short-term regulation of food
intake. The decrease in the gastric fundal tone by GLP-2, which causes an increased stomach
capacity, and the slow gastric emptying rate may be regarded as peripheral mechanisms
addressed to suppress food intake. Furthermore, the same decrease in proximal gastric
tone caused by GLP-2 would also prolong gastric emptying time.

However, the possible relationship between peripheral effects of GLP-2 on gut motility
and the regulation of food intake is not limited to the ability of the hormone to influence
motor responses of the stomach since GLP-2 has been proven to exert inhibitory effects on
the motility of the small intestine too.

In this view, GLP-2 has been reported to induce changes in intestinal motor responses
acting either centrally or peripherally, through a dual mechanism involving the inhibi-
tion of the excitatory component and/or an enhancement of the inhibitory one. GLP-2
administration in vivo has been shown to inhibit intestinal transit in mice [146], likely by
exerting a neuromodulatory role to increase inhibitory inputs on excitatory enteric neurons.
This mechanism fits well with the detection of GLP-2R expression on either excitatory
or inhibitory myenteric and submucosal neurons of the mouse duodenum, in which the
hormone depressed contractile responses by decreasing the cholinergic neurotransmission
and by increasing NO production in isolated preparations [76].
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More recently, it has been demonstrated that GLP-2 also depresses ileal contractility
in isolated preparations from mice [120], thereby filling a gap in the literature on the ef-
fects of the hormone in this isolated intestinal segment where its production occurs and
in which GLP-2Rs are also highly expressed [147]. The depressant effects of GLP-2 on
ileal contractility likely occur through a dual opposite modulatory effect on inhibitory
nitrergic and excitatory cholinergic neurotransmission, as supported by immunohisto-
chemical results showing a significant increase in nNOS-positive fibers in the ileal muscle
wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed
preparations [120].

A simplified scheme summarizing the neuromodulatory action of GLP-2 on enteric
neurons is reported in Figure 4.
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Figure 4. Schematic illustration summarizing the main modulatory actions of GLP-2 on the enteric
neurotransmission. GLP-2 decreases the number of choline acetyl transferase (ChAT)-positive
myenteric neurons, reducing the excitatory cholinergic input to the smooth muscle. The indirect
pro-relaxant effects of GLP-2 are also exerted through a modulatory action on NANC inhibitory
neurotransmission. GLP-2 modulates the nitrergic neurotransmission by up-regulating nitric oxide
synthase (NOS) expression, thereby increasing NO production/release. GLP-2 also enhances VIP
release from myenteric neurons.

The general physiological significance of the depressant effects of the hormone on
intestinal motility could be directed at prolonging the transit time and thus promoting
nutrient absorption processes. The same is true for the depressant action of GLP-2 on ileal
contractility that extends the permanence of the contents in the more proximal intestinal
portions. This function agrees with the reported role of the hormone in the small intes-
tine [34] and the successful introduction of a GLP-2 analog in the treatment of patients
affected by SBS [54]. However, GLP-2 favoring nutrient absorption would even appear in
contrast with its anorexigenic effects, which should have an impact on body weight loss.
On the other hand, the inhibitory effects of GLP-2 on intestinal contractility by increasing
the contact time of nutrients with enteroendocrine cells may increase anorexigenic hormone
release, as occurs in the ileal brake reflex [148,149], also generating a positive feedback loop
on its own release. Moreover, as reported in the introduction section, the activation of the
ileal brake reflex leads to delayed gastric emptying. Therefore, even if many aspects still
need to be clarified, the inhibitory effects exerted by GLP-2 on small intestine contractility
could indeed represent an additional peripheral satiety signal in rodents. The effects of
GLP-2 on gastrointestinal motor responses, some of which may agree with its role in the
generation of peripheral satiety signals, are reported in Table 1.
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6. Concluding Remarks

The increasing incidence of obesity has led to a growing interest in the gastrointestinal
tract as a potential target for both pharmacological and nutritional approaches to weight
management [150]. In this context, the role of gut-derived hormones in the gut–brain axis
is a topical issue in the regulation of food intake.

While the role of some gut-derived hormones to inhibit food intake not only centrally
but also peripherally by inducing changes in the gastrointestinal motor responses has been
recognized in humans, this relation for GLP-2 has not been fully elucidated yet. Never-
theless, among its several effects, GLP-2 has been reported to exert central anorexigenic
actions in animal preclinical studies and to affect those gastrointestinal motor responses
whose changes are strictly related to the generation of peripheral satiety signals through the
gut–brain axis. These peripheral effects may represent an additional mechanism engaged
by the hormone, contributing to its central actions, in the short-term regulation of food
intake in rodents. Therefore, a better understanding of this mechanism could point towards
a possible use of GLP-2 analogs as an additional strategy for the management of body
weight gain. In this view, GLP-2R has been recently proposed as a target for the treatment of
obesity [16]. Moreover, it has been hypothesized that an altered intestinal microbiota, which
is primarily affected by diet composition, may contribute to the onset of obesity through
the gut-microbiota–brain axis [151]. Intestinal microbiota metabolites have been reported
to have a role in inducing the release of GLP-2 as well as other anorexigenic hormones
by intestinal enteroendocrine cells [27,40]. Although microbiome manipulation for the
treatment of obesity needs to be further explored in humans, diet, prebiotics, probiotics, and
symbiotics may have a beneficial impact on several metabolic pathway disorders involved
in the onset of obesity [152].

Among the new proposed therapeutic approaches, stimulation of the endogenous
secretion of glucagon-like peptides from enteroendocrine L-cells has been suggested [27]
given the successful introduction of GLP-1-based drugs in the treatment of obesity. From
this perspective, a possible future scenario in the approach to the treatment of obesity could
be to exploit the different systems present in enteroendocrine cells that are affected by
substances that modify the release of hormones. A better understanding of the mechanisms
by which GLP-2 may influence food intake may therefore be important for its therapeutic
implications beyond its clinical use for the treatment of SBS. However, limitations in its
therapeutic applications should be considered, mainly due to its short half-life and possible
side effects also related to the pharmacological activation of the GLP-2R [16].
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AgRP Agouti-related protein
CART cocaine- and amphetamine-regulated transcript
CCK cholecystokinin
ChAT choline acetyl transferase
CNS central nervous system
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GLP-1 glucagon-like peptide-1
GLP-2 glucagon-like peptide-2
GLP-2R glucagon-like peptide-2 receptor
NANC non-adrenergic, non-cholinergic
NO nitric oxide
nNOS neuronal nitric oxide synthase
NPY neuropeptide Y
NTS nucleus tractus solitarius
POMC pro-opiomelanocortin
PYY peptide tyrosine tyrosine
SBS short bowel syndrome
VIP vasoactive intestinal peptide
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