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Abstract. The semantic paradoxes and the paradoxes of vagueness
(‘soritical paradoxes’) display remarkable family resemblances. In par-
ticular, the same non-classical logics have been (independently) applied
to both kinds of paradoxes. These facts have been taken by some authors
to suggest that truth and vagueness require a unified logical framework
(see e.g. [3,5]). Some authors go further, and argue that truth is itself
a vague or indeterminate concept (see e.g. [4,7]). Importantly, however,
there currently is no identification of what the common features of seman-
tic and soritical paradoxes exactly consist in. This is what we aim to do
in this work: we analyze semantic and soritical paradoxes, and develop
our analysis into a theory of paradoxicality. The unification of the para-
doxes of truth and vagueness we propose here has a wide scope, but for
the sake of concreteness we focus on four three-valued logics.

Keywords: Semantic paradoxes · Paradoxes of vagueness ·
Three-valued logics

1 Paradoxes and Three-Valued Logics

Definition 1. Lt,v is a first-order language (including a propositional constant
⊥ for ‘absurdity’) that satisfies the following requirements:

(i) Lt,v includes a designated unary predicate Tr.
(ii) Lt,v includes countably many designated unary predicates P1, P2, . . ., Pn,

. . .
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(iii) For every predicate Pi, Lt,v includes one designated binary relation constant
∼Pi and countably many designated individual constants cPi

1 , cPi
2 , . . ., cPi

n ,
. . .. (For simplicity, we will omit the superscript Pi .)

(iv) It is possible to define in Lt,v an injective function � � s.t. for every Lt,v-
formula ϕ, �ϕ� is a closed term.

(v) There is at least one Lt,v-structure M with support M s.t. (a) M is count-
able, (b) M is acceptable1, (c) for every a ∈ M there is an Lt,v-constant
ca whose intended denotation is a.

(vi) For every open Lt,v-formula ϕ(x), there is an Lt,v-term tϕ s.t. tϕ =
�ϕ(tϕ/x)� in the selected acceptable model, where ϕ(tϕ/x) is the result of
uniformly replacing every occurrence of x with tϕ in ϕ.

Requirements (iv)–(vi) make sure that our language can be used to formalize
truth-predications (including the sentences used in semantic paradoxes). Con-
sider the open formula ¬Tr(x), i.e. ‘x is not true’. By requirement (vi), there
is a term, call it tλ, that denotes �¬Tr(tλ)� (in the selected acceptable model).
Let’s use λ to abbreviate the sentence ¬Tr(tλ). λ is a Liar sentence and can be
informally interpreted as saying that tλ is not true. But what is tλ? It is a name
of ¬Tr(tλ), i.e. a name of λ itself. Therefore, there is a sense in which λ says of
itself that it is not true. Since we wish to formulate sentences like λ, we impose
requirement (vi) in order to employ the relevant sentence-formation process—
called ‘strong diagonalization’—and employ it in inferences, in any theory that
we are going to consider. More explicitly, we are going to avail ourselves of a
meta-rule of inference of the following kind (we exemplify it here with λ):

Γ � λMDiagλ Γ � ¬Tr(tλ)

where � is whichever consequence relation we will be employing2.
Terms, closed terms, formulae, and closed formulae (i.e. sentences) of Lt,v are

defined as usual. We use the (possibly indexed) letters s and t to range over Lt,v-
terms, ϕ, ψ, and χ to range over Lt,v-formulae, and Γ and Δ to range over sets
of Lt,v-formulae. We take ¬, ∧, and ∀ as primitive logical operators. ∨, →, ↔,
and ∃ are defined in the usual way. Open terms and formulae will be explicitly
indicated (as in t(x) and ϕ(x)). ‘ϕ ∈ Lt,v’ and ‘Γ ⊆ Lt,v’ are abbreviations
for ‘ϕ is an Lt,v-sentence’ and ‘Γ is a set of Lt,v-sentences’ respectively. ‘S.t.’
abbreviates ‘such that’.

The truth predicate is often argued to satisfy a property of naïveté or trans-
parency, to the effect that, for any sentence ϕ, ϕ and Tr(�ϕ�) are in some sense
equivalent. One way to spell out naïveté more precisely consists in requiring that
all the instances of the following schema be validated:

(Tr-Schema) ϕ ↔ Tr(�ϕ�),
1 In the sense of [8, Chap. 5].
2 This meta-inferential formulation of diagonalization is required, because the ‘usual’
form of diagonalization (‘weak diagonalization’) involving a biconditional is not avail-
able in some of the theories we consider.
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where ↔ is a biconditional connective. Alternatively, one can require the truth
predicate to obey an inter-substitutivity requirement, to the effect that ϕ and
Tr(�ϕ�) are always intersubstitutable (in all non-opaque contexts). More pre-
cisely, it is required that from ψ one can always infer any formula ψt that results
from ψ by replacing, possibly non-uniformly, a subformula ϕ of ψ with Tr(�ϕ�)
or vice versa. Let’s call ψt a truth-theoretic substitution of ψ. Naïveté famously
gives rise to semantic paradoxes.

Vague predicates (such as ‘rich’, ‘tall’, ‘red’, . . .) are often argued to satisfy
a property of tolerance. Let P be a vague predicate. Tolerance for P dictates
that, if s is P and t is very similar to s as far as P is concerned (in symbols,
s ∼P t), then t is P as well. Suppose for instance that Sarah is tall (say that she is
194cm tall). If Lois is only 1mm shorter than Sarah, and therefore is very similar
to Sarah as far as height is concerned, then Lois is tall as well. Of course, the
relevant similarity between Sarah and Lois only concerns how tall they are—it
does not matter how different Sarah and Lois are in other respects. Tolerance
can be formalized as the following schema:

(Tolerance) ∀x∀y(P(x) ∧ x ∼P y → P(y))

As with naïveté, tolerance can also be formulated as an inference rule or as a
meta-inference, but for simplicity, we will use Tolerance by default, keeping
in mind that its inferential or meta-inferential formulation might be required in
some of the three-valued logics we consider later. Just like transparency, tolerance
also gives rise to paradoxes.

In order to avoid semantic and soritical paradoxes, several authors have
advocated the use of non-classical logics. Here, we focus on many-valued truth-
functional logics, and in particular on three-valued logics (also called trivalent,
and sometimes partial).

Definition 2. A three-valued model M is a pair 〈M,f〉, where M is a non-
empty set and f is a multi-function from closed Lt,v-terms to M and from atomic
Lt,v-sentences to the set {0, 1/2, 1}.
Definition 3. For every three-valued model M = 〈M,f〉, the strong Kleene
evaluation induced by M is the function eM from sentences to {0, 1/2, 1} s.t.:

eM(R(t0, . . . , tn)) := f(R(t0, . . . , tn))
eM(¬ϕ) := 1 − eM(ϕ)

eM(ϕ ∧ ψ) := min(eM(ϕ), eM(ψ))
eM(∀xϕ(x)) := inf{eM(ϕ(t)) ∈ {0, 1/2, 1} | t is a closed Lt,v-term}

Definitions 2 and 3 provide a semantics for Lt,v but not yet a logic. Using
many-valued evaluations, several notions of logical consequence are definable.
We now present four logics that can be defined using strong Kleene semantics
(our presentation follows [2]).
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Definition 4. For every Γ ⊆ Lt,v, an evaluation e makes Γ strictly true (S-
true) if for every ϕ ∈ Γ, e(ϕ) = 1, and e makes Γ tolerantly true (T-true) if for
every ϕ ∈ Γ, e(ϕ) ≥ 1/2.

Definition 5. For M,N ∈ {S,T}, for every Γ ⊆ Lt,v and for every ϕ ∈ Lt,v, we
say that Γ MN-entail ϕ (in symbols Γ |=MN ϕ), if for every three-valued model
M, every eM induced by M that makes all the sentence in Γ M-true, also makes
ϕ N-true.

2 Naïve Truth in Three-Valued Logics

We now use strong Kleene semantics and logics SS, TT, TS, and ST to formulate
theories of truth. In order to include a treatment of truth-predications, we move
from a starting acceptable three-valued model M = 〈M,f〉 to a triple 〈M,f, S〉,
where S is called a Kripke model, the extension of the truth predicate, i.e.
the elements of M to which Tr applies. The main model-theoretic technique to
construct such an extension was articulated by [6], and we refer the reader to it.

Let’s now explicitly associate a strong Kleene transparent evaluation to a
Kripke model.

Definition 6. For every Kripke model M = 〈M,f, S〉 for Lt,v, the Kripke
(strong Kleene) evaluation induced by M is the function e from sentences to
{0, 1/2, 1} s.t.:

eM(ϕ) :=

⎧
⎪⎨

⎪⎩

1, if ϕ ∈ S

0, if ¬ϕ ∈ S
1/2, otherwise

Lemma 1. For every Kripke model M, the evaluation eM is a strong Kleene
evaluation, and it validates a form of naïveté, i.e. for every ϕ ∈ Lt,v and every
truth-theoretic substitution ϕt:

eM(ϕ) = eM(ϕt)

Let’s call the above evaluations ‘Kripke-Kleene’. Finally, we associate theories
of transparent truth (tt) proper to the above models and evaluations.

Definition 7. For M,N ∈ {S,T}, for every Γ ⊆ Lt,v and for every ϕ ∈ Lt,v,
we say that Γ MNtt-entails ϕ (Γ |=MNtt ϕ) if for every Kripke model M, if the
Kripke-Kleene evaluation eM makes all the sentence in Γ M-true, it also makes
ϕ N-true.

SStt, TTtt, TStt, and STtt share the same Kripke models, but their logical
differences has an impact on the versions of naïveté they recover, as detailed in
the next result.
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Proposition 1

– For every ϕ ∈ Lt,v, ϕ |=SStt ϕt, ϕ |=TTtt ϕt, and ϕ |=STtt ϕt.
– For some ϕ ∈ Lt,v, ϕ �|=TStt ϕt. However, for every Γ ∪ {ϕ} ⊆ Lt,v:

Γ |=TStt ϕ
MSubTr

Γ |=TStt ϕt

– For every ϕ ∈ Lt,v:

|=TTtt ϕ ↔ Tr(�ϕ�) |=STtt ϕ ↔ Tr(�ϕ�)

3 Vagueness in Three-Valued Logics

We now consider the applications of strong Kleene semantics and of the four result-
ing logics (SS, TT, TS, and ST) to vague predicates and to soritical paradoxes.

Consider a vague predicate P (such as ‘tall’), and a countable set C =
{c0, c1, . . .}. Assume that c0 is a clear case of P, and that c0, c1, . . . are pro-
gressively ordered as far as the application of P goes: c0 is the clearest case of
P, c1 is the clearest case of P after c0, and so on. Finally, assume that there is
a cj which is a borderline case of P, and that there is an n such that cn is a
clear case of not-P. We now encode these assumptions in a three-valued model
M = 〈M,f〉 and the evaluation eM based on it.

(a) eM(P(c0)) = 1.
(b) There is an individual cj s.t. eM(P(cj)) = 1/2.
(c) There is an individual cn s.t. eM(P(cn)) = 0.
(d) For every q, eM(cq ∼P cq+1) = 1.
(e) eM(P(cq)) ≥ eM(P(cr)) in case q ≤ r.

Call a three-valued model and evaluation that respects all of (a)-(e) soritical3.
We now use soritical models and evaluations to specify theories of vagueness,
which employ our four three-valued logics.
Definition 8. For M,N ∈ {S,T}, for every Γ ⊆ Lt,v and for every ϕ ∈ Lt,v, we
say that Γ MNv-entails ϕ (Γ |=MNv ϕ) if for every for every soritical model M
and every induced evaluation eM, if eM makes all the sentences in Γ M-true, it
also makes ϕ N-true.

SSv, TTv, TSv, and STv share the same soritical models, but their logical
differences induce differences in the principles they satisfy about vagueness, as
the next result shows.
Proposition 2

– TTv and STv are tolerant logics. For every vague predicate P:

|=TTv ∀x∀y(P(x) ∧ x ∼P y → P(y)) |=STv ∀x∀y(P(x) ∧ x ∼P y → P(y))

– SSv and TSv are intolerant logics. For every vague predicate P:

�|=SSv ∀x∀y(P(x) ∧ x ∼P y → P(y)) �|=TSv ∀x∀y(P(x) ∧ x ∼P y → P(y))

3 Unlike the T-models of [2], soritical models do not impose reflexivity or symmetry
on ∼P.
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4 Unifying the Paradoxes

We now analyze semantic and soritical paradoxes in a unified setting. We start
by providing a semantics for Lt,v-sentences that is explicitly devised to ana-
lyze (potentially problematic) truth-predications and vague predications. Such
semantics is equational, in that it interprets sentences via systems of equations,
and the properties of their solutions (i.e. whether there are solutions at all, and
whether solutions are unique). We then develop our equational semantics into a
full-fledged notion of equational consequence, tailored to analyze arguments that
lead to contradiction via uses of naïveté and tolerance. The upshot is that argu-
ments to contradictions employing naïveté on the one hand, and tolerance on the
other correspond to specific kinds of arguments in our equational consequence.

The equational semantics we employ was developed in [9], and we now extend
it to soritical paradoxes, and adapting it to our target three-valued logics. We
will now explain the basic idea, mostly via examples. Let’s consider an arbitrary
sentence ϕ ∈ Lt,v. If ϕ is an atomic, non-semantic sentence (i.e. an atomic
sentence which is not a truth-predication), then its semantic value is determined
by the (acceptable) base model M we are considering: it receives value 1, or
1/2, or 0 in it4. If, instead, ϕ is a complex sentence (a negation, a conjunction,
or a universally quantified formula), its value depends on the value of its sub-
formulae. As per Definition 3, in a strong Kleene evaluation:

– the value of a negation ¬ψ is 1− the value of the negand ψ,
– the value of a conjunction ψ∧χ is the minimum of the values of the conjuncts

ψ and χ,
– the value of a universally quantified sentence ∀xψ(x) is the infimum of the

values of its instances ψ(t).

Now, the above clauses can be used to define individual functions—the strong
Kleene evaluation functions of Definition 3—but also to define equation systems.
That is, we can write them as

v = 1 − v1; v = min(v1, v2); v = inf(w1, w2, . . .)

respectively, for v the value of ϕ, v1 the value of ψ, v2 the value of χ, and
w1, w2, . . . the values of ψ(t1), ψ(t2), . . . Since strong Kleene semantics is com-
positional, this process goes on: when we have associated an equation with ϕ,
we associate another equation to its sub-formulae ψ1, . . . , ψn, . . ., and then we
associate and equation with each of the latter, and so on.

So far so good: up to now, we have just a re-writing of a strong Kleene eval-
uation induced by a base model. But we have neglected the truth predicate and
the vague vocabulary. Let’s start with truth. As we have done above, we can re-
write the semantics for truth-predication, provided by Kripke-Kleene evaluations
(Definition 6, Lemma 1) in equational terms. More specifically:

– the value of a truth-predication Tr(�ψ�) is the value of ψ,
4 This of course include vague atomic sentences of the form P(c).
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Therefore, we now extend [9]’s semantics (in order to cover the vague vocab-
ulary as well), and then extend it from sentences to arguments. Let N3 be our
three-valued numerical value space, i.e., N3 = {0, 1/2, 1}. We now need to fix the
language we will use to assign equations to formulas of Lt,v, as sketched above.

Definition 9. Let L3 be the language whose alphabet includes:

– a countable set Var3 of variables {vϕ1 , . . . , vϕn
, . . .}, where each ϕk is the k-th

element in a non-redundant enumeration of sentences of Lt,v,
– a set of constants Con3 containing an individual constant for every element

in N3,
– a binary relation = for equality.

Definition 10. Let the set of terms and the set of formulas of L3 be defined by
the following clauses:

– the set of L3-terms is defined by recursively closing Var3 and Con3 under the
following operations: (1 − x), min(x, y), inf{x1, x2, . . . , xn, . . .}5.

– atomic formulas of L3 are just expressions of the form s = t where s and t
are L3-terms.

Let E3 denote the set of atomic L3-formulas, e, possibly with indices, vary over
elements of E3, while E, possibly with indices, is used to refer to sets of such
formulas (that is, to elements of P(E3)). Finally, for E ⊆ E3, we let Var(E)
indicate the collection of L3-variables of formulas in E.

The elements of E3 are the equations definable from the strong Kleene eval-
uation clauses from Definition 3. As in [9], these equations are assigned to Lt,v-
formulae, in a way that ‘mimics’ the strong Kleene schema. This justifies the
following definition, which provides a semantics for Lt,v-sentences, which gives
them both numerical values (as usual) and equations.

Definition 11. A equational structure for Lt,v is a structure S3 given by

S3 = 〈M,Con3,E3, e, A〉
with M a soritical, acceptable Lt,v-structure, Con3 and E3 as above, and s.t.:

– e is an evaluation function e : SentLt,v �−→ P(E3) from Lt,v-sentences to
equations, obeying the clauses of Definition 3 and naïveté for truth;

– A is a (possibly infinite) set of partial functions α which are assignments
of values in Con3 to variables in any set Var({e}) for e ∈ E3. That is, α :
{Var({e}) | e ∈ E3} �−→ Con3.

For the sake of readability, we refrain from giving the exact construction of the
evaluation e, and of the set A (we refer the reader to [9, §§3-4] for details).
The following result (that comes from [9]) guarantees that the above Definition
11 is not vacuous, and that the informal description and examples accurately
represent how equational structures work.
5 This entails that terms of L3 may end up being possibly infinite strings of symbols.
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Proposition 3. For every acceptable Lt,v-structure M:

(i) There exists a non-empty set of equational structures,
(ii) If S′

3 = 〈M,Con3,E3, e
′, A′〉 and S′′

3 = 〈M,Con3,E3, e
′′, A′′〉 are two equa-

tional structures generated by M, then e′ = e′′.
(iii) The set of equational structures generated by M has a ⊆-least element.

We now employ equational structures to define equational notions of conse-
quence, and model arguments involving naïve truth or tolerance. Let us fix some
more notation. For every assignment α and for every e in E3, let |=α e indicate
that e is a true arithmetical equation under the assignment α of values in N3 to
its variables. So, |=α e holds if α(e) is a true arithmetical identity. Let us also
put, for every assignment α and for every E ⊆ E3, α(E) = {α(e) | e ∈ E}, and
put |=α E if and only if |=α e for every e ∈ E. We can now use the existence of
solutions to L3-equations to provide a generalized notion of satisfiability, which
we will use to model paradoxical arguments.

Definition 12. Let S3 = 〈M,Con3,E3, e, A〉 be an equational structure.

– A set E ⊆ E3 is solvable in S3 if and only if there exists an assignment α ∈ A
such that |=α E.

– An Lt,v-sentence ϕ is satisfiable in S3 if and only if e(ϕ) is solvable.
– A set Γ of Lt,v-sentences of is satisfiable in S3 if and only if all sentences ϕ

of Γ are.

Definition 13. Let S3 = 〈M,Con3,E3, e, A〉 be an equational structure.

– An Lt,v-sentence ϕ is strictly (tolerantly) true in S3 (S(T)-true), if there
exists α ∈ A such that α(vϕ) = 1 (α(vϕ) ≥ 1/2) and |=α e(ϕ).

– A set Γ of Lt,v-sentences is strictly (tolerantly) true in S3 (S(T)-true), if for
every ϕ ∈ Γ, α(vϕ) = 1 (α(vϕ) ≥ 1/2).

We can now use the above definition to specify notions of NM-satisfiability
in S3 for arguments, where N,M ∈ {S,T}, as follows.

Definition 14. Let Γ ∪ {ϕ} be a set of Lt,v-sentences. For M,N ∈ {S,T}, and
for every ϕ ∈ Lt,v, we say that the argument from Γ to ϕ is MN-equationally
valid (Γ |=MNe ϕ) if, for every equational structure S3, every assignment α in
S3 that makes Γ M-true, makes also ϕ N-true.

SSe, TTe, TSe, and STe are clearly patterned after SS, TT, TS, and ST (Def-
inition 5). However, there are a few differences. First, the semantic values (1,
0, and 1/2) employed to determined whether ϕ equationally MN-follows from Γ
are results of equations. As such, the possibility equations not admitting solu-
tions is explicitly incorporated into the notion of consequence, thereby making
it possible to reproduce paradoxical reasonings. Second, equational structures,
by design, are defined over soritical models and already incorporate naïveté
for the evaluation of truth-predications. Therefore, vague atomic sentences and
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truth-predications are not treated as arbitrary atomic sentences, and arbitrarily
interpreted by any given semantic structure6. So, SSe, TTe, TSe, and STe can
perhaps be seen as incorporating the notions of consequence defined by both
(Definition 7) and (Definition 8), combining them in an equational framework,
where paradoxical arguments that cannot be modelled in the standard (non-
equational) frameworks can be fully represented here instead.

We now put SSe, TTe, TSe, and STe at work, and see how they provide a
unifying analysis of semantic and soritical paradoxes. Let’s start from the Liar
case. First of all, notice that the ‘inferential constituents’ of the Liar reasoning,
namely the transparent stance on truth, as formalized by the metainference
MSubTr from Proposition 1 which is the common form holding in all of our
reference theories MNtt (with M,N ∈ {S,T}), as well as diagonalization, in the
form (MDiagλ), have been incorporated in the notion of equational structure
(by the clauses defining e on the one hand, and by the ground model M being
acceptable on the other). Let then Γλ be {λ}. It easily follows that:

Proposition 4. Γλ |=MNe ⊥ only vacuously (i.e. the argument from Γλ to ⊥ is
vacuously MN-equationally valid) if M=S and for N ∈ {S,T}7, and Γλ �|=MNe ⊥
(i.e. the argument from Γλ to ⊥ is MN-equationally invalid) if M=T and for
N ∈ {S,T}.

This is a welcome result as it perfectly matches what happens with SStt,
TTtt, STtt, TStt in case the notion of consequences is formulated in terms of
Kripke models (up to and including the vacuous case).

Let us now turn to the Sorites Paradox. The argument involves a vague
predicate P of Lt,v, a clear-cut case in which it holds P(a0), and a clear-cut case
in which it does not hold P(an). Then, a contradiction arises by suitably applying
all the instances of the tolerance principle involving the relation of P-similarity
∼P. We can formalize the argument in our framework as follows. Let Γσ be the
following set of sentences of Lt,v:

Γσ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(a0),
P(a0) ∧ a0 ∼P a1 → P(a1),
...

P(an−1) ∧ an−1 ∼P an → P(an),
a0 ∼P a1,
...

an−1 ∼P an

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

6 One could argue that SSe, TTe, TSe, and STe are not, strictly speaking, logics or,
conversely, that they treat truth-predication and vague atomic sentences as (quasi-
)logical expressions. This matter is largely terminological, so we leave it aside here.

7 If M=S, then Definition 14 requires that all formulas in Γλ be S-true in the first
place. In turn (see Definition 13), this requires that the set of equations associated
with all of the formulas in Γλ be solvable - in the sense of Definition 12 - by setting
the assignment to 1 (i.e., by putting α(vλ) = 1 in this case). However, this cannot
happen due to the set of equations associated to λ being {vλ = 1 − w, w = vλ}.
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Just as Γλ, also Γσ encodes the relevant assumptions at play in a soritical
arguments. We can now prove the following:

Proposition 5. Γσ |=MNe ⊥ only vacuously (i.e. the argument from Γσ to ⊥ is
vacuously MN-equationally valid) if M=S and for N ∈ {S,T}8, and Γσ �|=MNe ⊥
(i.e. the argument from Γσ to ⊥ is MN-equationally invalid) if M=T and for
N ∈ {S,T}.

As above, this is a welcome result: given our assumptions about clear-cut
cases and similarity relations, codified in Γσ, none of our theories MNv with
M,N ∈ {S,T}, allows to conclude P(an).

5 Conclusions

In this paper we have argued that the semantic paradoxes involving truth, and
the soritical paradoxes are two sides of the same coin. To make our analysis
more concrete, we focused on the Liar Paradox, specific versions of the Sorites,
and a family of three-valued logics. After having reconstructed the paradoxes,
we introduced a unified framework to formalize them and show that they are
display a similar reasoning pattern across our four three-valued logics.
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