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Abstract

The Human Brain is, by far, the most complex system known
to man and the mysteries of its inner workings are concealed
behind the intricate relationships between functional and
topological organization of its neuronal structures. Quan-
titative studies of this target at the microscopic scale require
both high-resolution imaging of large brain tissue samples,
and ways of automatically analyzing the massive quantities
of data created in the process. Fluorescence Microscopy has
the imaging capability needed to cover the scale gap between
the micron scale, on which individual neurons are defined,
and the centimeter scale of brain functional areas. This po-
tential is still partially unexpressed due to engineering chal-
lenges in automated processing and analysis of such massive
data-streams that, to this day, have not been entirely solved.
This work proposes a methodological framework for the ex-
ploration of extended areas of Human Brain, by means of
Two-Photon Confocal Microscopy and Light-Sheet Fluores-
cence Microscopy Imaging, exploiting Deep Learning models
and careful data-flow design to map large quantities of indi-
vidual neurons across vast volumetric extensions.
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Chapter 1

Introduction

The human brain is possibly the most complex object known to man,
and its study one of the largest collective efforts of the scientific commu-
nity, engaging scientists and experts from almost every research field.
The brain appears as an highly organized multi-scale network-like struc-
ture where both spatial and topological complexity arise in a fascinating
interconnection of its functional and morphological features. At every
spatial scale a seemingly infinite amount of detail seem to emerge, from
the intricacies of synapses to large-scale connections between different
brain areas, and a variety of different technologies have to be employed
to study them, from Electron Microscopy to Magnetic Resonance Imag-
ing.

LENS - European Laboratory for NonLinear Spectroscopy - and its
Biophotonics Group places themselves in the first line of the the col-
lective effort towards a deeper characterization of the human brain by
providing innovative techniques of tissue exploration based on Fluo-
rescence Microscopy in the context of large international projects like
the Human Brain Project by the European Commission, or the BRAIN
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1.1. GOAL OF THIS WORK CHAPTER 1. INTRODUCTION

Initiative by the National Institutes of Health of the United States of
America. Creating large imaging datasets from human brain tissue is a
collective effort that involves many people with multiple and differenti-
ated skills: preparing samples before imaging requires deep knowledge
of all the biological aspects regarding the subject and expertise in tissue
clearing and transformation techniques, skills in the physics engineering
areas are participating in designing, realizing and operating the imaging
instruments, the technical challenges tied to the creation of data transfer
and processing flows, along with the implementation of suitable hard-
ware infrastructures to handle them require computer engineering skills
which are different from the statistical and mathematical competences
needed to design and deploy interpretation models of the collected data.
My activity, as a PhD student at LENS in the Biophotonics Group, saw
my direct involvement in the last three of the mentioned areas, with
particular focus on designing and deploying the computational infras-
tructure, algorithms and models to automate the production, processing
and analysis of entire areas of the human brain.

1.1 Goal of this work

The aim of this work is to offer a technical framework on which any Flu-
orescence Microscopy laboratory can easily build their own pipeline to
convert large amounts of human brain imaging into 3D reconstructions
of all its neuronal bodies, allowing the researcher to easily respond to
quantitative questions like ”how many neurons are in this area?”, ”how
are they distributed?” or ”what shape do they have?”. The key element
in aswering these questions is represented by automated deep-learning-
based analysis of the microscopy data. Convolutional Neural Networks
offer the mean to translate raw tissue acquisitions from a quantitative
imaging space to a semantically-aware domain, this is known technically

12
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as a semantic segmentation problem and finding a technologically feasi-
ble and scalable way to perform it on arbitrarily large datasets is one of
the main focuses of this PhD thesis.

1.2 Framing the Problem: a Scale Perspective

The neuronal structures in our brain are expressed across multiple phys-
ical scales, ranging from the nanometric dimensions of single synapses,
to the micrometic scales of neuronal somas, to long scale connections
between different areas of the organ in the centimeter range. Differ-
ent imaging techniques are used to cover these different scales: synaptic
connections are usually observed with Electron Microscopy, large scale
tractrography uses Magnetic Resonance Imaging - MRI (in combination
with Diffusion Tensor Imaging - DTI) and Computer Tomography, while
the micrometer scale is best covered by optical techniques such as Flu-
orescence Microscopy - FM or Optical Coherence Tomography - OCT.
We, at LENS, use Fluorescence Microscopy in its variants (in this work
we present data acquired in Two Photon Confocal Microscopy and Light
Sheet Fluorescence Microscopy) to tackle the ambitious challenge of cov-
ering the entire mesoscopic scale from micrometers (10−6m) to centime-
ter (10−2m): four entire orders of magnitude. Fluorescence Microscopy
imaging and creation of detailed atlases of entire mouse brains [4, 9, 10]
has been an accessible target for LENS and for the general neuroscience
community in the past years, extending the same level of analysis to
human subjects is an ambitious challenge that has not yet been solved.
Optimizing tissue transformation and clearing techniques to overcome
the biological differences between mice and human tissue is just a piece
of the puzzle (and not necessarily easier to solve than the others). From
a scale perspective alone the two challenges appears totally different,
the reader could get a feel of the involved data sizes by looking at

13
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table 3.1: imaging an entire mouse brain, that typically has a physi-
cal size in the order of 1 cm3, depending on the chosen resolution and
number of imaging channels can occupy from as little as 2GB of disk
space to 6TB, these numbers change drastically for human brains, sized
1500 cm3, for which the low boundary of 3TB corresponding to 10µm
resolution monochrome imaging is significantly more accessible than the
approximate 9PB (9× 106 GB) required for 1µm resolution imaging in
three channels. For reference, the setup described in chapter 5 is capable
of sub-micrometric imaging in four independent channels.

Obtaining single-neuron resolution volumetric multi-spectral images
of extended areas in the human brain, and building the computer infras-
tructure to properly compress and store them is an immense technical
challenge on its own, but a feat that would ultimately reveal itself as a
white elephant if we didn’t complement it with a reliable and scalable
process to extract high level information about the neuronal distribu-
tions. My mission at LENS was not only to find a way to analyze the
massive quantities of data produced by imaging extended brain sections,
but to do it in a way that would scale to entire brains and potentially
to multiple subjects.

Having success in the effort towards the creation of massive neu-
ronal atlases would pose the basis for a Big Data platform for future
researchers to explore. Creating computer-interrogable atlases of our
neural structures and untangling their inherent complexity has the po-
tential to unlock knowledge about the human mind that would otherwise
be hidden behind a wall of analytical inaccessibility and is untapped at
the current day. This work aims at presenting a minimal yet functional
contribution towards this monumental vision.

14
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1.3 A Roadmap for the Next Chapters

One of my main contributions to the Biophotonics@LENS group is rep-
resented by the study and development of semantic and instance seg-
mentation approaches to tackle the problem of making sense of the large
quantities of data we produce, for this reason the first chapter of this
work is dedicated to a general overview of the statistical and computa-
tional approaches representing the state of the art in solving the problem
of automatical neuron detection and mapping at the current day.
Moving to the third chapter, in the first part we briefly present the var-
ious experimental and computational methods involved in the Fluores-
cence Imaging process, starting from a primer on the physical principles
of fluorescence microscopy, we then introduce the specific technologies
we used (Two Photon Confocal Microscopy and Lightsheet Fluorescence
Microscopy) as well as the optical clearing and tissue transformation
methods needed to obtain imaging of raw samples. The second part of
the chapter is dedicated to the data elaboration pipeline: here we de-
scribe the computational approaches we used to create complete imag-
ing volumes from single acquisitions using ZetaStitcher[8], an internally
developed software capable of stitching and alignment of our large volu-
metric datasets. We then introduce NeuroSegmenter[2], a semantic seg-
mentation framework based on TensorFlow that I specifically developed
for microscopy applications in our group and offers an user interface
combining accessibility requirements for users without programming ex-
pertise - aimed to a general microscopist figure who needs to train and
evaluate models in autonomy - to complete flexibility and customizabil-
ity for the operating ML specialist.
Next we talk about the issues revolving around sharing this kind of huge
and complex data with the rest of neuroscience community: the bleed-
ing edge novelty of our datasets has rendered manifest the inadequacy

15
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of the current data standards, I’ve been directly involved in a collabo-
ration for the definition of an extension of one of the current standards
for sharing neuroimaging data, the Brain Imaging Data Structure Mi-
croscopy Extension Proposal[1]. The proposed extension has since been
positively integrated in the BIDS standard and the microscopy data we
provided is currently used as a reference dataset for microscopy data
in the BIDS[5] format. The chapter also covers a Python library that
I’ve developed, pyometiff [3], providing a full and up-to-date Python pro-
gramming interface towards the OME-TIFF imaging specification and
that is currently seeing application in the general neuroscience commu-
nity [6, 7]. Fourth and fifth chapters explore two different experimental
applications, in chapter 4 we use Two Photon Fluorescence Microscopy
to analyze four different cortical tissue samples from different areas of
the brain, in chapter 5 we use LightSheet Fluorescence Microscopy on
an entire human Broca Area: the general pipeline presented in chapter 3
is adapted to the specific needs of the specific application, two different
and unique segmentation models, responding to different imaging and
data requirements.
Finally, in chapter 6 we conclude this work by making remarks on future
perspectives.
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Chapter 2

Machine Learning and
CNNs

Automating the process of detecting and mapping individual neurons
across Petabyte-sized (thousands of TeraBytes) microscopy imaging of
entire human brains is an engineering challenge that can only be tack-
led with advanced mathematical and computational tools. Classical
computational approaches to image analysis, based on the imperative
definition of selection rules to semantically separate objects of interest
from the background are unable to perform reliably on large quantities
of complex data. The inherent visual complexity of the subject poses
an insurmountable obstacle to the explicit formulation of an exhaustive
mathematical model representing how a neuron should look in every
imaging situation across an entire brain, for this reason the solution
to the problem of neuronal mapping has to be searched in an inverted
perspective in which the selection rules are not defined by a human op-
erator, but are directly inferred from the organizational structure of the
data itself. This kind of approaches are known collectively under the
name of machine learning.
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2.1. LEARNING ALGORITHMS CHAPTER 2. M.L.

Needing a tool that could ultimately allow us to individually track the
tens of billions of neurons which are present in the human brain, we’ve
chosen to rely on Convolutional Neural Networks, a particular algorithm
that falls under the machine learning general category.
The first part of the chapter introduces convolutional neural networks
as a general architecture, while the second part is a review of state of
the art in automated strategies for neuron segmentation.

2.1 Learning Algorithms

The first definitions of what machine learning is can be attributed to
artificial intelligence pioneer Arthur Samuel, who popularized the term
in 1959 [38]. By paraphrasing his words we can say that

a machine learning algorithm uses data to make predictions or
decisions without being explicitly being programmed to do so.

This definition, although limited, is enough to place learning algorithms
to a conceptual distance from classical algorithms: while the classical
paradigm sees a human expert (a programmer) setting a series of in-
structions or rules by which the machine has to operate on the input
data to obtain answers, the goal of a learning algorithm is, conversely,
to obtain the rules by which the data is transformed to the desired out-
puts, these rules can then be applied to new unseen data to produce
answers.

In Figure 2.1 we see a graphical depiction of this paradigm inversion:
the human designer is no longer responsible for providing algorithmic
selection rules to make sense of the data, but, conversely has to provide
sufficient data for a general algorithm to extract the underlying rules.

An infinite plethora of machine learning models exist, but a minimal
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Classical
programming Answers

Data

Rules

Machine Learning Rules
Data

Answers

Learned Model New
answersNew data

Figure 2.1: Diagram of the machine learning paradigm : While classical
algorithms use pre-defined rules to extract answers from input data,
Machine learning models use data and the desired outcomes to extract
the rules by which new data can be processed to obtain answers.

taxonomy can be defined based on how they obtain answers and the
kind of data that has to be provided.

The goal of unsupervised algorithms is to find some kind of struc-
tural property in the given data in order to solve tasks, which might be
clustering the data itself (dividing the dataset in groups of samples -
”clusters” - that share the same property) or density estimation of the
probability distribution that generated the data in the first place. In
all these cases the data itself is fed to the algorithm, with and no addi-
tional annotation on the datapoints is involved. The other category of
machine learning algorithms is represented by supervised algorithms, to
which Convolutional Neural Networks most of the Deep Learning area
pertain. In this case each datapoint is coupled with a label representing

21



2.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 2. M.L.

its belonging class: this extra information is needed if the algorithm’s
goal is to create an implicit mapping between features of the data points
and the space in which labels are defined in order to make predictions
of class membership on new and unseen examples.

2.2 Artificial Neural Networks

Among the supervised models, there’s a interesting class of machine
learning models that takes the name of Artificial Neural Network or
ANNs which serves as the basis for Convolutional Neural Networks.
The term artificial neural networks refers to the fact that their working
is based on the functioning of biological neurons in the visual cortex.
Theoretical foundations of ANNs can be traced back to early 40s works
on neurophysiological models [16, 27] that led, in the late 50s, to the
first classifier model based on those premises: Rosenblatt’s Perceptron
[36].

...
... Σ f

Activation
function

y

Output

x1 w1

xN wN

Weights

Inputs

Figure 2.2: Rosenblatt’s Perceptron Functional Scheme

The idea behind the Perceptron, schematically represented in Fig
2.2, was simple but effective: similarly to how a real neuron receives
inputs from synapses and propagates conditional output along its axon,
the Perceptron has a number of inputs x⃗ = (x1, . . . , xd) and produces
responses as a thresholded linear combination of those with weights
w⃗ = (w1, . . . , wd). Single units can be stacked together using non-linear
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activation functions to obtain Multi Layer Perceptrons (MLPs), (any
linear combination of a linear classifier like the Perceptron wouldn’t
benefit from unit stacking): despite their simplicity good classification
performances can be obtained by MLPs and they can still be found in
modern networks as final classification layers.

2.3 Convolutional Neural Networks

Convolutional Neural Networks [19] define a type of Artificial Neural
Network-like model that makes use of the convolution operation where
MLP layers would use direct matrix multiplication. In the MLP case
the inputs of each neuron layer is obtained as a matrix multiplication
of the outputs of the previous layer with a weight matrix, in CNNs the
inputs of a layer are generally a result of a convolution operation with
a weight kernel matrix.

2.3.1 CNN Properties

Convolutional Neural Networks have been extremely successful in many
fields but particularly excel computer vision and speech recognition, and
more generally in all cases where the data has a regular structure and
is defined in a grid-like manner. This is surely the case of 2D, 3D and
multimodal images where the data is inherently defined in a matrix-like
structure, but can also be the case of time-serieses which can be seen as
monodimensional grid structures.

There are three direct advantages that stem from the nature of con-
volution operations itself. The first one is sparse connectivity: in MLPs
the inputs of each neuron are dependent on the outputs of each neuron
of the previous layer, in CNNs this dependence is limited only to a small
portion, determined by the width of the convolution filter. A neuron in
CNNs will typically only have local influence on the next layer, mean-
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ing that they’re particularly fit for detecting local feature. Moreover,
with geometrically fewer connections than MLPs, less computational
power and storage space will be needed operate and store the model.
Computational gains with respect to fully-connected MLPs are actually
extremely significative and allow for far deeper networks with a fraction
of the computational cost.
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Figure 2.3: Sparse Connectivity, Parameter Sharing: in the first case the
inputs of neuron a

(1)
1 are determined by the outputs of all the neurons of

previous layer and the weights w1,1 . . . w1,n, in the second example a
(1)
1

only depends on the outputs of a small portion of neurons determined
by the size of the convolution kernel. In the third panel we have a visual
representation of parameter sharing: connections with the same color
share the same parameters in the convolution operation.

A second advantage of CNNs is parameter sharing: in MLPs each
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neuron of the inputs is connected to every neuron in the outputs with a
unique weight value. In CNNs we only have a limited number of convo-
lution kernel parameters which is used across the entire layer: in other
terms, the Toeplitz matrix representing the discrete convolution has a
number of tied weights and the number of learnable parameters corre-
sponds exactly to the dimensionality of the convolution kernel.

A consequence of sharing weights in convolution is the translational
equivariance property: if f(x⃗) is the layer function and t() is a translation
operation, we have that f(t(x⃗)) = t(f(x⃗)). If a convolution operation
specializes in finding certain local features in a small pixel neighborhood,
applying it to the entire input layer results in a 2D map of said feature,
this is useful in deep networks where low level features are typically
extracted in the lowest layers.

2.4 CNNs in Cell Detection and Segmentation

The brief introduction the about the working principles of Convolutional
Neural Network models serves as a functional basis for us to talk about
the kind of segmentation models we’ve developed to solve the challenge
of automating the creation of whole-brain cell censuses.
Fluorescence Microscopy Imaging is not able - by its own - to give quan-
titative information about the distribution and shape of neuronal struc-
tures. Stereological analysis of neuronal distributions based on manual
counting / segmentation are extremely lengthy and their extrapolations
on large volumes rely on sample uniformity assumptions that are often
not entirely met.

The need for automated ways of analyzing large quantities of imag-
ing data has led in the years to the adoption of numerous approaches,
differentiated by their specific goal. Cell detection is the task of roughly
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(a) (b) (c)

Figure 2.4: Semantic Segmentation vs Instance Segmentation: Seman-
tic segmentation is the task of determining a belonging class for every
pixel of the image (white for neuron, black for background) instance seg-
mentation adds the difficulty of determining not only to which class the
pixel belongs to, but also to the specific instance of that class it pertains
to.

positioning individual nuclei inside a three-dimensional volume, seman-
tic segmentation aims at a per-pixel classification of all the points of the
imaging dataset, without discerning individual cells but only belonging
classes (neuron / background) and instance segmentation represents the
combination of the two, aiming at tracing a label mask for each individ-
ual instance of a detected object. The other criteria of differentiation
between methods is represented by their operating principles: we can
generally distinguish between the two macro-categories of classical im-
age algorithms or machine learning models.

Many of the commonly used methods in microscopy imaging analy-
sis employ combinations of classical image processing algorithms such as
watershed segmentation, thresholding and level-set methods [24, 25, 32,
48], however these schemes have historically proven to suffer from per-
formance drawbacks in imaging cases with low signal-to-noise ratio or
blurred cell separation. In many instances these cell detection schemes
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require manual tuning of parameters regulating expected cell size, nu-
cleus shape and cell density [45]. Acceptable results are generally obtain-
able only for small datasets: this class of approaches inevitably falls short
on scalability expectations to large samples. Moreover, the assumptions
in image structure made in classical image processing methods are not
always met in real life scenarios. Two instances of this could be the fact
that thresholding methods like the Otsu method [31] assume bimodal-
ity of intensity value histograms or the expectation of clear separability
of boundaries of many region growing approaches: these conditions are
virtually never universally met in large microscopy datasets.

The continuous evolution of the Machine Learning and Deep Learn-
ing panorama has made available a large number of cell detection and
segmentation models that outperform classical imaging methods [4].
The passage from a classical image processing paradigm to Deep Learning-
based approaches has enabled the creation of many software packages
which are readily available to the neuroscience and bio-imaging commu-
nities at large in the form of standalone solutions such as Ilastik [3, 42]
and CellProfiler [6] or plugins for the Fiji/ImageJ platform [39], which
usually require manual labeling of a few representative images from the
experiment and produce inference results on the rest of the dataset. The
viability and user-friendliness of these applications had a significant role
in encouraging widespread adoption of CNN-based methods outside the
machine-learning / computer-vision specialist niche, allowing the gen-
eral life-science community to familiarize with them.

The performance gap between classical Machine Learning methods
and Deep Learning-based ones - and consequently their almost-exclusive
adoption in current-day image analysis - might be better explained by
reviewing the fundamental differences between the two.
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(thresholding, pixel
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Figure 2.5: Classical ML-based Semantic Segmentation vs DL-based
Segmentation: classical semantic segmentation are organized on a gen-
eral workflow where a feature extraction step is needed before classifica-
tion. In deep CNNs there’s no need for ”manual” feature extraction as
the first layers of the network optimize automatically to act as feature
extraction stages without a need for manual tuning.

2.4.1 Classical ML Approaches

Classical Machine Learning-based image segmentation approaches adopt
a roughly standardized general schema: raw input data is usually split
into overlapping ROIs, elaborated with a pre-processing stage which
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can be represented by noise-filtering schemes, image normalization, and
contrast-enhancement steps. A feature extraction and selection stage fol-
lows, where the relevant features of the image are identified and summa-
rized, either using statistical methods like Principal Components Anal-
ysis - PCA or by application-specific handcrafted combinations of the
extracted features. An infinite variety of designs in feature extraction
methods has been proposed, ranging from simple mathematical oper-
ations as as applying a threshold to extremely more complex methods
based on pixel grouping, morphological elaboration, watershed, level-set,
and trainable models. The last step of the elaboration chain is usually
a form of trainable classifier such as a Support Vector Machine SVM,
a Restricted Boltzmann Machine RBM or an Artificial Neural Network
ANN, which uses the extracted features to determine the class of the
central pixel of the selected ROI. Parallel application of this scheme to
a set of ROIs covering the entire image allows for segmentation of whole
imaging planes: this approach is also referred to as a sliding window
approach, as the input of the model are serially defined by a selection
window sliding onto the original data. The resulting matrix of class pre-
dictions can be used directly as a segmented version of the original image.

2.4.2 Convolutional Neural Networks

Convolutional Neural Network extend the concept of Artificial Neural
Networks to include convolutional learnable filters, pooling layers and
nonlinear activations along with the fully connected oganization schemes
of ANNs. A CNN classifier, in its most recognizable form, is comprised
of a series of convolutional filters and pooling layers which reduce the
inputs to a minimal vector representation - much like the feature ex-
traction and selection step in classical machine learning protocols - and
a series of fully connected layers terminated by an activation function
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takes the role of a classification stage.
This kind of unified approach rendered obsolete the need for complicated
handcrafted feature extractors, as the lower layers of CNNs themselves
implicitly act as highly efficient feature extractors during training [18].
The learned internal representations of the inputs before the fully con-
nected stages tend to be much more reliable predictors of the output
classes than any equivalently handcrafted feature. Furthermore, if the
network has enough layers and representational capability, even basic
preprocessing of the input data becomes implicitly learnable: a single
Deep Learning model is capable to directly infer output classes from
the raw data itself without the need for the definition of multiple inter-
mediate overly tunable steps, while achieving better performance than
classical machine learning methods.

2.4.3 Convolutional Interpretation of Sliding Windows

Interestingly, the CNN model approach described above still results in
a sliding window scheme where the inputs are divided into overlapping
patches and the network is trained to express class membership of their
central pixel. Naive application of this approach - ex. by deploying an
instance of the same model for each classification patch - comes with
great computational overhead due to the unavoidable redundancy of in-
formation on the overlapping input regions. As observed in [41], the
formal equivalence between fully connected layers of d units and convo-
lutions with a 1×1×d kernel can be used to efficiently evaluate responses
over extended inputs [22]. By acknowledging this fact the sliding win-
dows problem can be reformulated by replacing every fully connected
layer with its 1× 1 kernel equivalent. A CNN modified in this fashion is
said to be operating in fully convolutional mode: this network doesn’t
just output a single classification value corresponding to the center of
a patch, but arbitrarily sized inputs can easily be converted to segmen-
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tation maps through the series of convolutions and pooling filters. If
the rest of the network is comprised by only convolutional and pooling
filters, the output dimensions are determined by their number and type:
this introduces the concept of native stride of the classifier as the stride
at which a sliding window sized as the inputs of the original network,
should ideally be moved across the image plane in order to produce
outputs with the same shape as those produced in fully convolutional
operation. Acknowledging the existence of an intrinsic stride of the net-
work, it’s still possible to compensate it by artificially up-sampling the
input image using bi-linear or nearest neighbor interpolation [26].

2.4.4 Fully Convolutional Networks

Traditional CNN models classifiers estimate the probability that the
central pixel of a patch belongs to a specific class, however, the pro-
gressive compression and refinement of information along the series of
convolution filters can result in loss of local spatial information. More-
over, high-range spatial correlations between features larger than the
network’s receptive field are completely lost in this kind of formulation.

An alternative approach to sliding windows is represented by fully
convolutional networks. FCNs, introduced by Long et al. [23] employ
transposed convolutions as feature upsampling stages, so that they’re
able to directly produce segmentation maps with the same size as the
inputs instead of single probability values. This work was the first to pro-
pose an end-to-end fully convolutional training scheme for a segmenta-
tion network, but is still limited by loss of long-range spatial information
due to the spatial compression of the feature maps before upsampling.
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Figure 2.6: The FCN Architecture (from Long et al. [23]): the FCN
model employs transposed convolutions for up-scaling spatially com-
pressed feature maps to obtain segmentation maps of the the same size
as the inputs.

2.4.5 Convolutional Networks with Graphical Models

Another solution to the loss of spatial context resulting from both sliding
window approaches and the original FCN proposed by Long et al. [23] is
to couple probabilistic graphical models such as Markov Random Fields
MRFs or Conditional Random Fields CRFs to the outputs of a normal
CNN classifier: it was shown by Chen et al. [8] that responses from
the final layer of a CNN classifier, while not localized enough to be
directly usable as a semantic segmentation map, still retained enough
spatial information to train a CRF to retrieve accurate segmentations.
Other works employ various levels of integration with different training
schemes between CNNs and CRFs for semantic segmentation [8, 21, 40,
47]. This kind of approach produces better results than using sliding
window classifiers alone, but can’t still account entirely for the spatial
information loss which is intrinsic to the network architecture.
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2.4.6 Encoder-Decoder Networks

The need for retrieval of spatial information in segmentation networks
pushed towards the development of strategies to decompress high-level
internal representations without excessive losses in localization. Most
DL-based segmentation models now employ an encoder-decoder architec-
ture where semantically relevant information is extracted in an encoding
path made of convolutional and padding layers, and spatial information
is reconstructed in a decoding path made of deconvolution (transposed
convolutions) and unpooling layers. Both transposed convolution and
unpooling layers functionally serve as upscaling methods which take low
resolution feature maps and output higher resolution tensors. Unpooling
can be viewed as an approximate inverse of the pooling operation, which
creates an high resolution version of the inputs by placing its values in
fixed locations of the outputs, the remaining pixels can then be filled
with zeros to produce what’s called a bed of nails unpooling operation
or assigned values using a nearest-neighbor policy. Transposed convolu-
tions are upscaling filters obtained by transposing a convolution Topelitz
matrix, literature can refer to them as upconvolutions or deconvolution
layers. 1

An initial model by Noh et al [30] used the VGG-16 network as en-
coder and a decoding path made of deconvolution and unpooling layers,
this work was later refined by the SegNet model [2] by binding the pool-
ing indices in the encoding path to the unpooling indices in the decoder,
removing the necessity of learning them from scratch.

The U-Net [35] model - represented in 2.7 from the original paper -
is considered one of the most influential models in the biomedical image

1The latter name can be misleading because it might suggest inverse convolution,
which is not the function of these layers do: the general inspiration for this name
is to be found in the fact that deconvolutional layers act in the ”opposite” way of
convolutions in terms of tensor shape transformations.
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Figure 2.7: The UNet Architecture (from Ronneberger et al. [35]):U-
Net introduces horizontal skip connections to solve the problem of pre-
serving high-frequency spatial information retrieval, by concatenating
the outputs of convolutional blocks in the encoding path to symmetri-
cal positions in the decoding path, spatial information is propagated to
produce detailed segmentation maps.

segmentation field. It introduces skip-connections between symmetrical
parts of the contraction and expansion paths (tensor concatenation of
the inputs of an upsampling stage with the outputs of the corresponding
block in the contracting path to allow direct signal propagation in the
network without introducing computational complexity. Various models
were built on top of the U-Net architecture, among them are the exten-
sion of U-Net to 3D images [9] by the same authors, the integration of
residual learning [46] within encoding blocks and nested U-Net archi-
tectures [49]. V-Net [28] was introduced roughly at the same time of
U-Net and exploits the same encoder-decoder structure with horizontal
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skip connections and applies it to 3D medical image segmentation.
Later in this work we’ll introduce a model for semantic segmentation
of Light Sheet Microscopy images that we based on the general U-Net
architecture, introducing additional elements from residual learning and
adding dynamical module sizing capabilities.

2.4.7 Instance Segmentation

Two main approaches can be distinguished in solving the cell segmen-
tation problem: a first top-down class of methods performs cell detec-
tion first and then refines an initial rough estimation of the cell shape
using object detection networks like YOLO [33, 44], R-CNN [12, 34]
to predict bounding boxes for the detected objects, which are then re-
fined via semantic segmentation of pixels inside the bounding box, e.g.
MASK-RCNN [15, 17, 25]. Most of these methods use non-maximum-
suppression to avoid multiple detections of the same object if there’s
significant bounding box overlap. A limiting factor to the efficacy of
this approach is the possible inadequacy of axis-aligned bounding boxes
to correctly describe neuronal shapes. A second class of approaches, to
which the methods presented in this work pertain to, exploits an alter-
native bottom-up perspective where semantic segmentation is performed
on the inputs to produce per-pixel (or per-voxel) classification maps with
learned classifiers, such as random forest classifiers [43], SVMs, Convolu-
tional Neural Networks or semantic segmentation-specific networks like
U-Net [4, 5, 7, 9, 10, 13, 26, 35], and subsequently apply pixel grouping
strategies to distinguish between different object instances.
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Chapter 3

Experimental and
Computational Methods
for High-Res Volumetric
Mapping of Large Brain
Samples

3.1 Phyisical Principles of Fluorescence Microscopy

The microscopy techniques we’re using to produce imaging of brain areas
rely on the physical phenomenon of fluorescence. In this section we’re
giving a brief introduction to the main physical principles in Fluores-
cence Microscopy.

Fluorescent molecules have the property of being able to absorb pho-
tons at a certain energy and emit photons at a lower energy: this feature
is particularly useful for microscopy applications as it enables the ob-
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servation of signal from interest molecules in a different frequency range
than the one of the illumination source.

The Jablonski Diagram, in Figure 3.1 is a useful tool for visualiz-
ing the electronic states of a molecule and the main transition processes
between them, which are photon absorption, internal conversion, fluo-
rescence, intersystem crossing and phosphorescence.

3.1.1 The Jablonski Diagram

The singlet states are denoted as Sn, where S0 is the ground singlet
state, while the triplet states are Tn; each of these electronic states has
associated vibrational levels.

The absorption of a photon (represented with a green vertical arrow)
causes an electron from the molecule ground state S0 to be promoted to
a new orbital with the same spin mutiplicity, typically the first excited
state S1, in a timescale of 10−15 s. From here different processes can
occur resulting emission of a photon - in the case of radiative processes
- or not - in this case we are talking about a nonradiative process.

Internal conversion refers to a nonradiative transition between two
states at same multiplicity. This process is followed by vibrational relax-
ation towards the lowest vibrational state of the target electronic state,
excess energy is dissipated in the form of heat in the surrounding en-
vironment. In cases where the absorption event promoted the electron
to a vibrational state with larger energy than the first electronic state,
internal conversion is preceded by vibrational relaxation towards its first
vibrational level. This process occurs in 10−12s or less, whereas fluores-
cence processes have timescales of 10−10 s to 10−7s, therefore internal
conversions are generally complete before fluorescence.

Because excited singlet states Sn with n > 1 generally relax very
rapidly to the lowest vibrational level of the first excited state S1 via non-
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Figure 3.1: The Jablonski Diagram is a schematical representation of a
molecular system’s electronic and vibrational configurations, along with
the possible transition processes connecting them. Thick and thinner
lines denote, respectively the system’s electronic and vibrational states.
Radiative transitions, indicated by straight vertical arrows, involve the
absorption or emission of a photon. Vibrational relaxation of an excited
vibrational state to its ground state is noted with wavy lines, horizontal
green dotted lines represent internal conversion, i.e. the coupling of a
vibrational state of an electronical excited state to another state with
same multiplicity. Horizontal purple dotted lines indicate inter-system
crossing i.e. a transition to a state with different spin multiplicity (sin-
glet to triplet or triplet to singlet).
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radiative processes, fluorescence - defined as the radiative spin-allowed
relaxation to a lower level - can typically only be observed between S1

and S0, therefore its characteristics are not dependent on the excitation
wavelength. The fluorescence photon is emitted at lower energy than
the absorbed photon due to the energy loss in vibrational relaxation
processes.

A concurrent pathway for fluorescence and internal conversion is in-
tersystem crossing: this refers to the nonradiative transition between
isoenergetic states with different spin multiplicity, i.e. from singlet to
triplet states. This kind of transition is, in principle, forbidden by se-
lection rules but spin-orbit coupling can be large enough to make it
relevant. After intersystem crossing further radiative relaxation to the
S0 state may happen in a phosphorescence event: again, the transition
from a triplet state to S0 is only possible through spin-orbit coupling
terms, resulting in very low radiative rates. Phosphorescence spectra are
located at higher wavelengths than fluorescence because the T1 state is
located at a lower energy than S1. The lifetimes of triplet states are ex-
tremely long - anywhere from 10−6s to the order of seconds - and during
this time collisions with other molecules can favor intersystem crossing
and nonradiative vibrational relaxation to S0.

3.2 Two-Photon Confocal Microscopy - TPFM

3.2.1 Two-Photon Excitation and its Advantages in Mi-
croscopy

Multi-photon excitation is a non-linear process involving the simultane-
ous absorption of two ore more photons in a single event, in particular,
two-photon excitation processes (noted as 2PE as as opposed to 1PE
single photon excitation) require the cooperation of two low-energy pho-
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Figure 3.2: Two-Photon Excitation: this simplified version of the Jablon-
ski diagram depicts the simultaneous absorption of two photons to pro-
duce a single excitation event.

tons to cause an higher-energy electronic transition: in figure 3.2 we
have a simplified version of the Jablonski diagram where 2PE events
are represented by two consecutive arrows, the same transition to a vi-
brational state of S1 can be achieved by absorption of a single photon
of energy hνa or the simultaneous absorption of two photons of energy
hνa
2 , in either case the fluorescence emission would be a single photon of

energy hνb equal to the energy gap between S0 and S1.

The two-photon excitation process, originally predicted by Maria
Goppert-Mayer in 1931 [22], follows different selection rules than the
single-photon case, since the interaction of the two photons with the
fluorophore needs to be almost simultaneous (in a timeframe of 10−16s),
the absorption rate depends quadratically on the light intensity instead
of linearly (hence the non-linearity). This is actually a favorable prop-
erty for optical imaging. Let’s take the case of a focused beam passing
inside a photo-luminescent medium: focusing the beam reduces its size
and locally increases the light intensity near the focal point, having the
absorption rate depending on the squared intensity limits the excited
areas of the sample to a small locality around the focal point, avoiding

49



3.2. TPFM CHAPTER 3. METHODS

the excitation of out-of-plane targets, thus increasing the overall con-
trast of the image.

In confocal setups the signal is generated by the entire depth of the
sample, independently of the position of the actual focal plane, and a
pinhole is used as a spatial filter to reject out-of-focus background. With
Two-Photon Microscopy only the in-focus portion of the sample emits
actually absorbs radiation and emits signal, removing the need for a
pinhole filter in the light path. Smaller exposed areas also translate to
reduced photobleaching (photochemical alterations of fluorophores such
that they lose their fluorescence properties) and photodamage (biologi-
cal damage to the tissues due to electromagnetic interaction), whereas
in single-photon microscopy the entire thickness of the sample would
have been subject to the same detrimental effects even if data was only
collected from the focal plane. Other advantages over single-photon tech-
niques are represented by the use of low IR wavelengths that better pen-
etrate the tissue compared to visible frequencies used in single-photon
microscopy, because of the reduced scattering absorption by endogenous
chromophores.

3.2.2 2PE Confocal Setup

A 2PE setup is generally similar to a confocal microscope and consists
of three main elements: a laser illumination source, a scanning system
and a detector. The main differences between a confocal setup and a
two-photon setup are the absence of a pinhole for spatial filtering and
the illumination source.
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Illumination Sources for 2PE

The possibility of 2PE absorption events was originally postulated by
Goppert-Mayer in 1931, but experimental observations didn’t come until
1961 - 30 years later - after the invention of laser sources: the best
arc lamps light sources at the time, focused through the best objective
lenses, would only have produced - in the best-case scenario - a single
2PE event every few minutes. According to her original theory, the
intensities needed for reliably observe 2PE events would have been six
orders of magnitude higher than those needed for the same number of
single photon events: this kind of intensity wasn’t only impossible to
achieve at the time but would have also precluded every application to
biological samples. It is the invention of ultrashort mode-locked lasers
that provide high peak power while maintaining sufficiently low average
emission that finally enabled, in 1990 a practical application of 2PE to
imaging of biological samples [17]. Mode-locked lasers produce pulses of
light with extremely short duration, this is achieved by inducing a fixed
phase relationship between the standing wave frequencies (modes) of the
laser’s resonant cavity so that a train of pulses can be obtained by means
of constructive interference. The resulting light train is characterized by
a repetition rate dictated by the distance between the two cavity mirrors

∆ν =
c

2L
(3.1)

where c is the speed of light and L is the distance between the mirrors.

The temporal confinement provided by the laser pulse, alone, is not
enough to allow for a number of 2PE events suitable for microscopy
imaging: spatial confinement of the excitation photons is also needed
for obtaining suitably high densities. This is achieved using a high NA
(numerical aperture) lens that focuses the laser beam to a spot of roughly
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300nm in diameter, yielding a 105-fold greater photon density than what
is seen with a 1mm laser beam diameter.

3.3 Light Sheet Fluorescence Microscopy

Light-Sheet Microscopy bridges the gap between the small scale, high-
resolution imaging domain in hundreds-of-micrometer scales, which is
usually covered by confocal microscopy techniques, and the centimeter
scope which can be explored tomographically at relatively low resolu-
tion. Light-Sheet microscopy applications can achieve cellular resolution
on samples in the millimeter-to-centimeter scale in times that are negli-
gible with respect to point scanning methods, posing themselves as the
go-to solution for fast high-resolution imaging of extended specimens.

Light-Sheet Microscopy setups feature two different orthogonal op-
tical axes: the first provides illumination with a laser light sheet and
the other is used for wide-field detection of the fluorescence signal. Il-
lumination with a planarly collimated source ensures optical sectioning,
as fluorescence is only generated in the exposed plane. Moreover, the
physical dimensions of the light sheet can be adjusted in thickness and
horizontal extent to obtain the desired levels of optical sectioning and
FOV coverage. As the fluorescence signal is generated simultaneously
across the entire FOV, signal is rapidly collected in a parallel way using
camera sensors: since there’s no scanning involved, the pixel resolution
of the obtained images is only limited by the number of pixels of the
used sensor.
A clear advantage of Light-Sheet microscopy over confocal techniques
is the heavily reduced photo-bleaching: while in confocal microscopy it
is in fact necessary to illuminate the entire sample volume to image a
single plane, in Light-Sheet microscopy light exposition - and, conse-
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quently, photo-damage and photo-bleaching - is limited to the imaged
plane itself. The acquisition of z-stacks in confocal setups would require
the sample to be illuminated as many times as the number of images in
the stack, multiplying the above described effects, while this problem is
simply nonexistent in Light-Sheet setups.

Illumination Sources

Planar illumination of the sample can be achieved by using cylindrical
optics (SPIM [28]): in this setup light converges at the position of the
sample and diverges away from it, in such a way that the intersection
area between the sample and the beam is approximately planar. Dif-
ferent optics could be used to adapt the physical size of the light sheet
to accommodate for different kind of subjects, choosing thinner planes
(∼ 1µm) for small specimens, and thicker ones (∼ 5µm to 10µm) for
large specimens where absorption and non-uniformity of the illumination
plane might be an issue, however a lower limit to the thickness of the
illumination sheet is imposed by diffraction. An alternative way to pro-
duce light-sheet illumination is by using a linearly collimated beam and
scanning it horizontally, this is the main concept behind DLSM (Digital
Scanned Light-Sheet Microscopy) [32] and derived methods. The in-
herent benefits of this kind of approach are increased uniformity of the
illumination intensity profile, as well as the ability to digitally control
the height of the light sheet itself. The scanned nature of this approach
implies that, at a given time, only a fraction of the total image is ac-
tually illuminated: this means that local light intensities need to be
significantly higher (∼ 300 fold) with respect to the SPIM case in order
to achieve comparable fluorescence levels across the whole image. The
higher intensities involved in DLSM methods can result in increased
degradation of the sample, posing a trade-off between these effects and
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the increased illumination uniformity.

3.4 Optical Clearing

3.4.1 Clearing Methods

Both Two-Photon Confocal Microscopy and Light-Sheet microscopy al-
low extensive investigation of the three-dimensional structure of biolog-
ical samples: these technologies enable volumetric imaging by means of
optical sectioning, intrinsically derived from the localized excitation area
in the case of TPFM or from planarly collimated illumination in the case
of LSM but, on the other hand, the effectiveness of application of these
techniques to real-world samples is hampered by the natural opaqueness
of biological specimens. Generally speaking, opaqueness of samples is
a consequence of high scattering of their biological components, rather
than absorption, which characterizes only a subset of tissues such as
blood, muscles and liver. A biological sample can be naively modeled
as constituted by molecules with high refractive indexes (mostly lipids
and proteins), estimated to have a refractive index ndry = 1.50 [25] im-
mersed in a low refractive-index medium (water) with a refractive index
nwater = 1.33: the significative difference between the two results in
multiple scattering events and, ultimately, opacity.

Optical clearing methods pursue the objective of rendering the sam-
ple optically transparent by matching as closely as possible the refrac-
tive index ndry of the biological components to that of the surrounding
medium. This can be done either by substituting water with other
mediums with different refractive indexes or by modifying ndry, either
removing some of the scattering components, such as lipids, or by al-
tering their optical properties. Depending on the particular clearing
protocol (more than 20 distinct methods have been proposed during the
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years), the final refractive indexes of the cleared samples nclear can range
anywhere from 1.38 [25] to 1.56 [3].

Different clearing methods can be identified by their working prin-
ciple. The first category of protocols is based the substitution of the
water medium with organic solvent clearing agents with refractive in-
dexes matching ndry. The BABB protocol [18] uses a mixture of benzyl
benzoate and benzyl alcohol as clearing agent, since benzyl benzoate
is insoluble in water, the sample is first dehydrated in ethanol. While
ethanol removes water, also some loss of lipids can happen, the result is
a fairly homogeneous sample, as proteins have a refractive index greater
than 1.5 (higher than both water and lipids) with high refractive in-
dex. However, this has been observed to have a detrimental effect on
fluorescent proteins, resulting in the almost complete loss of the fluo-
rescence properties. As a solution to this problem the BABB method
has been modified to use peroxide-free tetrahydrofuran (THF) to de-
hydrate the tissue and peroxide-free dibenzyl ether (DBE) as clearing
agent (n = 1.56) [3, 44] [19], which has shown better success at maintain-
ing fluorescence properties of the cleared tissue. Solvent-based clearing
protocols are known to be robust and work in a variety of tissue types,
however, the fact that many solvents are toxic, and their ability to dis-
solve glues used in the construction of objective lenses, along with fluo-
rescence quenching and significative shrinkage of the tissue that occurs
during dehydration (sometimes up to 50% [3]), all contribute to reduce
the effective practicability of these methods.

A second class of protocols aims at preserving fluorescence by keep-
ing the sample in an acqueous environment so that fluorescent proteins
whose properties are dependent on their hydration state are not exces-
sively affected by the quenching effects of non-acqueous clearing agents.
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Some of these methods use high concentrations of sugars such as su-
crose [31] (n = 1.44) or fructose (n = 1.48) [15, 27]. Clearing solutions
obtained via this method have the main drawback of high viscosity, to
solve this issue, procedures have been proposed where sugar solutions are
substituted with water-soluble compounds like 2,2’-thiodiethanol (TDE)
[1, 15, 49] (n = 1.42). There are also proprietary solutions whose
complete compositions are not disclosed like FocusClear™[38](by Cel-
Explorer Labs, Taiwan)(n = 1.45). Refractive indexes obtainable by
water-based solutions, though, are generally characterized by a maxi-
mum value of n = 1.48 and depending on the actual ndry refractive
index of the dry tissue, the use of acqueous clearing agents might be
limiting. The problem can be tackled from a double perspective, both
by optically matching the clearing medium and by acting on the ndry,
either by removal of lipids with a non-hydrophobic solvent or lowering
the effective refractive index of proteins. The first work to make use this
mechanism was Scale [25], where an extensive incubation with a water-
soluble detergent (Triton™X-100) was used for lipid removal, while urea
was used to denature and hyper-hydrate the proteins, reducing the over-
all refractive index of the sample in a glycerol medium down to n = 1.38.
CUBIC [50] uses a similar urea-based hyper-hydration strategy, in this
case immersion in a high-refractive index sucrose solution was used as
an additional step to expedite the clearing process n = 1.48.

The removal of lipidic content does indeed provide smaller refrac-
tive indexes, but the detergents used to achieve it often cause significant
losses in proteins. Additionally, very hydrophilic substances can cause
protein denaturation, hence hampering IHC-useful epitopes. Another
category of protocols for tissue clearing addresses these issues by sta-
bilizing the proteic content by means of cross-linking proteins to a gel
mesh before lipid removal. This fourth category goes under the name of
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tissue transforming protocols. The CLARITY [14] model, which paved
the way to other works in the category, uses parafolmaldehyde to cross-
link proteins and nucleic acids to a polyacrylamide gel, which is then
treated to sodium dedecyl sulfate (SDS) for lipid removal, the sample
is then immersed in FocusClear™to make it transparent. In general
it’s possible to speed up the lipidic removal step down to days by using
electrophoresis instead of weeks of passive incubation in SDS.

3.4.2 Applicability to Fluorescence Microscopy

Two-Photon Confocal Microscopy

TPFM setups are characterized by fine optical sectioning capabilities
which are reached by using high NA objectives, in fact the degree of
reachable optical sectioning is a function of the numerical aperture of
the focusing objective. As a consequence, the emergence of spherical
aberration effects represents a limiting factor for TPFM, which needs
objectives which are specifically corrected for the refractive index of em-
ployed immersion medium. Commercial availability of clearing medium-
specific objective lenses is one of the binding criteria in the choice of a
protocol for TPFM.
Thanks to the nonlinear nature of 2PE excitation, diffused illumination
radiation does not significantly contribute to background signal, as a
result TPFM tends to perform better in deep tissue when compared
to single-photon excitation methods and LSFM, so that extreme trans-
parency of the cleared tissue is not as binding as in other applications.
However, TPFM images are obtained using a scanning system (usually
galvanometric mirrors) and imaging of large samples can span on sig-
nificant amounts of time: the clearing method has to assure stability of
the mechanical, optical and fluorescent properties of the sample across
the whole temporal extension of the acquisition, which can reach several
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weeks depending on the sample.

Light Sheet Microscopy

When compared to point-scanning TPFM, the wide-field detection scheme
of Light Sheet Microscopy offers faster volumetric imaging. The planar
illumination required for optical sectioning can either be provided by
cylindrical optics or by scanning of a single illumination line. The lin-
ear nature of excitation in LSFM makes it more susceptible to diffusion
than TPFM. Samples that are to be cleared for LSFM need to be as
transparent as possible in order to minimize scattering events and im-
prove image quality. In general, organic solvents provide optimal results
in terms of tissue transparency but their application is again limited by
commercial availability of specific-medium optics.

3.5 Data Processing Pipeline

Working with the large data-streams originated by Fluorescence Mi-
croscopy Imaging poses a series of technical challenges which are mostly
unencountered in the vast majority of computer-driven applications.
Stream sizes from multichannel Light-Sheet Microscopy are about three
orders of magnitude higher than those involved in conventional Confocal
Microscopy and can easily reach multiple Gbit s−1 and extremely inten-
sive CPU and GPU loads are expected: in such configurations accurate
planning and management of the data flows needs to be taken into ac-
count as any step of the elaboration path risks to become a significant
bottleneck in the overall process.

In table 3.1 we offer a reference for the estimated data sizes of mouse,
monkey and human brain acquisitions: it can be easily seen that data
processing challenges emerging from the sheer physical size of human
brain specimens require significantly different solution strategies than
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Figure 3.3: Data Processing Pipeline: this representation summarizes
the steps involved in our unified pipeline for acquisition, analysis, pro-
cessing, storage and sharing of microscopy data.

the animal case. Assuming an isotropic resolution of just 10µm per
pixel, acquisition of a 1 cm3 volume of tissue results in 1 cm3

(10 µm)3
= 109
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Configuration 1 cm3 100 cm3 1500 cm3

(Mouse Brain) (Monkey Brain) (Human Brain)
1 channel, 10µm resolution 2GB 200GB 3TB
3 channels, 10µm resolution 6GB 600GB 9TB
1 channel, 1µm resolution 2TB 200TB 3PB
3 channels, 1µm resolution 6TB 600TB 9PB

Table 3.1: Data Size Estimations for SPIM Brain Acquisitions

voxels, which, when represented by 16bit floats, end up taking 2GB
of disk space. Increasing spatial acquisition resolutions to 1µm with
three different channel streams, in the case of the acquisition of a mouse
brain, results in total storage needs that could be satisfied with a sin-
gle consumer-level HDD, while acquiring a whole human brain at the
same resolution would require multiple Petabyte-sized infrastructures
and hardware investments in the order of hundreds of thousands of eu-
ros (as of 2022).

The delicate orchestration of data flows to create a reproducible pro-
cessing model is, in fact, the nodal point of this work. The need for a
scalable architecture with reduced bottlenecks has driven the choices of
every single algorithmic component of the pipeline: in some cases heavier
algorithms with promising accuracy performances have been discarded
in favor of faster methods which enabled the overall computational pro-
cess to be executed within timing limitations.
The soft target that was held in designing this pipeline was to reach a
computational setup that would run the needed processing in roughly the
same time that was needed to acquire biological samples, so that physi-
cal process of microscopy acquisition of the biological samples wouldn’t
be limited by computing times and data transfers.
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3.5.1 Stitching Datasets

Extended specimens cannot be microscopically acquired in their entirety
in a single acquisition as the their physical extent is generally incompat-
ible with the microscope’s field of view: it’s usually needed to mount the
sample on one or more moving digitally-controlled stages while multiple
overlapping views of the subject are serially recorded and the complete
sample is reconstructed from the single acquisitions.
While it’s important to have accurate positioning of the traslational
stages, a number of factors can contribute to discrepancy between the
recorded position of the stage to the actual coordinates in the sample
reference, such as the stages having higher positioning error than the
spatial resolution or limited temporal stability of the sample itself. Sim-
ply positioning the acquisition stacks to their nominal stage coordinates
in the sample space more often than not results in visual distortion of
the reconstructed acquisition. This issue can be solved with an a pos-
teriori approach, where the nominal positions of the acquisition stacks
are used to determine pairs of adjacent stacks and the actual relative
displacements are calculated by maximizing the cross-correlation of the
overlapping sections.

To perform tile registration we use a custom developed software pack-
age, ZetaStitcher [40], which first calculates the relative displacement
between pairs of images, then computes an optimal placement of the
stacks in the global image space. The partial overlap between stacks is
managed via blending the two different acquisitions in the overlapping
area. Other microscopy and fluorescence microscopy-specific image reg-
istration methods exist in literature, such as [26], which is based on the
ImageJ / Fiji software package, [54], built on Insight ToolKit - ITK,
[12]

One of the most interesting features of Zetastitcher is an API inter-
face for virtualized access to the aligned volume, which can be generated
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on the fly by retrieving the optimized image registration parameters and
stack positions in the image space, without ever needing to generate a
global image volume, which could be extremely impractical to store and,
ultimately, redundant: the imaging stacks can be individually stored in
a compressed format and portions of the overall stitched volume can be
accessed querying a specially constructed VirtualFusedVolume class in
ZetaStitcher, which can decompress and fuse the relevant image sections
on-the-fly.

3.5.2 Semantic Segmentation Framework: NeuroSegmenter

Approaching a segmentation task from the perspective of a microscopist
can be a less-than-pleasant experience. Users without an extensive cod-
ing background often turn to pre-packaged solutions like Ilastik [4] or
ImageJ-Fiji plugins which offer a coding-free experience, but the need
for user interaction limits their applicability in real-time pipelines with
continuous data production. The more experienced programmer who
wants full control on the segmentation models can turn to various deep
learning framework solutions like TensorFlow [39], PyTorch [43] or JAX
[8] which, on the other hand, require some experience both in generic
Python programming and in the concepts and coding paradigms defined
by the libraries themselves (graph-based programming, autograd-style
differentiation and GPU acceleration in general) but grant the advantage
of extreme flexibility in every aspect of model and pipeline definition.
The general user in microscopy application is often in a middle position
between these two poles and can feel the limitations of a pre-packaged
solution but don’t have the level of coding expertise requried to fully
manage custom training and inference loops. High-level interfaces and
libraries like Keras [13] (the official high-level functional library of Ten-
sorFlow) are now bundled in the main deep learning frameworks but,
while extremely useful in speeding up the prototyping and production of
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large deep learning pipelines, often can’t lower the difficulty bar enough
for the microscopist with occasional scripting ability.

When starting a new ML project, a ML specialist usually has to set
up a lot of boilerplate code: this includes basic data processing pipelines
(preprocessing, data streaming and data augmentation), custom train-
ing and inference loops and the definition and implementation of a deep
learning model. Next he has to tune it properly and, optionally, set up
an experiment tracking system to monitor model training. Usability of
such solutions by non-expert personnel entirely depend on the presence
of a simple user interface which has to be created ad-hoc from the ML
specialist, adjustments to the model often require coding experience,
making the continuous presence of a specialist in the loop an essential
element to the working of the pipeline.

During the course of my PhD I developed a solution - NeuroSeg-
menter - to target this middle usebase, which is characterized by gen-
eral coding literacy but have limited proficiency in the specifics of Deep
Learning. NeuroSegmenter relies on TensorFlow and Keras as back-
end and aims at providing an efficient, yet entirely customizable deep
learning segmentation experience, flexible enough for a machine learning
specialist to set it up yet remaining easy to use enough for microscopists
to operate and tune autonomously without necessarily having to inter-
act with the code.

From a software design perspective, three guiding principles behind
the development of NeuroSegmenter are modularity, extendibility and
ease of use. Specifically, the module exposes a number of independently
implemented components which can be extended for the specific appli-
cation. A DataGenManager component is responsible for the network
input pipeline, loading the input data, preprocessing and exposing gen-
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erators for data augmentation which will be used during training. By de-
fault, integration with ZetaStitcher is provided, but any data format and
input pipeline can be implemented as an extension of the DataGenMan-
ager component. The actual CNN model is defined by a ModelManager
component, the use of a configurable component enables dynamic para-
metrical definition of the network architecture without interacting with
the actual code. The loss function, along with the optimizer and their
parameters are managed by a OptimizerManager component decoupled
and independent from the actual model definition, while a Tracking-
Manager component handles metric logging and integration with remote
experiment tracking services: compatibility with Weights&Biases [6] is
provided out of the box but custom callbacks can be defined for inte-
gration with any other service. Inference over large volumes of data in
a tiled fashion is managed by TileBasedPredict so that the end user,
independently of the size of the network’s receptive field, can directly
receive segmentation results with the same dimensionality as the inputs
without worrying about implementing their own reconstruction pipeline.
Lasty, if ground truth data is provided, model performance is measured
by a PerformanceEvaluator component.

The whole training and inference processes with every single of the
above mentioned components are configured by the end user with a single
human-readable YAML configuration file, model definition can take just
a few lines, here follows a configuration example:

1 # training_config.yml
2 model_cfg:
3 model: "neuroresunet2d"
4 input_shape: [256, 256]
5 unet_depth: 2
6 base_filters: 16
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7 batch_normalization: true
8 transposed_convolution: false
9 residual_preactivation: true

10

11 dataset_cfg:
12 dataset_path: /mnt/ssd1/datasets/broca_spim/
13 mode: "stack"
14 n_channels: 1
15 positive_class_value: 1
16 negative_class_value: 255
17

18 training_cfg:
19 mode: "2d"
20 epochs: 100
21 batch_size: 10
22 loss: "binary_crossentropy"
23 track_metrics:
24 - "accuracy"
25 - "jaccard_index"
26 - "dice_coefficient"
27 optimizer_cfg:
28 optimizer: "adam"
29 learning_rate: 0.00067
30 beta_1: 0.9
31 beta_2: 0.999
32 epsilon: 0.000001
33 amsgrad: false

Once defined the configuration file, the training process can easily
be started by the end user with a single command
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castelli@localhost:~$ neuroseg_train train_config.yml

NeuroSegmenter is available on GitHub for download [10] as a python
package and a Docker image for easy and repeatable deploy on produc-
tion machines.

3.6 Sharing Datasets with the Neuroscience Com-
munity

Data availability and the ability to allow the general scientific commu-
nity to conduct independent analyses on our datasets is an essential
priority of every international project we might contribute to. Solving
the difficulties related to number of generally underestimated factors
including the sheer size of the acquired datasets, data compression, the
complexity related to using custom data formats and metadata inclu-
sion, can be properly considered a research question in itself. Our re-
search efforts in this direction, in the context of sharing the datasets
we’re generating, resulted firstly in my involvement in the collaborative
definition of an extension of the Brain Imaging Data Structure - BIDS
standard specification to specifically handle microscopy data [23], which
was positively recepted and integrated into the standard [Bourget, Ka-
mentsky, Ghosh, Mazzamuto, Castelli et al. 2022] [7], and in a published
python library, pyometiff [Castelli, 2022] [11], to read and write fully
standard-compliant OME-TIFF [5, 21, 37] image data that contain all
the metadata fields specified in the BIDS-31 standard extension (as well
as every other metdatata field in the OME-TIFF specification).

3.6.1 Extending the BIDS Standard: Microscopy-BIDS

The Brain Imaging Data Structure (BIDS) is a technical specification for
the organization, sharing and archival of neuroimaging data modeled to
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interoperability and reusability principles. The neuroscientific commu-
nity has yet to settle on an univocally defined data sharing standard and
multiple independent specifications have emerged, such as the Essential
Metadata for 3D BRAIN Microscopy [45] or the Recommended Meta-
data for Biological Images (REMBI) [46]. To the current date, the Brain
Imaging Data Structure (BIDS) standard is a well-established specifica-
tion for sharing and organizing neuroscientifical imaging data. Initially
developed for magnetic resonance imaging (MRI) datasets, it has been
extended to imaging modalities such as positron emission tomography
[33], quantitative MRI(qMRI) [30] and magnetoencephalography [42],
yet a specific extension aimed at 2D and 3D microscopy application was
still missing.

The Microscopy-BIDS extension proposal that I contributed to[7]
extends the BIDS specification of filename formats with the addition
of microscopy-specific entities such as the biological sample, the used
stain and the specific data chunk for acquisitions spanning across differ-
ent files (pre-stitching) as well as a standardized identifier for the used
microscopy modality (2PE for two-photon excitation microscopy, SPIM
for seletive plane illumination microscopy, BF for brightfield microscopy
etc.).

3.6.2 BIDS-Microscopy Example Dataset

The BEP031 extension proposal of the BIDS specification, officially in-
corporated into the BIDS specification since release 1.7.0 in February
2022, was complemented with two example datasets to be used as refer-
ence: the first one relative to Scanning Electron Microscopy acquisitions
of ten spinal chord samples with myelin manual segmentations by Zaimi
et al. [51, 52], the other is a Broca Area sample acquired using the setup

67



3.6. DATA SHARING CHAPTER 3. METHODS

described in chapter 5 and data acquisition pipeline, as well as manual
segmentations of neuronal somas[41].

Below we can see an example of the file hierarchy of the dataset.
One of the most useful contribution of the Microscopy-BIDS proposal is
the extension of the naming standard by introducing a micr data type
specific to microscopy, the filenames now feature microscopy-specific en-
tities such as sample-<sample>, stain-<stain> and chunk-<chunk>.
Other specifications introduced by Microscopy-BIDS are a samples.tsv
file describing sample attributes and new additional columns in the par-
ticipants.tsv sidecar file which now also describes animal metadata
such as its species and specific strain.

 data_broca-area_spim
 rawdata
 dataset_description.json
 participants.tsv
 samples.tsv
 sub-I46
 ses-SPIM
 micr
 sub-I46_ses-SPIM_sample-BrocaAreaS07_stain-

GAD67_SPIM.json
 sub-I46_ses-SPIM_sample-BrocaAreaS07_stain-

GAD67_chunk-00_SPIM.ome.tif
 sub-I46_ses-SPIM_sample-BrocaAreaS07_stain-

NeuN_SPIM.json
 sub-I46_ses-SPIM_sample-BrocaAreaS07_stain-

NeuN_chunk-00_SPIM.ome.tif
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3.6.3 The pyometiff library

Microscopy-BIDS also defines standardized file formats for storing raw
microscopy data, which were selected to accommodate both 2D and 3D
datasets as well as both lossless and lossy compression. Three file for-
mats are supported by Microscopy-BIDS: non-tiled 2D data should use
PNG and TIFF file formats, which benefits from wide compatibility with
image visualizers and editors, while large resolution whole-slide imaging
and tiled 3D data should be stored using the OME-TIFF [5] file format,
developed by the Open Microscopy Environment Consortium (OME).
OME-TIFF enables for storage of multi-dimensional 5D tiled data and
includes metadata in a XML header (OME-XML specification) included
in the OME-TIFF file. OME-TIFF data can be read and wrote using
the Bio-formats library [37], which comes already integrated into the
Fiji-ImageJ [47] distribution. Other specialized toolboxes that are able
to process OME-TIFF files exist, such as libvips [36], tifffile [20] and
apeer-ometiff-library [2], the latter two implemented in Python.

Even if the Bio-formats bundle offers a complete implementation of
OME-TIFF format conversions, its reliance on the Java platform makes
it cumbersome to integrate in Python-based workflows. The pre-existing
Python packages (tifffile and apeer-ometiff-library) at the time of writing
proved to offer either limited compatibility (tifffile is an astounding gen-
eral tool for TIFF file handling but lacks extensive implementation of the
OME-TIFF standard) or outdated standard definitions (apeer-ometiff-
library). I personally introduced a new Python library, pyometiff [11],
aimed at offering a complete tool for handling OME-TIFF files, updated
to the latest OME-XML specifications. The library handles compilation
and parsing of OME-XML headers, as well as automatically handling
imaging stack dimension conversions, while using tifffile as a backend
for low level I/O (not for handling metadata, which is entirely man-
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aged by pyometiff). The tool is distributed on the PyPi repository and
can effortlessy be installed and integrated in any Python workflow. It’s
currently seeing activity and preliminary adoption by the microscopy
community [24, 29] from which it receives useful feedback to steer its
continuous development, it can be considered as an open project and an
incentive to the adoption of Microscopy-BIDS among microscopists who
are familiar with Python in their workflows.
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Figure 3.4: NeuroSegmenter working diagram: schematic representation
of the different components exposed by the neurosegmenter module.
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Chapter 4

Two-Photon Microscopy
Analysis of the Human
Cortical Samples

Studying the human brain on a quantitative basis poses challenges in
every step of the process: from the choice of microscopy technique, to
finding a suitable process to clear mesoscopic tissue samples, to engineer-
ing an efficient data transformation pipeline for acquisition, automated
elaboration and storage of large quantities of collected data. As of to-
day, a complete turn-key transformation process to obtain 3D spatial
distributions of neurons from raw samples is not uniquely defined and
every lab that is interested in making such extensive and quantitative
kind of analysis has to come up with their own pipeline, depending both
on their microscopy imaging, biology, machine learning and computer
science expertises and the availability of suitable imaging apparatuses,
elaboration and storage hardware.

In this chapter we propose an end-to-end pipeline for clearing, imag-
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ing with Two-Photon Confocal Microscopy, data transformation, Deep-
Learning-enabled automated neuronal mapping and visualization that
allowed us to image, label, and classify neuronal distributions in 100mm3

sized human cortical samples.

4.1 Introduction

The combination of clearing methodologies and microscopy TPFM imag-
ing advancements has enabled volumetric reconstruction of large tissue
samples by means of optical sectioning: tissue clearing is crucial for
deep antigen and light penetration in the sample while Two-Photon Mi-
croscopy provides both granular spatial differentiation of the features
and optimal contrast. Human tissue presents a series of challenges com-
pared to other targets, such as variability of post-mortem fixation con-
ditions, presence of blood inside the vessels, auto-fluorescence signal
caused by lipofuscin-type pigments and the need of exogenous label-
ing: out of the plethora of tissue clearing protocols, tissue transforma-
tion techniques such as CLARITY [9] have proved the most success
in achieving uniform and reliable transparency of this kind of samples.
Approaches based on organic solvents such as iDISCO [27] were also
adapted to human tissue [6, 14, 19] but the need for specific sample
preparations, such as fresh-frozen samples or in-situ controlled perfu-
sion fixation, render those methods potentially inapplicable to a more
general case such as ours. A novel clearing method, SWITCH/TDE,
based on the SWITCH tissue transformation protocol [26], was imple-
mented to reliably clear and stain human brain samples.

A consideration that needs to be addressed is that the advantages
we’ve seen lately in tissue clearing and imaging have not always been fol-
lowed - in the microscopy and brain study fields - by on-par innovation
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on the front of large-scale data analysis and management. In order to
scale up processing capabilities of significant amounts of data produced
by 3D anatomical reconstructions - that we’re able to obtain by the
combination of clearing techniques with high-resolution optical meth-
ods - high-throughput computational approaches are needed. Solutions
in this regard need to find a Goldilocks zone defined by the concurrent
needs of predictive accuracy, computational scalability and access to a
sufficient amount of manual annotations for supervised machine learning
methods that need ground truth data to be trained on.

The vast majority of approaches to cell segmentation in multi-photon
microscopy we can find in literature originate from research efforts in the
study of time-dependent activity of limited populations of neurons, typi-
cally in in-vivo animal targets, using two-photon calcium imaging. These
research applications to functional tracing of neurons in two-photon mi-
croscopy are more-than-tangentially related to our challenge of struc-
tural mapping, as in many cases the techniques used to perform semantic
segmentation of the neurons at a fixed time-point are directly applicable
to static frames like the ones we produce. The main difference, though,
is that we’re interested in segmentation stability across an extreme va-
riety of imaging conditions whereas time-dependent signal analysis in a
limited spatial domain comparatively requires much less generality with
respect to image quality and illumination conditions, making most of
these approaches impractical for our purposes. Many of these meth-
ods employ classical image processing strategies such as combinations
of convolutional and morphological filters [13] or adaptive thresholding
[30]: the relative ease of implementation of these methods, along with
their generally low computational complexity comes at the compromise
of a limited spatial generalization reach and vulnerability to noise or
imaging artifacts [1]. More sophisticated solutions are based on super-
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vised machine learning frameworks. Many of these exploit classical ML
paradigms such as SVMs [15], gaussian mixtures in combination with
region growing algorithms [5] and boost classifiers [32], but way more
success and popularity was encountered by DL solutions based on CNNs
[33] and on fully-convolutional networks like U-Net [28] [16] [3].

We used Two-Photon Confocal Microscopy to image mesoscopic vol-
umes at sub-micron resolution, the large multi-channel data streams
produced by the microscope were first aligned and combined in three
dimensions for whole-sample reconstruction using a custom tool called
ZetaStitcher [25, 31]. The aligned volume is then automatically ana-
lyzed with the aid of a custom-designed Convolutional Neural Network
model to retrieve an estimate of the volumetric distribution of neuronal
somas. The choice of a relatively light-weight network architecture over
heavier and deeper CNN models enables fast and on-the-fly computa-
tion of inference maps, while limiting the the same time the needs for
extensive manually annotated datasets. The final step of the transfor-
mation pipeline is an instance segmentation algorithm which is able to
reconstruct three-dimensional surface meshes of individual neuronal so-
mas from the semantic segmentation probability maps obtained with the
CNN model.

4.2 Methods

The wide variety of different competences and expertises in the Biopho-
tonics Group at LENS allowed us to propose custom methodological so-
lutions for each step of the pipeline, from the tissue clearing and labeling
protocols, to the Two-Photon Microscopy apparatus, to the CNN model
architecture and 3D mesh reconstruction and visualization pipelines. In
this section we’re presenting a quick review of the various methodologies
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involved in our analysis.

4.2.1 Biological Samples

We focused our studies on four different samples of human cortical tis-
sue from different-aged subjects (pediatric, adult and elderly), three
obtained from biopsies collected during surgical interventions to cure
epilepsy and one collected post-mortem. The first two samples pertain
to the left prefrontal cortex of, respectively, an adult patient (Male, 67
years old) and an elderly subject (Female, 99 years old). The remaining
two are a dysplastic brain sample from the left temporo-occipital cortex
of a 29 year old male, operated to treat drug-resistant epilepsy due to
focal cortical dysplasia Type IIa, and a dysplastic sample from the left
temporo-parietal cortex of an 8 year old male operated to treat drug-
resistant epilepsy due to hemimegalencephaly.
The four specimens were stored in formalin for, respectively, 6 months,
1 year, 4 years and 5 years before the study.

4.2.2 Tissue Clearing and Labeling

The reconstruction of mesoscopic volumes of human brain samples at
sub-micron resolution via Two-Photon Fluorescence Microscopy requires
both uniformly high transparency and homogeneous staining.

A modified version of the SWITCH tissue transformation protocol
[26] combined with 2,2’-thiodiethanol (TDE) clearing [10] was developed
as a method to reliably and uniformly labeling and clearing tissue from
different regions, subjects and fixation conditions. The combination
of these two techniques (SWITCH and TDE clearing) enabled tissue
imaging with TPFM up to 1mm depths of small fluorescent molecules
like SYTOX™Green, while antibodies could be imaged consistently in
500µm thick slices as shown in Figure 4.1 (c) and (d).

87



4.2. METHODS CHAPTER 4. TPFM BRAIN IMAGING

Figure 4.1: SWITCH/TDE CLearing: In (a) and (b) are, respec-
tively, schematic representations of the SWITCH transformation pro-
tocol and the TDE clearing method. (c) column depicts imaging of
SYTOX™Green at varying depths ranging from 0µm to 1000µm, the
scale bar is 100µm. (d) shows NeuN acquisitions at different depths,
from 0µm to 500µm, scale bar 50µm. In (e) we have a series of repre-
sentative acquisitions of cleared tissue after immuno-staining with vari-
ous antibodies and DAPI.

After clearing with the SWITCH/TDE method, the four samples
were immuno-labeled with the Neuron-specific Nuclear protein (NeuN)
to detect neuronal somas and with DAPI for nuclear staining.

4.2.3 Two-Photon Confocal Microscopy Setup

We used a mode-locked Ti:Sapphire laser (Chameleon by Coherent,
USA) light source, characterized by 120 fs pulse width and 80MHz rep-
etition rate, operating at 800nm frequency, which was coupled to a
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Figure 4.2: Human Cortical Samples: (a) The four imaged specimens:
on the left samples are shown before and after the SWITCH/TDE clear-
ing protocol, on the right a representative slice (200µm depth) of the
reconstructed TPFM imaged volume is depicted, scale bar = 100µm.
Red channel represents the NeuN antibody staining, green represents
DAPI staining.
(b) Magnified portions of specimen 1 (magenta) and specimen 2 (cyan)
showing the native resolution of the acquisition.

custom-made scanning system based on two galvanometric mirrors (LSKGG4/M
by Thorlabs, CA, USA). Focusing was achieved via a refractive index
tunable 25× objective lens (LD LCI Plan-Apochromat 25× /0.88 Imm
Corr DIC M27 by Zeiss, Germany). Planar movement of the sample was
achieved via a closed-loop piezoelectric stage (U-780 PILine XY Stage
System, 135×85mm travel range by Physik Instrumente, Germany) and
a vertical stage was used for displacement along the z-axis (ND72Z2LAW
PIFOC objective scanning system, 2mm travel range, by Physik Instru-
mente, Germany). Fluorescence signal was detecterd by two indepen-
dent GaAsP photomultiplier modules (H7422 by Hamamatsu Photon-
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ics, NJ, USA). Emission filters of (440 ± 40) nm, (530 ± 55) nm and
(612 ± 25) nm were used to detect signal from, respectively, DAPI,
SYTOX ™Green / Alexa 488 and Alexa Fluor®568. Custom control
software for the instrument was written in LabView (National Instru-
ments, TX, USA).
Our system was able to perform z-stack imaging for a depth of (500 ±
100) µm of overlapping adjacent regions (40µm overlap) with 0.88 ×
0.88 × 2 µm resolution. The acquisition were characterized by a field
of view of 450µm and resulted in 512 × 512 px images, the dwell time
between each acquisition was 5µs, meaning that each image could be
acquired in 1.31 s and a whole 500µm deep stack could be completed in
5.46min, therefore 11h to 30h of continuous imaging were needed for
each of the four samples.

4.2.4 Frame Stitching and Alignment

Mesoscopic acquisitions of large samples in TPFM can take several days,
during this time temperature changes and evaporation of the mounting
medium can lead to micron-scale distortion. For this reason, instead of
simply tiling together the acquisitions using the nominal positioning of
the motorized stages, the stacks were fused together using ZetaStitcher
[24] to compute optimal alignment and correct small scale distortions
that the sample might have undergone during the microscopy session.
The software achieves this by computing cross-correlation maps at differ-
ent depths for every pair of adjacent image stacks: the optimal relative
displacements are determined by using a global optimization algorithm
to maximize cross-correlations of individual pairs. After finding optimal
positioning of the imaging stacks, whole acquisition planes can be either
saved as a single TIFF file, or accessed through a custom API provided
by ZetaStitcher that allows us to perform queries to the whole fused
acquisition without the need of duplicating already existing data.
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4.2.5 CNN-based Neuronal Segmentation

Figure 4.3: The 2.5D Approach: Panel (a) summarizes the working prin-
ciples of the 2.5D inference approach, individual images from an acquisi-
tion stack are independently processed by our CNN inference model and
the resulting probability maps are re-combined into a single volumetric
stack, we then compute individual neuronal meshes as iso-surfaces of this
probabilistic field. (b) visualizes the differences between, respectively,
the raw images, the probabilistic heatmaps, and the original images af-
ter overlaying the segmentation shapes. Scale bar is 100µm.

A feed-forward Convolutional Neural Network model was used for pixel-
based segmentation of the multichannel images we reconstructed, using
information from the red and green channel (respectively NeuN-marked
neuronal somas and tissue autofluorescence). The model assigns to each
pixel the probability of belonging to either the neuron or the background
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class. Our CNN model effectively transforms the multichannel source
image into a grayscale one, which we denoted as probability heatmap.
2D images are processed independently by the neural network and the
resulting heatmaps are reassembled back into a volumetric stack: we
refer to this procedure as a 2.5D approach, where we use the normal-
ized recombination of bi-dimensional heatmaps as a proxy to the actual
volumetric probability distribution of neuronal soma presence. Instance
semantic segmentation is then performed on the heatmap volume by
applying a statistical acceptance threshold of 0.5 in order to extract the
three-dimensional surfaces of each uniquely identified neuron.
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Figure 4.4: CNN Architecture for Two-Photon Microscopy Segmen-
tation: The CNN model for fast patch-based classification converts
32 × 32 × 2 texture patches to a binary classification value represent-
ing the probability of neuronal presence at its central pixel. The ar-
chitecture consists of a feature-extraction module, composed of three
ReLU-activated convolutional layers, the feature maps of the first two
of which are spatially compressed by MaxPooling layers, the feature
extraction module is followed by a Fully Connected classification stage
which is terminated by a softmax activation function.

The feed-forward network architecture, summarized in Figure 4.4,
expands upon of a previous work [23] and can be considered a generally
lightweight model. In this application 32× 32× 2 patches are extracted
from the stitched imaging volume and fed to the the network after a
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pre-processing step consisting of a single 5 × 5 gaussian kernel filtering
stage with σ = 3. This operation empirically replicates blurring caused
by resampling of small patches during data augmentation in training
phase. The neural network model consists of a feature-extracting stage
made of three convolutional layers, two of which are followed by Max-
Pooling downsampling, classification is then achieved via three a Fully
Connected layers, the last of which makes use of a Binary SoftMax ac-
tivation function.
The CNN model defined in Figure 4.4 classifies the central pixel of each
input by exploiting the visual pattern of its local neighborhood. Effi-
cient inference on input data larger than 32 × 32 pixels is possible by
operating the network in fully convolutional mode, i.e. exploiting the
formal equivalence between fully connected layers and convolutions with
1 × 1 kernels [20] to make the network effectively agnostic to the spe-
cific shape of the inputs. Our network, which was trained to classify
32 × 32 wide patches, after substituting its fully connected layers with
equivalent convolutions, can effectively accept arbitrarily sized inputs.
This method allows us to produce probability heatmaps of entire stack
frames instead of small patches in a fast and efficient manner.

4.2.6 Ground Truth Collection and Model Training

Segmentation ground truth data was annotated by two distinct oper-
ators on LAIRA ® (by Bioretics, Italy), a web-based collaborative ap-
plication for image annotation. [17]. The network was incrementally
trained following an Active Learning paradigm [29] against a number
of positive (neuronal presence) and negative (background) random sam-
ples from the four imaged subjects to improve inter-specimen statistical
representation. The final dataset consists of 112 images sized 512× 512

px, corresponding to a (450× 450)µm2 imaging area, for a total of 7312
individually segmented neurons. 14 independent images ( 1505 neurons)
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were used to validate the network, and further 14 images (1208 objects)
to test it. All the annotated ground truth data is also shared in Ximage
annotation format [34] on the EBRAINS platform [12]. Model definition,
along with training and inference has been performed on the ALIQUIS®

software ecosystem[2] (by Bioretics, Italy), which exploits TensorFlow
[22] as computational backend.

4.2.7 From 2D Heatmaps to 3D Polygon Meshes

The CNN model converts 2D frames from the acquisition volume to
probability heatmaps, these two-dimensional representations are reassem-
bled back into a 3D stack to obtain an estimate of the three-dimensional
probability distribution of neuronal soma presence. The obtained vol-
ume is post-processed via application of a 5 × 5 median filter and a
gray-scale morphological opening with a 3× 3 structuring element, this
step serves as a false-positive reduction strategy.
We use the resulting volumetric stack as a proxy to the real 3D probabil-
ity distribution, this means that we consider the isosurfaces of this field,
corresponding to a 0.5 statistical threshold, to be representative of the
physical boundaries of neuronal somas. To calculate these isosurfaces we
use a custom variant of the Marching Cubes algorithm [21] [18], followed
by custom additional topological fixes on the identified objects to ensure
that every soma is represented by a 2-manifold watertight mesh.
This approach allows us to retrieve a three-dimensional vectorial recon-
struction of the segmented objects in the entire z-stack in an efficient
way using C++ implemented CGAL libraries for fast batch-based com-
putation of the neuronal soma boundaries.
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4.3 Results

The methodological framework we established in the last section allowed
us to perform tissue clearing, TPFM imaging, CNN-based semantic seg-
mentation and, lastly, three-dimensional separation and identification
of individual somas. We now have access to individual representations
of the neuronal inside the four analyzed samples. Visualization and
analysis of this data required innovative solutions, tailored to its unique
characteristics.

4.3.1 Whole-Sample Imaging

We used the ZetaStitcher tool to automatically stitch and align hundreds
of TPFM imaging stacks to obtain whole plane reconstructions of the
four samples. After alignment and fusion the resulting datasets are
sized, respectively, 19GB, 50GB, 57GB and 94GB. In the top half
of FIgure 4.5 we show a complete wide-scale reconstruction of a slice
from the first sample: fusion of different stacks is can be noticed by the
vignetting effects in each independent acquisition.

4.3.2 3D Reconstruction and Visualization

Despite the latest advancement in 3D rendering tools and hardware,
visualizing large amounts of individually defined meshes remains an ex-
tremely difficult task to solve. The standard way to render extremely
high amounts of individual meshes is to generate them dynamically from
a few defining parameters using GPU shaders: instead of visualizing the
exact vertex positions of the neurons, a list of neuron positions and vol-
umes can be passed directly to the GPU, which executes a custom code
(shader) for direct parallel computation of likely meshes, these are then
to be rendered in 3D space to form the final image. This process is many
orders of magnitude faster than individually rendering exact meshes but
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Figure 4.5: 3D Reconstruction of a whole cortical tissue sample: This
image offers a visual comparison between a representative slice of the
imaging plane, reconstructed from individual stack acquisitions using
ZetaStitcher, and the three-dimensional reconstruction of neuronal so-
mas detected with our CNN approach after mesh computation. The
second visualization was realized with the Blender [4] render engine in
combination with our own custom software extensions [7]. Scale bar =
100µm.
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the resulting image, while it might be useful as visualization tool on a
large scale, wouldn’t be physically representative of the biological sam-
ple at the microscopic level.
Wanting to obtain biologically accurate representations of the segmented
objects and not just close approximations, we decided to pursue the road
of direct mesh rendering.

We were able to use the Blender rendering engine [4] and its pro-
gramming extension API, to perform full mesh-accurate renderings of
the four specimens using custom code extensions, as shown in figure
4.6. We developed and relased on Github a custom Blender addon,
called SelectByVolume [7], for visual differentiation of volumetric classes
of neurons. This tool enabled us to render three-dimensional meshes
of individual neruons in different colors depending on their computed
internal volume, this characterization on its own is enough to visually
appreciate the anatomical architecture of the six cortical layers as an
emergent property of the reconstructed volume.

4.3.3 Neuronal Distributions Analysis

We characterized the structural organization of the analyzed cortical
samples by calculating their cell density, mean volume and volumetric
density distributions. To achieve this we subdivided the sample space
in 10µm binnings and sampled these three properties inside each spatial
division. Distribution profiles were then smoothed using a 100×100×100

µm volumetrical moving average, the resulting maps are then plotted in
Figure 4.7. With the exception of the dysplastic sample number 4, in
which cortical layer organization is disrupted, layer organization can be
visually appreciated. In particular volume profiles show peaks in layers
3 and 6, while the neuronal density has peaks in layers 2 and 4.

We also calculated, for each layer of the cortex, the total amount of
neuronal cells, the total volume occupied by neurons, their numerical
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Figure 4.6: Three-dimensional details of Whole Sample Reconstructions:
Panels a, f, g, h show the 3D renderings of 3D neuronal meshes from,
respectively, specimens 1, 2, 3 and 4. Panels b,c,d,e represent magni-
fied views of panel a, highlighting different neuronal sizes and densities
in different cortical layers. Colors are assigned to different volumetric
classes using the colormap described in bottom left of panel a.

density, mean volume and the fraction of volume in the layer occupied
by neurons. In order to do that, gray matter and individual layers were
manually segmented for each specimen, excluding large blood vessels,
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Figure 4.7: Representative distribution maps of the cell counting (a),
mean volume (b), volumetric density (c) and an overlay of the three
maps (d) at the middle plane of each specimen.

tissue holes/breakages and imaging artifacts. Numerical results are re-
ported in Table 4.1.
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Figure 4.8: Manual Segmentation of the gray matter: cortical layers
were individually segmented for sample 1, 2 and 3. Sample 4 shows
a disruption of the structural organization of the cortex, making layer
classification nonsensical, in that case only gray matter was segmented.
Every image of the reconstructed stack was segmented in this way to
obtain a volumetric mask.

Figure 4.9: 3D Representation of the neurons in a manually annotated
stack (in blue) used for whole-stack performance assessment, along with
the our CNN predictions on the same stack (red) and visual overlap of
the two.

4.3.4 Performance Assessment over Whole Stacks

The performances of the CNN were statistically assessed against four
(100× 100× 100)µm3 representative stacks, one for each analyzed spec-
imen, along with a single (100 × 100 × 450) µm3 stack to determine
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Layer N. Neurons Tissue Volume Density Mean Volume Filling Fraction
mm−3 103mm−3 µm3

Specimen 1
1 47329 2.880 17 2603 1.38%
2 11580 0.486 33 2916 3.87%
3 40684 1.758 27 4441 5.02%
4 47433 1.814 31 3549 4.90%
5 23290 1.300 24 4358 4.68%
6 13843 0.769 22 2263 1.99%
tot. 184159 9.007 24 3569 21.8%

Specimen 2
1 178432 11.533 16 2550 1.5%
2 193783 11.724 17 2567 1.8%
3 219289 12.789 18 2922 2.3%
4 97771 2.413 51 2730 6.5%
5 78402 2.199 43 3324 6.4%
6 41167 1.054 47 1989 3.8%
tot. 808844 41.712 20 2740 22.4%

Specimen 3
1 34997 1.646 21 2105 1.8%
2 36697 1.432 26 3412 5.3%
3 66012 3.464 19 4627 5.7%
4 46979 1.804 26 3524 5.8%
5 55617 2.387 23 4584 6.4%
6 16912 5.656 3 3410 1.9%
tot. 257214 16.389 16 3853 26.9%

Specimen 4
tot. 177286 12.694 14 3008 4.2%

Table 4.1: Number, mean volume and neuronal density in the six layers
of the cortex, calculated using our automated analysis pipeline.

accuracy along the full specimen depth. Each stack was independently
manually annotated by an operator and automatically segmented using
our 2.5D approach, resulting in a total of 442 detected objects over the
474 neurons annotated in the four ground truth stacks. The volumetric
evaluation of the neurons is characterized by a precision and a recall
rate, respectively equal to (97 ± 7)% and (96 ± 3)%. Figure 4.9 gives
a visual depiction of a manually labeled stack, next to the inference
predictions of the model.
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4.4 Discussion and Conclusions

4.4.1 Choice of CNN Architecture

4.2.6 The model architecture in 4.4 is a relatively lightweight model
based on local recognition of 32 × 32 wide textures. The state of the
art in biomedical and life-science segmentation networks is dominated
by significatively heavier models with large receptive fields that are able
to directly perform full-image segmentation, but their use comes with
two main drawbacks. Firstly, the geometrically higher number of learn-
able parameters require large amounts of annotation ground truth data
which, for microscopy applications, is difficult and often prohibitively
expensive to obtain, then we have that model complexity often poses
additional difficulty in scaling to large samples as additional computa-
tional resources and time are required. Considering the significant costs
associated with obtaining manual annotations in specialized microscopy
fields due to the high specialization grade needed in performing accurate
histological manual segmentations of the data when compared to anno-
tation costs in other less-specialized applications, and also considering
the large computational resources that state of the art models would
require to run large quantities of microscopy data, we favored a simpler
model to potentially more powerful and elaborated alternatives, deem-
ing this approach easier to replicate on large scales. The chosen model
architecture could be exhaustively trained with limited ground truth an-
notation quantities while at the same time offering excellent execution
times.

4.4.2 Grouping Artifacts

While the presented method, based on the on-the-fly computation of
neuronal meshes using Marching Cubes, offers advantages on scalability
and enables reconstruction of extended areas, it also suffers from inher-
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ent limitations, namely the presence of grouping effects that sometimes
can appear when neuronal somas that are too close to each other are
identified as a single unit. This effect has limited impact on high quality
images, such as those obtained with Two-Photon Confocal Microscopy
where spatial features of the neuronal somas are easily distinguishable,
but can become significative when imaging conditions degrade or when
imaging highly packed areas of the cortex.

Figure 4.10: Neuron Grouping Artifacts: objects that are too close to-
gether can sometimes be mistaken for single entities. From left to right
we have the ground truth annotations, the network’s prediction and an
overlap of the two.

A possible way to counteract this effect is by exploiting geometrical
properties of the conjoined meshes. Neuronal aggregates of two and
more neurons are easily identifiable by their geometrical properties which
depart from the approximated star-convexity that characterizes somas in
their general appearance. After geometrical filtering and classification of
the aggregates, individual items can be separated by tracing cut planes
in correspondence of their maximum convexity. The low appearance of
this kind of artifact in our data didn’t justify the extra computational
overhead associated to this geometrical analysis and processing step but
its implementation is considered for future applications.

103



4.4. CONCLUSIONS CHAPTER 4. TPFM BRAIN IMAGING

4.4.3 Conclusions

We introduced an end-to-end pipeline for cell-resolution investigation
of the cortex that addresses the most critical challenges in human brain
imaging (i.e. sample transformation and labeling, high-resolution whole-
sample reconstruction), automatic neuronal segmentation and data vi-
sualization. We used the SWITCH/TDE approach to prepare four vol-
umetric samples from different areas of the cortex, which are then la-
beled with anti-NeuN antibody and DAPI. Two-Photon Fluorescence
Microscopy was used to retrieve high resolution volumetric images at
sub-micron resolution and a custom software package - ZetaStitcher -
was used for whole-sample reconstruction from large amounts of imaging
data (ranging from tens of Gigabytes to Terabytes). We performed au-
tomated cell analysis on the data using a custom 2.5D machine learning
approach which enabled us to conduct assessments on mean volume and
cell counting and obtained individual geometrical mesh representation
for each neuron in the imaged volume.

Despite the proposed innovation, there are a number of aspects that
would need to be considered in order to obtain a faster, more scalable and
high-throughput process. In primis a faster optical technique, such as
Lightsheet Fluorescence Microscopy could be used to extend the anal-
ysis to larger samples. Heavier segmentation networks could be used
to reduce classification errors, while a more refined instance separation
methodology could reduce instance grouping artifacts.
In the next chapter we’ll answer each of these issues in the context of
a much wider-scale application using Light-Sheet Microscopy Imaging,
in combination with a more advanced Deep Learning-based custom se-
mantic segmentation and instance segmentation approach.
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Chapter 5

LightSheet Microscopy
Investigation of the Human
Broca Area

In the previous chapter we demonstrated how Two Photon Confocal Mi-
croscopy can be used in combination with software-based sample recon-
struction and CNN-enabled automated segmentation to produce three-
dimensional reconstructions of entire samples, we now want to replicate
the same pipeline on a larger scale using Light-Sheet Microscopy.

In this chapter we introduce a custom Light-Sheet Microscopy setup
with a Dual-View Inverted SPIM geometry with extremely high data
throughput: a first set of high-level challenges is represented by finding
engineering solutions for managing, storing and processing the enor-
mous data flows produced by our instrument. Automated CNN-based
processing of this data is a challenge on its own as not only the data
flows are geometrically scaled, but visual complexity of the target itself
is considerably increased.

The vast majority of applications of Light-Sheet Fluorescence Mi-
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croscopy to neuronal mapping involves targets that are significantly
smaller in volumetric extension than the ones we’re trying to image,
such as entire drosophilae [2, 6], zebrafish specimens [1, 7, 10, 11] or mice
brains [4, 5, 8, 9]: scaling the same technology to large scale mapping
of neurons in the human brain is, to our knowledge, a mostly unpaved
road.

We have developed our own solutions for every aspect of this unique
and ambitious challenge, from the image acquisition and processing soft-
ware to the semantic and instance segmentation models, all maintaining
a constant focus on making each part of the pipeline modular and ready
to be scaled to even larger targets.

By the end of this chapter we prove to able to obtain a database of
individual neurons, complete with their position and geometrical char-
acterization in the volumetric domain from multi-terabyte sized acqui-
sitions, unlocking high-level insight and measurement capabilities on
extended biological samples.

5.1 Introduction

The Light-Sheet Fluorescence Microscopy data we’re presenting in this
chapter is part of a collaborative effort [8] (in the context of BRAIN Ini-
tiative Cell Census Network project) to construct multi-modal atlases
of the human cerebral cortex which uses Magnetical Resonance Imaging
(MRI) for large-scale referencing, LightSheet Fluorescence Microscopy
(LSFM) for 3D imaging ad cellular resolution and Optical Coherence
Tomography (OCT) for meso-scale registration of LSFM samples to the
MRI reference. The perspective of obtaining queryable neuronal maps,
through the collaborative contribution of multiple institutions and lab-
oratories operating different imaging technologies, heavily relies on our
capacity of imaging and processing the data at its highest available res-
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olution.

If we wish to move our investigation interests from relatively small
samples to entire brain areas - and eventually to entire brains - we can
reasonably expect that the tools and procedures we used in the first case
might not be sufficient or performing well enough under significantly
different conditions. The first limit we encounter is represented by the
scanning nature of the Two Photon Confocal Microscopy apparatus we
used in the last chapter: the amount of time we would need to scan
multiple volumes in the cubic centimeter scale with TPFM would make
such an effort extremely impractical. Light Sheet Microscopy (LSFM)
would seem to be the perfect candidate for covering the micrometer-
to-centimeter mesoscopic scale gap that TPFM can’t reasonably reach.
With many advantages - such as extremely high imaging speed and the
possibility of acquiring multiple views of the same sample simultaneously
- also come many possible downsides: the ability of generating data at
a much faster rate implies the technical challenge of handling massive
data streams, the different geometry involved in image generation also
determines the possibility of uneven illumination and the emergence of
visual artifacts that are unique to LSFM such as horizontal striping due
to shadowing by dense objects, and complicated setup geometries imply
nontrivial geometrical corrections of the acquired data.

A simple transposition of the processing methods used in the last
chapter to larger samples wouldn’t suffice in tackling what is, from many
points of view, a much more complex objective: the increased visual
complexity of LSFM images calls for more sophisticated segmentation
models, the larger data sizes involved need optimized and heavily par-
allelized GPU-accelerated data processing pipelines and even the data
visualization approaches can’t be directly transposed to the new targets.
In this chapter we first present the diSPIM apparatus we used to im-
age an entire human Broca Area (Brodmann’s areas 44 and 45) at sub-
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micron resolution, we then present a CNN semantic segmentation model
- NEUROresUNet - we developed for semantic segmentation of the neu-
ronal somas in the biological samples, followed by an instance segmenta-
tion pipeline used for mapping individual neurons in the imaging volume.

5.2 Methods

5.2.1 Tissue Clearing and Labeling Biological Samples

The individual sample used in this work is an entire human Broca Area
(Brodmann’s areas 44 and 45). The postmortem specimen was obtained
from a 79 year old male subject with no known neurologic and psychi-
atric illnesses.
48 500µm thick slices from the samples were treated with the SHORT
[23] protocol, a modified version of the SWITCH/TDE tissue transfor-
mation method used in the last chapter, combining the SWITCH [21]
technique with the TDE clearing method[9].

After clearing, the sample was immunolabeled with multiple stain-
ings by incubating with primary antibodies against NeuN (Merck ABN91
chicken) and calretinin(CR) (Proteintech 12278-1-AP rabbit). The sam-
ples were then incubated with the secondary antibodies conjugated with
different dyes (Anti-Chicken IgY, AF 647 Abcam ab150171, Anti-Rabbit
IgG AF 568, Abcam ab175470, Goat Anti-Chicken IgY AF 488 Abcam
ab150169, Donkey Anti-Rabbit IgG AF 647 Abcam ab150075, Donkey
Anti-Rabbit IgG AF 488 Abcam ab150073).
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Cleared tissue

Fixed tissue DAPI CR

SST NeuN

Figure 5.1: Individual Slice from the Broca Area sample: the images on
the left, from top to bottom, represent a 500µm thick slice of the Broca
Area sample respectively after tissue fixation and after optical clearing.
The thick divisions of the grid represent 1mm spacings, individual slices
have a physical extent of approximately 1 cm2. The distinction between
gray matter, primarily consisting of neuronal cell bodies (somas) and
white matter areas, mainly composed of myelinated axons appearing
white due to high lipidic content, can be appreciated visually. After
optical clearing, the gray matter areas areas are index-matched to the
immersion medium and no longer visibile, white matter is still partially
noticeable due to its high fat composition. On the right we represented
wide-scale reconstructions of the whole samples imaged with four dif-
ferent wavelengths expressing different stainings: DAPI, Calretinin, So-
matostatin, and NeuN. The four channels can be acquired simultane-
ously by our LSFM apparatus.

5.2.2 Dual-View Selective Plane Illumination Light-Sheet
(DiSPIM) Setup

Imaging of the 48 individually sliced samples from the Broca Area spec-
imen was obtained with a custom-built dual-view inverted confocal light
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Figure 5.2: The di2-CLSFM apparatus: our custom Dual-view Inverted
Light-Sheet Fluorescence Microscope [11] based on the SPIM geome-
try has been designed for simultaneous acquisition of four individual
channels at 1µm isotropic resolution. The apparatus supports imaging
of 1mm-thick samples with high data throughput (1Gbit s−1 for each
channel), up to 0.1mm3 s−1 volumetric rates. The two objectives, placed
orthogonally, act alternatively as detection and illumination paths, pro-
ducing a scanning light-sheet controlled by synchronized galvanometric
mirrors. Illumination frequency is controlled by two acousto-optical fil-
ters (AOTF). Each detection path is equipped with a five sets of band-
pass (BP) filters mounted on a motorized wheel to selectively block re-
flections and a high resolution sensor producing 2048× 2048 pixel data
streams at 16bit depth.

sheet microscope [24], depicted in Figure 5.2. The setup features two
identical objectives (LaVision Biotec LVMI-Fluor 12x PLAN, with 12x
magnification, NA 0.53, WD 8.5-11mm), being used alternatively as
detection and illumination paths, placed orthogonally to each other in
such a way that their FOVs overlap at the center. The two objectives

116



CHAPTER 5. LSFM BRAIN IMAGING 5.2. METHODS

are inclined at 45° relatively to the sample holder plane to allow for
maximal lateral sample size without interfering with the microscope
itself. Four different laser sources were used for illumination (Cobolt
MLD 405nm/100mW, MLD 488nm/60mW, DPL 561nm/100mW, MLD
638nm/180mW), the width of each Gaussian beam was regulated using
a dedicated telescope, before combining them with three dichroic mir-
rors. The combined beam is split with a 50 − 50% beam splitter and
conveyed to the two identical excitation/detection pathways of the light-
sheet setup. Two acousto-optical filters (AA Optoelectronics AOTFnC-
400.650-TN) were used to modulate each beam in intensity, timing and
transmitted wavelength. The light-sheets were realized by scanning each
beam with a galvo mirror (Cambridge Technology 6220H) followed by
scanning lenses (Edmund Optics #45-353, fl=100mm, achromat) to con-
vert the angular displacement form the galvo mirrors into horizontal dis-
placement. Lastly, the beams were directed to the objectives through an
excitation tube lens (Edmund Optics #45-159, fl=200mm, achromat).
Both objectives were placed on a motorized stage (PI L-509.14AD00) to
adjust the position of the focal plane.

The samples were held on a 3-axis motorized stage system (two PI
M-531.DDG for xy displacement, a PI L-310.2ASD for the vertical axis,
for a combined motion range within a 30× 30× 2.5 cm3 with less than
1µm repeatability) with a custom quartz sample holder, inserted into
a plastic tray filled with the refractive index matching solution. The
samples were scanned in the horizontal axis at a 45 frames per second
rate, corresponding to a volumetric scanning rate of 0.5 cm3 per hour.
On the detection path, fluorescence signal collected by the objective is
geometrically diverted from the illumination path with a multi-band
dichroic beam splitter (Semrock Di03-R405/488/561/635-t3-55x75) and
directed with a detection tube lens (Edmund Optics #45-179, fl=200mm,
achromat) to a sCMOS sensor (Hamamatsu OrcaFlash4.0 v3) operating
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Figure 5.3: 3D Schematics of the di2-CLSFM apparatus: this view al-
lows us to appreciate the 3-axis motorized system composed of a vertical
displacement stage combined with two linear stages. The overall volu-
metric extent of the apparatus is characterized a relatively small planar
footprint.

in confocal detection mode with the rolling shutter sweep syncronized
with the galvo scan of the digital light-sheet using a PCIe control card
(National Instruments PCIe-6363). Lastly, five sets of band-pass filters
were mounted on a motorized filter wheel (Thorlabs FW102C) to im-
age selectively differently labeled cells and structures and blocking any
residual illumination light.

On the control hardware side, microscope operation and data acqui-
sition were handled by a workstation running custom control software
(written in C++ and Qt), particular attention was devoted to multi-
threaded performance to make it sustain a data rate of approximately
800 MB/s at 47 fps (2048× 2048 pixel 16bit monochrome acquisitions)
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Figure 5.4: The SPIMlab Control Software: the di2-CLSFM microscope
is controlled by a custom interface, SPIMlab [18], developed by LENS
and CNR-INO. The microscopist operator is able to use a single interface
for both controlling the hardware interface and starting acquisitions.
More than 14000 lines of heavily parallelized and optimized C++ and
Qt code make this tool capable of storing and displaying in real-time
the massive data streams produced by di2-CLSFM apparatus.

writing directly to a 16TB locally installed SSD RAID.
Samples were acquired in overlapping stacks by continuous translation
of the x axis through the microscope’s field of view, at the end of each
stack the sample was moved along the y axis by 1mm before repeating
the procedure to obtain contiguous acquisitions with a 100µm overlap.

5.2.3 Acquisition Data Management

Geometrical reconstruction of entire slices was done by first applying
affine transforms described in ?? to compensate for microscope geome-
try which features 45° inclined imaging of the horizontally translating
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sample, this allows us to express the acquired stacks in the correct sample
space. Acquisition stacks, featuring a lateral overlap of 100µm are com-
bined using ZetaStitcher [19] to obtain an overall representation of the
whole sample. The stacks can optionally be resliced to 3.6µm isotropic
resolution (which corresponds to the axial resolution of the apparatus)
for visualization purpose or for large-scale analysis. Illumination inten-
sity homogeneization can be obtained by averaging the intensity profile
along the direction of propagation for each fluorescence band in order to
mitigate illumination intensity artifacts occurring across the transversal
sample extension and to improve general readability of the whole stack.

Sharing and long-term storage of this data is possible by lossy JPEG2000
compression which allows for 1:20 compression factors with minimal in-
formation loss.

5.2.4 Deep Learning-enabled Segmentation

Four slices from the whole imaged dataset were selected for quantitative
analysis at full imaging resolution. Neuronal soma presence probabil-
ity stacks of this data were obtained using a custom-designed model
- NEUROresUNet - which was trained using the internally developed
NeuroSegmenter[4] high-level deep learning framework based on Ten-
sorFlow.

The NEUROresUNet Model

We developed a custom CNN model - NEUROresUNet - for seman-
tic segmentation of the neuronal somas in our fluorescence microscopy
imaging. The general architecture is based on a U-Net style [26] back-
bone with encoder and decoder paths linked by skip connections in their
symmetrical blocks. Differently from the original UNet model, the func-
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Figure 5.5: The NEUROresUNet Architecture
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tional blocks of both the decoder and decoder blocks implement residual
learning schemes (summation of the convolutional block’s outputs to its
own intputs) rather than a simple sequence of discrete convolutions. The
introduction of residual units helps to tackle an accuracy degradation
problem that emerges with network depth in very deep models [13, 14,
29]: in large networks it can often be posited that optimal solutions for
convolutional blocks in its deepest sections are functionally very close
to identity mappings, which are not easily approximable by combina-
tions of non-linearly activated convolutions. Gradient-descent based op-
timization of this kind of target is better manageable by reformulating
the whole block as a residual unit in which the inputs of the block are
summed to its own outputs (after adjusting the relative dimensionalities
with a 1×1 convolution layer): in this perspective, mostly-linear optimal
solutions for the convolutional blocks can be searched as perturbative
corrections of the identity mapping rather than having to be optimized
directly as non-linearly activated convolutions.

One of the main features of NEUROresUNet lies in its dynamic func-
tional implementation. The whole model is generated at runtime in an
entirely parametrized fashion so that the user can size the network to
his specific needs, choosing the number of levels of the architecture (the
number of encoder / decoder block levels, i.e the depth of the network),
a base number of convolutional filters for each layer in the encoder /
decoder block and two different decoding schemes: one which employs
transposed convolutions and one with a deterministic upsampling fol-
lowed by discrete convolution. This particular implementation style
enables for architectural optimization in addition to traditional hyper-
parameter tuning.

The network’s encoding and decoding paths are composed of modu-

122



CHAPTER 5. LSFM BRAIN IMAGING 5.2. METHODS

larly defined Encoder and Decoder blocks, both of which use an uniquely
defined ConvBlock, composed of a Batch Normalization layer, an acti-
vation function and, lastly, a convolution filter. The number of filters
of each convolution layer in a ConvBlock is calculated as (f, 2f) where
f = 2d ∗ b, d is the depth level of the block and b is an adjustable
parameter for regulating the network’s representational capacity. Both
the Encoder Block and Decoder Block are defined as residual units with
two ConvBlock units, a residual path with a 1× 1 convolution for shape
matching and a Batch Normalization layer. Encoding blocks are seri-
ally connected via Max-Pooling of the outputs, while, symmetrically,
decoders use Transposed Convolutions to upsample compressed feature
maps (which can optionally be substituted with deterministic bi-linear
up-sampling followed by a discrete convolution, this strategy can be
employed to avoid checkerboard artifacts that can emerge when using
Transposed Convolutions) and skip connections are realized by concate-
nation of the upscaled inputs with outputs from the corresponding en-
coder block. The deepest part of the network is represented by the
Bridge Block, which is formally equivalent to an Encoder block where
the second set of outputs is not connected to any other part of the net-
work.

Model Training

The model was trained on the customly-developed NeuroSegmenter frame-
work on 205 manually annotated stacks, uniformly extracted from the
entire acquisition area, sized 256 × 256 × 32 px, equivalent to 133.1 ×
133.1 × 115.2 µm3 volumes in sample space. Manual semantic annota-
tion of these stacks was performed by four different operators, for a total
annotation time of approximately 226 hours on the WebKnossos online
collaborative annotation platform. A 250− 40− 20 split was chosen for

123



5.2. METHODS CHAPTER 5. LSFM BRAIN IMAGING

Transform Description Parameters Prob.

Spatial grid-based elastic deformation, image rota-
tion, scaling and resampling

ddeform = [0.9, 1.0]
θrot = [−π,+π]
dscale = [0.95, 1.05]

0.15

Additive
Brightness

additive brightness transform, brightness
factor sampled from (µ, σ) Gaussian Dis-
tribution

µ = 0
σ = 0.1

0.15

Multiplicative
Brightness multiplicative brightness transform bmulti = [0.9, 1.1] 0.15

Mirror random mirroring of the image on x or y
axis 0.15

Gamma gamma transformation Vout = V γ
in γ = [0.9, 1.1] 0.15

Rot90 90◦ rotation of the image 0.15

Gaussian
Noise

addition of Gaussian noise from a (0, σnoise)
distribution σnoise = [0, 510−5] 0.15

Gaussian Blur gaussian blur convolutional filter with σblur
variance σblur = [1, 1.5] 0.15

Table 5.1: Data Augmentation Transforms
Data Augmentation Transforms: A number of data augmentation trans-
formations is sequentially and non-deterministically applied in the in-
put data pipeline, the high number of different imaging transformations
helps the model learn correct semantical mapping in a variety of difficult
imaging conditions.

training, test and validation data.
Architectural tuning of the NEUROresUNet model on the validation
data resulted in the choice 4 depth levels and a base parameter for the
number of convolutional filters in the blocks of 12. Data augmentation
was managed with the batchgenerators [16] volumetric data augmenta-
tion engine, which was interfaced in NeuroSegmenter. Table 5.1 lists the
transformations involved in the data augmentation pipeline, which was
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executed at runtime during training and includes geometrical transforms
(grid-based elastic deformations, rotations, mirroring and scaling), color
transformations (gamma, linear brightness transforms) noise addition
(gaussian noise) and convolution filterings (gaussian blur). For each
training batch, each transformation was optionally chosen in random
order with a probability of selection equal to 0.15, parameters for each
transform were sampled for each data batch from the intervals reported
in table 5.1.

Instance Segmentation and Data Aggregation

Input image

Gaussian Blur
σ_detection 

Gaussian Blur
σ_binary 

Otsu
Thresholding

Maxima
Detection

soma centers

binary segmentation

Binary AND
soma selection

Binary Masking

Voronoi diagram

Voronoi
partitioning

Instance Segmentation 

Figure 5.6: Instance Segmentation Process

The purpose of the instance segmentation step is to transform the
volumetric maps of neuronal soma presence probability into individually
defined neuronal instances. The approach used in chapter 4 based on
map thresholding, morphological operations and 3D mesh computation
with a variant of the Marching Cubes algorithm was not easily applicable
to the Broca Area light-sheet microscopy data for a number of reasons:
firstly, the presence of heavier visual artifacts due to striping and uneven
illumination of the sample favored the emergence of grouping artifacts
that weren’t explicitly countered by that methodology, moreover, pro-
cessing significantly larger amounts of data called for faster and GPU
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accelerated strategies in order to keep processing times within afford-
able limits (weeks of multi-machine time computing instead of months
or potentially years).
The entire inference volume, stored as individually compressed stacks,
was accessed and scanned using ZetaStitcher in partially overlapping sec-
tions, each section is then processed to correct the geometrical distortion
due to the inclined diSPIM geometry before the instance separation al-
gorithm summarized in 5.6. The approximate positions of soma centers
are found by first applying a gaussian filter to smooth intensity profiles
and then searching for maximal itensity voxels. Binary segmentation of
the somas is obtained by first applying another gaussian smoothing filter
and then thresholding using the Otsu method [22], this binary map is
then used as a filter to exclude spurious maxima that might erroneously
selected by the first step, the remaining soma centers are then used to
construct a 3D Voronoi tessellation diagram which, ultimately, serves
to separate individual object instances in the binary segmentation map.
Each individual object, now represented by a group of voxels sharing
the same label, is then characterized by an individually defined UUID4
label, the position of the center of its soma in real sample coordinates, its
volume and a set of shape descriptors like its equivalent diameter area,
the length of its major and minor axes, the coordinates and a shape of
its enclosing bounding box.

CPU and GPU memory sizes impose upper limits on the dimensions
of each individually processed volumetric chunk, this means that neu-
ronal instances which happen to be defined on two consecutive stacks
are inevitably counted twice if no compensation strategy is employed:
to reduce this effect, contiguous stacks are selected to include a partial
overlap. In these areas the same objects often appear differently labeled
under the two segmentation maps: to align these objects a bipartite
graph is constructed, each node is defined by an individual label and
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connectivity between edges is set to be proportional to the Jaccard In-
dex of the two individual volumetric segmentations. Maximum bipartite
graph matching is used to determine pairs of individually segmented ob-
jects that are present in both stacks, this information is then used to
correct the database and uniform duplicated labels.

5.2.5 Computational Infrastructure for Data Processing

segmentations out

data in

NAS

NeuroSegmenter

InstanceSegmenter

Local
Container Registry

HTCondor

Acquisition
Apparatus

Figure 5.7: Processing Architecture: semantic segmentation and in-
stance segmentation steps are implemented as two independent docker
containers, which are served from a locally hosted container registry to
every machine of the cluster, segmentation jobs are submitted to a local
HTCondor manager which executes them on individual machines of the
cluster. Both the acquisition data and the segmentation outputs reside
on a local network attached storage.
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Every design choice in the processing pipeline has prioritized computa-
tional scalability over theoretical performance in order to obtain a re-
producible workflow that could satisfy execution time requirements (we
aimed for processing times in the same scale as imaging acquisitions),
modularity and replicability on similarly sized hardware.
The semantic segmentation engine and the following instance segmen-
tation pipeline were implemented as independent Docker [20] container
images. Process containerization comes with the inherent advantage of
dependency decoupling between different parts of the pipeline. The ac-
tual code was executed on a custom-built computational cluster made
from 4 worker Xeon servers, equipped with, respectively, an NVidia
Tesla P100, An NVidia RTX 3090 and eight NVidia RTX 2080Ti (these
two were distributed across two machines). Job execution on cluster
machines was scheduled via HTCondor [28]. The user would issue jobs
using a job descriptor file defining one or multiple data processing re-
quests, referring to the acquisition data position on the internal Net-
work Attached Storage system and to the specific version of the docker
pipeline container revision used for processing, the HTCondor scheduler
would then manage the job queue and distribute load across the cluster
machines. Each machine would request the needed container image ver-
sions to a Container Registry Server within our network, which hosts all
processing software revisions. This modular design allows us to execute
different processing jobs on the same machine in a totally transparent
manner, while containerization avoids all dependency conflicts. Both
the acquisition data and the processed results reside on 0.5 PB sized
expandable NAS connected to the single machines via a 10Gb network.

5.2.6 Data Visualization

Mesh generation of each individual object using a Marching Cube al-
gorithm is time expensive but feasible by employing a large amount of
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computational resources, on the other hand rendering this many individ-
ually defined meshes, where each vertex and edge are explicitly defined
in sample space, using commercially available software like Blender, is
technically challenging if not straight-up impossible in a naive problem
formulation. Several techniques could be employed to reduce problem
complexity, such as using GPU shaders to procedurally generate individ-
ual meshes or culling visually occluded neuronal instances. Ultimately,
transposing the same data visualization approach used in the case of
TPFM-imaged tissue proved to be too unpractical for the large amounts
of data involved in this application.

Large scale visualizations of whole samples were obtained using by
projection of the sample space into bi-dimensional spatial bins, repre-
sented as individual pixels in the output image. Pixel intensity is then
assigned either proportionally to the number of objects in the spatial
bin sharing a given property, or to the mean value of that property over
the objects in the bin, these two kind of plots can also be combined
by using false colors to represent property values and modulating their
alpha intensity proportionally to object counts.

5.3 Results

5.3.1 Dataset Acquisition, Stitching and Reslicing

After tissue transformation and clearing, the 48 slices of the Broca Area
sample were individually acquired using the di2-CLSFM apparatus. The
3-axis stage system was used to produce partially overlapping acquisi-
tion stacks of approximately 8500 2048 × 2048 16 bit images in four
different channels (two per camera), amounting to about 71.3GB per
stack and per channel. The number of stacks needed to cover a slice
ranges from 40 to 65 and depends on its specific physical dimensions.
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Without any compression strategy, a monochromatic acquisition of a
single slice would generally occupy 2.9TB to 4.3TB of disk space, re-
sulting in an approximated 507TB needed for the entire four-channel
dataset. It’s only through data compression that we’re able to store this
data for subsequent analysis. We’re using lossy JPEG2000 compression
the acquisition data to deflate our dataset down to a cumulative size
of 25TB. The choice of a lossy algorithm allows us to keep images in
their 0.52×0.52×3.6 µm original spatial resolution (xy-plane resolution
is obtained optically, while z-axis resolution anisotropy is due to hori-
zontal movement of the positioning stage) while dramatically reducing
data footprints with negligible loss in visual clarity. Any following au-
tomated analysis is performed on data which has not undergone spatial
resolution compression or downsampling. Lossless compression is also
applied to the already lossy-compressed data, these reductions are not as
important as the lossy one but are useful to further fownsize the overall
footprint of the dataset.

Number of files Raw Data JPEG2000 Compression
(0.52× 0.52× 3.6 µm) (0.52× 0.52× 3.6 µm)

8602 507TB 25TB

Reslicing Reslicing, lossless compression
(3.6µm isotropic) (3.6µm isotropic)

10.4TB 4.2TB

Table 5.2: Broca Area dataset digital footprints: the size footprint of
the uncompressed version of this dataset is too high to be stored locally,
data compression (lossless and lossy) enables significative reduction of
storage needs, reslicing to a lower resolution also reduces file sizes and
can be used for dataset sharing.

After acquisition, compression and storage, individual stacks are
then aligned together using the ZetaStitcher [19] tool which looks for
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optimal relative displacement of the overlaps by maximizing their cross-
correlation. This operation results in a virtual stitched dataset which is
not duplicated on disk: only the optimal displacements are stored and
the entire volume can be accessed on the fly using ZetaStitcher’s API.
After receiving a query for a volume or a specific part of it the tool au-
tonomously handles decompression of the individual stacks involved in
the query and fuses overlapped areas using a specific weighting function.
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(a) (b)

(c) (d)

Figure 5.8: Wide-scale reconstruction of Broca Area slices: samples (a),
(b), (c) and (d) are, respectively slice 6, 18, 30 and 42 from the 48-slice
Broca Area sample, imaged in the NeuN channel. Individual acquisitions
are aligned and stitched using ZetaStitcher, each slice is represented by
approximately 4.72TBs of data (up to 18.89TB for multichannel stacks)
and can be aligned in less than a minute thanks to heavy parallelization
of the module. After the alignment process, optimal relative displace-
ments between stacks are computed by ZetaStitcher, whole stitched vol-
umes can be accessed through an API and calculated on the fly starting
directly from compressed acquisition stacks to avoid over-redundancy
and wasteful disk space occupation.
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In figure 5.8 we have reconstructed four different slices of the same
Broca Area sample starting from individual acquisitions. Illumination
attenuation inside each light-sheet acquisition is the cause of the slightly
visible horizontal artifacts, while overall readability of the final images is
not impaired, this effect serves as a visualization tool for how the stacks
were combined into a single imaging volume.

Lastly, isotropic resolution views were created via reslicing of the
original data, these versions of the dataset are useful for inter-modality
registration or general consultation and are characterized by significantly
more manageable digital footprints. Without any compression scheme,
just reslicing the dataset to 3.6µm isotropic resolution occupies 10.4TB
of disk space, this can be easily compressed to 4.2TB using additional
lossless compression, achieving the the same volume occupation of a
single acquisition stack in the original resolution.

5.3.2 Semantic Segmentation

Semantic segmentation of neuronal somas was performed on four en-
tire slices from the dataset, using the NEUROresUNet model trained on
manual annotations of the NeuN channel. Of the 48 individual slices
of the dataset, slice 6, 18, 30 and 42 were chosen to represent the en-
tire sample space as faithfully as possible. The NeuroSegmenter frame-
work introduced earlier in this thesis was used for model definition,
training and parallelized inference on individual acquisition stacks using
Docker process containerization and HTCondor to distribute the work-
load across multiple machines and GPUs in our computational cluster.
To create an extensive neuron soma presence probability map of the en-
tire anaylzed dataset we used ZetaStitcher on probability stacks, with
the same alignment parameters we optimized for acquisition stitching.
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Figure 5.9: Semantic Segmentation of Neuronal Somas in LightSheet
Fluorescence Microscopy using NEUROresUNet: the leftmost image is
a depiction of a raw light-sheet acquisition from a 500µm-thick NeuN-
stained slice. The typical artifacts of Light-Sheet Microscopy are notice-
able, namely the directional light attenuation and horizontal striping
artifacts, the visual features of the neuronal somas are defined across
the entire dynamic range, making the interpretation of images from this
modality particularly challenging for non-experts. The middle image
represents the corresponding probability map of neuronal soma pres-
ence, as produced by NEUROresUNet, overlayed on the original acqui-
sition in the rightmost one, the model is able to work across the dynamic
range and accurately detects low contrast objects that would be hardly
noticeable even by a human expert.

Figures 5.9 offers a visual representation of the segmentation infer-
ence on a single 2048×2048 acquisition frame. The network outputs high
neuronal presence probability in correspondence of the detected objects,
just from visual inspection it’s possible to notice detection consistency
across the wide range of image conditions that might be present inside
an acquisition field of view. A single image can contain the horizontal
striping artifacts that are typical to Light-Sheet Microscopy, light at-
tenuation and near-plane light-sheet thickness effects, our CNN model
is satisfactorily resilient with respect to the range of imaging conditions
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that characterizes this modality.

The network we implemented has a 256 × 256 receptive field and
outputs probability maps of the same pixel dimensions. In order to per-
form inference on entire frames we averaged multiple network responses
from partially overlapping inputs tiles with a radial weighting window.
The computational overhead caused by repeated inference over the same
areas is balanced by the heavy reduction of border artifacts caused by
padded convolutions. We included automated model-agnostic inference
on arbitrarily sized 2D and 3D datasets using partially overlapping input
tiles as part of the NeuroSegmenter package: the dimensions of the over-
lapping areas, type of averaging window and multi-tile fusion strategy
are all parameters that the end user can tune to balance computational
overhead and desired output accuracy.

F1 Score True Positive Rate (TPR) True Negative Rate (TNR)
.641 .585 .989

Area Under ROC Curve Area Under PR Curve Accuracy
.976 .715 .971

Table 5.3: Semantic segmentation metrics over the test dataset: voxel-
wise performance estimates are given for the F1 score (Dice coefficient),
True Positive and True Negative Rates, Accuracy, as well as the integrals
under the Receiver Operator Characteristic and Precision-Recall Curves.

Numerical pixel-wise semantic segmentation performance metrics of
the model have been evaluated over a test dataset comprised of 37 32×
256× 256 image stacks, randomly sampled from the full extent of all 48
Broca Area slices, results are are reported in table 5.3. Precision-Recall
and Receiver Operator Characteristic curves have also been computed
and plotted in figure 5.10.
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Figure 5.10: Response Operator Characteristic and Precision-Recall
Curves evaluated on the test Datasets: PR and ROC curves calculated
varying the classification threshold over the continuous neuron soma
presence probability heatmaps, dotted lines represent the random clas-
sifier references.

5.3.3 Instance Segmentation

In Figure 5.11 we have presented whole-slice acquisition and reconstruc-
tion using the ZetaStitcher alignment tool of four slices from the Broca
Area sample. We’ve obtained neuronal soma presence probability maps
with the NEUROresUNet model, these maps are then processed using
the instance segmentation pipeline introduced in 5.2.4 to separate indi-
vidual neural somas from the global probability map. In this case, sim-
ilarly to the last chapter, we’ve also applied the 2.5D scheme described
earlier, that basically consists in treating the aligned volumetric stack of
independent 2D probability maps (obtained with our 2D segmentation
network) as a statistical proxy to an underlying volumetric neuronal
presence probability distribution: the separation of different items in-
side the 2.5D probability heatmap operates on a volumetric level and
not on single images.
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Each neuronal soma detected inside the imaging volume (more than
6× 106 objects are present in each slice) is individually measured, char-
acterized a stored in a database with an unique identifier. We are able
to link each of the individually detected neurons to its position in real
space, its pixel coordinates inside the volume, its volume and linear di-
mensions and general descriptors of its shape such as the major and
minor axis lengths.
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(a) (b)

(c) (d)

Figure 5.11: Neuronal Density Distributions in Broca Area Slices: fig-
ures (a), (b), (c) and (d) represent the volumetric density distributions
of detected objects in the three-dimensional space of the samples. Each
pixel of these images is linked to a volumetrical bin in sample space,
pixel color displacement over a fire colormap (black to red to yellow)
represents the relative density of detected neuronal somas. Layer struc-
turing which can be seen faintly in figure 5.8 is evident just from a rapid
analysis of soma numerical density. The number of individual objects
represented in each of these figures is over 6× 106.
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Figure 5.11 depicts the distribution of segmented neuronal somas
across the four entire slices, each pixel in the image is representative of
a spatial bin in sample space, and its color value across a red-to-yellow
colormap is proportional to the relative neuronal density of detected ob-
jects in that specific bin division. In order to correctly evaluate neuronal
distributions, spurious activations outside the sample volume are filtered
with a manually traced mask.

We’re also able to produce visualization of different distributions
than just numerical density: in figure 5.12 we’ve represented the dis-
tribution of soma diameter inside the four samples. Instead of directly
measuring linear diameters of the objects, which might be difficult and
computationally expensive due to resolution anisotropy and non-trivial
geometry of the detected neurons, we’ve calculated diameters starting
from the direct voxel measurement of their volume under shperical ap-
proximation.

5.4 Discussion

5.4.1 Neuronal Counting in the Broca Area

The queryable maps obtained after instance separation enable us to
perform quantitative inference of quantities that are generally inferrable
only from manual stereology and histological analysis. Moreover, when
queries from our database are combined with histological expertise in
the definition of masks, we’re able to perform deep characterizations
and directly measuring histological quantities with minimal effort.
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(a) (b)

(c) (d)

Figure 5.12: Soma Diameter Distributions in Broca Area Slices: figures
(a), (b), (c) and (d) are a visualization of the distribution of the soma
diameters inside the sample, colors are chosen in a rainbow colormap
(blue to green to red). Cortical layer stratification is also evident in this
representation.
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(a) (b)

(c) (d)

Figure 5.13: Cortical Layer Segmentation in the Broca Area: (a), (b),
(c) and (d) represent, respectively the distributions of detected objects
in slices 6, 18, 30 and 42 marked by their cortical layer classification. In-
dividual layers of the cortex are individuated using segmentation masks
traced on our acquisitions by the Hof Lab at Ichan School of Medicine
at Mount Sinai. Mount Sinai also produced manual stereological neuron
count estimates on layers 3, 5 and 6, here marked in purple, orange and
yellow.
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Slice Layer Population (×105) Population (×105)
(detected) (stereology estimate)

6 1 3.69± 0.45 n/a
2 2.63± 0.37 n/a
3 17.96± 2.67 9.05± 3.38

5 11.11± 1.52 5.73± 2.22

6 11.13± 1.88 8.14± 3.05

18 1 3.15± 0.40 n/a
2 3.55± 0.61 n/a
3 19.99± 3.26 15.18± 5.48

5 12.84± 1.85 10.72± 3.87

6 12.13± 1.76 14.01± 5.05

30 1 3.49± 0.46 n/a
2 2.66± 0.43 n/a
3 21.04± 2.71 20.89± 7.24

5 12.49± 1.90 12.49± 4.50

6 10.30± 1.50 8.50± 3.07

42 1 2.41± 0.34 n/a
2 2.42± 0.35 n/a
3 12.40± 1.76 6.28± 2.35

5 7.48± 0.94 5.63± 2.11

6 7.36± 1.04 8.14± 2.94

Table 5.4: Neuronal Population per Cortical Layer inside the Broca
Area: countings of detected somas for each cortical layer have been
compared to stereology based estimations. Stereological population es-
timates have been conducted for layers 3, 5 and 6 of the cortex, layer 4
is not visible in the Broca Area Sample. With the exception of layers 3
in slices 6 and 42, and layer 5 in slice 6, the number of automatically
detected neurons per layer is compatible with stereological estimates.
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Manual stereological analysis of the four samples was conducted by
the Hof Lab at Icahn School of Medicine at Mount Sinai (New York,
USA), in the collaborative context of the Brain Initiative Cell Census
Network (BICCN) project. Mount Sinai provided stereology counting of
the neuronal somas inside a 3.6µm resolution version of our dataset that
we were able to provide for their analysis. We used the layer segmenta-
tion masks to perform of measurements on individual cortical layers.

5.4.2 Segmentation Model Performance and Manual An-
notation Challenges

Numerical results appear to be dominated by a marked tendency to false
positive detection, this is also reflected in a modest numerical value of
the F1 score. The F1 metric, defined as the harmonic mean of precision
and sensitivity

F1 =
2TP

2TP + FP + FN (5.1)

is an indicator of the overall quality of a segmentation and takes values
between 0 and 1, we would expect a good segmentation score to be
placed in the 0.7 to 0.9 range for a typical application.

Figure 5.9 gives insight on a possible reason for this other than the
obvious difficulty of the task in itself. Visual inspection of the activation
maps reveals that low intensity objects, as well as marginal sections of
neuronal somas and near-plane appearances, consistently trigger posi-
tive response from the network: while detection of these objects in their
entire extension is surely desirable, human annotators operating on bi-
dimensional sections with limited contrast windows of the 16bit color
range would encounter very high difficulty in distinguishing between
these objects and background. Ultimately it’s possible that ground truth
annotations are affected by operator-induced over-representation of the
negative class and label uncertainty due to fuzzy appearance of the ex-
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act borders of the somas in low illumination areas, as well as near-plane
effects. The problem of operator-induced contrast window selection bias
can possibly be tackled using an active labeling approach, where a seg-
mentation model, trained on an isolated partition of the manually anno-
tated data, can be used to signal to the operator the presence of possible
low intensity objects that are masked by his current contrast visualiza-
tion window.

The metrics in table 5.3 are calculated with a fixed classification
threshold of 0.5. Both the Receiver Operating Characteristic Curve
plotted in figure 5.10, often known as a ROC curve, and the Precision-
Recall curve trace the model’s binary classification capacity at different
values of its discrimination threshold, in the first case the True Positive
Rate is plotted at the variation of False Positive Rates, in the second
one the model’s Precision (defined the number of true positives over all
positives) is plotted against its Recall (True Positive Rate). Neither of
the two curves has an intuitive explanation, but comparison with an
indecisive model baseline with no discriminatory capacity, plotted in
dashed lines, is a visual tool to assess the model’s capacity to distin-
guish between positive and negative classes: the higher the area under
these curves, the better the model. Both curves show that the model
is more than capable of distinguishing neuronal somas from background.

Imaging of large and heterogeneous tissue samples, even after per-
fecting clearing, staining an imaging protocols, inevitably produces vari-
ability in image qualitu. Structural inhomogeneity of the tissue can
result in significant difference in illumination conditions and horizon-
tal striping artifacts, and antibodies may penetrate inhomogeneously in
different parts of the tissue causing significantly different signal inten-
sity across the imaged area. Moreover, the finite thickness of the light
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sheet contributes to blurring the margins of individual objects defined
on multiple planes. LSFM images can be hard to read even for special-
ized microscopists and are undoubtedly difficult to annotate when the
objects are expressed in largely different areas of a 16bit monochromatic
brightness range. It’s expected that, in annotating this kind of data, we
would have significant inter-operator variability.

5.4.3 Architecture Selection

The parametric formulation of NEUROresUNet was a planned design
feature to facilitate model selection so that the effects of architectural
optimization could be observed by launching multiple training sessions
with varying hyperparameters. However, CNN model training is an in-
herently stochastic process: stochastic gradient descent, batch selection
and real-time data augmentation are all determined by the initializa-
tion states of many internal Random Number Generators (RNGs). As a
consequence, assessing the validity of hyperparameter selections should
require a large number of training runs and in-depth statistical analyses
for each of the parameters we wish to optimize: given the large amount
of time and computational resources associated to the training process,
relying on this approach would be extremely unpractical. As an alter-
native strategy, we chose to simulate computational determinism of the
training process by tracing each random number generator and fixing
its initialization stage. Even if complete determinism of the training
process can’t always be reached [10, 12] due random behavior in GPU
computation1, fixing random seeds for model selection is generally re-
garded to as a safe practice [2]. By forcing approximate determinism
we can avoid expensive statistical assessments and significantly reduce

1At the time of writing, since version 2.8.0 TensorFlow includes an experimental
mode for OP determinism: in our experience this feature isn’t - by itself - sufficient
for complete computational determinism.
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needed computational resources by directly comparing runs correspond-
ing to different hyperparameter values.
We decided to include in our NeuroSegmenter framework the possibil-
ity of centralizing seed selection for its various components and for any
external library involved in model training and data generation. By us-
ing this feature we were able to select an optimal number of levels for
our network, a number of convolutional filters per convolutional block,
as well as preemptively evaluating the effects of altering model hyper-
parameters, such as the learning rate, thus minimizing the number of
needed training runs.

5.4.4 Potential Limitations of CNN-Based Segmentation
Approaches

The main limitation of CNN-based segmentation techniques, including
the one presented in this work, is the inherent request for significant
quantities of ground truth data annotations. This kind of data is gen-
erally hard to obtain as it needs to be produced by specialized experts
with high familiarity with both the imaging modality and the specific
subject. Moreover, the data distribution described by the microscopy
acquisitions can vary significantly depending both on tissue and clear-
ing characteristics and imaging apparatus configuration. The high cost
involved in producing suitable datasets for model training can be pro-
hibitive for small sized research facilities and independently producing
large volumes of manual annotations is often a target out of reach for
most. The first line of defense against excessive data annotation costs
and model under-generalization is represented by data augmentation:
at training time the dataset is transformed by application of the nonde-
terministic transforms listed in 5.1, this can effectively widen the data
space domain over which the model is trained, providing predictive ca-
pabilities over a variety of imaging and sample conditions which is not
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necessarily represented in the original dataset. Although we consider
the validity of our data processing approach to be limited to transposi-
tional inference over the imaging acquisitions in which we sampled our
relatively small manually annotated dataset, we included a large variety
of data augmentation transforms as part of a generalization effort to
potentially different samples and imaging setups which, at the time of
writing, is still under evaluation and characterization.

Other than data augmentation, there are a number of approaches
that can be considered to mitigate and reduce manual annotation re-
quirements for application on different data and setups different from
the ones we calibrated our system on, that we didn’t include in this
work. The provided models can be fine tuned with small quantities of
application-specific data - without the need to produce an entirely new
dataset - using a variety of transfer-learning techniques [7, 17, 30]. The
main idea behind these methods is that the vast majority of low-level
features is shared between similar datasets with slightly different sam-
ples and imaging setups: the bulk of feature extracting stages in the
network can be left identical to the ones we provide in our model, while
a few specifically collected data points of the new domain can be used
to train selectively the last few layers. In this way we can provide a
further level of generalization to different sample and imaging condition
without the need of creating another dataset ex-novo.

Other approaches include the use of generative data models to sim-
ulate artificial data points of the target space to be used in training [1,
3, 15, 27] or the use of pseudo-labels produced by pre-existing models
on unlabeled data [6, 25, 31]. Most of these methods share the same
intuition that low-level features in similar datasets share some level of
closeness that allows them to be learned from either from inference by
pre-trained models on unlabeled data or - even more cheaply - from en-
tirely synthetic datapoints, instead of expensive domain-specific manual
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annotations.

5.5 Conclusions

We have presented a functional pipeline for quantitative exploration
of brain tissue that employs biological tissue transformation and clear-
ing with the SHORT protocol, high resolution Light Sheet Fluorescence
Microscopy imaging with a custom-built apparatus, whole-sample digi-
tal reconstruction using custom developed software (ZetaStitcher), deep
learning-enabled semantic segmentation of the data using the an original
CNN model (NEUROresUNet) running on an internally developed high
level deep learning framework (NeuroSegmenter), followed by instance
segmentation and data aggregation. Innovations on the software side
of the pipeline are paralleled by a specifically built data management
flow and modular computational infrastructure design with the aim of
making the whole process arbitrarily scalable to even larger areas.

The diSPIM LSFM apparatus, in combination with sample slicing,
tissue transformation and clearing, has enabled for imaging of 500µm

thick slices of the human Broca Area sample and its digital reconstruc-
tion on a large scale. We have demonstrated the use of a custom-designed
CNN network for neuronal soma semantic segmentation on whole tissue
slices, moreover we have employed a fast processing pipeline for sepa-
ration, measurement and indexing of individual objects from the seg-
mentation map. These methods, coupled with our modular and scalable
processing architecture allow us to obtain detailed and queryable maps
of neuronal somas in large sections of the human Broca Area.

Obtaining interrogable and queryable maps from biological samples
can be considered the end goal of the whole tissue clearing, imaging and
data processing pipeline: in this sense, the mere fact that we’re able
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to perform computer queries on tens of millions of individual neurons
and obtaining their position and physical dimensions testimonies to the
validity of our methods.

5.5.1 Data and Software Availability

The fluorescence imaging data relative to Brodmann Areas 44 and 45,
after compression and reslicing to a 3.6µm isotropic resolution, was for-
matted in the Brain Imaging Data Structure (BIDS) data specification
and uploaded to the the DANDI Archive as part of a collaborative multi-
modal atlas of the human Broca Area in the context of the Human Brain
Cell Census Network (BICCN). The ZetaStitcher, SPIMLab, NeuroSeg-
menter and pyometiff software packages are available on GitHub [4, 5,
18, 19].
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Chapter 6

Conclusions

Quantitative investigation of extended areas of brain tissue is an inher-
ently complex challenge that needs the orchestrated cooperation of many
independent competences. Choices in biological treatment of the sam-
ples are intimately correlated to microscopy imaging needs, elaborated
data flows must be designed around computational limitations and the
automated processing approaches are selected to satisfy expected com-
putational performance targets while achieving satisfactory predictive
performance.

In this work we tried to offer a strategy to tackle the problem of
mapping the neuronal structures in fluorescence microscopy of human
brain tissue to a large and currently unparalleled scale. We designed
our processes in the perspective of offering a scalable methodology that
could be applied to even larger acquisition targets by means of modular
scaling of the involved imaging, storage and computational resources.

We presented two instances of the same end end-to-end pipeline for
tissue preparation, imaging, sample reconstruction and automated cell
segmentation, conjugated in two imaging technologies (Two Photon Flu-
orescence Microscopy and Light-sheet Fluorescence Microscopy) operat-
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ing with different working principles, as well as two different approaches
to automated histological analysis.

The two microscopy techniques both cover wide-ranging and overlap-
ping application targets, each bringing its own set of requirements and
advantages, ultimately answering different imaging needs: Two Pho-
ton Confocal Microscopy combines very high optical sectioning and low
visual artifacts with a standard, imaging geometry but its scanning oper-
ating principle limits its application spectrum to modestly sized samples.
Light-sheet Fluorescence Microscopy, on the other hand, is characterized
by geometrically higher volumetric throughput with comparable optical
sectioning, but the possibility of implementing multiple views and multi-
spectral imaging (in the Di-CLSFM variant apparatus we introduced)
comes with the implicit need of significant data managing infrastruc-
ture to handle massive data flows. Moreover, it suffers from technique-
specific artifacts, such as horizontal striping, that generally have a higher
visual impact than the ones encountered in TPFM. Future perspectives
of scaling the methodology to complete brain areas, and eventually en-
tire organs, pose a definite preference towards the LSFM approach for
its volumetric reach, making TPFM a better choice for reduced scale
applications.

Both variations of the presented pipeline are characterized by the
presence of an intermediate sample reconstruction step using the Ze-
taStitcher software, but differ in their automated cell segmentation steps:
in the first case we relied on a lightweight texture classification model
to make optimal use of limited ground truth data annotations, in the
other case we proposed a fully customizable and tunable architecture
that could be scaled to match both ground truth availability and image
complexity constraints.

The high volumetric throughput of LSFM makes it necessary to also
define a modular and scalable computational infrastructure for data
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analysis, which, in our design, takes full advantage of modular process
containerization using Docker and the HTCondor cluster computation
scheduler which makes it ready for deploy on HPC supercomputing fa-
cilities. The architecture proposed in this work can easily be adapted
to large scale LSFM imaging by addition of computational nodes, up to
supercomputers and computational clusters like CINECA.

We then explored the issue of sharing the collected data with the
neuroscience community at large, which rendered necessary the defini-
tion of an extension to a data sharing format (the BIDS specification
[4]) which has since been positively accepted and integrated [1], as well
as the introduction of a custom library - pyometiff - for interaction with
the OME-TIFF format [2] which not only complemented the aforemen-
tioned specification extension proposal, but is currently used in other
elaboration pipelines in the neuroscience imaging area[7].
The proposition value of this work lies mainly in the definition of an orig-
inal pipeline structure for automated cell detection and characterization
starting from raw samples, which can be replicated as it is or adapted in
its parts to specific biological, imaging and computational constraints.
We used this pipeline to create histological censuses of brain samples
cataloging and characterizing individual neurons in the imaged areas.
The end goal of this work is to propose a pipeline that could ultimately
be scaled to entire brains and could be used to create extended histo-
logical censuses. The general methodological framework established in
this thesis will serve - and already does - as a general scaffold for our
experiments in large scale imaging and mapping aimed at reaching the
volumetric scales of entire human central nervous systems.
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6.1 Future Perspectives

The general methodological framework proposed can be expanded be-
yond its current implementation: here we propose three possible targets
that are currently being explored, namely the possibility of integrating
additional color channels to the CNN segmentation step, the possibility
of working with multiple views of the same sample and, lastly, wide scale
application of this method to larger targets in order to create neuronal
cell atlases of entire brains.

6.1.1 Multi-channel and Multi-target

As for now, automated cell detection, in the second variant of the
pipeline for soma detection and segmentation, makes use of a single
imaging channel expressing anti-NeuN signal, but fluorescence multi-
channel views of the same tissue can easily be integrated in our seg-
mentation model: in our case, the chosen signal sufficiently correlated
with the visual features of interest, but the proposed CNN model can be
adapted to work on multi-spectral data, either to improve single-class
predictive capabilities or to perform multi-class segmentation with many
types of objects. These applications would require additional ground
truth annotations to compensate for increased model complexity but can
easily extend the application range of the proposed analysis pipeline to
those cases where a single channel is not sufficient to fully characterize
the objects of interest in the entire sample. A potential application for
this case would be the automated characterization of excitatory and in-
hibitory neuron populations, the distinction of which generally requires
multi-channel co-detection.
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6.1.2 Multi-View

Many LSFM setups offer the possibility of simultaneous acquisition of
multiple views from the same sample: this property can be used to
compensate for volumetric resolution anisotropy by combining the two
independently acquired anisotropic stacks into a single istoropic vol-
ume [5, 6, 8]. Operating on higher resolution stacks is an interesting
road that would increase segmentation performances but trade-offs with
the significant computational overhead and increased data sizes need
to be carefully reviewed, as predictive accuracy advantages can easily
be outweighed by increased complexity. A possible, more ambitious
road for large-scale multi-view analysis of brain samples would ideally
involve specifically designed 3D CNN models operating simultaneously
on the two anisotropic stacks. Such models would implicitly learn to
perform multi-view deconvolution before segmentation: this approach
is still mostly unpaved, architectural research in this direction could
directly unlock untapped potential in the diSPIM technology.

6.1.3 Multi-Modal Cell Atlases

Fluorescence Microscopy of human brain tissue involves physical sec-
tioning of the analyzed samples for uniform clearing, staining and light
penetration. The processes needed for obtaining fluorescence imaging
inevitably causes nontrivial geometrical distorsions of the tissue that
would prevent easy reconstruction of different acquisitions. To cover the
gap between single-slice analysis and alignment of whole areas to stan-
dardize brain atlases, a mesoscopic reference is needed to tie the LSFM-
detected neurons to a global reference. We presented LSFM imaging
of the Broca Area that was acquired as part of a collaborative effort
[3] towards the construction of kind of multi-modal atlas. The pipeline
we created was tested on the samples described during this work but
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wide-scale application is still unexplored. We’re currently working on
applying our methodological solution to a larger number of samples,
and primarily on the rest of the Broca Area specimen we’ve presented.
Modularity of our processing approach enables us to look at HPC super-
computing solutions as a future developement of this work for scaling
our analyses and drastically reducing time needed for obtaining neuronal
maps.
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