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Chapter 1

Introduction

A pattern of a permutation is a subsequence of the permutation, up to a rescaling of its
values. We say that a permutation contains a pattern if it contains a subsequence which is
order-isomorphic to it. If a permutation does not contain a pattern, it avoids that pattern. The
study of sorting algorithms by means of patterns (and the idea of pattern itself) comes from
Knuth [20], who introduced the algorithm Stacksort. For a detailed survey and bibliographic
pointers on the topic of patterns, sorting algorithms and their derivations we refer the reader
to [5, 13] and to the introduction of [28].

Essentially, a sorting algorithm is a procedure that takes an input sequence and, by suitably
applying certain allowed operations, outputs a weakly increasing sequence whenever possible.
Stacksort uses an auxiliary container called stack, in which the elements can be stacked on
top of each other, and retrieved in order from top to bottom. Knuth found that a permutation
π can be sorted using Stacksort if and only if it avoids the pattern 231.

Knuth’s work inspired some further investigations using different containers, for example
queues, deques [23] and networks of queues and stacks [24]. Especially remarkable is the work
of West [29], which concerns the iteration of Stacksort. To frame the importance of his work,
we need to note that we are considering deterministic algorithms, that is, algorithms that
perform operations determined only by their input, so that the same input will always produce
the same output. Therefore, an algorithm can be seen as a map from the set of possible inputs
to the set of possible outputs. This map can be composed with itself any number of times,
and the resulting process is equivalent to the iteration of the corresponding algorithm. From
a computational standpoint, this process is interesting because, for many algorithms, it sorts
any permutation. Therefore, it can be used as a “proper” sorting algorithm, provided that
the average number of iterations needed is small enough. From a combinatorial point of view,
composing the map with itself gives useful information on the starting algorithm, and also helps
to develop tools for its study. For example, West considered the machine obtained by applying
Stacksort twice, and found that the sortable permutations are those avoiding the pattern
2341 and the barred pattern 35̄241, the latter being a generalization of the classical concept
of patterns. Clearly, applying Stacksort twice is just the first step in understanding how its
iteration works. In fact, West defined the sorting trees of Stacksort, a family of trees Tn where
every node is labeled with a permutation. Each tree is rooted at the identity permutation
1 · · ·n, and two permutations have a parent-child relation if and only if the parent is the image
of the child under Stacksort.

From the preimage tree we can retrieve several informations about the algorithm, such as
the average height (which is the average number of iteration needed to sort a permutation of
a given length), the number (and hopefully the characterization) of permutations sorted with
a given number of iterations, and the number of preimages of any permutation. Since every
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sorting algorithm has an associated map, the concept of “preimage of a permutation under the
map” is applicable. Therefore, the preimages of a permutation π are the permutations that,
after one sorting, give π as the output. In the preimage tree, they are the children of π. Clearly,
computing and characterizing the preimages of a permutation is essential in order to obtain the
sorting trees. For Stacksort, various results have been achieved, for example in [7, 10].

Note that the preimages under a sorting algorithm can be studied not just for single permu-
tations, but for entire permutation classes. A permutation class is the set of all permutations
avoiding a prescribed set of patterns. Thus, the preimage of a class is the set of permutations
whose output avoids certain patterns. For example, Av(21) denotes the set of permutations
avoiding the pattern 21, therefore the preimages of Av(21) under Stacksort are those belonging
to Av(231), since they are the sortable ones. Besides Stacksort [11, 21, 27], preimages of per-
mutation classes have been studied for many sorting algorithms, such as Bubblesort [11, 21, 27],
a sorting algorithm widely used in computer science, and Queuesort [3], a sorting algorithm
that uses a queue instead of a stack. On the other hand, there is not much on the preimages of
single permutations. Filling this gap is the main focus of this thesis. Specifically, we describe
the preimages of any permutation under Queuesort, Bubblesort and a new algorithm that
uses a popqueue (a modified queue), which we called Cons.

The thesis is organized as follows. Chapter 2 introduces the notations and the preliminary
notions. Chapter 3 focuses on the preimages of Queuesort, and is joint work with Luca Fer-
rari. We describe a procedure that, for any permutation π, computes the preimages of π under
Queuesort. Additionally, we prove some enumerative results concerning the number of preim-
ages of any permutation of a specific form. Finally, we compute the number of permutations
with a fixed number k of preimages, for small values of k. Chapter 4 is joint work with Luca
Ferrari and Mathilde Bouvel, and focuses on Bubblesort, answering the same questions of the
previous chapter, and more. We consider the preimage tree of Bubblesort, and we give an
exhaustive description of its shape and the heights of its nodes. In Chapter 5, which is joint
work with Luca Ferrari, we define two new sorting algorithms, Cons and Min, both of which use
a popqueue to sort permutations. The two algorithms look similar, but their differencies arise
when they are applied twice. Finally, we find the preimages of any permutation under Cons.
In Chapter 6 we consider a container formed by two queues in series, with several possibilities
for the allowed operations. For each case, we describe the permutations that can be sorted.
Finally, in Chapter 7, which is joint work with Mathilde Bouvel and Benjamin Izart, we study
the interval poset of permutations, a partially ordered set studied in [26]. After giving the ba-
sic definitions, we describe a correspondence between interval posets and decomposition trees,
which is then used to answer all the open questions of the original paper. Chapter 8 contains
some hints for further work.

6



Chapter 2

Preliminary notions

2.1 Permutations

A permutation π of length (or size) n is a bijection from {1, . . . , n} to {1, . . . , n}, and its
length is denoted by |π|. A common way to represent a permutation is the linear notation, in
which π is written as the sequence π1 · · ·πn of its images, where πi = π(i). This we will mostly
use throughout all the thesis.

Another representation that will be useful in some situation is the plot, where a permutation
π is drawn as a graph with dots at coordinates (i, πi), for every i = 1, . . . , n. We denote with Sn
the set of permutations of size n, and with S the set of permutations of any size. We say that a
permutation π = π1 · · ·πn ∈ Sn contains the pattern ρ = ρ1 · · · ρk ∈ Sk (and write ρ ≤ π) if and
only if π contains a subsequence which is order isomorphic to ρ, that is, the elements of ρ are in
the same relative order of some subsequence of π. If π does not contain ρ we say that π avoids
ρ, and write ρ ≰ π. Given a set B of patterns, we denote with Av(B) the set of permutations
avoiding every element of B, and with Avn(B) the permutations of size n in Avn(B).

An element πi of π is called a left-to-right maximum if πi > πj for every j < i, that is, if πi
is greater than every element on its left when π is written in linear notation. We decompose π
in two different ways to highlight its left-to-right maxima:

� LTR-max decomposition: let µ1, . . . , µk be the left-to-right maxima of π, then we can
write π = µ1A1 · · ·µkAk, where the Ai’s are (possibly empty) blocks of elements which
are not left-to-right maxima. If Ak is empty, we may omit it;

� LTR-max block decomposition: by merging the adjacent left-to-right maxima of π into
blocks, we obtain π = M1P1 · · ·Mk−1Pk−1Mk, where the Mj ’s are nonempty (except
maybe for Mk) blocks containing the adjacent left-to-right maxima of π and the Pi’s are
nonempty blocks containing all the remaining elements. Notice that, in this notation, the
number of left-to-right maxima of π is |M1|+ · · ·+ |Mk|, and not k.

Finally, for a permutation π, we denote with LTRp(π) (resp. LTRv(π)) the set of positions
(resp. values) of the left-to-right maxima of π.

2.2 Sorting procedures

The process of sorting a permutation consists of following a sequence of instruction whose
final goal is to obtain an increasing permutation. The increasing permutation (also called
identity permutation) of size n is denoted idn. Whenever the size of the increasing permutation
is not known, but clear from the context, we just write id.
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The sorting process may not always end with an increasing permutation, since there may
be restrictions in the allowed operations that make it impossible to happen. We are interested
specifically in sorting procedures which do not sort every permutation and, in what follows, we
will detail some of those that we will study.

2.3 Queuesort

A queue is a container in which elements are arranged in the same order in which they
entered. We allow for a bypass of the queue, i.e. an element can either enter the queue or
be sent directly into the output. Notice that this is equivalent to considering two queues in
parallel, which is the classical way in which queue-sorting was studied.

Given a permutation π = π1π2 · · ·πn, the algorithm Queuesort attempts to sort π by using a
queue in the following way: scan π from left to right and, letting πi denote the current element,

� if the queue is empty or πi is larger than the last element of the queue, then πi is inserted
to the back of the queue;

� otherwise, compare πi with the first element of the queue, then output the smaller one.

When all the elements of π have been processed, pour the content of the queue into the output.
We will give an alternate description of the algorithm in Chapter 3.
There is a natural function Q associated with Queuesort, which maps an input permutation

π into the permutation Q(π) that is obtained by performing Queuesort on π.
Tarjan [24] proved that a permutation is sortable if and only if it avoids the pattern 321.

In terms of its geometric structure, a 321-avoiding permutation is a permutation that can
be expressed as the shuffle of two increasing subpermutations. In other words Q−1(idn) =
Avn(321). Moreover, as it is well-known, |Q−1(idn)| = |Avn(321)| = Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number.

2.4 Bubblesort

The Bubblesort operator, denoted B, corresponds to applying one pass of the classical
bubble sorting procedure to a permutation. Specifically, B(π) is obtained from π scanning its
elements from left to right, each time exchanging an element with the one sitting to its right
whenever the latter is smaller. Thereby (see also Lemma 2.4.1), the left-to-right maxima of the
permutation “bubble up” to the right, until they are blocked by the next left-to-right maximum.

For example, for π = 42163785, the left-to-right maxima are 4, 6, 7 and 8 (shown in bold)
and B(π) = 21436758.

Notice that we focus on the Bubblesort operatorB instead than on the entire bubble sorting
procedure. This is because the classical procedure applies B repeatedly until the input is sorted,
so every permutation would be a preimage of the identity permutation. On the other hand,
B does not sort every permutation, and shares some features with other “imperfect” sorting
algorithms such as Queuesort and Stacksort, as demonstrated in [3]. For example, the set of
sortable permutation for B is a permutation class, namely Av(231, 321).

Actually, Queuesort and Bubblesort have more in common than it may appear, since the
latter can be seen as an instance of the former, with some restrictions. Consider a queue of
length one. That is, a queue who can hold only one element at a time. If we modify the
Queuesort algorithm so that it can only add an element into the queue whenever it is empty,
then we have a sorting algorithm that is substantially the same as the Bubblesort operator, in
which the element inside the queue corresponds to the one that is being swapped by Bubblesort.
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Therefore B is the function associated to a device consisting of a queue of length one with a
bypass.

The algorithm Bubblesort may be described in several other ways, and we give two below.
The reader needing an explanation of the equivalence with the above definition can find it in [3,
Lemma 1 and the equation displayed just above it]. The first parallels the recursive definition
of the stacksorting operator S: decomposing π into π = πLnπR with n the maximal value
occurring in π, we have B(π) = B(πL)πRn. The second focuses on the left-to-right maxima,
and we record it in a lemma for future reference.

Lemma 2.4.1. Let π be a permutation, and decompose π using the LTR-max decomposition.
That is, π = µ1A1µ2A2 . . . µkAk, where the µi’s are all the left-to-right maxima of π, and the
Ai are possibly empty sequences of integers). Then B(π) = A1µ1A2µ2 . . . Akµk.

From this description, we have the following corollary.

Corollary 2.4.2. For any π, the set of left-to-right maxima of π is included in the set of
left-to-right maxima of B(π).
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Chapter 3

Queuesort preimages

In order to study preimages of the map Q, the first tool we develop is an effective description
of the behavior of Queuesort directly on the input permutation.

Let π be a permutation of length n, and denote with µ1, µ2, . . . , µk its left-to-right maxima,
listed from left to right. Thus, in particular, µk = n. Then Q(π) is obtained from π by moving
its left-to-right maxima to the right according to the following instruction:

� for i running from k down to 1, repeatedly swap µi with the element on its right, until
such an element is larger than µi.

For instance, if π = 21543, then there are two left-to-right maxima, namely 2 and 5; accord-
ing to the above instructions, π is thus modified along the following steps: 21543 ⇝ 21435 ⇝
12435, and so Q(21543) = 12435.

bc

bc

bc

bc

bc

1

−→

bc

bc

bc

bc

bc

1

−→

bc

bc

bc

bc

bc

1

−→

bc

bc

bc

bc

bc

1

The above alternative description of Queuesort is, as a matter of fact, a different algorithm
which is however equivalent to Queuesort (meaning that, starting from a given input, it returns
exactly the same output). The proof of this fact is easy, and it relies on the fact that the elements
of the input permutations that enter the queue are precisely its left-to-right maxima. In the
rest of the chapter, with some abuse of terminology, whenever we will declare that we perform
the algorithm Queuesort, we will in fact perform our equivalent algorithm.

An immediate consequence of this alternative description of Queuesort is our first result,
characterizing permutations having nonempty preimage.

Proposition 3.0.1. Given π = π1π2 · · ·πn, we have that Q−1(π) ̸= ∅ if and only if πn = n.

Proof. Suppose first that Q−1(π) ̸= ∅, and let σ ∈ Q−1(π). From the above description
of Queuesort, it follows immediately that the last element of Q(σ) = π is n. Conversely,
suppose that πn = n, and define σ = nπ1 · · ·πn−1. It is easy to check that Q(σ) = π, and so
σ ∈ Q−1(π) ̸= ∅.
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3.1 A recursive characterization of preimages

The key ingredient to state our recursive characterization of preimages is the LTR-max block
decomposition of a permutation, defined in Section 2.1. Since, by Proposition 3.0.1, we know
that all the permutations that have preimages under Q ends with their maximum, we write
them as M1P1M2P2 · · ·Mk−1Pk−1Mk, with nonempty Mk.

Moreover, for the rest of this chapter mi = |Mi| denotes the length of Mi, and analogously
pi = |Pi| denotes the length of Pi, for all i. Sometimes we will also need to refer to the last
element of Mi, which will be denoted µi. Also, in some cases we will use N and R in place of
M and P , respectively.

In order to determine the preimages of a given permutation π, we can exploit the description
of Queuesort illustrated in the previous section, observing that every preimage of π can be
obtained by moving suitable elements of π to the left, until they reach a suitable position. The
next proposition is recorded for further reference, and says that the only elements of π that can
be moved are left-to-right maxima of π.

Proposition 3.1.1. Suppose that π = Q(σ). Then each left-to-right maximum of σ is a left-
to-right maximum of π as well.

Proof. Let µ be a left-to-right maximum of σ. When performing Queuesort on σ, the left-to-
right maxima of π which are greater than µ are on its right, and will be moved to the right,
thus not interfering with µ. Then µ is moved to the right, and it stop before the first greater
element, preserving its status of left-to-right maximum. Finally, since the elements on its left
are smaller, the operations that Queuestort performs on them still mantain µ as a left-to-right
maximum.

Conversely, the next result gives a necessary condition for a left-to-right maximum of π to
be movable in order to get preimages.

Proposition 3.1.2. Suppose that π = Q(σ), with π, σ ∈ Sn. Let πi be a left-to-right maximum
of π, for some i < n. If πi+1 is not a left-to-right maximum of π, then πi is not a left-to-right
maximum of σ.

Proof. Suppose, by contradiction, that πi is a left-to-right maximum of σ. According to our
description of Queuesort, consider the instant when πi is moved to the right. When πi reaches
its final position, it is clear that all the elements πi+1, πi+2, . . . , πn are already in their final
positions in π (since, when a left-to-right maximum is moved to its final position, no further
elements can overtake it). This means that, when πi reaches its final position, it is immediately
followed by πi+1. However, by hypothesis, πi+1 is not a left-to-right maximum of π, so necessarily
πi > πi+1, hence πi should overtake πi+1, which gives a contradiction.

As a consequence of the above proposition, whenever πi is not followed by a left-to-right
maximum in π, we cannot move it to the left in order to get a preimage of π.

We are now ready to start our description of all the preimages of a given permutation
π. Our approach consists of splitting the set of preimages into two disjoint subsets, each of
which can be described in a recursive fashion. For the rest of the section, we will assume that
π = M1P1M2P2 · · ·Mk−1Pk−1Mk ∈ Sn is not the identity permutation (whose preimages are
well understood) and has at least one preimage (therefore Mk is nonempty).

Proposition 3.1.3. Suppose that |Mk| ≥ 2. Denote with π′ the permutation obtained from π
by removing n, and let σ′ be any preimage of π′. Let σ′ = N1R1 · · ·Ns−1Rs−1Ns be the LTR-
max block decomposition of σ′. Then every permutation obtained from σ′ by inserting n in any
position to the right of Ns−1 is a preimage of π.

12



Proof. Let σ be obtained from σ′ by inserting n somewhere to the right of Ns−1. Our goal is to
show that Q(σ) = π. Observe that, when we perform Queuesort on σ′, the elements of Ns are
not moved to the right. Therefore, when we perform Queuesort on σ, first of all n is moved
to the rightmost position. After that, since n was to the right of Ns−1, the algorithm performs
the same operations it would perform on σ′. As a consequence, Q(σ) = Q(σ′)n = π′n = π, as
desired.

Proposition 3.1.4. Let M ′
k−1 (respectively, M ′

k) be the (possibly empty) sequence obtained by
removing the last element µk−1 (respectively, n) from Mk−1 (respectively Mk). Denote with
σ any preimage of the permutation ρ = M1P1 · · ·Mk−2Pk−2M

′
k−1n. Then the permutation τ

obtained by concatenating σ with µk−1Pk−1M
′
k is a preimage of π.

Proof. When performing Queuesort on τ , first of all n is moved to the rightmost position. After
that, observe that the element µk−1 is larger than all the elements on its left. Hence, all the
elements of σ will not overtake it during the execution of the algorithm. Therefore, at the end,
the output permutation is obtained by concatenating Q(σ), µk−1Pk−1M

′
k and n, i.e. Q(τ) = π,

as desired.

The previous two propositions told us how to find some preimages of π. The next two
propositions aim at showing that these are the only preimages of π.

Proposition 3.1.5. Suppose that |Mk| ≥ 2. Denote with π′ the permutation obtained from π
by removing n. Let σ = N1R1 · · ·Ns−1Rs−1Ns be any preimage of π such that there exists an
element of Mk different from n which belongs neither to Rs−1 nor to Ns. Denote with σ′ the
permutation obtained from σ by removing n. Then σ′ is a preimage of π′.

Proof. Looking at the position of n in σ, we can distinguish two cases.

If n ∈ Ns, then σ = σ′n, and clearly Q(σ′n) = Q(σ) = π = π′n, hence Q(σ′) = π′, as
desired.

On the other hand, suppose that n /∈ Ns. This means of course that Ns = ∅, and n is the
rightmost element of Ns−1. Let D = {γ ∈ Mk | γ ̸= n, γ /∈ Ns, γ /∈ Rs−1}, and set α = maxD.
Notice that α indeed exists, since our hypothesis implies that D ̸= ∅.

When we perform Queuesort on σ, first of all the element n is moved to the rightmost
position. After that, we now want to show that the next element to be moved is α.

First, we notice that α is in fact a left-to-right maximum of σ (hence it is moved by
Queuesort). Indeed, if this were not the case, α would be to the left of Ns−1 in σ, and so
it could never overtake the elements of Ns−1 and Rs, contrary to the fact that α ∈ Mk. Our
next aim is to prove that there cannot exist elements between α and n in σ that can be moved
by Queuesort. By contradiction, suppose that β is such an element. Then necessarily β is a
left-to-right maximum of σ, and it belongs neither to Rs−1 (since Rs−1 does not contain left-
to-right maxima) nor to Ns (because elements in Ns are already at the end of the permutation
and so they are not moved by Queuesort). Moreover, β ̸= n (by our assumption) and β > α
(since β is a left-to-right maximum to the right of α in σ). Finally, β ∈ Mk, since α ∈ Mk is a
left-to-right maximum of π, hence β (> α) cannot be in a position to the left of Mk in π. We
can thus conclude that β ∈ D, but this gives a contradiction, since maxD = α < β ∈ D.

To conclude the proof, we now want to show that Q(σ′)n = Q(σ) (since obviously Q(σ) =
π = π′n, hence Q(σ′) = π′). A moment’s thought should convince one that, to this aim, it is
enough to prove that there exists no element after n in σ which is larger than α and is the first
element of a descent. For a contradiction, suppose that ω is such an element. Then α cannot
overtake ω (when Queuesort is performed on σ), and this implies that α /∈ Mk (since there is
at least one element following α in π which is smaller than α), which is false.
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Proposition 3.1.6. Let M ′
k−1 (respectively, M ′

k) be the (possibly empty) sequence obtained by
removing the last element µk−1 (respectively, n) from Mk−1 (respectively Mk). Denote with
σ = N1R1 · · ·Ns−1Rs−1Ns a preimage of π such that all the elements of Mk other than n
belong to Rs−1Ns. Then σ is the concatenation of a preimage of M1P1 · · ·Mk−2Pk−2M

′
k−1n and

µk−1Pk−1M
′
k.

Proof. We start by showing that n is the last element of Ns−1 (and so Ns = ∅). Since Pk−1 ̸=
∅, the element immediately after µk−1 in π is not a left-to-right maximum of π. Thus, by
Proposition 3.1.2, µk−1 is not a left-to-right maximum of σ. Denote with ν any left-to-right
maximum of σ preceding µk−1 such that ν > µk−1. As a consequence of Proposition 3.1.1, all
the left-to-right maxima of σ larger than µk−1 must belong to Mk. However, since ν precedes
µk−1 (and µk−1 is not a left-to-right maximum of σ), ν cannot belong to Rs−1Ns. Therefore we
can conclude that ν = n, hence n is the last element of Ns−1 and σ = N1R1 · · ·Ns−1Rs−1.

Now decompose σ as σ = ρτ , where the first element of τ is µk−1. Performing Queuesort on
σ, we have first that n is moved to the last position. After that, we observe that all the left-to-
right maxima of σ that are moved are smaller than µk−1. In fact, all left-to-right maxima of σ
larger than µk−1 are also left-to-right maxima of π (by Proposition 3.1.1), therefore they are to
the right of µk−1 in σ, i.e. they belong to τ . Thus we have that M1P1M2P2 · · ·Mk−1Pk−1Mk =
π = Q(σ) = θτn, for a suitable θ, hence τ = µk−1Pk−1M

′
k.

Finally, since all the left-to-right maxima of σ (other than n) which are moved by Queuesort

are smaller than µk−1, they cannot overtake µk−1, and so π = Q(σ) = Q(ρ)′τn (where, as usual,
Q(ρ)′ denotes the permutation obtained from Q(ρ) by removing n). Thus Q(ρ) = Q(ρ)′n =
M1P1 · · ·Mk−2Pk−2M

′
k−1n, which concludes the proof.

The last four propositions allow us to state the announced recursive description of all preim-
ages of a given permutation.

Theorem 3.1.7. Let π = M1P1 · · ·Mk−1Pk−1Mk ∈ Sn, with Mk ̸= ∅, and suppose that π is
different from the identity permutation. A permutation σ ∈ Sn is a preimage of π if and only if
exactly one of the following holds:

� σ = τµk−1Pk−1M
′
k, where, with a little abuse of notation, τ ∈ Q−1(M1P1 · · ·Mk−2Pk−2M

′
k−1n)

denotes a preimage of M1P1 · · ·Mk−2Pk−2M
′
k−1n and M ′

k−1, M
′
k are defined as in Propo-

sition 3.1.6;

� if π′ is defined (as in Proposition 3.1.5) by removing n from π and σ′ = N1R1 · · ·Ns−1Rs−1Ns

is a preimage of π′, then σ is obtained by inserting n in one of the positions to the right
of Ns−1.

Proof. Notice that, for a given π, exactly one of the above two cases holds: indeed, in the second
case there is at least one element of Mk other than n which is moved, whereas this does not
happen in the first case. In particular, in the second case a preimage exists only if |Mk| ≥ 2
(otherwise no preimage of π′ can exist). Thus the theorem is a consequence of Propositions
3.1.3 to 3.1.6.

Thanks to the above theorem, we can also describe a recursive algorithm to determine all
preimages of a given permutation π =M1P1 · · ·Mk−1Pk−1Mk:

� if π is the identity permutation, then the preimages of π are precisely the 321-avoiding
permutations (of the same length);

� otherwise
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– compute all the preimages of M1P1 · · ·Mk−2Pk−2M
′
k−1n and concatenate them with

µk−1Pk−1M
′
k;

– if |Mk| ≥ 2, then compute all the preimages N1R1 · · ·Ns−1Rs−1Ns of π
′ and insert n

in each of the positions to the right of Ns−1.

Example. To illustrate the above theorem, we now compute all the preimages of the per-
mutation 23145. The various steps of the procedure are depicted in the figure below:

23145 25

25

25314
52

52314 2314 24

24243124531
24351
24315

424231

45231
42531
42351
42315

1

3.2 Enumerative results

The main goal of the present section is to count how many preimages under Queuesort a
given permutation has. We begin by proving some preliminary facts, which are however relevant
enough to deserve a proper presentation.

Our first achievement is an important feature of the Queuesort algorithm: the number of
preimages of a permutation depends only on the positions of its left-to-right maxima, and not
on their values. The proof of this property will stem from a more general fact, that reveals an
interesting feature of Queuesort.

Recall that, given π ∈ Sn, LTRp(π) denotes the set of the positions of the left-to-right
maxima of π, i.e. LTRp(π) = {i ≤ n |πi is a left-to-right maximum of π}.

Lemma 3.2.1. Let π, σ ∈ Sn, with σ obtained from π by moving some of its left-to-right maxima
to the left, from positions i1, . . . , ih to positions i′1, . . . , i

′
h, where i1 < · · · < ih, i

′
1 < · · · < i′h,

i′j < ij for every j = 1, . . . , h. Then, for every j = 1, . . . , h, the position of σi′j in Q(σ) is at

least ij.

Proof. We start by observing that all the elements of π that are moved to the left must remain
left-to-right maxima also in σ. We now perform Queuesort on σ and describe what happens to
the left-to-right maxima in positions i′1, . . . , i

′
h. The element σi′h is the first one which is consid-

ered. Since all the elements between positions i′h and ih are smaller that σi′h (by construction
of σ), its final position in Q(σ) will be at least ih. Moving on, suppose that all the elements
σi′j+1

, . . . , σi′h have already been processed, and their final positions are at least ij+1, . . . , ih,

respectively. When Queuesort considers σi′j , the only elements between positions i′j and ij
that could possibly be greater than σi′j are the previously moved left-to-right maxima, whose

positions are however strictly greater than ij (since ij < ij+1). Therefore, also the final position
of σi′j in Q(σ) is at least ij . Repeating the argument for all the moved left-to-right maxima

gives the thesis.
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Lemma 3.2.2. Let π = π1 · · ·πn = M1P1 · · ·Mk−1Pk−1Mk ∈ Sn and let σ be a preimage of
π. As usual, let µi be the last element of Mi. Then, for all i = 1, . . . , k − 1, there exists a
left-to-right maximum of π which is to the left of µi in σ and to the right of µi in π.

Proof. By Proposition 3.1.2, µi is not a left-to-right maximum of σ. Thus there must be a
left-to-right maximum of σ to the left of µi which is greater than it. Such an element cannot
be to the left of µi in π, since µi is a left-to-right maximum of π, and this gives the thesis.

Corollary 3.2.3. Using the notations of the above lemma, the largest element of σ moved by
Queuesort belongs to Mk.

Theorem 3.2.4. Let ρ, π ∈ Sn. If LTRp(ρ) ⊆ LTRp(π), then |Q−1(ρ)| ≤ |Q−1(π)|.

Proof. Define a map f : Q−1(ρ) → Q−1(π) as follows. Given τ ∈ Q−1(ρ), suppose that,
performing Queuesort on τ , the left-to-right maxima of τ in positions i′1 < · · · < i′h are moved
to the right to positions i1 < · · · < ih, respectively. Define f(τ) = σ as the permutation
obtained from π by moving the elements in positions i1, . . . , ih to the left to positions i′1, . . . , i

′
h,

respectively.

We now show that f is well defined, i.e. that indeed σ ∈ Q−1(π). Since LTRp(ρ) ⊆ LTRp(π),
πi1 , . . . , πih are left-to-right maxima of π, so, by Lemma 3.2.1, performing Queuesort on σ moves
them at least to their original positions (possibly to the right of them). First of all, we prove
that no further elements of σ are moved by Queuesort. By contradiction, let σa′ be a left-to-
right maximum of σ that is moved by Queuesort, with a′ ̸= ij for every j. Let a be such that
πa = σa′ . Since, by construction of σ, the set of elements preceding πa in π is a subset of the
elements preceding σa′ in σ, we have that πa is a left-to-right maximum of π. If we now look at
ρ, we have two possibilities concerning the index a: either a /∈ LTRp(ρ) or a ∈ LTRp(ρ).

If a /∈ LTRp(ρ), set b = max{c < a | ρc is a left-to-right maximum of ρ}. By Lemma 3.2.2
applied to ρ, there exists a t̄ such that i′t̄ < b < it̄. In particular, by definition of b we have
i′t̄ < b < a < it̄, and so πa < πit̄ (because it̄ ∈ LTRp(ρ) ⊆ LTRp(π)). Since in σ the element πa
is to the right of the element πit̄ , that is in position i′t̄ (as a consequence of the way σ is obtained
from π), we have that σa′ = πa is not a left-to-right maximum of σ, which is a contradiction.

If instead a ∈ LTRp(ρ), we can assume that there exists no t̄ such that i′t̄ < a < it̄, because
otherwise the same argument of the previous case would lead to the contradiction that σa′ is not
a left-to-right maximum of σ. We now consider ρ. In particular, denoting with Mj the block of
left-to-right maxima containing ρa, let b be the index of the rightmost element of Mj . Applying
Lemma 3.2.2, we find that there exists ū such that i′ū < b < iū. By the above assumption, we
have a < i′ū. This implies that, when we apply Queuesort to σ, the element in position i′ū will
move at least to position iū, and the element σa′ = πa does not change position because all
the elements between πa and πb (included) do not move. This is however in contrast with the
hypothesis that σa′ is moved by Queuesort.

We have thus shown that the only elements in σ moved by Queuesort are those in positions
i′1, . . . , i

′
h. It remains to prove that they are moved to their original positions i1, . . . , ih. We

first observe that σi′h goes back to position ih because, applying Corollary 3.2.3 to ρ, we obtain
that (when applying Queuesort) τi′h goes back to the last block of left-to-right maxima of ρ,
and so σi′h goes back to the last block of left-to-right maxima of π as well, and this means that
it cannot move further. Now suppose by contradiction that there exists some j < h such that
the element σi′j is moved by Queuesort to a position strictly to the right of ij . Let j̄ be the

maximum of such j’s. Since ρ = Q(τ), ρ has a left-to-right maximum in position ij̄ + 1, so the
same is true for π. Now observe that, in σ, Queuesort moves σi′

j̄
to a position strictly to the

right of ij̄ , so at that point of the execution of Queuesort the element πij̄+1 is not in position
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ij̄ + 1. Thus it must be to the right of that position (it cannot be to the left by Lemma 3.2.1),
which contradicts the maximality of j̄.

We have thus shown that the map f is well defined. To conclude, we observe that it is also
injective, because each preimage of ρ is uniquely determined by the ij ’s and i

′
j ’s.

Corollary 3.2.5. If two permutations π and ρ have their left-to-right maxima in the same
positions, then they have the same number of preimages.

Proof. By hypothesis we have LTRp(π) = LTRp(ρ), so the previous theorem implies that
|Q−1(π)| = |Q−1(ρ)|.

Another relevant consequence of Theorem 3.2.4 is the following proposition, which reveals
to be a useful tool in several circumstances.

Proposition 3.2.6. Let π = M1P1 · · ·Mk−1Pk−1Mk ∈ Sn, with |Mi| = |{µi}| = 1 for a given
i ̸= 1, n. Let ρ = N1R1 · · ·Ni−1R

′
iNi+1 · · ·Nk−1Rk−1Nk ∈ Sn, with |Mj | = |Nj |, |Pj | = |Rj |, for

all j ̸= i, |Pi−1MiPi| = |R′
i| and such that R′

i does not contain any left-to-right maximum of ρ.
Then |Q−1(ρ)| = |Q−1(π)|.

Proof. We start by observing that LTRp(ρ) ⊂ LTRp(π), so, by Theorem 3.2.4, we have |Q−1(ρ)| ≤
|Q−1(π)|.

We now show that |Q−1(ρ)| ≥ |Q−1(π)|. In fact, due to Proposition 3.1.2, µi cannot be
moved when looking for a preimage of π. So, given a preimage of π, we can construct a preimage
of ρ as described in the proof of Theorem 3.2.4 and show that it is indeed a preimage of ρ using
similar arguments. Therefore ρ has at least as many preimages as π, thus giving the desired
inequality.

In other words, the previous proposition says that, in some sense, the presence of isolated
left-to-right maxima does not affect the number of preimages.

We now provide some results concerning permutations with a given number of preimages.
We already know (Proposition 3.0.1) that π ∈ Sn has no preimages if and only if its last element

is different from n. Therefore, setting Q
(k)
n = {π ∈ Sn | |Q−1(π)| = k} and q

(k)
n = |Q(k)

n |, we
have that Q

(0)
n = {π ∈ Sn |πn ̸= 0} and q

(0)
n = (n − 1)! · (n − 1). The next propositions deal

with Q
(1)
n and Q

(2)
n .

Proposition 3.2.7. For all n, we have Q
(1)
n = {π ∈ Sn |πn = n and π does not have two

adjacent left-to-right maxima}. As a consequence,

q(1)n = (n− 1)! ·
n−1∑
i=0

(−1)i

i!
,

that is the (n− 1)-th derangement number (sequence A000166 in [22]).

Proof. Suppose first that π ∈ Sn does not have any two adjacent left-to-right maxima and its
last element is n. Then certainly |Q−1(π)| ≠ 0. Using repeatedly Proposition 3.2.6, we can
assert that |Q−1(π)| = |Q−1(ρ)|, where ρ is any permutation of length n whose only left-to-right
maxima are in positions 1 and n. Thus, in particular, |Q−1(π)| = |Q−1((n−1)(n−2) · · · 21n)|,
and it is clear (by a direct computation, or by invoking Theorem 3.1.7) that the last quantity
is equal to 1.

On the other hand, suppose that the last element of π is n (otherwise, of course, π has
no preimages), but there exists i such that πi, πi+1 are both left-to-right maxima. We could
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now invoke Theorem 3.1.7 to find two distinct preimages of π. However we prefer to explicitly
describe two such preimages, since it is so simple. One preimage of π can be obtained by moving
n at the beginning of the permutation; in other words, πnπ1π2 · · ·πn−1 is a preimage of π (this
is trivial to verify). Another preimage of π can be obtained by placing n between πi and πi+1

and replacing π1 · · ·πi with any of its preimages τ (notice that the set of preimages of π1 · · ·πi
is indeed not empty, since πi is a left-to-right maximum); in other words, τnπi+1 · · ·πn−1 is
a preimage of π (this is also quite easy to realize, and so left to the reader). The two above
described preimages are indeed distinct, since the former starts with n whereas the latter does
not.

To conclude the proof, we recall the so called Foata’s fundamental bijection [17], which maps
a permutation σ written in one-line notation to the permutation in cycle notation obtained by
inserting a left parenthesis in σ preceding every left-to-right maximum, then a right parenthesis

where appropriate. Applying such a map to Q
(1)
n returns the set of permutations of length

n whose only fixed point is n, which is clearly equinumerous with the set of derangements of
length n− 1, as desired.

Proposition 3.2.8. For all n, we have Q
(2)
n = {π ∈ Sn |πn = n and π does not have two

adjacent left-to-right maxima except for the first two elements}. As a consequence, q
(2)
n satisfies

the recurrence relation

q
(2)
n+1 = (n− 1)q(2)n + (n− 1)q

(2)
n−1, n ≥ 3,

q
(2)
0 = q

(2)
1 = q

(2)
3 = 0, q

(2)
2 = 1.

Proof. By an argument completely analogous to that of the previous proposition, we can show
that any permutation ending with n and whose only adjacent left-to-right maxima are the first
two elements has exactly two preimages, that are obtained by moving n into the first and into
the second position, respectively.

On the other hand, if π ∈ Sn does not have adjacent left-to-right maxima, we know by
the previous proposition that |Q−1(π)| = 1. Moreover, if π contains two adjacent left-to-right
maxima πi = α and πi+1, with i ≥ 2, then π has at least three preimages, obtained as follows:
either move n into the first position, or move both α and n into the first two positions, or
replace α with n and move α into the first position.

We will now prove the recurrence relation. We can immediately see that the initial conditions

hold. First observe that, if we take a permutation in Q
(2)
n+1, then we can remove n + 1, which

is the last element, to obtain a permutation of length n without any two adjacent left-to-right
maxima except for the first two elements, and such that its last element is not n. We can now
use Foata’s fundamental correspondence [17] to get a bijection with the set An of permutation
π ∈ Sn with exactly one fixed point, say πi = i, such that i < maxα whenever α is a cycle of
π with at least two elements. For instance, π = (321)(4)(65) is not in A6 since 4 > max(321).

Thus, set an = |An|, the recurrence for q
(2)
n is equivalent to the following, which we will now

prove:
an = (n− 1)an−1 + (n− 1)an−2, n ≥ 4.

Given ρ ∈ An, its maximum n necessarily belongs to a cycle with at least two elements. If
such a cycle has exactly two elements, say n and α, with 1 ≤ α ≤ n − 1, then we can remove
them to obtain a permutation of length n − 2 belonging to An−2, thus obtaining the second
summand of the r.h.s. of the recurrence equation, i.e. (n− 1)an−2. If instead the cycle contains
at least three elements, we have two distinct cases. If it contains at least one other element
larger than the fixed point, then we can remove n to obtain a permutation in An−1. Observe
that, to invert this construction, given a permutation in An−1, there are n−2 possible positions
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to insert n in order to get a permutation of An (since n can be placed before every element
except for the fixed point). Finally, if all the elements of the cycle containing n are smaller than
the fixed point, except for n, then we can proceed as follows. Let α be the element following n
in its cycle (i.e. α = ρn in the one-line notation of ρ) and let β be the fixed point. Remove n
from ρ, and switch α with β. By construction, we obtain a permutation of length n − 1 with
exactly one fixed point, which is smaller than the maximum of each cycle, and from which we
can revert back to the starting permutation uniquely. The last two cases together account for
the first summand of the right-hand side of the recurrence relation, i.e. (n− 1)an−1.

Sequence q
(2)
n starts 0, 0, 1, 0, 2, 6, 32, 190 . . . and is essentially A055596 in [22]. We thus

deduce, for n ≥ 2, the closed formula q
(2)
n = (n−1)!−2q

(1)
n (recall that q

(1)
n equals the (n−1)-th

derangement number), as well as the exponential generating function

∑
n≥0

q(2)n

xn

n!
=

∫
(2− x− 2e−x)

1− x
dx.

We have thus seen that there exist permutations having 0, 1 or 2 preimages. We now show
(Propositions 3.2.10 and 3.2.11) that there exist permutations having any number of preimages,
except for 3. Before that, we need a preliminary result, which is of interest in its own.

Lemma 3.2.9. Let π = M1P1M2, with |M2| = 1. Then |Q−1(π)| = Cm1, the m1-th Catalan
number.

Proof. By hypothesis π = M ′
1µ1P1n, where µ1 is the last element of M1. Applying Theorem

3.1.7, we obtain that all the preimages of π are of the form τµ1P1, with τ ∈ Q−1(M ′
1n). However,

the permutation M ′
1n is increasing, hence |Q−1(M ′

1n)| = Cm1 , which gives the thesis.

Proposition 3.2.10. Given n ≥ 2, let π = n(n− 1)(n− 2) · · · 21(n+2)(n+3)(n+1)(n+4) ∈
Sn+4. Then |Q−1(π)| = n+ 2.

Proof. We will repeatedly use Theorem 3.1.7 to compute preimages. First of all, observe that
only the first case of such a theorem applies to π, since the second-to-last element of π is not n+3.
Hence, the preimages of π are precisely those permutations of the form σ(n+3)(n+1), where σ is
any preimage of n · · · 1(n+2)(n+4). Therefore our problem reduces to the enumeration of such
σ. Preimages of n · · · 1(n+2)(n+4) can again be computed using Theorem 3.1.7. In particular,
the first case of that theorem gives rise to a single preimage, which is (n + 4)n · · · 1(n + 2).
Looking at the second case, we first have to compute the set of preimages of n · · · 1(n + 2),
which is easily seen to consist of the single permutation τ = (n+2)n · · · 1 of length n+1 (notice
that this holds since we are supposing that n ≥ 2, so that τ is not an increasing permutation);
then we have to suitably insert n+4 into τ , and this can be done in n+1 different ways, namely
by inserting n+4 to the right of each element of τ . Thus we have found that the total number
of preimages of π is precisely n+ 2, as desired.

The previous proposition can be easily extended to the case n = 0, since it is immediate to
check that |Q−1(2314)| = 2. However, it does not hold when n = 1, as |Q−1(13425)| = 5. The
next proposition shows that this is no accident.

Proposition 3.2.11. There exists no permutation π such that |Q−1(π)| = 3.

Proof. As usual, suppose that π is decomposed as π = M1P1 · · ·Mk−1Pk−1Mk. If k = 1, then
|Q−1(π)| is a Catalan number, which is certainly different from 3. If k ≥ 2, we distinguish two
cases, depending on the cardinality of M2.
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� If |M2| > 1, denote with α and β the two largest elements of M2, with α < β, so that
M2 = M ′′

2αβ. Then the following four permutations are all preimages of π, and are all
distinct (this is a consequence of Theorem 3.1.7, or it can be checked by applying to each
of them our equivalent version of Queuesort):

– βM1P1M
′′
2αP2 · · ·Mk;

– αβM1P1M
′′
2P2 · · ·Mk;

– αM1βP1M
′′
2P2 · · ·Mk;

– αM1βP1M
′′
2 βP2 · · ·Mk.

� If |M2| = 1, then Proposition 3.2.6 tells us that the number of preimages of π is the same
as the number of preimages of any permutation σ = N1R1 · · ·Nk−2Rk−2Nk−1 such that
|N1| = |M1|, |R1| = |P1M2P2| and |Ni| = |Mi+1|, |Ri| = |Pi+1|, for all i ≥ 2. We can
iterate this argument until either the second maximal sequence of consecutive left-to-right
maxima of the resulting permutation has cardinality ≥ 2 or we obtain a permutation σ of
the form σ = N1R1N2, with |N2| = 1. In the former case (which occurs when there exists
i ≥ 2 such that |Mi| ≥ 2), we are in the situation described in the previous item point.
In the latter case (which occurs when |Mi| = 1, for all i ≥ 2), we can apply Lemma 3.2.9,
thus obtaining again that |Q−1(π)| is a Catalan number.

The last part of our paper is devoted to find an expression for the number of preimages of a
generic permutation π of the form π =M1P1M2. We have already proved (Lemma 3.2.9) that,
when |M2| = 1, we get a Catalan number. In order to find a general formula, we need some
preliminary work.

For any n ≥ 1 and 2 ≤ i ≤ n, defineGn,i = {π ∈ Avn(321) | πi is not a left-to-right maximum
and, for every j < i, πj is a left-to-right maximum}, and gn,i = |Gn,i|. Also define Gn,n+1 =
{idn}, gn,n+1 = 1.

Proposition 3.2.12. For every n ≥ 2, the following recurrence holds:

gn,i =


Cn−1, if i = 2,

n− 1, if i = n,

gn−1,i−1 + gn,i+1 if 3 ≤ i ≤ n− 1.

(3.1)

Proof. We observe that Gn,2 = {π ∈ Avn(321) | π2 = 1}, which is in bijection with Avn−1(321)
(by the removal of π2). As a consequence, gn,2 = Cn−1.
Moreover, given π ∈ Gn,n, the first n− 1 elements are in increasing order, and the last element
can be chosen arbitrarily, except that it cannot be n. Thus gn,n = |Gn,n| = n− 1.
To prove the recurrence relation, we describe a bijection f from Gn,i to Gn−1,i−1 ·∪Gn,i+1 (where
·∪ denotes disjoint union). Given π ∈ Gn,i, we define f(π) as follows:

f(π) =


π2 · · ·πn ∈ Gn−1,i−1, if π1 = 1,

π1 · · ·πi−1πi+1πiπi+2 · · ·πn ∈ Gn,i+1, if π1 ̸= 1 and πi+1 > πi−1,

πiπ1 · · ·πi−1πi+1 · · ·πn ∈ Gn,i+1, if π1 ̸= 1 and πi+1 < πi−1.

It is easy to check that f is indeed a bijection by explicitly constructing its inverse.

The above recurrence relation also extends to the case i = n (and also i = n+ 1, by setting
all undefined values to be 0).

Corollary 3.2.13. For every n ≥ 1, 2 ≤ i ≤ n+ 1, gn,i =
(
2n−i+1

n

)
i−1

2n−i+1 .
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Proof. Up to suitably rescaling the indices, the sequence gn,i satisfies the same initial conditions
and recurrence relation as sequence A033184 in [22]. More specifically, gn,i = A033184(n, i−1).
This gives the desired closed formula.

If we represent sequence A033184 as a triangle, we obtain one of the so-called Catalan
triangles. Its entries are sometimes called ballot numbers [1].

Before stating and proving the main result of this section, we need to introduce one more
statistic on 321-avoiding permutations. Namely, we define bn,i = |{π ∈ Avn(321) | πi = n}|.
Using the bijection that associates every permutation with its group-theoretic inverse, we can
see that bn,i = |{π ∈ Avn(321) | πn = i}|.

The next proposition shows that the bn,i’s are another version of the ballot numbers.

Proposition 3.2.14. The numbers bn,i correspond to sequence A009766 of [22], if we properly
shift them. Namely, the element bn,i is the element of indices n− 1, i− 1 of sequence A009766.

Proof. We will prove the statement by showing that the bn,i’s satisfy the same recurrence relation
(and initial conditions) as sequence A009766, namely bn+1,i =

∑i
j=1 bn,j (and b1,1 = 1, which is

plainly true). Let π ∈ Avn+1(321) such that πn+1 = i. By removing i (and rescaling), we get
a permutation π′ ∈ Avn(321). If π′n = j ̸= n, then necessarily j < i (since π avoids 321), and
each such π′ gives uniquely a permutation in Avn+1(321) ending with i (by appending i to π′).
On the other hand, if j = n, then π′ = M1P1 · · ·Mk−1Pk−1Mk is such that Mk is not empty,
and the last element of Pk−1 is smaller than i, because otherwise π would contain the pattern
321. Thus, denoting with α the number of such permutations, we have

bn+1,i =
i−1∑
j=1

bn,j + α.

To determine α we observe that, removingMk from π′, if π′ is not the identity permutation,
we obtain a bijection with the set of permutations avoiding 321 of any length m < n whose last
element j is smaller than i and different from m. Hence, using induction (on n) and repeatedly
applying the recurrence relation for the bn,i’s recalled at the beginning of this proof, we get that

α = 1 +

n−1∑
m=2

min (m−1,i−1)∑
j=1

bm,j = bn,i.

Indeed, the inner sum for a fixed m is the same as the left-hand side of the recurrence relation,
except for the element bm,m, which is obtained by the inner sum for m − 1 (for m = 2, we
observe that b2,2 = 1). Summing up, we get:

bn+1,i =
i−1∑
j=1

bn,j + bn,i =
i∑

j=1

bn,j ,

as desired.

Remark 3.2.15. Corollary 3.2.13 and Proposition 3.2.14 imply that gn,i = bn,n+2−i for all
n ≥ 1, 2 ≤ i ≤ n+ 1.

Since we will frequently use two different recursions for bn,i (both mentioned in [22]), we
record them here for ease of further reference:

bn+1,i =
i∑

j=1

bn,j , n, i ≥ 1, (3.2)
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bn,i+1 = bn,i + bn−1,i+1, n ≥ 2, i ≥ 1. (3.3)

Our last preliminary result concerns the enumeration of another subfamily of 321-avoiding
permutations. In the statement we will also make use of the multinomial coefficient

((
u
v

))
, which

counts the number of multisets of cardinality v over a set of cardinality u.

Lemma 3.2.16. The number of 321-avoiding permutations of length n + k whose k largest
elements are left-to-right maxima is

n−1∑
i=0

((
n− i+ 1

k

))
bn,i+1.

Proof. Let π′ ∈ Avn(321). Thus, if π′ = M1P1 · · ·Mt, we have that P1 · · ·Pt−1 is an increasing
sequence. How many ways do we have to insert n + 1, . . . , n + k into π′ in order to obtain a
permutation π ∈ Avn+k(321) such that the k largest elements are left-to-right maxima? We
can distinguish two cases.
If π′ is the identity permutation of length n, then we just have to insert the k elements n +
1, · · · , n + k in increasing order in any of the n + 1 possible positions, and we can do that in((

n+1
k

))
ways.

If π′ is not the identity permutation of length n, let i be the position of the last element ofMt−1,
with 1 ≤ i ≤ n− 1. Then we can insert the k elements n+ 1, . . . , n+ k in any of the n− i+ 1
positions following i in increasing order. Indeed, inserting an element in a previous position

would form an occurrence of the pattern 321. As before, this can be done in
((

n−i+1
k

))
ways.

Moreover, the permutations π′ ∈ Avn(321) such that the last element of Mt−1 is in position
i are

∑n
j=i+1 bj,i. In fact, by removing Mt from π′ we obtain a permutation of length j, with

i < j ≤ n, that has its maximum in position i, and the number of these permutations is bj,i
by definition. Summing up, the number of 321-avoiding permutations of length n+ k whose k
largest elements are left-to-right maxima is((

n+ 1

k

))
+

n−1∑
i=1

((
n− i+ 1

k

)) n∑
m=i+1

bm,i. (3.4)

Observe that
n∑

m=i+1

bm,i = bn,i+1. (3.5)

Indeed, by iteration of recurrence (3.3), we obtain bn,i+1 = bn,i + bn−1,i+1 = bn,i + bn−1,i +
bn−2,i+1 = · · · =

∑n
m=i+1 bm,i. Plugging (3.5) into expression (3.4), we thus obtain((
n+ 1

k

))
+

n−1∑
i=1

((
n− i+ 1

k

))
bn,i+1 =

n−1∑
i=0

((
n− i+ 1

k

))
bn,i+1,

which is the thesis.

We are now ready to state our main result concerning the enumeration of preimages of
permutations of the form π =M1P1M2.

Theorem 3.2.17. Let π =M1P1M2 ∈ Sn, with M2 ̸= ∅. Then

|Q−1(π)| =
m2∑
i=1

i−1∑
j=0

(
i− 1

j

)(m1−2∑
l=0

((
m1 − l

j + 1

))
bm1−1,l+1

)(
m2−i+1∑

k=2

gm2−i,k

((
k

p1 + i− j − 1

)))
,

(3.6)

where all the summations are set to be 1 whenever the set of indices is empty.
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Proof. Our goal is to describe how to obtain a generic preimage σ from π in such a way that
we are able to count them. Let µ1 be the last element of M1. By Lemma 3.2.2, there is at least
one element of M2 which is to the left of µ1 in σ. Let β be the rightmost of such elements,
and suppose that β is the i-th element of M2. Clearly 1 ≤ i ≤ m2. Let j be the number of
elements ofM2 smaller than β and to the left of µ1 in σ, with 0 ≤ j ≤ i−1. They can be chosen
in
(
i−1
j

)
different ways. In other words, σ can be written as σ = Lµ1R, where L is a suitable

permutation of the elements ofM1 other that µ1 and the j+1 elements ofM2 mentioned above,
and R is a suitable permutations of the remaining elements (that is, the elements of P1 and the
remaining elements of M2). We now wish to characterize (and count) the permutations L and
R giving rise to a preimage of π.

Concerning L, this has to be a permutation whose j+1 aforementioned elements are left-to-
right maxima and such thatQ(L) is an increasing sequence. This means that L is a 321-avoiding
permutation of length m1+ j whose largest j+1 elements are left-to-right maxima. By Lemma
3.2.16, the number of such permutations is

m1−2∑
l=0

((
m1 − l

j + 1

))
bm1−1,l+1.

Concerning R, we can construct it as follows. Start by taking a permutation ρ of the
m2 − i elements of M2 to the right of β; notice that ρ has to be a 321-avoiding permutation,
since applying Queuesort to it returns an increasing permutation. Next insert the remaining
p1+i−j−1 elements into suitable positions and preserving the order they have in π. Specifically,
such elements cannot be inserted to the right of the leftmost non-left-to-right maximum of ρ,
whereas any other position is allowed. This is due to the fact that, applying Queuesort to any
permutation, the relative order of the non left-to-right maxima is preserved. Therefore, denoting
with k the position of the leftmost non left-to-right maximum of ρ, we have 2 ≤ k ≤ m2 − i,
and there are k allowed positions. Notice that, if ρ is the identity permutation, then the above
argument cannot apply; in such a case, the total number of allowed positions is m2 − i + 1.
Summing up, and recalling the definition of gn,i, the total number of possible permutations R
is:((

m2 − i+ 1

p1 + i− j − 1

))
+

m2−i∑
k=2

gm2−i,k

((
k

p1 + i− j − 1

))
=

m2−i+1∑
k=2

gm2−i,k

((
k

p1 + i− j − 1

))
.

Combining the contributions coming from the above arguments, we get the thesis.

Formula (3.6), in its full generality, is rather involved, and it is not easy to apply it to
effectively compute the number of preimages. However, the next lemma will allow us to simplify
it.

Lemma 3.2.18. For every n ≥ 1, 1 ≤ i ≤ n,

bn,i =
i−1∑
h=1

(
n− h

n− i

)
bi−1,h. (3.7)

Proof. To prove (3.7) we exploit a well-known combinatorial interpretation of the ballot number
bn,i in terms of lattice paths starting from (0, 0), ending at (n− 1, i− 1), remaining below the
line y = x and using north steps N = (0, 1) and east steps E = (1, 0). Specifically, each
such path can be decomposed into its longest prefix that uses i − 2 E steps, followed by the
remaining suffix. It is clear that the number of such prefixes ending at point (i − 2, h − 1) is
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bi−1,h, with 1 ≤ h ≤ i− 1. Moreover, due to the specific kind of decomposition we have chosen,
the remaining suffix can be any sequence of n− i+ 1 E steps and i− h N steps starting with
E: there are

(
n−h
n−i

)
such sequences. Summing over h gives the desired formula.

Theorem 3.2.19. Let π =M1P1M2 ∈ Sn, with M2 ̸= ∅. Then

|Q−1(π)| =
m2∑
i=1

i−1∑
j=0

(
i− 1

j

)
bm1+j+1,m1 · bm2+p1−j,m2−i+1. (3.8)

Proof. Looking at formula (3.6), we start by observing that

m1−2∑
l=0

((
m1 − l

j + 1

))
bm1−1,l+1 =

m1−2∑
l=0

(
m1 + j − l

j + 1

)
bm1−1,l+1 = bm1+j+1,m1 .

Indeed, in the first equality we just express the multinomial coefficient as a binomial, and the
second equality comes from Lemma 3.2.18.

Moreover, the summation in (3.6) involving the gn,i’s can be treated analogously by means
of Lemma 3.2.18, just recalling Remark 3.2.15 and suitably modifying the index of summation
(namely replacing k with h = m2 − i+ 2− k).

Yet another way to express formula (3.6) comes from expanding the ballot numbers of the
previous theorem in terms of Catalan numbers.

Corollary 3.2.20. For π = M1P1M2 ∈ Sn, the quantity |Q−1(π)| can be expressed as a lin-
ear combination of Catalan numbers. More precisely, for any fixed m2 = |M2|, we have that
|Q−1(π)| is a linear combination of the Catalan numbers Cm1 , Cm1+1, . . . Cm1+m2−1 with poly-
nomial coefficients in p1, i.e.:

|Q−1(π)| =
m2−1∑
t=0

ωm2,t(p1)Cm1+t,

where ωm2,t(p1) is a polynomial in p1 of degree m2 − t− 1, for all t.

Proof. Indeed, if we write bm1+j+1,m1 = bm1+j+1,(m1+j+1)−(j+1), by induction on the difference
j + 1 of the indices, using recurrence (3.3), we get

bm1+j+1,m1 =

⌊ j+1
2

⌋+1∑
h=1

(−1)h−1

(
j + 2− h

h− 1

)
Cm1+j+1−h. (3.9)

Replacing the ballot number bm1+j+1,m1 with the above linear combination of Catalan num-
bers into (3.8), we can indeed express |Q−1(π)| as a linear combination of Catalan numbers.
The largest Catalan number occurring in such a linear combination is obtained when h takes
its minimum value 1 and j takes its maximum value m2 − 1, which corresponds to Cm1+m2−1.
Similarly, the smallest Catalan number is Cm1 , corresponding to the minimum value of the
difference j − h, which is −1. Moreover, by using the closed form for gn,i found in Corollary
3.2.13 and Remark 3.2.15, we observe that bm2+p1−j,m2−i+1 can be written as

bm2+p1−j,m2−i+1 =

(
2m2 + p1 − i− j

m2 − i

)
p1 − j + i

2m2 + p1 − i− j
.

For any fixed m2, this is a polynomial of degree m2 − i in p1. To conclude the proof, we
now determine the degree of the polynomial multiplying Cm1+t in the above mentioned linear
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combination, for any t in the range [0,m2 − 1]. Looking at (3.9), the Catalan number Cm1+t

(for fixed t) shows up for all j ≥ t in (3.8), and so also for all i ≥ t+1. Notice that, for i = t+1,
the coefficient of Cm1+t has degree m2 − t− 1 in p1 (since, in this case, Cm1+t is obtained only
when j = t and h = 1 in (3.9)), whereas for i > t + 1 the resulting polynomials have lesser
degree.

Effective enumerative results can be obtained for small values of the parameterm2 in formula
(3.8). For instance, when m2 = 1, we find the same result stated in Lemma 3.2.9. We are also
able to get simple closed formulas when m2 = 2 and m2 = 3.

Corollary 3.2.21. For π =M1P1M2 ∈ Sn, we get:

� |Q−1(π)| = Cm1+1 + (p1 + 1)Cm1, when |M2| = 2;

� |Q−1(π)| = Cm1+2 + (p1 + 1)Cm1+1 +
1
2(p1 + 1)(p1 + 4)Cm1, when |M2| = 3.

The above corollary, together with some further calculations, seems to suggest that ωm2,t(p1) =
ωm2+1,t+1(p1), for all m2, t. This could clearly simplify the computations needed to determine
|Q−1(π)| when m2 increases.
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Chapter 4

Bubblesort preimages

4.1 Computing the preimages

We begin this chapter presenting a procedure to compute the set B−1(σ) of all preimages of
any given permutation σ. This procedure is simple, and can also be implicitly found (together
with some of the consequences it bears) in [12]. In this article the authors, using a different
approach, obtain some of the results we also get in the present section, such as Corollary 4.1.4.

First, as an immediate consequence of Lemma 2.4.1, a permutation is in the image of B if
and only if it ends with its maximum, therefore we have that B−1(σ) is empty for any σ not
ending with its maximum. This trivial case being solved, we now focus on the interesting case
where σ does end with its maximum.

Let σ = σ1σ2 . . . σn be a permutation of size n which ends with its maximum. Define P as
a set which contains only σ. For each i from n down to 2, do the following: for each π ∈ P ,

� if πi−1 is not a left-to-right maximum of π, then replace π in the set P by the permutation
π1 . . . πiπi−1 . . . πn (that is to say, we swap πi and πi−1);

� if πi−1 is a left-to-right maximum of π, then π stays in the set P , and in addition we add
in P the permutation π1 . . . πiπi−1 . . . πn (where πi and πi−1 are swapped).

Example 4.1.1. The table below shows the evolution of the set P of the above procedure, for
σ = 325146.

i = . . . initialization 6 5 4 3 2

P contains 325146 325164 325614 325614 352614 352614, 532614
326514 362514 362514, 632514

We may note that, when starting any step i, for any π ∈ P , πi is always a left-to-right
maximum of π, and πi−1 is a left-to-right maximum of π if and only if σi−1 is a left-to-right
maximum of σ. Indeed, all steps until step i (excluded) of the above procedure leave the prefixes
of length i− 1 unchanged.

It is useful to have a different (although equivalent) presentation of this procedure, which
we now give. Starting from σ, where we see the rightmost element σn as distinguished, we move
the distinguished element to the left until it becomes the leftmost, according to the following
rules.

� If the element immediately to the left of the distinguished one is not a left-to-right maxi-
mum of the current sequence, then the distinguished element is forced to move to the left
(i.e. is swapped with its left neighbor). The distinguished element remains the same.
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� If the element immediately to the left of the distinguished one is a left-to-right maximum
of the current sequence, then the distinguished element may either move to the left or
stay in place. In the first case, the distinguished element remains the same. In the second
case, the distinguished element becomes the left neighbor of the previously distinguished
element.

It is easy to see that the set P computed by the original procedure consists of all possible results
of applying this alternative procedure.

Some remarks (all easily observed) about this alternative procedure are useful. First, the
index i (between n and 2) of a given step of the original procedure always corresponds to
the position of the distinguished element in the evolving sequence. Second, the distinguished
element is always a left-to-right maximum of σ, and also of the evolving sequence. Third, for
any sequence π produced, the elements which were at some point distinguished in the sequence
are exactly the left-to-right maxima of π.

Theorem 4.1.2. Let σ be any permutation ending with its maximum, and P be the set produced
by the procedure above. Then P is the set of preimages of σ under B, that is to say, P = B−1(σ).

Proof. Assume first that a sequence π has been produced by the above procedure. It means that
π has been produced from σ by considering some left-to-right maxima of σ, from the right to the
left, and moving these left-to-right maxima to the left, until they reach the position of the next
left-to-right maximum which moves to the left. This is exactly undoing the action of B. More
precisely, let π = µ1A1 · · ·µkAk be the LTR-max decomposition of π (defined in Section 2.1,
where the µi are the left-to-right maxima of π. By construction of π, Ai is not empty if and only
if µi has been moved by our procedure. Applying B to π yields A1µ1 · · ·Akµk, thus exactly
the elements that were moved by our procedure will be moved to the right by Bubblesort.
Moreover, B moves µi to the right until it reaches the position immediately before µi+1, and
we claim that this is µi’s original position in σ: indeed, our procedure only moves the µj ’s, so
it must have started moving µi to the left immediately after considering µi+1. This proves that
B(π) = σ, and therefore P ⊆ B−1(σ).

For the converse inclusion, we proceed by induction on the size of σ. The statement is
obvious for size 1. So, let us consider π ∈ B−1(σ), for σ of size greater than 1. We decompose
π around its maximal element as π = LnR. Then B(π) = B(L)Rn, so that σ = B(L)Rn.
Starting from σ = B(L)Rn, the above procedure is always allowed to move n towards the left,
and may decide when reaching B(L)nR to distinguish the last element of B(L) instead of n.
Indeed, B(L) necessarily ends with its maximum, so that the last element of B(L) is a left-
to-right maximum. Since B(L) is a sequence shorter than σ ending with its largest value, we
may apply the induction hypothesis to it, and deduce that L has been produced by the above
procedure applied to B(L). Combining these two facts, it follows that our procedure applied to
σ = B(L)Rn can produce LnR = π, therefore showing that B−1(σ) ⊆ P .

Theorem 4.1.2 has several consequences. First, we can refine Corollary 2.4.2 and describe
B−1(σ) exactly from the left-to-right maxima of σ.

Corollary 4.1.3. Let σ be a permutation of size n ending with its maximum ( i.e., σn = n).
Let k be the number of left-to-right maxima of σ (including n).

There is a bijective correspondence between the preimages of σ under B and the subsets of
the k − 1 left-to-right maxima of σ different from n.

More precisely, this correspondence works as follows. For any set S = {s1 < · · · < sj} of
j ≤ k− 1 left-to-right maxima of σ different from n, writing σ = B0s1B1s2B2 . . . sjBjn (for the
Bi possibly empty sequences of integers, which contain the k − j left-to-right maxima not in S
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and the elements of σ which are not left-to-right maxima), the corresponding preimage of σ is
s1B0s2B1 . . . sjBj−1nBj.

Proof. From the alternative description of the procedure computing B−1(σ), we have seen that
the elements which are distinguished at some point are exactly the left-to-right maxima of the
preimage produced. In addition, by definition of this procedure, the distinguished elements
form a subset containing n of the set of left-to-right maxima of σ. This proves the claimed
bijective correspondence.

To describe precisely the preimage corresponding to a subset S, it is enough to note that
every distinguished element moves to the left until a new distinguished element is chosen, leaving
all other elements unchanged.

This allows to count the preimages of any given permutation, in total or by the number of
their left-to-right maxima.

Corollary 4.1.4. Let σ be a permutation of size n ending with its maximum, and with k
left-to-right maxima.

The cardinality of B−1(σ) is 2k−1, and for any 1 ≤ j ≤ k, the number of preimages of σ
with j left-to right maxima is

(
k−1
j−1

)
.

Proof. The cardinality of B−1(σ) follows immediately from Corollary 4.1.3. By Corollary 4.1.3,
a preimage of σ with j left-to-right maxima corresponds bijectively to a subset containing j− 1
elements of the set of left-to-right maxima of σ different from n. We have

(
k−1
j−1

)
different ways

to select these subsets, thus proving the lemma.

Second, we can characterize the permutations having a given number of preimages.

Corollary 4.1.5. For any k ≥ 1, the permutations having exactly 2k−1 preimages under B are
those ending with their maximum and having k left-to-right maxima in total.

In particular, there are
[
n−1
k−1

]
permutations of size n having 2k−1 preimages under B, where[

n
k

]
are the (unsigned) Stirling numbers of the first kind.

Proof. The first statement follows immediately from Corollary 4.1.3. The second follows from
the well-known fact that Stirling numbers of the first kind enumerate permutations according
to their size and number of cycles, using the classical Foata bijection which maps permutations
of size n with k cycles to permutations of size n with k left-to-right maxima.

4.2 The trees of iterated preimages

Remember that, for any n, Sn denote the set of permutations of size n and idn = 12 . . . n
the identity permutation of size n. We start by defining T (π) for any permutation π, and
Tn = T (idn).

Definition 4.2.1. Let Tn be the tree whose nodes are the permutations of Sn such that:

� Tn has root idn;

� for every σ, τ ∈ Sn, τ is a child of σ if and only if B(τ) = σ and σ ̸= τ . Note that the
situation B(τ) = σ and σ = τ occurs only when σ = τ = idn.

Also, given a permutation π ∈ Sn, we define the tree of its preimages T (π) as the subtree
of Tn with root π.

For example, Fig. 4.1 shows the tree T4.
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1234

1243 1324

1342 1432 3142 4132

1423 2134

2314

4231 2431 2341 3241

2413 4213 3214

4321 3421

2143 3124

3412 4312

4123

Figure 4.1: The tree T4.

4.2.1 Isomorphisms between subtrees

For any permutation π, T (π) describes all possible preimages of π under repeated applica-
tions of B−1. From Section 4.1, we can see that the “shape” of this tree depends on π only
through the location of its left-to-right maxima. More precisely, the following lemma holds.

Lemma 4.2.2. Let π and τ be two permutations of the same size. If π and τ have their
left-to-right maxima in the same positions, then T (π) and T (τ) are isomorphic.

Proof. Let π, τ be permutations of the same size n which have their left-to-right maxima in
the same positions, and let h and k be the depth of T (π) and T (τ), respectively (the depth of
a tree being defined as the maximum depth of its nodes). Without loss of generality, we can
assume that h ≥ k. The proof is by induction on h. If h = 0, then h = k = 0, and so T (π) and
T (τ) both consist of a single node, and our claim trivially holds.

Now suppose that h > 0. Unless π = idn, by definition, the nodes of T (π) at depth 1 are the
preimages of π under B. By Corollary 4.1.3, these preimages are in bijection with all possible
subsets of left-to-right maxima of π which do not contain n. Instead of identifying a subset of
left-to-right maxima of π by the values of the left-to-right maxima it contains, we can identify
it by the positions of the left-to-right maxima it contains. Since π and τ have their left-to-right
maxima in the same positions, it follows from Corollary 4.1.3 that there is a bijection between
the preimages of π under B and the preimages of τ under B. In addition, for every σ ∈ B−1(π),
the corresponding ρ ∈ B−1(τ) has its left-to-right maxima in the same positions as those of
σ. Since T (σ) and T (ρ) have depth at most h − 1 and k − 1 respectively, we can apply the
inductive hypothesis and obtain that T (σ) and T (ρ) are isomorphic. Summing up, we have that
the children of π and τ are in a bijective correspondence, and the trees rooted at two children
paired together by this bijection are isomorphic. Therefore T (π) and T (τ) are isomorphic.

Finally, if π is the identity permutation of size n, and τ (of the same size) has its left-to-right
maxima in the same positions as π, then necessarily τ = idn as well, and in this case our claim
trivially holds.

As the next proposition shows, all possible shapes of the trees T (π) can be found starting
at depth 1 in Tn. To establish this proposition, we rely on the LTR-max block decomposition
of π (defined in Section 2.1), which will be also essential in the description of T (π) in the next
subsection. We recall it below both for convenience and to fix the notation for the indices and
the length of the blocks.

Definition 4.2.3. Given π, we decompose it as π = M1P1 · · ·Mℓ−1Pℓ−1Mℓ, where the Mi’s
are all the maximal sequences of consecutive left-to-right maxima of π (called blocks), and the
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Pi’s collect all the remaining elements. In particular, all the Pi’s are nonempty, and Mi is
nonempty for all i except possibly for i = ℓ. Moreover, mi = |Mi| denotes the length of Mi,
and analogously pi = |Pi| denotes the length of Pi, for all i.

Notice that m1 + · · ·+mℓ = k is the total number of left-to-right maxima of π.

Proposition 4.2.4. For every permutation π ∈ Sn, π ̸= idn, there exists a child τ of idn in Tn
such that T (π) and T (τ) are isomorphic.

m1

m1 + p1

m1 + p1 +m2

m1 + p1 +m2 + p2

m1 + p1

m1 + p1 +m2 + p2

Figure 4.2: The permutation τ described in the proof of Proposition 4.2.4.

Proof. Let π =M1P1 · · ·Mℓ−1Pℓ−1Mℓ ∈ Sn. Define τ as the permutation in which the elements
m1+p1,m1+p1+m2+p2, . . . ,m1+p1+· · ·+mℓ−1+pℓ−1, are in the positionsm1,m1+p1+m2,. . . ,
m1+p1+m2+· · ·+mℓ−2+pℓ−2+mℓ−1, respectively, while all the other elements are in increasing
order. We can see an example of this construction in Fig. 4.2. Therefore, τ and π have their
left-to-right maxima in the same positions, thus by Lemma 4.2.2 the trees T (π) and T (τ) are
isomorphic.

We are left with showing that τ is a child of idn in Tn. Since p1 ̸= 0, then τ ̸= idn, so we
only need to check that B(τ) = idn. Observe that the elements m1 + p1 + · · ·+mi + pi are the
last left-to-right maxima of their blocks in τ , for every i = 1, . . . , ℓ − 1, and all the elements
before the positions m1+ p1+ · · ·+mi+ pi are smaller than or equal to m1+ p1+ · · ·+mi+ pi.
Therefore B(τ) = idn, because the m1 + p1 + · · · +mi + pi’s are the only elements moved by
Bubblesort, and they are moved to their correct position.

4.2.2 The skeleton of the tree of preimages

Here we describe how the “shape” of any tree T (π) is completely determined by a small
piece of information about π, which we encapsulate in its label.

Definition 4.2.5. The label of a permutation σ is the pair (k,mℓ), where k and mℓ are defined
as in Definition 4.2.3.1 The skeleton of a tree T (π) is obtained from T (π) by replacing each
permutation at a node with its label. Fig. 4.3 shows the skeleton of the tree T (2134), and can
be compared with the subtree T (2134) of T (1234) in Fig. 4.1.

1In particular, by definition of k and mℓ, the first component of a label is always at least as large as the
second, with equality only in the case of the identity permutations.
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(3, 2)

(1, 0) (2, 0) (2, 1)

(1, 0) (2, 0)

(3, 1)

(1, 0) (2, 0) (2, 0) (3, 0)

Figure 4.3: The skeleton of the tree T (2134).

Remark 4.2.6. Since they have their left-to-right maxima in the same positions, the permuta-
tions π and τ of Proposition 4.2.4 have the same label. (It can also be observed that the trees
T (π) and T (τ) have the same skeleton. This follows by recursively applying Corollary 4.1.3, as
in the proof of Lemma 4.2.2.)

Given a permutation π, we can determine the skeleton of T (π) using only the pair (k,mℓ).
Specifically, it is the tree with root labeled by (k,mℓ), and whose children (and recursively,
descendants) are obtained as described in the next proposition.

Proposition 4.2.7. Let π ∈ Sn with label (k,mℓ). Let T be the skeleton of T (π). Then the
root of T has label (k,mℓ) and its children have the following labels:

� for every h = 0, . . . ,mℓ − 2:

– for every i = 1, . . . , k − 1− h, there are
(
k−2−h
i−1

)
children with label (k − i, h);

� if π ̸= idn, we also have the case corresponding to h = mℓ − 1:

– for every i = 0, . . . , k − mℓ, there are
(
k−mℓ

i

)
children with label (k − i,mℓ − 1) =

(k − i, h).

Proof. We want to find the number of preimages of π with any given label. If mℓ = 0, then π
does not end with its maximum, hence it has no preimage. Thus the root of T has no children,
and our claim vacuously holds.

Suppose that mℓ > 0. This means that π = π1 · · ·πn−mℓ
(n −mℓ + 1) · · ·n. We can apply

the procedure described in Section 4.1 to find the preimages of π. From this procedure we can
see that, if π ̸= idn, then its preimages can only have labels (k′, h) with k′ ≤ k and h < mℓ,
which corresponds to the labels listed in the above statement.

If instead π = idn, then it has label (n, n) and its preimages can only have labels (k′, h),
with k′ ≤ n and h ≤ n, h ̸= n− 1. Indeed, we cannot obtain a preimage of idn with h = n− 1,
because that would mean that only the element 1 is not part of the last sequence of left-to-right
maxima, which is impossible. Instead we can have h = n, but only by leaving idn unchanged.

To obtain a permutation with label (k− i, h) with h < mℓ − 1, referring to the procedure of
Section 4.1, we are forced to leave unchanged (i.e. not to swap) all the elements from n down
to n− h+ 1, then to swap n− h with n− h− 1. We are allowed to do so, because they are all
left-to-right maxima, since h < mℓ − 1.

After these steps, we obtain π′(n−h−1)(n−h+1)(n−h+2) · · ·n, with2 π′ = π1 · · ·πn−h−2(n−
h). Note that π′ has k− h− 1 left-to-right maxima. Moreover, there is a bijection between the
preimages of π′ and the preimages of π ending with the suffix (n−h−1)(n−h+1)(n−h+2) · · ·n,

2Note that π′ is not a permutation, but just a sequence of distinct integers. However, as we have seen in
Lemma 2.4.1, it still makes sense to consider B on such sequences.
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which consists of just appending the suffix (n−h−1)(n−h+1)(n−h+2). Under this bijection,
if a preimage of π′ has k − i− h left-to-right maxima (for some i such that 1 ≤ i ≤ k − 1− h),
then the corresponding preimage of π has label (k − i, h).

From Corollary 4.1.4, the number of preimages of π′ with k − i− h left-to-right maxima is(
k−h−2

k−i−h−1

)
=
(
k−h−2
i−1

)
, for every h = 0, . . . ,mℓ− 2 and i = 1, . . . , k− 1−h. Exploiting the above

bijection, this prove the first item of our proposition.

Consider now the case h = mℓ−1, π ̸= idn. Then, applying the procedure of Section 4.1, we
are forced to leave unchanged all the elements from n down to n−mℓ+2, then swap n−mℓ+1
with πn−mℓ

. Note that πn−mℓ
is an element of π which is not a left-to-right maximum, so if we

define π′ = π1 · · ·πn−mℓ−1(n −mℓ + 1), we have that π′ has k −mℓ + 1 = k − h left-to-right
maxima. An argument analogous to the one we have used for the case h < mℓ − 1 shows that
the number of preimages of π with label (k − i,mℓ − 1) are

(
k−mℓ

k−i−mℓ

)
=
(
k−mℓ

i

)
.

Finally, note that, if π = idn, then there is an additional preimage, which is idn, with label
(n, n). However it does not correspond to a child of idn, because Definition 4.2.1 prevents a
permutation from being a child of itself.

Corollary 4.2.8. Let π be a permutation of size n with label (k,mℓ) such that π ̸= idn. Then
T (π) has depth mℓ. In addition, for every n ≥ 1, Tn has depth n− 1.

Proof. We prove the statement by induction on mℓ. If mℓ = 0, then T (π) consists only of the
root, and so has depth 0, as required. If mℓ ≥ 1, then by Proposition 4.2.7 the root of T (π)
has children whose labels are of the form (k′, h), for every 0 ≤ h ≤ mℓ − 1 and some k′. By
induction hypothesis, the subtree rooted at each child with label (k′, h) has depth h. It follows
that T (π) has depth 1 + (mℓ − 1) = mℓ, since the maximum value of h is mℓ − 1.

We now consider Tn. If n = 1 then Tn consists of a single node and the statement is
true. Otherwise, if n > 1, then (again by Proposition 4.2.7) the root of Tn has children with
labels (k′, h) for every 0 ≤ h ≤ n − 2 and some k′. Since these children are not the identity
permutation, we can apply the first part of this corollary to them. We obtain that each child
with label (h, k′) is the root of a subtree of depth h. Since the maximum value of h is n− 2, Tn
has depth 1 + (n− 2) = n− 1.

Corollary 4.2.9. For any given node π ̸= idn in Tn, either half of its children are leaves or all
of its children are leaves.

Proof. Let (k,mℓ) be the label of π ̸= idn. If mℓ = 0, the statement is vacuously true, because
π is a leaf. Otherwise, if mℓ = 1, then by Proposition 4.2.7 we have that all of its children have
label (k′, 0) for some k′, and so they are all leaves.

Finally, if mℓ > 1, then (again by Proposition 4.2.7) the number of children of π which are
leaves, that is with label (k′, 0) for some k′, is

k−1∑
i=1

(
k − 2

i− 1

)
=

k−2∑
j=0

(
k − 2

j

)
= 2k−2.

By Corollary 4.1.4, π has 2k−1 preimages, or equivalently it has 2k−1 children (since π ̸= idn).
This proves our statement.

Notice that, for π = idn (with label (n, n)), it is still true that it has 2n−2 children which
are leaves and 2n−1 preimages, but the total number of children is now 2n−1 − 1 (idn being a
preimage of itself, but not one of its children).
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4.2.3 The inverse problem: deciding if a tree is isomorphic to T (π) for some
π

We now consider the following problem: given a (rooted unlabeled) tree T , does there exist
a permutation π such that T coincides with the (unlabeled) skeleton of T (π)? This problem
can be easily solved thanks to our previous results on the labels of the nodes of T (π). If T
consists of just a leaf, then of course T is isomorphic to T (π) for some π (just take π = 1 or
any permutation of size at least 2 not ending with its maximum). So, assume that T has depth
at least 1.

The first step is to determine the label of a candidate π. By Corollary 4.1.4, we can imme-
diately say that, if the root of T has neither 2k−1 nor 2k−1 − 1 children, for some k > 0, then
T cannot be the (unlabeled) skeleton of any T (π).

If the root of T has 2k−1 − 1 children, then the only candidate permutation is π = idk.
In particular, by Corollary 4.2.8, it is necessary that T has depth k − 1. We can then use
Proposition 4.2.7 to check if the number of children of every node of T matches with the
numbers given in that proposition.

Otherwise, suppose that the number of children of the root of T is 2k−1 for some k. Let mℓ

be the depth of T . By Corollary 4.1.4 and Corollary 4.2.8, we know that a permutation needs
to have label (k,mℓ) for T (π) to have 2k−1 children of its root and depth mℓ. Therefore we can
use Proposition 4.2.7 to check if the number of children of every node of T matches with the
numbers given in Proposition 4.2.7 for a permutation π ̸= idn with label (k,mℓ).

The next proposition summarizes the above discussion.

Proposition 4.2.10. Let T be a (rooted unlabeled) tree, let i be the number of children of the
root of T , and mℓ be the depth of T . Then

� if i = 2mℓ − 1, then T may only coincide with the (unlabeled) skeleton of Tmℓ+1;

� if there exists a positive integer k such that i = 2k−1, then T may only coincide with the
(unlabeled) skeleton of a permutation π with label (k,mℓ);

� in all the other cases, T does not coincide with the unlabeled skeleton of any permutation.

4.3 Heights of nodes and leaves in Tn

4.3.1 Nodes

Recall that the height of a node in a rooted tree is the number of edges on the path connecting
that node to the root. The height of a node of the tree Tn corresponds to the number of passes
of Bubblesort needed to sort the permutation at this node. Therefore, we can refer to [3, Prop.
17] to find information on the number of nodes of Tn.

Proposition 4.3.1 ([3]). The set of permutations of size n sorted by at most k passes of
Bubblesort is the set Avn(Γk+2), where Γk is the set of all permutations of size k whose final

element is 13. As a consequence, setting φ
(k)
n = |Avn(Γk)|, the number of nodes at height at

most k in Tn is given by φ
(k+2)
n = (k + 1)n−k−1(k + 1)!

We can thus immediately deduce the number of nodes at a given height in Tn.

3We warn the reader that we have made a slight change of notation with respect to [3] here; more specifically,
our set Γk is Γk−2 in [3].
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n
k

0 1 2 3 4 5

1 1
2 1 1
3 1 3 2
4 1 7 10 6
5 1 15 38 42 24
6 1 31 130 222 216 120

Table 4.1: Number of nodes in Tn having height k.

Corollary 4.3.2. The number f
(k)
n of nodes at height k in Tn is given by

f (k)n = φ(k+2)
n − φ(k+1)

n = (k + 1)n−k−1(k + 1)!− kn−kk! = k! · ((k + 1)n−k − kn−k).

The first lines of the infinite triangular matrix of the coefficients f
(k)
n are given in Table 4.1.

This is sequence A056151 in [22].
We notice that the elements on the diagonal of Table 4.1 are the factorial numbers, more

specifically f
(n−1)
n = (n − 1)!. Indeed, the set of permutations of size n needing the maximum

number of passes of Bubblesort to be sorted (that is, n− 1 passes) is the set of permutations
of size n ending with 1, whose cardinality is clearly (n− 1)!.

From the expression of φ
(k)
n in Proposition 4.3.1, we can derive the asymptotic behavior of

the average height of a node in Tn. This analysis is described in [16, Theorem 7.14] and follows
easily from the asymptotic behavior of the Ramanujan P-function (see [16, Table 4.11] or [20,
p. 119-120]), which we state in Lemma 4.3.3 below. We then reproduce the analysis of [16,
Theorem 7.14], as a preparation for Proposition 4.3.9 below.

Lemma 4.3.3 ([16]). The Ramanujan P-function, defined by P (n) =
∑n−1

k=0
k!kn−k

n! , behaves
asymptotically as

√
πn
2 +O(1).

Proposition 4.3.4 ([16]). The average height of a node in Tn is asymptotically equal to n −√
πn
2 +O(1).

Proof. The average height of a node in Tn is given by

Hn :=
1

n!

n−1∑
k=1

number of nodes of height at least k in Tn,

each node at height k contributing indeed exactly k times to this sum. Writing the number
of nodes of height at least k in Tn as the difference of n! (the total number of nodes) and the
number of nodes of height at most k − 1 in Tn, we then compute

Hn =
1

n!

n−1∑
k=1

(n!− φ(k+1)
n ) =

1

n!

n−1∑
k=1

(n!− kn−kk!) = (n− 1)−
n−1∑
k=0

kn−kk!

n!
= (n− 1)− P (n),

proving our claim.

Recall the (obvious) fact that Tn contains n! nodes. With Proposition 4.3.1 and Corol-
lary 4.3.2, we have refined this counting according to the height of the nodes in Tn. We now
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address the analogous problems in T (π) for π ̸= idn. More precisely, given a permutation π (of
size n) having label (k,mℓ), we determine an expression for the number of nodes of T (π) (which
does not depend on n). This expression is a summation formula in which each summand counts
nodes in T (π) of a prescribed height.

Lemma 4.3.5. Let π and τ be two permutations having labels (k,mℓ) and (k,mℓ − 1), respec-
tively, with 1 ≤ mℓ ≤ k− 1. Then the tree obtained by removing the leaves at height mℓ in T (π)
is isomorphic to T (τ).

Proof. Remember that, by Corollary 4.2.8, T (π) has height mℓ and T (τ) has height mℓ − 1.
The proof is by induction on mℓ.

If mℓ = 1, then T (τ) consists of the single node τ , while T (π) has height 1, therefore the
statement is true.

Now let mℓ ≥ 2, and suppose that the statement is true for mℓ − 1. We will show that
there is a bijective correspondence between the children of τ and the children of π such that the
subtree rooted at a child of τ is isomorphic to the subtree rooted at the corresponding child of
π, after removing the leaves at height mℓ (if any).

Proposition 4.2.7 allows us to determine the labels of the children of τ and π in T (τ) and
T (π), respectively. Specifically, τ and π have the same number of children with labels (k− i, h),
for every h = 0, . . . ,mℓ−3 and every i = 0, . . . , k−1−h. Regarding the remaining children, we
have that the number of children of τ labeled (k− i,mℓ − 2) is equal to the sum of the number
of children of π labeled (k− i,mℓ − 2) and (k− i,mℓ − 1), for every i = 0, . . . , k−mℓ +1. This
induces the announced bijective correspondence between the children of τ in T (τ) and those of
π in T (π).

The children of τ and π with the same labels give isomorphic subtrees by Proposition 4.2.7.
In addition, if this label is (k − i, h) for some h ≤ mℓ − 2 (and some suitable i), then the
subtrees contain no leaf at height mℓ in T (τ) or T (π) (again by Corollary 4.2.8), ensuring our
claim restricted to such children of π and τ .

Therefore, we are left with considering a child of π in T (π) with label (k − i,mℓ − 1), to
which corresponds a child of τ in T (τ) of label (k − i,mℓ − 2). We can apply the inductive
hypothesis to such children of π and τ , thus obtaining that each subtree of T (τ) rooted at a
child of τ with label (k− i,mℓ−2) is isomorphic to a subtree of T (π) rooted at a child of π with
label (k − i,mℓ − 1) after removing the leaves at height mℓ − 1 (in the subtree, i.e. at height
mℓ in T (π)). This concludes the proof.

Proposition 4.3.6. For a permutation π having label (k,mℓ), different from an identity per-
mutation, the number of nodes of the tree T (π) of its preimages under B is

N(k,mℓ) =

mℓ∑
j=0

j!(j + 1)k−j . (4.1)

Moreover, each summand in Eq. (4.1) records the contribution of each level of T (π). In
other words, denoting with Nj(k,mℓ) the number of nodes at height j in T (π), we have that
Nj(k,mℓ) = j!(j + 1)k−j.

Proof. In order to prove Eq. (4.1) we proceed by induction on mℓ. If mℓ = 0, then π has no
children, hence N(k, 0) = 1, which is consistent with Eq. (4.1).

Now suppose that Eq. (4.1) holds when the cardinality of the longest suffix of left-to-right
maxima of π is strictly smaller than mℓ. Recalling Proposition 4.2.7, we have the following
recursive expression for the number of nodes of T (π):
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N(k,mℓ) = 1+

mℓ−2∑
h=0

k−1−h∑
i=1

(
k − 2− h

i− 1

)
N(k − i, h) +

k−mℓ∑
i=0

(
k −mℓ

i

)
N(k − i,mℓ − 1)

= 1+

mℓ−2∑
h=0

k−1−h∑
i=1

(
k − 2− h

i− 1

) h∑
j=0

j!(j + 1)k−i−j +

k−mℓ∑
i=0

(
k −mℓ

i

)mℓ−1∑
j=0

j!(j + 1)k−i−j

= 1+

mℓ−2∑
h=0

h∑
j=0

j!(j + 1)k−j−1
k−2−h∑
i=0

(
k − 2− h

i

)
(j + 1)−i

+

mℓ−1∑
j=0

j!(j + 1)k−j
k−mℓ∑
i=0

(
k −mℓ

i

)
(j + 1)−i

= 1+

mℓ−2∑
h=0

h∑
j=0

j!(j + 1)k−j−1

(
1 +

1

j + 1

)k−2−h

+

mℓ−1∑
j=0

j!(j + 1)k−j

(
1 +

1

j + 1

)k−mℓ

= 1+

mℓ−2∑
h=0

h∑
j=0

j!(j + 1)h−j+1(j + 2)k−2−h +

mℓ−1∑
j=0

j!(j + 1)mℓ−j(j + 2)k−mℓ .

We then exchange the order of the two sums in the middle term of the last expression, use
the geometric sum formula and we get:

N(k,mℓ) = 1+

mℓ−2∑
j=0

j!(j + 1)1−j(j + 2)k−2
mℓ−2∑
h=j

(j + 1)h(j + 2)−h +

mℓ−1∑
j=0

j!(j + 1)mℓ−j(j + 2)k−mℓ

= 1+

mℓ−2∑
j=0

j!(j + 1)(j + 2)k−1−j −
mℓ−2∑
j=0

j!(j + 1)mℓ−j(j + 2)k−mℓ

+

mℓ−1∑
j=0

j!(j + 1)mℓ−j(j + 2)k−mℓ

= 1+

mℓ−1∑
j=1

j!(j + 1)k−j +mℓ!(mℓ + 1)k−mℓ =

mℓ∑
j=0

j!(j + 1)k−j ,

which gives Eq. (4.1).
Concerning the evaluation ofNj(k,mℓ), Lemma 4.3.5 implies thatNj(k,mℓ) = Nj(k,mℓ−1),

for all j ≤ mℓ− 1. By a repeated application of the lemma, we get that Nj(k,mℓ) = Nj(k, j) =
N(k, j)−N(k, j − 1) = j!(j + 1)k−j , as desired.

4.3.2 Leaves

In the tree Tn the leaves represent permutations that cannot be obtained as output of
Bubblesort, i.e., which do not belong to the image of B. We saw just after Lemma 2.4.1 that
these permutations are those not ending with their maximum, so that the total number of leaves
in Tn is given by (n− 1) · (n− 1)!.

Our next result is a closed formula for the number of leaves at height k in Tn, for any
k ≤ n− 1. To this aim, we make use of the so-called ECO method, illustrated in [4] and further
developed and employed by many authors (see for instance [14]). We will not give a detailed
description of this method here, since our application is simple enough to be outlined directly.

Recall that leaves in Tn correspond to permutations whose last element is not the maximum.
Thus, denoting with Av∗n(Γk) the set of permutations of size n avoiding Γk and such that their
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last element is different from n, we are interested in the coefficients γ
(k)
n = |Av∗n(Γk)|, since

γ
(k+2)
n gives the number of leaves at height at most k in Tn.

Proposition 4.3.7. For all n, k, we have

γ(k)n =

{
(n− 1)(n− 1)! n < k,

(k − 2)(k − 1)n−k(k − 1)! n ≥ k.

Proof. We consider the following general procedure to generate all permutations of size n. Given
any permutation of size n − 1, construct n different permutations of size n by adding a new
rightmost element k, for any choice of k between 1 and n, and suitably rescaling the other
elements (namely, all elements of the starting permutation which are greater than or equal to
k are increased by 1, whereas all the remaining elements are left untouched). It is immediate
to realize that, starting from the set of all permutations of size n − 1, the above procedure
generates exactly once every permutation of size n.

We now adapt the above construction to our setting. Every permutation of Av∗n(Γk) can
be obtained from a permutation of Avn−1(Γk) by adding a suitable rightmost element. More
specifically, we cannot add n (because we require that our permutation does not end with its
maximum); moreover, if n ≥ k, we cannot add any element between 1 and n − k + 1 as well
(otherwise we would create one of the forbidden patterns belonging to Γk). On the other hand,
any of the remaining elements is allowed and generates a valid permutation. This means that
every permutation in Avn−1(Γk) generates k − 2 distinct permutations of Av∗n(Γk) and every
permutation in Av∗n(Γk) is obtained in this way exactly once. We thus deduce that, when n ≥ k,

γ(k)n = (k − 2)φ
(k)
n−1 = (k − 2)(k − 1)n−k(k − 1)!,

whereas for n < k we have that γ
(k)
n = (n− 1)(n− 1)!, which concludes the proof.

Corollary 4.3.8. The number g
(k)
n of leaves of Tn at height k is given by

g(k)n = k!(k(k + 1)n−k−1 − (k − 1)kn−k−1).

Proof. Just observe that g
(k)
n = γ

(k+2)
n − γ

(k+1)
n and that the maximum height of a node of Tn

is n− 1, so we are only interested in the case n ≥ k + 1 of the previous proposition.

As in the case of nodes, Proposition 4.3.7 allows us to derive the asymptotic behavior of the
average height of a leaf in Tn.

Proposition 4.3.9. The average height of a leaf in Tn is asymptotically equal to n−
√

πn
2 +O(1).

Proof. As in the proof of Proposition 4.3.7, we have that the average height of a leaf in Tn is

Gn =
1

(n− 1)(n− 1)!

n−1∑
k=1

number of leaves of height at least k in Tn

=
1

(n− 1)(n− 1)!

n−1∑
k=1

(
(n− 1)(n− 1)!− γ(k+1)

n

)
= (n− 1)−

n−1∑
k=1

(k − 1)kn−k−1k!

(n− 1)(n− 1)!

= (n− 1)− n

n− 1

n−1∑
k=1

kn−kk!

n!
+

1

n− 1

n−1∑
k=1

kn−1−kk!

(n− 1)!

= (n− 1)− nP (n)

n− 1
+
P (n− 1) + 1

n− 1
,

and the asymptotic behavior of the Ramanujan P-function yields the announced result.
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In the same manner as we have done for the nodes, we now address the analogous problem
of counting the leaves in T (π), for π ̸= idn. More precisely, given a permutation π (of size n)
having label (k,mℓ), we determine an expression for the number of leaves of T (π) (which does
not depend on n but only on the label (k,mℓ)). This expression is a summation formula in
which each summand counts the leaves of a prescribed height in T (π).

Proposition 4.3.10. For a permutation π having label (k,mℓ), different from an identity per-
mutation, the number of leaves of the tree T (π) of its preimages under B is

L(k,mℓ) =

mℓ−1∑
j=1

j!j(j + 1)k−j−1 +mℓ!(mℓ + 1)k−mℓ . (4.2)

Moreover, each summand in Eq. (4.2) records the contribution of each level of T (π). In
other words, denoting with Lj(k,mℓ) the number of leaves at height j in T (π), we have that
Lj(k,mℓ) = j!j(j + 1)k−j−1 for j < mℓ, and Lmℓ

(k,mℓ) = mℓ!(mℓ + 1)k−mℓ.

Proof. The proof of Eq. (4.2) is by induction, following the exact same steps as the proof of
Proposition 4.3.6. The recursive equation for the number of leaves in T (π), which is needed
in the inductive step of the proof, is again obtained from Proposition 4.2.7. It actually differs
from the one for nodes in the proof of Proposition 4.3.6 only by the initial term 1 (accounting
for the root node); namely for mℓ ≥ 1, we have

L(k,mℓ) =

mℓ−2∑
h=0

k−1−h∑
i=1

(
k − 2− h

i− 1

)
L(k − i, h) +

k−mℓ∑
i=0

(
k −mℓ

i

)
L(k − i,mℓ − 1),

and for mℓ = 0 it holds that L(k, 0) = 1. From there, the same steps of computations as in the
proof of Proposition 4.3.6 (followed by additional elementary simplifications) yield, for mℓ ≥ 1:

L(k,mℓ) =

mℓ−1∑
j=1

j!j(j + 1)k−j−1 +mℓ!(mℓ + 1)k−mℓ ,

as claimed.

We now move to the claimed expression for Lj(k,mℓ). We shall first establish it for j = mℓ,
then for j = mℓ − 1, and then for smaller j iterating the argument.

We first note that all the nodes of T (π) at height mℓ are leaves (since mℓ is the height of
this tree). Using Proposition 4.3.6, we therefore have Lmℓ

(k,mℓ) = Nmℓ
(k,mℓ) = mℓ!(mℓ +

1)k−mℓ . As a consequence, the total number of leaves having height at most mℓ − 1 in T (π) is∑mℓ−1
j=1 j!j(j + 1)k−j−1.

Next, we claim that the number of leaves having height at mostmℓ−2 in T (π) is
∑mℓ−2

j=1 j!j(j+

1)k−j−1. From this claim, the announced formula Lmℓ−1(k,mℓ) = (mℓ − 1)!(mℓ − 1)mk−mℓ
ℓ im-

mediately follows by taking the difference.

To prove our claim, we use Lemma 4.3.5. This lemma indeed implies that Lj(k,mℓ) =
Lj(k,mℓ − 1), for all j ≤ mℓ − 2. This shows that the number of leaves having height at most
mℓ − 2 in T (π) is the same as the number of leaves having height at most mℓ − 2 in T (σ) for σ
a permutation with label (k,mℓ − 1). The latter is equal to L(k,mℓ − 1) − Lmℓ−1(k,mℓ − 1),
hence equal to

∑mℓ−2
j=1 j!j(j + 1)k−j−1 as established earlier, thus proving our claim.

We are now left with showing that Lh(k,mℓ) = h!h(h+1)k−h−1 for h ≤ mℓ−2. We proceed
iteratively, for decreasing values of h. At each step, the reasoning is similar to the above case
for h = mℓ−1. We first use Lemma 4.3.5 (several times, as in the proof of Proposition 4.3.6) to

39



argue that the number of leaves having height at most h−1 in T (π) is the same as the number of
leaves having height at most h−1 in T (σ) for σ a permutation with label (k, h). This number is∑h−1

j=1 j!j(j+1)k−j−1. Then, Lh(k,mℓ) is the difference between L(k,mℓ)−
∑

h+1≤j≤mℓ
Lj(k,mℓ)

and the above quantity. The result follows from the formulas previously established for Lj(k,mℓ)
for j ≥ h+ 1.

Remark 4.3.11. Combining Propositions 4.3.6 and 4.3.10 tells us that, for π a permutation of
label (k,mℓ), at height j < mℓ in T (π), the ratio between the number of leaves and the number
of nodes is j

j+1 (equivalently, the ratio between the number of internal nodes and the number of

nodes is 1
j+1).
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Chapter 5

Sorting with a popqueue

A popqueue is a container in which we can insert and extract elements in the same way as
a queue, except that the extraction removes all elements in the popqueue, instead of only one.
That is, the allowed operations are the following:

e: enqueue, insert the current element to the back of the popqueue;

p: pop, remove all the elements currently in the popqueue, from the front to the back, and
send them into the output;

b: bypass, move the current element of the input permutation into the output.

This device can be used to sort permutations, and in fact we want to describe an algorithm
that, using the allowed operations, sorts every sortable permutation. The following proposition
describes the sortable permutations in terms of permutation patterns.

Proposition 5.0.1. If a permutation π ∈ Sn contains an occurrence of the patterns 321 or
2413, then it cannot be sorted using a popqueue.

Proof. Let π be a permutation containing an occurence cba of the pattern 321, and suppose
by contradiction that it can be sorted using the previous operations. Then c must enter the
popqueue, because otherwise it would be output before a. For the same reason b have to enter
the popqueue. But then c would exit the popqueue before b, which is a contradiction. Otherwise,
if π contains an occurrence bdac of the pattern 2413, then the elements b and d would have to
enter the popqueue, but then they could only be output together, so the element c could not
be output in between b and d.

Clearly, this is a more restrictive condition than when sorting with a queue (see Section 2.3
and Chapter 3), since each popqueue operation can be mimicked by a standard queue.

5.1 Two optimal sorting algorithms

We now provide two different sorting algorithms which, although rather similar, have a
sensibly different behavior when applied twice. To fix the notation for the algorithms, Q denotes
the popqueue, Front(Q) denotes the current first element of the popqueue and Back(Q) denotes
the current last element of the popqueue.

Algorithm 5.1.1. Min
input: a permutation π = π1 · · ·πn
output: a permutation Min(π)

for i = 1, . . . , n do:
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� if Front(Q) is the minimal non-output element (i.e. if Front(Q) is smaller than all the
unprocessed elements πi, . . . , πn), then empty the popqueue and enqueue πi;

� else compare πi, Back(Q) and Front(Q);

– if Back(Q) < πi, enqueue π;

– otherwise, if Front(Q) > πi, then output πi;

– else, empty the popqueue and then enqueue πi;

Finally, empty the popqueue.

The reason for the name Min comes from the fact that, whenever the first element of the
popqueue is the next one to output (i.e., it is the minimum element not already in the output),
the algorithm pours the whole content of the popqueue into the output. If this is not the case,
the current element of the input is enqueued, provided that it is larger than the element in
the back of the popqueue, otherwise the smallest between the current element and the element
in the front of the popqueue is output (of course, in the latter case the whole content of the
popqueue reaches the output).

Min is an optimal sorting algorithm, as it is shown in the next proposition.

Proposition 5.1.2. Let π ∈ Sn. Then Min(π) ̸= idn if and only if 321 ≤ π or 2413 ≤ π.

Proof. By Proposition 5.0.1, we know that a permutation containing 321 or 2413 is not sortable.
On the other hand, suppose that Min(π) ̸= idn, and consider the first configuration in which

an incorrect element reaches the output (here “incorrect” means that it is not the minimum
element not already in the output). If such an element comes to the output after executing a
bypass operation, then we call it b and we observe that it must be smaller than the front element
c of the popqueue. Moreover, there must be an element a < b not yet in the output, otherwise
b would be the correct element to output. Since (the content of) the popqueue is increasing by
construction, then a must be in the input, hence π contains an occurrence cba of the pattern
321.

Otherwise, if the first incorrect element goes through the popqueue and reaches the output
after executing a pop operation, then we have two possibilities. In the first case, the first element
b of the popqueue is the smallest element not yet in the output, but the sorting procedure fails
because there are elements d inside the popqueue and c in the input such that d > c.

In such a case, the last element which has reached the output is b− 1, and this necessarily
happened after a bypass operation when b and d were already in the popqueue (otherwise b
would be already in the output). Therefore the elements b, d, b− 1, c form an occurrence of the
pattern 2413 in π. In the second case, if the first element of the popqueue is not the minimum
element a not yet in the output, then a must still be in the input, and the last element c of the
popqueue must be larger than the current element b of the input (which is in turn larger than
a). Therefore π contains an occurrence cba of the pattern 321.

The second algorithm we describe is Cons.

Algorithm 5.1.3. Cons
input: a permutation π = π1 · · ·πn
output: a permutation Cons(π)

for i = 1, . . . , n do:

� if πi = Back(Q) + 1, then enqueue πi;

� else, compare πi and Front(Q);
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– if Front(Q) > πi, then output πi;

– else, empty the popqueue and then enqueue πi;

Finally, empty the popqueue.

The name Cons comes from the first instruction, that forces the content of the popqueue to
consists of consecutive elements during the whole execution.

As it happened for Min, also Cons is an optimal sorting algorithm.

Proposition 5.1.4. Let π ∈ Sn. Then Cons(π) ̸= idn if and only if 321 ≤ π or 2413 ≤ π.

Proof. We already know, by Proposition 5.0.1, that a permutation containing either the pattern
321 or the pattern 2413 is not sortable. On the other hand, suppose that Cons(π) ̸= idn, and
consider the first configuration in which an “incorrect” element reaches the output. If the
incorrect element b comes directly from the input, by performing a bypass operation, then an
argument completely analogous to that used in Proposition 5.1.2 shows that π contains the
pattern 321.

Otherwise, if the first incorrect element goes to the output after a pop operation, then let b
be the last element of the popqueue, d > b+1 be the current element of the input and a be the
smallest element not yet in the output. Then b+ 1 and a must still be in the input, because Q
consists of consecutive elements and no incorrect element reached the output yet. So either π
contains the occurrence bda(b+ 1) of the pattern 2413, or π contains the occurrence d(b+ 1)a
of the pattern 321.

We thus have two different optimal sorting algorithms, which follow distinct heuristics to
sort π. Although the set of sortable permutations is the same, the output of Min and Cons

is different in general. For instance, Min(2413) = 1243 and Cons(2413) = 2134. We remark
that both heuristics are somehow reasonable in the framework of permutation sorting. First of
all, neither Min nor Cons create new inversions. Moreover, if the first element of the popqueue
is the minimum element among those not yet in the output, then it is reasonable to pop the
popqueue immediately, as Min does, because the same thing would certainly be done before
performing any bypass operation. On the other hand, if we were to allow non-consecutive
elements in the popqueue, then the output would certainly not be the identity permutation, so
it is reasonable to impose that the elements inside the popqueue are consecutive, as Cons does.
Both ideas give us optimal algorithms, whose outputs differs only for nonsortable permutations,
although the order in which the single operations are executed may be different even for sortable
permutations. One could be tempted to see what happens when using both euristhics, by
designing an algorithm that only allows consecutive elements inside the popqueue, and (at the
same time) pops the popqueue whenever its front element is the next one to be output. However,
the resulting algorithm would actually be equivalent to Cons, because the output would be the
same, although operations would be performed in a different order in general, by prioritizing
pop operations over enqueue ones.

As a consequence of the results of this section, we thus have that the set of sortable permu-
tations of length n is Avn(321, 2413). The enumeration of such a class is known [31]: this is the
sequence of even-indexed Fibonacci numbers (sequence A001519 in [22]), whose first terms are
1, 1, 2, 5, 13, 34, . . ..

We close this section by proving some properties of Cons that will be useful later.

Lemma 5.1.5. Let π = π1 · · ·πn ∈ Sn. When performing Cons on π, πi enters the popqueue if
and only if it is a left-to-right maximum. Moreover, the relative order of the non left-to-right
maxima of π is preserved in Cons(π).
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Proof. The proof is by induction over the number of steps during the execution of Cons. The
first element π1 is always a left-to-right maximum, and is in fact enqueued.

Now suppose by induction that, at some point, all the elements currently enqueued are left-
to-right maxima, and also all the left-to-right maxima in the output have been enqueued at some
point, while the other elements have not. We will prove that this remains true after Cons has
executed its next instruction. Let πi be the current element of the input. If πi = Back(Q) + 1,
then πi is greater than Back(Q) and thus it is greater than all the previous left-to-right maxima,
because they all entered the popqueue in increasing order by inductive hypothesis. Therefore πi
is a left-to-right maxima as well, and is in fact enqueued by Cons. If instead πi is smaller than
Front(Q), then it is not a left-to-right maximum by definition, and it bypasses the popqueue.
Finally, if πi > Back(Q) + 1, then πi is a left-to-right maximum by the same argument as for
the case πi = Back(Q), and it is in fact enqueued (after having popped the popqueue).

Finally, if a and b are not left-to-right maxima of π, they do not enter the popqueue, hence
they keep their relative order in the output.

This lemma does not hold for Min. Indeed, although every left-to-right maximum does enter
the popqueue, some non left-to-right maxima may also enter it (for example, the element 4 in
25143 enters the popqueue). Notice that Queuesort has the same properties described in the
above lemma.

5.2 Two passes through a popqueue

As we have already observed, Min and Cons are both optimal sorting algorithms, even if they
exploit different strategies. In particular, the images of unsortable permutations are different,
and this is clearly relevant when we run each of the two algorithms multiple times.

In this section we investigate permutations which are sortable by running each of the previous
algorithms twice. This has been done for Stacksort by West [29, 30], who found that the set of
sortable permutations is not a class, nevertheless it can be described in terms of the avoidance
of a pattern and a barred pattern.

We start by defining the sets Sort
(k)
M and Sort

(k)
C of permutations sortable by k applications

of Min and Cons, respectively, that is Sort
(k)
M = {π ∈ S | Mink(π)) = id} and Sort

(k)
C =

{π ∈ S | Consk(π)) = id}. In the previous section we have shown that Sort
(1)
M = Sort

(1)
C =

Av(321, 2413).

It is interesting to notice that Sort
(2)
M and Sort

(2)
C are instead unrelated from the point

of view of set containment. Indeed, consider the permutations 2431 and 35214. We have

Min2(2431) = 1243 and Cons2(2431) = 1234, hence 2431 ∈ Sort
(2)
C \ Sort(2)M . On the other

hand, Min2(35214) = 12345 and Cons2(35214) = 21345, hence 35214 ∈ Sort
(2)
M \ Sort(2)C . This

shows that Min2 is capable of sorting permutations that Cons2 is unable to sort, and vice
versa.

What we show next is that Sort
(2)
M and Sort

(2)
C are not just distinct sets; they also have

different features from the point of view of pattern containment. More precisely, Sort
(2)
C is a

permutation class, whereas Sort
(2)
M is not.

Proposition 5.2.1. The set Sort
(2)
M is not a permutation class.

Proof. Given the permutation 241653, we have thatMin2(241653) = 123456, howeverMin2(2431) =
1243, and clearly 2413 ≤ 241653.
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Proposition 5.2.2. Let π ∈ Sn such that π contains one of the following patterns:

� 4321;
� 35241;
� 35214;
� 52413;
� 25413;
� 246153;
� 246135;
� 426153;
� 426135.

Then Cons2(π) ̸= idn.

Proof. By using the facts that

� the relative order of non left-to-right maxima of π is preserved inCons(π) (see Lemma 5.1.5),
and

� non-inversions in π remain non-inversions in Cons(π),

as well as the definition of Cons, which requires the elements in the popqueue to be consecutive
at all times, it is not difficult to show that, if π contains one of the patterns 4321, 35241, 35214,
52413, 25413, 246153 or 246135, then Cons(π) contains the pattern 321 or the pattern 2413,

therefore π /∈ Sort
(2)
C .

We now consider the remaining patterns. Suppose that dbfaec is an occurrence of the
pattern 426153 in π. We start by observing that d precedes a in Cons(π) since, when f is
processed, d must either be already in the output or exit the popqueue (because e is still in the
input and d < e < f). Now, recalling the above facts, if d precedes b in Cons(π) then dba is an
occurrence of 321 in Cons(π), otherwise bdac is an occurrence of 2413 in Cons(π). Therefore

in both cases π /∈ Sort
(2)
C . An occurrence of the pattern 426135 can be dealt with in a similar

way.

Proposition 5.2.3. Let π ∈ Sn such that Cons2(π) ̸= idn. Then π contains one of the
following patterns:

� 4321;
� 35241;
� 35214;
� 52413;
� 25413;
� 246153;
� 246135;
� 426153;
� 426135.

Proof. Since Cons2(π) ̸= idn, we know that 321 ≤ Cons(π) or 2413 ≤ Cons(π). We consider
the two cases separately.

If 321 ≤ Cons(π), then 321 ≤ π, since Cons does not produce new inversions. Let c, b, a be
elements forming an occurrence of 321 in π. If c is not a left-to-right maximum, then of course
π contains an occurrence of 4321. Otherwise, the left-to-right maximum c enters the popqueue,
but it has to reach the output before b. This happens precisely when the current element e
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of the input is larger than Back(Q) + 1 (and so also e > c). Now observe that the element
d = Back(Q) + 1 cannot appear before c in π (since c is a left-to-right maximum), nor between
c and e in π (otherwise, when e is the current element of the input, the last element of the
popqueue could not be d − 1). Therefore, all possible ways in which the elements a, b, c, d, e
can occur in π are cedba, cebda e cebad, which form occurrences of the patterns 4321 (ignoring
c), 35241 and 35214, respectively.

Otherwise, suppose that Cons(π) contains the pattern 2413, and the elements b, d, a, c
form such an occurrence. Since Cons does not create new inversions, in the permutation π the
element d appears before a and c, which are then not left-to-right maxima. Therefore π contains
the elements d, a, c precisely in this order. Since b has to precede a in π, we are thus left with
two possible configurations, which are dbac and bdac.

If π contains the subword dbac, then necessarily d is a left-to-right maximum of π (otherwise
b could not reach the output before d), and so in particular d enters the popqueue at some point.
Moreover, we need a to reach the output after both d and b. In order to understand how this
can be possible, we focus on the instant in which d (and so the entire content of the popqueue)
is popped. In such a situation, b has to be already in the output, d is in the popqueue, and the
current element of the input, call it f , is larger than Back(Q) + 1 (and so also than d). Now
observe that e = f − 1 is necessarily in the input at this moment: in fact it cannot be inside
the popqueue (since the content of the popqueue is increasing) and it cannot be already in the
output, otherwise it would appear before d in π and so d would not be a left-to-right maximum.
Summing up, we have that π must contain one among the subwords dbfeac, dbfaec, dbface,
corresponding to the patterns 25413 (ignoring d), 426153, 426135.

If instead π contains the subword bdac, then d may or may not be a left-to-right maximum.
In case it is not, then there is an element e > d preceding d in π, hence π contains either bedac
or ebdac, corresponding to patterns 25413 or 52413. On the other hand, if d is a left-to-right
maximum of π, we can use an argument completely analogous to the one of the previous case,
this time getting that π has to contain one among the patterns 25413, 246153, 246135.

The first terms of the sequence counting Sort
(2)
C with respect to the length are 1, 1, 2, 6, 23, 99,

445, 2029, 9292, 42608, 195445, . . ., and do not appear in [22]. We also observe that analogous

numbers can also be computed for Sort
(2)
M , and the first values are 1, 1, 2, 6, 22, 89, 379, 1660, 7380,

33113, 149059, . . .. From these data, it appears reasonable to conjecture that, for any n ≥ 3,
the number of permutations of length n sortable by Min2 is smaller than the number of per-
mutations of length n sortable by Cons2.

5.3 Preimages

In this section we will study the preimages of a generic permutation under Cons. Note that
we might also study the preimages under Min, and that they are (in general) different. We
choose Cons since it has the property that all left-to-right maxima, and no other element, enter
the popqueue during the sorting process. This property is shared with Queuesort, and is crucial
to describe a simple procedure to find all the preimage of a generic permutation. For brevity,
in the sequel we just call “preimages” the preimages under Cons.

We start by giving a different description of Cons, which highlights how it behaves on the
left-to-right maxima of a permutation. We say that two elements of a permutation π are adjacent
if their positions differ by one, and consecutive if their values differ by one.

Let π = π1 · · ·πn ∈ Sn. Mark π1, and repeat the following steps until there are no marked
elements:
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� if there are no elements to the right of the (necessarily unique) block of adjacent marked
elements, then unmark all marked elements;

� otherwise, compare the rightmost element µ of the block of adjacent marked elements
with the element α to its right:

– if µ > α, then swap α with the entire block of marked elements;

– if µ = α− 1, then mark α;

– if µ < α− 1, then mark α, and unmark all other elements of π.

As an example, we illustrate how this procedure operates on the permutation π = 3241687.
The marked elements are indicated in bold.

3241687 → 2341687 → 2341687 → 2134687 → 2134687 → 2134687 → 2134678 → 2134678

Notice that, since an element is marked if and only if it is greater than the previous marked
element, then this procedure marks precisely the left-to-right maxima of the permutation. Dur-
ing the execution they are moved to the right until they reach the next left-to-right maximum;
when this happens, they are glued together and continue moving to the right if and only if
they are consecutive. This means that, at any point during the execution of this procedure, the
marked elements are both consecutive and adjacent.

Notice that our marking mimics precisely what happens in the popqueue during the execu-
tion of Cons: the block of marked elements are the elements in the popqueue, the elements on
its left are in the output and those on its right are still in the input.

From now on, when we refer to the execution of Cons on a permutation, we consider this
alternative description.

Proposition 5.3.1. Let σ be a permutation and set π = Cons(σ). Then the last element of π is
n. Also, denoting with LTRv(τ) the set of (values of) the left-to-right maxima of a permutation
τ , we have LTRv(σ) ⊆ LTRv(π).

Proof. During the execution of Cons on σ, n is going to be marked, because it is a left-to-right
maximum, and it reaches the end of the permutation, since there are no greater elements than
can block it.

Now, let µ be a left-to-right maximum of σ and suppose, by contradiction, that µ is not a left-
to-right maximum of π. Thanks to the above considerations, µ is marked during the execution
of Cons and moves to the right. Since it is not a left-to-right maximum of the output π, at some
point it must be swapped with an element α greater than itself. Therefore Cons must reach a
configuration where µ is part of a block of consecutive marked left-to-right maxima µ1 · · ·µk,
with µk greater than the element α on its right and µ = µj for some j. This is impossible, since
µj < α < µk and the elements µ1, . . . , µk are consecutive, so α cannot be to the right of µk.
Therefore µ is a left-to-right maximum of π.

In view of the previous proposition, we can look for the preimages of a given permutation π
by looking at all the subsets of LTRv(π) and, for each of them, listing all the possible preimages
with the prescribed set of left-to-right maxima. Notice that it is possible for a permutation to
have no preimage (as well as many preimages) for a given subset. For example, there are no
preimages of 213 whose left-to-right maxima are both 2 and 3, while 3421 and 3214 are both
preimages of 2134 whose left-to-right maxima are 3 and 4. To describe preimages we introduce
the notion of mix of two sequences.
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Definition 5.3.2. Let L = l1 · · · lp and A = a1 · · · ar be two sequences of positive integers, so
that the li’s and aj ’s are all different. We say that a sequence m1 · · ·mp+r is a mix of L and A
if it contains both L and A as subsequences, and m1 = l1. Define Mix(L,A) as the set of all
the mixes of L and A.

Essentially, the mix of two sequences L and A is a special shuffle of the two sequences, in
which the first element belongs to L.

For example, the mix of 245 and 13 is the set {24513, 24153, 24135, 21453, 21435, 21345}.
We are now ready to describe the set Cons−1(π) of the permutations whose output under

Cons is π.

Proposition 5.3.3. Let π ∈ Sn be a permutation ending with n. Let B ⊆ LTRv(π) such that
n ∈ B.

If B contains two consecutive integers that are not adjacent in π, then there are no preimages
of π whose set of left-to-right maxima is B.

Otherwise, we can write π as π = A1L1A2L2 · · ·AkLk, where the blocks Li are maximal
sequences of consecutive elements of B. The blocks Ai contain the remaining elements of π,
and may be empty. Then, all the preimages of π whose set of left-to-right maxima is B are
those of the form ρ = ρ1ρ2 · · · ρk, with ρi ∈Mix(Li, Ai), for every i = 1, . . . , k.

Proof. Let π be a permutation ending with n and B ⊆ LTRv(π) such that n ∈ B.
Suppose that µ, µ+ 1 ∈ B are not adjacent in π. Suppose that there exists a preimage σ of

π such that LTRv(σ) = B. We show that Cons(σ) ̸= π, thus obtaining a contradiction. During
the execution of Cons, µ is marked and moves to the right. Since µ + 1 is also a left-to-right
maximum of σ, µ will reach it and µ+1 will be marked while maintaining µ marked. Therefore
both µ and µ+1 will be unmarked at the same time, and will be adjacent in the output. Since
µ and µ + 1 are not adjacent in π, Cons(σ) ̸= π, which is a contradiction. Thus π has no
preimages whose set of left-to-right maxima is B.

On the other hand, if B contains no consecutive elements which are not adjacent in π, let
ρ, Li and Aj be as in the statement of the proposition, and let λi be the first element of Li,
for every i = 1, . . . , k. We want to prove that ρ is a preimage of π. We start by proving that
Cons(ρi) = AiLi. This is in fact true, because the elements of Li are left-to-right maxima of
π, and therefore greater than the elements of Ai. By definition of mix, the first element of ρi
is λi, therefore the elements of Ai are not left-to-right maxima of ρi. Finally, the elements of
Li are consecutive, therefore Cons will move all of them together to the end of the string, thus
obtaining AiLi. Now we just need to notice that the elements of different Li are not consecutive
to obtain that, during the execution of Cons on ρ, all the elements of each Li will be unmarked
before marking the elements of Li+1, hence Cons(ρ) = A1L1 · · ·AkLk = π.

To conclude, we need to prove that every preimage σ of π such that LTRv(σ) = B is of
the form ρ1 · · · ρk, for some mixes ρi of Li and Ai. First of all, the elements of σ that are not
left-to-right maxima must be in the same relative order as they are in π, since Cons does not
change their relative positions. So, reading such elements in σ from left to right, we get the
string A1 · · ·Ak. The same argument can be used for the left-to-right maxima of σ, thus getting
that σ contains the subsequence L1 · · ·Lk. The first left-to-right maximum is λ1, and it must be
the first element of σ. Furthermore, all the elements of A1 must be to the left of λ2 in σ. Indeed,
since all the elements of L1 are consecutive, and λ2 is strictly larger than the last element of
L1 plus 1, then during the execution of Cons the elements of L1 are marked and move to the
right, but they will be unmarked as soon as λ2 is reached. Therefore the elements of L1 cannot
overcome λ2 and all the elements of A1 must be to their right, otherwise Cons(σ) would not
be the permutation π = A1L1 · · ·AkLk. Finally, all the elements of A2 must be to the right of
λ2, because otherwise the last element of L1 would overcome them and the image of σ would
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not have all the elements of A2 to the right of L1. Therefore σ can be written as ρ1S, where ρ1
is a mix of L1 and A1.

Iterating this argument, we obtain that a mix ρ2 of L2 and A2 must follow ρ1 in σ, and so
on, till we obtain σ = ρ1 · · · ρk.

By Proposition 5.3.1, we know that the left-to-right maxima of any preimage of π must be a
subset of LTRv(π) containing n. Therefore the previous proposition describes all the preimages
of a generic permutation.

For example, given π = 3245617, if we select the subset B = {4, 5, 7}, we have that the
corresponding preimages are 4532761, 4352761, 4325761. If we look at all the subsets of
LTRv(π) = {3, 4, 5, 6, 7} (containing 7 and without consecutive elements not adjacent in π),
we obtain the following permutations, which are all the preimages of π:

{7}: 7324561,

{3, 7}: 3724561,

{4, 7}: 4327561,

{5, 7}: 5324761,

{3, 5, 7}: 3524761,

{4, 5, 7}: 4532761, 4352761, 4325761.

5.3.1 Enumerative results

The correspondence between subsets of LTRv(π) and preimages of π would be particularly
simple for permutations with no consecutive left-to-right maxima. Indeed, in that case there
would be only one preimage for every legal subset. Unfortunately this never happens, because
a permutation has preimages if and only if it ends with its maximum n, hence n− 1 is always a
left-to-right maximum. Nonetheless we still have a simple case, for which we are able to count
preimages.

Proposition 5.3.4. Let π ∈ Sn be a permutation ending with n, such that the only consecutive
elements in LTRv(π) are n− 1 and n. Suppose that n− 1 and n are not adjacent in π, and let
k = |LTRv(π)|. Then |Cons−1(π)| = 2k−2 and there is a bijection between Cons−1(π) and the
subsets of LTRv(π) containing n but not n− 1.

Proof. Referring to Proposition 5.3.3, let B be a subset of LTRv(π) containing n. If n− 1 ∈ B,
then there are no preimages of π whose left-to-right maxima are the elements of B, since n− 1
and n are not adjacent in π. Otherwise, if n− 1 /∈ B, then we express π = A1L1 · · ·AkLk as in
Proposition 5.3.3, noting that the blocks Li consist of just one element (call it λi). Therefore
there exists precisely one mix between Li and Ai, for every i, which provides exactly one
preimage. Thus, we have a correspondence mapping each subset of LTRv(π) containing n and
not containing n − 1 into a preimage of π. Since the preimages are all different, we have a
bijection between preimages of π and subsets of LTRv(π) with the required properties. As
a consequence, the number of preimages of π is the number of subsets of LTRv(π) of size k,
containing n and not containing n− 1, which is 2k−2.

Notice that the case described in the previous proposition gives a result analogous to Corol-
lary 4.1.4, which concerns the enumeration of the preimages of a permutation under Bubblesort.
Specifically, the number of preimages under Bubblesort of a permutation π ending with n and
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having k left-to-right maxima is 2k−1. In fact, there is exactly one preimage for every subset of
LTRv(π) containing n, because (in the case of Bubblesort) the left-to-right maximum n − 1
does not give troubles and can be selected. On the other hand, if there are consecutive elements
in LTRv(π) other than n − 1 and n, the analogy fails and there does not seem to be any link
between the two situations.

To conclude, we provide some results concerning permutations with a given number of

preimages. Define c
(k)
n as the number of permutations of length n which have exactly k preimages

under Cons. We already noticed that a permutation has preimages if and only if it ends with

its maximum, therefore c
(0)
n = (n − 1)(n − 1)!, for every n ≥ 1, and c

(0)
0 = 0. We record this

result for future reference.

Proposition 5.3.5. Let π = π1 · · ·πn ∈ Sn. Then π has no preimages under Cons if and only
if πn ̸= n, for every n ≥ 1.

Therefore c
(0)
n = (n− 1)(n− 1)!, for every n ≥ 1, and c

(0)
0 = 0.

The next propositions deal with permutations having exactly 1, 2 or 3 preimages.

Proposition 5.3.6. Let π = π1 · · ·πn ∈ Sn. Then π has exactly one preimage under Cons if
and only if πn = n and π1 = n− 1, for every n ≥ 3.

Therefore c
(1)
n = (n− 2)! for every n ≥ 3, and c

(1)
0 = 1, c

(1)
1 = 1, c

(1)
2 = 0.

Proof. If πn = n and π1 = n− 1 then π has one preimage by Proposition 5.3.4.
On the other hand, suppose that πn ̸= n or π1 ̸= n − 1. If π does not end with n, then it

has no preimages. Otherwise, we have that πn = n and π1 ̸= n− 1 is a left-to-right maximum
of π. Writing π = π1Mn, we have that both nπ1M and π1nM are preimages of π, so π has
more than one preimage.

The formula for c
(1)
n follows immediately, since there are no restrictions on the terms

π2, . . . , πn−1.

The following lemma helps dealing with the case in which n− 1 and n are adjacent in π.

Lemma 5.3.7. Let π be a permutation of length n > 2 such that πn−1 = n − 1 and πn = n.
Then π has at least four preimages.

Proof. Since n > 2, then π1, n − 1 and n are all distinct left-to-right maxima of π. Writing π
as π1M(n− 1)n, we have that (n− 1)π1Mn, nπ1M(n− 1), (n− 1)nπ1M and π1nM(n− 1) are
all distinct preimages of π.

Proposition 5.3.8. Let π = π1 · · ·πn ∈ Sn. Then π has exactly two preimages under Cons if
and only if πn = n, π1 ̸= n− 1 ̸= πn−1 and LTRv(π) = {π1, n− 1, n}, for every n ≥ 4.

Therefore c
(2)
n = (n− 2)!

∑n−3
j=1

1
j for every n ≥ 4, and c

(2)
0 = 0, c

(2)
1 = 0, c

(2)
2 = 1, c

(2)
3 = 0.

Proof. If π is of the form described in the statement, then we can use Proposition 5.3.4 to count
its preimages, which are precisely two.

On the other hand, if πn ̸= n or π1 = n − 1, then we can use the same argument as in the
proof of Proposition 5.3.6 to see that π has at most one preimage. If πn−1 = n − 1, then, by
Lemma 5.3.7, we have that π has more than two preimages. The only remaining case is that
of π having more than three left-to-right maxima. Suppose that α is a left-to-right maximum,
with π1 < α < n− 1. Writing π = π1M1αM2(n− 1)M3n, the following three permutations are
preimages of π: nπ1M1αM2(n− 1)M3, π1nM1αM2(n− 1)M3 and απ1M1nM2(n− 1)M3.

To find a closed formula for c
(2)
n we recall the so called Foata’s fundamental bijection [17],

which maps a permutation σ written in one-line notation to the permutation in cycle notation
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obtained by inserting a left parenthesis in σ preceding every left-to-right maximum, then a right
parenthesis where appropriate. Applying such a map to the set of permutations of length n ≥ 4
having exactly two preimages, returns the set of permutations of length n in which n is a fixed
point and consisting of two further cycles, the one containing n− 1 having size at least two. If
the cycle not containing n− 1 has size j, with 1 ≤ j ≤ n− 3, then we have

(
n−2
j

)
different ways

to choose the elements in that cycle, and (j−1)! different ways to arrange the elements into the
cycle. The remaining n−1−j elements (including n−1) can be arranged in (n−2−j)! different
ways. Summing up, we obtain that the number of permutations of length n with exactly two
preimages is

n−3∑
j=1

(
n− 2

j

)
(j − 1)!(n− 2− j)! =

n−3∑
j=1

(n− 2)!

j!(n− 2− j)!
(j − 1)!(n− 2− j)! = (n− 2)!

n−3∑
j=1

1

j
,

which concludes the proof.

The quantities Hn =
∑n

j=1
1
j are commonly known as harmonic numbers, so the above

formula for c
(2)
n can be written as c

(2)
n = (n− 2)!Hn−3.

Proposition 5.3.9. Let π = π1 · · ·πn ∈ Sn with n ≥ 4. Then π has exactly three preimages
under Cons if and only if πn = n, LTRv(π) = {k, k + 1, n− 1, n}, with 1 ≤ k ≤ n− 3, and both
k, k + 1 and n− 1, n are not adjacent.

Proof. If π is as in the statement above, then we can use Proposition 5.3.3 to count its preimages,
which are precisely three, one for each of the subsets {k, n}, {k + 1, n}, {n}.

On the other hand, we can argue as in the previous propositions to observe that, if a
permutation has less than four left-to-right maxima or n− 1 and n are adjacent, then it cannot
have three preimages. If k and k+1 are adjacent, then π has at least four preimages, since each
of the four subsets {k, n}, {k + 1, n}, {n}, {k, k + 1, n} corresponds to at least one preimage.
The same holds when the four left-to-right maxima are k, h, n− 1, n, with h > k + 1.

Finally, if π has more than four left-to-right maxima, suppose that {α, β, γ, n − 1, n} ⊆
LTRv(π). Then there is a least a preimage for each of the subsets {α, n}, {β, n}, {γ, n}, {n},
so π has more than three preimages.

Looking at the previous results, we may wonder whether every number of preimages is
allowed. More formally, does there exist any permutation π such that |Cons−1(π)| = k, for
every k?

Notice that Stacksort [9], Queuesort (Proposition 3.2.11) and Bubblesort (Corollary 4.1.4)
have some prohibited cardinality. Surprisingly, this is not the case for Cons.

Proposition 5.3.10. For any positive integer k, there exists a permutation π ∈ S such that
|Cons−1(π)| = k.

Proof. Let k ≥ 5 and let ρ ∈ Sk−4. Then, by Proposition 5.3.3, π = (k − 3)ρ(k − 2)(k − 1) is a
permutation of length k − 1 with k preimages. Additionally, π = 3152647 has four preimages.

Finally, Propositions 5.3.5, 5.3.6, 5.3.8 and 5.3.9 deal with the cases k = 0, 1, 2, 3, thus
concluding the proof.
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Chapter 6

Sorting with two queues in series

The Queuesort algorithm, which we presented in Section 2.3, uses a queue to sort a permu-
tation. Clearly, it is possible to use more than one queue to (attempt to) sort a permutation,
and this has been done in [24], where the author considers a network of queues. In this chapter
we consider two queues, and study all the possible ways in which we can arrange them “in
series” to sort a permutation.

6.1 Queues in series

Let Q1 and Q2 be two queues, and call Front(Qi) and Back(Qi) the first and last elements
of Qi, respectively. As detailed in Fig. 6.1, Q1 and Q2 are queues in series when the following
operations are avalaible:

(e1): move the current element of the input into Q1;

(e2): move Front(Q1) in Q2;

(o0): output the current element of the input;

(o1): output Front(Q1);

(o2): output Front(Q2);

(b): move the current element of the input into Q2.

We want to characterize sortable permutations, and describe an optimal sorting algorithm.
Observe that, if at any point during the sorting process Q2 contains elements which are not in
increasing order, then the output cannot be the identity permutation.

Q2 Q1

output input

(o0)

(b)

(e1)(e2)

(o1)

(o2)

Figure 6.1: Two queues in series.
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We begin considering only some subsets of the allowed operation, both because they are
interesting by itself, and because one of them will be useful to understand the complete case.
Namely, we exclude all the bypasses of queues, but only one at a time:

� (o0), which bypasses both queues;

� (o1), which bypasses Q2;

� (b), which bypasses Q1.

6.1.1 No (o0)

Suppose that we are allowed to use all the previous operations, except (o0). This means that
every element of the permutation has to pass through Q1 or Q2 (or both) during the sorting
process.

Proposition 6.1.1. If a permutation contains the pattern 4321, then it is not sortable using
the allowed operations (excluding (o0)).

Proof. Let π be a permutation that contains an occurrence dcba of the pattern 4321, and try
to sort it. Suppose that, during the sorting process, d does not enter Q1. Then it must enter
Q2, and wait there until elements c, b and a are sent into the output. Therefore c, b and a
cannot enter Q2, hence they must all pass through Q1. Since the order of the elements passing
through a queue does not change, c cannot be output after b and a, so the permutation cannot
be sorted in this way.

On the other hand, suppose that d enters Q1, and c bypass Q1 and enters Q2. Then we can
reason as in the previous case and say that neither b nor a can enter Q2, but they also cannot
change order using only Q1. This again renders impossible to sort them.

The last case is for both d and c to enter Q1, waiting until b bypasses Q1 to enter Q2. Again,
b prevents a from entering Q2, but c prevents a from entering Q1. Finally, c cannot move from
Q1 into Q2, since this would force d to enter Q2 before c, and they would not be sorted in the
output.

Actually, all the permutations avoiding the pattern 4321 are sortable without using (o0). We
present an algorithm that sorts every such permutation, followed by the proof of its optimality.
Input denotes the current first element of the input.

Algorithm 6.1.2. ALGo0:

Repeat the following steps until the input permutation π is sorted, or the algorithm stops:

1. Execute (o1) or (o2) if this outputs the minimal non-output element (which is the next
element that should be sent into the output);

2. else, execute (e1), unless this would cause the pattern 321 to appear in Q1;

3. else compare Back(Q2), Front(Q1) and Input, and send into Q2 (either executing (b) or
(e2)) the smallest element bigger than Back(Q2), if such element exists;

4. else, the algorithm stops.

We define the algorithm so that it stops whenever it reaches a configuration which it cannot
sort. In this way, we can recover non sortable patterns by analysing halting configurations.

The following remark is an immediate consequence of the description of ALGo0 .
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Remark 6.1.3. At every step of the sorting process with the algorithm ALGo0, the content of
Q1 avoids the pattern 321.

The following propositions describe a configuration in which the permutation is sorted, and
one where it is not.

Proposition 6.1.4. If, during the sorting process, we reach a configuration in which the input
is empty and Back(Q2) < Front(Q1), then the permutation is sorted by ALGo0.

Proof. Suppose that, during the sorting process, we reach a configuration in which the input is
empty and Back(Q2) < Front(Q1), and let σ be the permutation obtained by concatenating
the contents of Q2 and Q1. Then σ avoids the pattern 321, because it is composed by an
increasing sequence (in Q2) followed by a sequence that avoids the pattern 321 (in Q1, by
Remark 6.1.3), in which the first element of the second sequence is greater than any element
of the first sequence. This means that σ is sorted by Queuesort. In particular, during the
sorting of σ with Queuesort, a configuration in which the content of the queue is the same as
the content of Q2 would be reached. Since ALGo0 performs the same instructions as Queuesort
when the input is empty, it will also sort the permutation in the same way.

Proposition 6.1.5. Let π be a permutation, and suppose that during the sorting of π we reach
a configuration in which Back(Q2) > Input, and such that we cannot execute (e1) (because it
would form the pattern 321 in Q1). Then π contains the pattern 4321 and is not sortable.

Proof. Consider the first time in which the sorting process reach a configuration as described
above, and let a be the first element of the input, b = Back(Q2) and Λ the configuration (that
is, the “photography” of the state of input, output and the queues). Now consider the step
in which b has moved into Q2. If it entered Q2 by operation (e2), then call d and c the two
elements in Q1 that formed the pattern 321 with b. Necessarily, π contains the elements d, c,
b, a in this order, so it contains the pattern 4321.

On the other hand, suppose by contradiction that b passes through Q1, and consider the
step in which it enters Q2 by (e2), which must happen before Λ. Let a′ be the first element of
the input, and α = Back(Q2). Then (e1) cannot be executed since, otherwise, the algorithm
would have given priority to it. Moreover α < a′, because otherwise Λ would not be the first
configuration in which both (e1) cannot be executed and Back(Q2) > Input. Finally, α < b < a′

since otherwise (e2) would have been performed. However, if we follow the instructions of the
algorithm, we can see that another element (either a′ ot the current Front(Q1)) is also put into
Q2 right after b. Then configuration Λ can only occur right after the moving of b into Q2, but
this is impossible, because b = Back(Q2) is smaller than a′ = Front(Q1).

Therefore π contains the pattern 4321 and, by Proposition 6.1.1, is not sortable.

We can now prove that ALGo0 sorts every sortable permutation.

Theorem 6.1.6. ALGo0(π) = id if and only if 4321 ≰ π.

Proof. If π contains the pattern 4321 then, by Proposition 6.1.1, it cannot be sorted.

On the other hand, let π be a permutation that is not sorted by ALGo0 . Consider the
configuration in which the algorithm stops, denoting with b the first element of the input (if
any) and α = Back(Q2). We know that we cannot execute (e1), and that α > b, because
otherwise instruction (3) would be performed (either (b) or (e2)). Then, by Proposition 6.1.5,
we have 4321 ≤ π.
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If the input is empty in Λ, the reasoning is longer. Let Λ be the current (halting) configu-
ration, and let a be the next element that should be output. Since Q2 is increasing from front
to back, and the input is empty, then a is in Q1 in Λ.

Tracing back the operations, we can return to the last configuration Λ′ in which operation
(e2) has been executed. In Λ′, let δ = Back(Q2) and γ = Front(Q1). Since (e2) is performed,
then δ < γ. Hence the input cannot be empty (in Λ′), because otherwise, by Proposition 6.1.4,
the permutation would be sorted by ALGo0 . Let a′ be the first element of the input. We
have two possibilities: either a′ < δ, or a′ > γ. In the first case we have that 4321 ≤ π by
Proposition 6.1.5, as we want.

We now show that the second case is impossible. Namely, we prove that if δ < γ < a′ in
configuration Λ′, then a cannot be in any queue, nor in the input. Clearly a cannot be in Q2,
since Λ′ appears before Λ and a is in Q1 in Λ. Suppose by contradiction that a is in the input.
In Λ′, (e2) is performed, therefore instruction (2) failed and there exist two elements d and c
in Q1 that form the pattern 321 together with a′ = Input. In particular, (e2) is performed for
the last time, therefore d and c remain in Q1 for the rest of the execution of the algorithm,
preventing a to enter Q1. Since a is in Q1 in configuration Λ, this is impossible and a cannot
be in the input in configuration Λ′.

Suppose now that a is already in Q1 in configuration Λ′. Recall that Front(Q1) = γ, and
suppose by contradiction that γ > a. Then, by Remark 6.1.3, the elements between γ and a in
Q1 can either be greater than γ or smaller than a. Since (e2) is performed for the last time in
Λ′, they cannot be greater than γ, and must hence be smaller than a. However, any element
smaller than a is in the output in configuration Λ, therefore a is the first element of Q1 in Λ,
which is a contradiction with the fact that the algorithm stops.

Finally, suppose that a is inQ1 in configuration Λ′, and γ < a. Since a is the smallest element
not in the output in Λ, then γ, δ and all the other elements situated in Q1 in configuration Λ′ are
sent into the output at some point before configuration Λ. However, Λ′ is the last configuration
in which (e2) is performed, so all the elements in Q2 in configuration Λ come from the input, by
instruction (3). This is impossible, because after that instruction Back(Q1) < Front(Q2), so the
instruction that empties the input must have been performed while Back(Q2) < Front(Q1),
which implies that the permutation is sorted, by Proposition 6.1.4. This is a contradiction,
therefore a′ < δ and, as we already explained, 4321 < π.

6.1.2 No (o1)

Suppose that we can use all the operations, except (o1). This case gives the same result as
the previous one. Indeed, we will prove that every permutation containing the pattern 4321 is
not sortable, and we will then describe an algorithm that sorts every 4321-avoiding permutation.

For starters, notice that if a permutation enters any queue, then it must pass through Q2.

Proposition 6.1.7. If a permutation contains the pattern 4321, then it is not sortable in any
way using the allowed operations (excluding (o1)).

Proof. Let π be a permutation containing an occurrence dcba of the pattern 4321, and try to
sort it. Suppose that, during the sorting process, d does not enter Q1. Since there are smaller
elements after it, it cannot go into the output, and must thus enter Q2. However, c must also
enter Q1 or Q2, but then it cannot be output before d, which would cause the output not to be
sorted.

On the other hand, suppose that d enters Q1. Then c cannot enter Q1, otherwise it could
not reach the output before d. Therefore c must enter Q2. However, this implies that b cannot

56



reach the output before c, unless by operation (o0), which would cause b to reach the output
before a. In any case, π cannot be sorted using the allowed permutations.

We now describe a sorting algorithm that utilizes the allowed operations.

Algorithm 6.1.8. ALGo1

Repeat the following steps until the input permutation π is sorted or the algorithm stops:

1. Execute (o0) or (o2) if this outputs the minimal non-output element (which is the next
element that should be sent into the output);

2. else, if Back(Q1) < Input and Back(Q2) < Input, then execute (e1);

3. else, if Back(Q2) < Input < Front(Q1) then execute (b)1;

4. else, if Back(Q2) < Front(Q1), execute (e2);

5. else, the algorithm stops.

The following remark is an immediate consequence of the description of ALGo0 .

Remark 6.1.9. At every step of the sorting process with the algorithm ALGo1, the content of
both Q1 and Q2 is in increasing order.

Actually, the algorithm has a stronger property. Indeed, the concatenation of the contents of
Q2 and Q1 is in increasing order, and the following proposition is the missing piece for proving
that.

Proposition 6.1.10. At every step of the sorting process with the algorithm ALGo1, either one
of the queues is empty or Back(Q2) < Front(Q1).

Proof. The thesis is a consequence of the restrictions on the instructions of ALGo1 . Indeed, the
queues are empty at the beginning of the sorting process, and if either one of the queues is empty
or Back(Q2) < Front(Q1), then this remains true after any of the instruction is performed.

When put together, Remark 6.1.9 and Proposition 6.1.10 imply that the concatenation of
the contents of Q1 and Q2 is an increasing sequence at all times. We encapsulate this fact in a
lemma, to use it in the proof of next proposition.

Lemma 6.1.11. During the execution of algorithm ALGo1, the concatenation of the contents
of Q1 and Q2 is an increasing sequence at all times.

Proposition 6.1.12. Let π be a permutation and suppose that, during the sorting of π using
ALGo1, we reach a configuration in which Back(Q2) > Input, and neither of the two elements
can be output. Then π contains the pattern 4321.

Proof. Let Λ be the configuration in which, during the sorting of π with ALGo1 , Back(Q2) >
Input for the first time. In Λ, let c = Back(Q2), b = Input and a the smallest element not yet
sent into the output (so the next element to be output). By Lemma 6.1.11, a is in the input,
and is different from b.

Suppose that c was sent in Q1 by operation (b) (instruction (3)), then there exists an element
d > c that prevented c from entering Q1. Thus the elements d, c, b, a forms an occurrence of
4321 in π.

1if Q2 is empty, we just want Input < Front(Q1).
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On the other hand, suppose by contradiction that c entered Q2 by operation (e2) (instruction
4), and call Λ′ the configuration in which c = Front(Q1) and (e2) is performed. Let γ be the first
element of the input in configuration Λ′, δ = Back(Q2) and ω = Back(Q1). Necessarily, δ < γ,
since Λ is the first configuration in which Back(Q2) > Input, and δ < c < ω by Lemma 6.1.11.
Finally, δ < c < γ < ω since (e2) is performed instead of (e1) or (b). This is enough to reach
a contradiction, since the only possible operation to execute after (e2) are either (b) or (e2),
both of which would change the last element of Q2 from c to something else, and would make
impossible to reach configuration Λ.

This implies that c entered Q2 by operation (b), and π contains the pattern 4321, concluding
the proof.

We can then prove that ALGo1 sorts all permutations in Av(4321).

Theorem 6.1.13. ALGo1(π) = id if and only if 4321 ≰ π.

Proof. If π contains the pattern 4321 then, by Proposition 6.1.7, it cannot be sorted.
On the other hand, let π be a permutation for which ALGo1 stops. As a consequence of

Lemma 6.1.11 and the fact that instruction (4) cannot be performed, we have that Q1 is empty.
Since instruction (2) cannot be performed, then Back(Q2) > Input, therefore π contains the
pattern 4321 by Proposition 6.1.12.

6.1.3 No (b)

Suppose that we can use all the operations, except (b). Notice that every element that is
not immediately sent to the output by (o0) must enter Q1. Even in this case only 4321-avoiding
permutations are sortable.

Proposition 6.1.14. If a permutation contains the pattern 4321, then it is not sortable in any
way using the allowed operations.

Proof. Let π be a permutation containing an occurrence dcba of the pattern 4321. Then d, c
and b Must enter Q1. The elements passing through Q1 must be sorted using only a queue
(namely, Q2) with a bypass. Since the pattern 321 is not sortable using just a queue, then d, c
and b cannot be sorted.

The proof of the proposition highlights an interesting characteristic of our structure: Q1

essentially acts as a container which serves as an input for Queuesort, while operation (o0)
allows to immediately output elements bypassing the queue sorting procedure.

Algorithm 6.1.15. ALGb:

Repeat the following steps until the input permutation π is sorted or the algorithm stops:

1. execute (o0) if this outputs the minimal non-output element (which is the next element
that should be sent into the output);

2. else, execute a step of the Queuesort algorithm using Q2 as the queue and Front(Q1) as
the current element of the input, unless this would output an element which is not the next
element to be outputted;

3. else, execute (e1), unless this would cause the the pattern 321 to appear in the concatena-
tion of the contents of Q2 and Q1;

4. else, the algorithm stops.
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The algorithm heavily relies on Queuesort, and makes sure that the elements fed into it
(that is, into Q1) avoid the pattern 321, since otherwise they could not be sorted.

Theorem 6.1.16. ALGb(π) = id if and only if 4321 ≰ π.

Proof. If π contains the pattern 4321 then, by Proposition 6.1.14, it cannot be sorted.
On the other hand, let π be a permutation for whichALGo1 stops. Consider the configuration

in which the algorithm stops, and let a the next element that should be sent into the output.
Since the sequence of elements inside Q1 and Q2 avoids the pattern 321, the element a must
still be in the input, otherwise it would be correctly sent into the output by Queuesort.

Let b be the first element of the input. The algorithm stops, therefore instruction (3) fails
and there exists two elements, d and c, that forms an occurrence of the pattern 321 together
with b. Since a is in the output and is different from b (otherwise a would be sent into the
output by (o0)), the elements d, c, b, a form an occurrence of the pattern 4321 in π.

6.2 Sorting with every operation

Finally, suppose that we have no forbidden operation. This is the complete sorting with two
queues in series problem. The characterization of permutations sorted without using operation
(o0) allows us to see the problem as sorting with ALGo0 with a bypass. First of all, we prove
that all permutations containing the pattern 54321 cannot be sorted.

Proposition 6.2.1. Let π be a permutation containing the pattern 54321. Then it is not
sortable using two queues in series.

Proof. Let π be a permutation containing an occurrence edcba of the pattern 54321. Then the
elements e, d, c, b cannot be sent to the output by (o0). Therefore they have to be sorted using
the two queues with all the other operations. By Proposition 6.1.1, this is impossible.

Next, we define an algorithm that sorts every 54321 avoiding permutation. To do so, we
make use of the notion of right-to-left minima, which are elements smaller that everything after
them. That is, πi is a right-to-left minima of π if and only if πi < πj for every j > i.

This elements are used to determine when (and if) to output something using o0. Since
there is nothing bigger after them, they can be sent into the output by (o0). The only concern
is that, when a right-to-left minima is the current element of the input, there might still be
some element inside Q1 or Q2 smaller than it. Therefore algorithm ALGo0 is performed until
the right-to-left minima is the next element to be sent into the output.

Algorithm 6.2.2. ALG2Q:

Repeat the following steps until the input permutation π is sorted or the algorithm stops:

1. if the current element of the input is not a right-to-left minima, then execute a step of
algorithm ALGo0, using it as the current input, and Q1, Q2 as the queues;

2. else, if the current element of the input is the next element to be sent into the output,
execute (o0);

3. else, execute a step of algorithm ALGo0, using an empty input and Q1, Q2 as the queues;

4. else, the algorithm stops.

Notice that the algorithm never “shows” the right-to-left minima to ALGo0 , because they
are not meant to enter any queue.
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Theorem 6.2.3. ALG2Q(π) = id if and only if 54321 ≰ π.

Proof. If π contains the pattern 54321, then it is not sortable by Proposition 6.2.1.
On the other hand, let π be a permutation for which ALG2Q stops, and consider the con-

figuration in which that happens.
Since the algorithm stops, then the subalgorithm ALGo0 cannot perform any operation. By

Theorem 6.1.6, this implies that π contains an occurrence edcb of the pattern 4321. Since the
subalgorithm never considers any right-to-left minima of π, neither of the elements forming the
pattern can be one. Specifically, b is not a right-to-left minima of π. Therefore there exists an
element a smaller than b which appears after b in π. Therefore the elements e, d, c, b, a form
an occurrence of the pattern 54321 in π.
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Chapter 7

Interval posets of permutations

In this chapter we focus on something different: the intervals of a permutation. In particular,
we focus on the partially ordered set (poset) of the intervals of a permutation, defined in [26].

Intervals in permutations can be defined in several ways (focusing on the indices – a.k.a.
positions – in σ = σ1σ2 . . . σn or on the values). Here, we follow the definition of [26], and
define an interval of a permutation σ = σ1σ2 . . . σn as an interval [j, j + h] of values (for some
1 ≤ j ≤ n − 1 and some 0 ≤ h ≤ n − j) which is the image by σ of an interval [i, i + h] of
positions (for some 1 ≤ i ≤ n − h). Namely, [j, j + h] is an interval of σ when there exists
an i satisfying {σi, . . . , σi+h} = [j, j + h]. The singletons {1}, {2}, . . . , {n} and the complete
interval [1, n] are always intervals of σ, and are called trivial. The empty set is also an interval
of σ, although most often we do not include it in the set of intervals of σ. Non-trivial and
non-empty intervals are called proper. For example, the proper intervals of σ = 45 6 7 9 3 1 2 8
are [4, 5], [4, 6], [4, 7], [5, 6], [5, 7], [6, 7], [1, 2] and [1, 3].

The inclusion relation naturally equips the set of intervals (proper ones and trivial ones)
with a poset structure: the elements of this poset are the intervals, and the relation is the set
inclusion. We can consider two versions of this poset: a first one in which the empty interval
is an element (hence, the only minimal element in the poset), and a second one which excludes
the empty interval (the minimal elements being then the singletons {1} through {n}).

While posets are essentially “unordered” objects, we follow [26] and consider particular plane
embeddings of these posets.

Definition 7.0.1. Let σ be a permutation. The (original) interval poset of σ, denoted P (σ), is
the plane embedding of the poset of the non-empty intervals of σ where the minimal elements
appear in the order {1}, {2}, . . . , {n} from left to right.

We denote P•(σ) the poset of the possibly empty intervals of σ with the same plane embed-
ding: P•(σ) is just P (σ) with a new minimum smaller than all minimal elements of P (σ).

The left part of Fig. 7.1 shows the interval poset of our running example. Clearly, in this
figure as well as in general, every element of the poset represents the interval which consists of
the set of values below it in the poset.

Deviating from [26], we also wish to consider a second embedding of the interval poset of a
permutation, illustrated on the right part of Fig. 7.1. We believe that this second embedding
is also very natural, maybe even more natural than the first one once compared with the
decomposition trees of permutations, as we shall see later.

Definition 7.0.2. Let σ be a permutation. The modified interval poset of σ, denoted P̃ (σ), is
the plane embedding of the poset of the non-empty intervals of σ where the minimal elements
appear in the order {σ1}, {σ2}, . . . , {σn} from left to right.

We also define P̃•(σ) adding a new minimum, as in Definition 7.0.1.
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{1}{2}{3}{4}{5}{6}{7}{8}{9} {1}{2}{3}{4}{5}{6}{7} {8}{9}

Figure 7.1: From left to right: The original interval poset P (σ), and the modified interval poset
P̃ (σ), for σ = 45 6 7 9 3 1 2 8.

Although these two embeddings are different, they can be connected by the following remark.
It is illustrated comparing the left parts of Figs. 7.1 and 7.2.

Proposition 7.0.3. For any permutation σ, P (σ) = P̃ (σ−1) (and consequently, we also have
P•(σ) = P̃•(σ

−1)).

Proof. First, observe that there is a bijective correspondence between the intervals of σ and those
of σ−1. Namely, every interval [j, j + h] of σ such that {σi, . . . , σi+h} = [j, j + h] corresponds
to the interval [i, i + h] of σ−1 – indeed, [i, i + h] = {σ−1

j , . . . , σ−1
j+h}. Next observe that the

inclusion relation is preserved by this correspondence: for I and J two intervals of σ, and I ′

and J ′ the corresponding intervals of σ−1, it holds that I ⊆ J if and only if I ′ ⊆ J ′. Therefore,
the nonplane poset structures of P (σ) and P̃ (σ−1) are identical.

We are left with proving that the plane embeddings of P (σ) and P̃ (σ−1) are the same. For
this, we identify the minimal elements of P (σ) and P̃ (σ−1) by a pair (i, j) where i is the position
of this element and j its value. Therefore, in P (σ), the i-th minimal element in the left-to-right
order has value i hence corresponds to the pair (σ−1

i , i). On the other hand, in P̃ (σ−1), the i-th
minimal element in the left-to-right order is at position i in σ−1, hence also corresponds to the
pair (σ−1

i , i), concluding the proof.

In this chapter we focus on statements regarding the posets P̃ (σ), but Proposition 7.0.3
then of course allows to interpret them on the original posets P (σ) by considering the inverse
permutation.

7.0.1 Substitution decomposition and decomposition trees

While interval posets of permutations have been defined and studied only recently, the
inclusion relations among the intervals of permutations have been the subject of many studies,
in the algorithmic and in the combinatorial literature. In both cases, the set of intervals is
represented by means of a tree, which is called strong interval tree or (substitution) decomposition
tree depending on the context. For historical references, we refer to the introduction of [28,
Section 3.2], and to [8, Section 3], which in addition explains the equivalence between the two
approaches.

Below, we review the definition of these trees, following essentially the combinatorial ap-
proach introduced in [2]. This is also the approach presented in the survey [28, Section 3.2].
We need to recall some terminology.
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{7}{8}{6}{1}{2}{3}{4}{9}{5}

3142

⊖

⊕

• •

•

⊕

• • • •

• •

Figure 7.2: From left to right: The interval poset P̃ (σ−1), and the decomposition tree T (σ−1),
for σ = 45 6 7 9 3 1 2 8, i.e., σ−1 = 78 6 1 2 3 4 9 5. The substitution decomposition of σ−1 is
indeed σ−1 = 3142[⊖[⊕[1, 1], 1],⊕[1, 1, 1, 1], 1, 1].

A permutation is simple if it is of size at least 4 and its only intervals are the trivial ones.
For example, there are two simple permutations of size 4 (namely, 2413 and 3142) and a simple
permutation of size 7 is 5247316.

Given π a permutation of size k and k permutations α1, . . . , αk, the inflation of π by
α1, . . . , αk (a.k.a. substitution of α1, . . . , αk in π), denoted π[α1, . . . , αk], is the permutation
obtained from π by replacing each element πi by an interval Ii, such that all elements in Ii
are larger than all elements in Ij whenever πi > πj , and such that the elements of Ii form
a subsequence order-isomorphic to αi. For instance 312[12, 231, 4321] = 89 231 7654. For any
k ≥ 2, we write inflations in π = 12 . . . k (resp. π = k . . . 21) as inflations in ⊕ (resp. ⊖),
the value of k being simply determined by the number of components in the inflation. For
instance, ⊕[1, 3412, 21, 12] means 1234[1, 3412, 21, 12] = 145237689. Finally, we say that a per-
mutation σ is ⊕- (resp. ⊖-)indecomposable when there does not exist any k and αi such that
σ = ⊕[α1, . . . , αk] (resp. σ = ⊖[α1, . . . , αk]).

Theorem 7.0.4. [2] Every permutation σ of size at least 2 can be uniquely decomposed as
π[α1, . . . , αk] with one of the following satisfied:

� π is simple;

� π = 12 . . . k for some k ≥ 2 and all αi are ⊕-indecomposable;

� π = k . . . 21 for some k ≥ 2 and all αi are ⊖-indecomposable.

The description of σ as π[α1, . . . , αk] satisfying the above is called the substitution decomposi-
tion of σ.

Remark 7.0.5. In the first item, we note our (somewhat unusual) convention that simple
permutations are of size at least 4. In the second item, the statement of [2] is rather π = ⊕[α, β]
with only α ⊕-indecomposable. It is easily seen to be equivalent to our second item above,
decomposing recursively inside β until reaching a second component in ⊕ which is itself ⊕-
indecomposable. A similar remark obviously applies to the third statement.

Applying the substitution decomposition recursively inside the αi of Theorem 7.0.4 until we
reach permutations of size 1, we can represent every permutation by a tree, called its decompo-
sition tree, which we denote T (σ). See an example on the right side of Fig. 7.2.

Definition 7.0.6. A decomposition tree of size n is a rooted tree with n leaves and in which
every internal vertex v satisfies the following:
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� either v is labeled by a simple permutation, whose size is equal to the number of children
of v,

� or v is labeled by ⊕ or ⊖ and has at least 2 children.

Decomposition trees are plane, meaning that the children of every internal vertex are ordered
from left to right.

In addition, decomposition trees are required to not contain any ⊕−⊕ edge nor any ⊖−⊖
edge.

The following theorem follows immediately from Theorem 7.0.4 (the absence of ⊕−⊕ and
⊖−⊖ edges echoing the conditions in the second and third items of Theorem 7.0.4).

Theorem 7.0.7. The correspondence between permutations and decomposition trees is a size-
preserving bijection. Under this correspondence, σi corresponds to the i-th leaf of T (σ) in the
left-to-right order.

We do not discuss here in details the relation between the intervals of a permutation and
its decomposition tree. We point out to the interested readers that the nodes of T (σ) are the
so-called strong intervals of σ. Those are defined as the intervals of σ which do not overlap any
other interval of σ, two intervals I and J being overlapping when I ∩ J is neither empty nor
equal to I or J . Details can be found in [8, Section 3] where references are also given.

However, the relation between interval posets and decomposition trees – which we present
in the next section – will hopefully clarify the link between decomposition trees and intervals
of permutations, even without going back to these references.

7.1 Computing the poset from the decomposition tree

We start by a few definitions (illustrated by Fig. 7.3), and some easy facts from [26].
The dual claw poset of size k is the poset with k + 1 elements, one being larger than all

others, which are incomparable among them. Note that it has k minimal elements. It was
observed in [26, Proposition 4.3] that it is the interval poset of all simple permutations of size
k (and only those).

The argyle poset of size k is the interval poset of the permutation 12 . . . k. It has k minimal
elements. It was observed in [26, Proposition 4.4] that it is the interval poset of exactly two
permutations: 12 . . . k and k . . . 21.

Figure 7.3: From left to right: the dual claw poset of size 5, and the argyle posets of size 3 and
5.

Now, consider the following procedure, which takes as input a permutation σ (or equivalently,
its decomposition tree T (σ)), and returns a plane embedding of a poset (which we denote Q(σ)
for the moment).
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1. If σ = 1 (i.e. T (σ) = •), we set Q(σ) to be the poset containing only one element.

2. Otherwise, we consider the substitution decomposition σ = π[α1, . . . , αk] of σ.

3. If π is simple, we let R be the dual claw of size k. Otherwise (i.e. if π is ⊕ or ⊖) we
denote by R the argyle poset of size k.

4. We let the minimal elements of R be p1, . . . , pk, in this order from left to right.

5. The poset Q(σ) is obtained by taking R and replacing, for each i ∈ [1, k], pi by the
recursively-obtained poset Q(αi).

We can observe that the auxiliary poset R in this procedure actually is R = P̃ (π).

Proposition 7.1.1. For every permutation σ, Q(σ) = P̃ (σ).

In other words, the interval poset P̃ (σ) of any permutation σ can be obtained from T (σ)
by replacing any internal node labeled by a simple permutation by a single element, and any
internal node labeled by ⊕ or ⊖ having k children by several elements arranged in an argyle
poset structure with k minimal elements. This is illustrated comparing the two pictures of
Fig. 7.2.

We note that it was observed in [26, Section 2] that the substitution decomposition lays the
ground work for interval posets. Specifically, Proposition 7.1.1 can actually be seen as a rephras-
ing of [26, Theorem 4.8]. Nevertheless, for completeness, we provide a proof of Proposition 7.1.1
below.

Similarly, it was observed in [26, Section 6] that the “separation trees” of separable permu-
tations bear some resemblance with interval posets, although they are not the same. Actually,
these separation trees are a restricted version of the decomposition trees in the special case of
separable permutations, so our procedure explains precisely this resemblance and allows to go
from one representation to the other.

Proof of Proposition 7.1.1. The proof is by induction on the depth (counted in number of edges)
of T (σ). The statement is clear when T (σ) is of depth 0, i.e., T (σ) = •. So, let us assume that
T (σ) is of depth at least 1, and let σ = π[α1, . . . , αk] be the substitution decomposition of σ.
By induction hypothesis, for each i, Q(αi) = P̃ (αi).

If π is simple, then every interval of σ is either [1, |σ|] or included in some αi, implying that
Q(σ) = P̃ (σ).

If π is ⊕ or ⊖, the intervals of σ are either included in some αi or consist of a union of αi’s
for a set of consecutive indices i. Such intervals being represented exactly by the elements of
an argyle poset, this implies that Q(σ) = P̃ (σ) also in this case.

Remark 7.1.2. With the above procedure and Proposition 7.1.1, it is natural to refer to the
elements of P̃•(σ) as elements of smaller interval posets. More precisely, denoting π[α1, . . . , αk]
the substitution decomposition of σ, we can see P̃•(σ) as the poset obtained by identifying the
minimal elements of P̃ (π) with the maxima of the P̃ (αi)’s, and then adding a minimum ∅.
Therefore we will refer to the elements of P̃•(σ) different from ∅ using the corresponding elements
of P̃ (π) or P̃ (αi).

While the material presented in this section is rather simple and not new, it allows to
answer one of the open questions of [26], namely Question 7.3. This question is interested
in a description of the shared properties of the interval generators of an interval poset. We
prefer to call realizers these interval generators of [26], in line with the usual terminology in the
algorithmic literature.
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Given an interval poset P , a realizer of P is a permutation σ such that P̃ (σ) = P .
Given a decomposition tree T , we define its skeleton sk(T ) as the plane tree with the same

set of nodes and the same genealogy, but where internal nodes have different labels. An internal
node of sk(T ) is labeled prime (resp. linear) when its label in T is a simple permutation (resp.
⊕ or ⊖).

Proposition 7.1.3. Let P be an interval poset, and σ be any permutation such that P̃ (σ) = P .
Then a permutation τ is a realizer of P if and only if sk(T (τ)) = sk(T (σ)).

Proof. It follows immediately from Proposition 7.1.1 and the description of the procedure com-
puting Q(σ).

For example, this allows to compute the set of realizers of the poset (without labels on the
minimal elements) displayed in Fig. 7.2, left. This set is obtained by considering the skeleton of
the tree shown in Fig. 7.2, right, and by considering all possible labels for its prime root (here
2413 or 3142), all possible labels for the second child of the root (here ⊕ or ⊖), and all possible
labels on the left branch starting at the first child of the root (here ⊕−⊖ or ⊖−⊕, keeping in
mind that decomposition trees do not contain any ⊕−⊕ nor ⊖−⊖ edge). This yields the follow-
ing set of eight realizers: {342678915, 324678915, 342987615, 324987615, 786123495, 768123495,
786123495, 768123495}.

We note that this idea was already present in [26, Theorem 5.1], but only with the purpose
of computing the number of realizers of an interval poset. Of course, the point of view of
decomposition trees allows to provide an alternative proof of [26, Theorem 5.1], although we do
not provide details here, since they are very close to the proof of Theorem 4.1 in [26].

Some of the results of [26] can be seen as consequences (or special cases) of Proposition 7.1.3.

Corollary 7.1.4. The following claims hold.

� For every k ≥ 4, the dual claw poset of size k is the poset of all simple permutations of
size k, and only those (see [26, Proposition 4.3]).

� For every k ≥ 2, the argyle poset of size k is the poset of exactly two permutations: 12 . . . k
and k . . . 21. (see [26, Proposition 4.4]).

� For every permutation σ = σ1σ2 . . . σn, denoting σR its reverse σn . . . σ2σ1, we have
P (σR) = P (σ) (see [26, Lemma 2.5]).

Proof. For the first item, we simply observe that the simple permutations σ of size k are exactly
those such that sk(T (σ)) consists of a prime node at the root with only k leaves pending under
it.

Similarly, for the second item, we observe that sk(T (σ)) consists of a linear node at the root
with only k leaves pending under it if and only if σ = 12 . . . k or k . . . 21.

For the third item, we first recall that for all σ, P (σR) = P̃ ((σR)−1) by Proposition 7.0.3.
Second, we observe that (σR)−1 = (σ−1)C where for any permutation π = π1π2 . . . πn, π

C

denotes the complement (n+1−π1)(n+1−π2) . . . (n+1−πn) of π. So, our claim is equivalent
to showing that P̃ (π) = P̃ (πC) for all π. And this holds since T (πC) is obtained from T (π) by
complementing each simple permutation at a node, and by changing each ⊕ (resp. ⊖) into a ⊖
(resp. ⊕), noting that these operations do not affect the prime or linear labels of the nodes of
sk(T (π)).

In addition, [26, Theorem 4.8] states that interval posets are the posets which can be con-
structed starting from the 1-element poset, and recursively replacing minimal elements with
dual claw posets, argyle posets or binary tree posets (defined in [26, Definition 4.2]). Our
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Proposition 7.1.1 states that interval posets are those that can be constructed starting from the
1-element poset, and recursively replacing minimal elements with dual claw posets or argyle
posets. Since binary tree posets can straightforwardly be obtained from the 1-element poset
recursively replacing minimal elements with argyle posets with two minimal elements, Propo-
sition 7.1.1 therefore implies [26, Theorem 4.8]. It also allows to identify more clearly which
“building blocks” are needed, namely dual claw posets and argyle posets, without explicitly
needing binary tree posets.

7.2 Alternative proofs of known structural results

In this section, we review several structural properties of the interval posets, which were
already proved in [26]. We believe that the approach through decomposition trees allows to
provide more straightforward proofs of these statements.

We briefly recall some classical terminology regarding properties of posets. More details can
be found in [25]. Let P be a generic poset, whose partial order is denoted by ≤.

For a and b be two elements of P , we say that a covers b when b < a and there is no element
c of P such that b < c < a. The Hasse diagram of P is a drawing of the graph whose vertices
are the elements of P , and whose edges are the covering relations in P , with a being drawn
higher than b whenever b < a. We say that P is planar when its Hasse diagram can be drawn
in such a way that no two edges cross.

For any two elements a and b in P , their meet (resp. join) denoted a∨ b (resp. a∧ b) is the
smallest element c such that a ≤ c and b ≤ c. (resp. the largest element c such that c ≤ a and
c ≤ a), if such an element exists. We say that P is a lattice when, for any two elements a and
b of P , both a∨ b and a∧ b exist. We also say that P is modular when, for any two elements a
and b of P , they both cover a ∧ b if and only if a ∨ b covers them both.

Theorem 7.2.1. ([26, Theorem 3.2]) For every permutation σ, the posets P̃ (σ) and P̃•(σ) are
planar.

Proof. The proof heavily relies on Proposition 7.1.1 and the computation of P̃ (σ) from the
decomposition tree T (σ) of σ which is the core of Section 7.1. Clearly, for any permutation σ,
the tree T (σ) is planar, and the transformations performed to obtain P̃ (σ) from it maintain the
planar property. This shows that P̃ (σ) is planar (in addition with a planar drawing where all
minimal elements can be placed on a horizontal line at the bottom of the picture). Since P̃•(σ)
is obtained by adding to P̃ (σ) a new minimum smaller than all minimal elements of P (σ), the
above ensures that P̃•(σ) is also planar.

Theorem 7.2.2. ([26, Theorem 3.3]) For every permutation σ, the poset P̃•(σ) is a lattice.

Proof. First, we note the following fact: if I and J are two elements of some poset P̃•(σ) such
that I ⊆ J we have I ∧ J = I and I ∨ J = J . We shall use this fact repeatedly, particularly
when one of I or J is ∅.

Now, we prove the statement by structural induction on the substitution decomposition of
σ.

If σ = 1, our claim follows immediately from the above fact (since the only two elements of
P̃•(σ) are {1} and ∅).

If σ is a simple permutation, then P̃•(σ) is a dual claw poset with an added minimum ∅.
Clearly, any pair of elements have a meet and a join in this poset.

If σ is increasing or decreasing then P̃•(σ) is an argyle poset with an added minimum.
The elements of this poset correspond to the intervals [a, b] for 1 ≤ a ≤ b ≤ |σ|, with the
addition of ∅. Obviously, for all such intervals, [a, b] ∨ [a′, b′] = [min(a, a′),max(b, b′)] and
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[a, b] ∧ [a′, b′] = [max(a, a′),min(b, b′)] with the convention that [x, y] = ∅ whenever x > y.
Using also the fact observed at the beginning of the proof in the case that one of the considered
element is the emptyset, it follows that for increasing or decreasing permutations σ, P̃•(σ) is a
lattice.

Otherwise, we consider the substitution decomposition π[α1, ..., αk] of σ, for which it holds
that π ̸= σ. Note that in this case we can apply the induction hypothesis to π as well as to
each αi.

Let I and J be two elements of P̃•(σ). If I or J is ∅, then I ∨ J and I ∧ J exist from the
fact noted earlier. Therefore, let us assume that I ̸= ∅ and J ̸= ∅.

If I and J are elements of P̃ (π), we have I ∧ J and I ∨ J in P̃•(π) through the induction
hypothesis. Then, I ∨ J is unchanged in P̃•(σ) and I ∧ J also stays unchanged, unless it is the
minimal element (∅) of P̃•(π). In this case, since there is no relation between the P̃ (αi), we
have I ∧ J is the minimal element (∅) of P̃•(σ).

If I and J are elements of the same subposet P̃ (αi), we have I∧J and I∨J in P̃•(σ) through
the induction hypothesis similarly to the previous case.

Otherwise, I and J belong to different subposets P̃ (αi), and we define Iπ and Jπ the smallest
elements of P̃ (π) that contain respectively I and J . By transitivity, we have I ∨ J = Iπ ∨ Jπ
which we know exists due to the cases considered earlier. As for I ∧ J , I ∩ J is empty, and thus
I ∧ J is the minimal element (∅) of P̃•(σ).

This concludes our inductive proof that for any permutation σ, P̃•(σ) is a lattice.

Theorem 7.2.3. ([26, Theorem 3.5]) For every permutation σ, the poset P̃•(σ) is modular if
and only if σ is a simple permutation or 1 or 12 or 21.

While the proof of this theorem in [26] is based on a characterization of modularity by
sublattice avoidance, our proof relies only on the definition of a modular lattice.

Proof. First, let σ be a permutation whose decomposition tree T has depth at least 2. Denote
by π[α1, ..., αk] the substitution decomposition of σ. Let I be an interval (of size 1) of σ
corresponding to a leaf of T at maximal depth. Let i be the index such that I lies in P̃ (αi). Of
course, I is a minimal element of P̃ (σ). Let J be another minimal element of P̃ (σ) which lies
in P̃ (αj) for some j ̸= i.

Then, in P̃•(σ), I ∧ J = ∅, which they cover. Defining pi and pj as the maximal elements
of P̃ (αi) and P̃ (αj) respectively, we have I ∨ J = pi ∨ pj (as in the proof of Theorem 7.2.2).
It is possible that pi ∨ pj covers pi and pj , and it is possible that pj = J . However, because I
corresponds to a leaf of depth at least 2 in T , it holds that pi ̸= I. Therefore I ∨ J does not
cover I, and P̃•(σ) cannot be modular in this case.

Now, assume that σ = 12 . . . k or k . . . 21 for some k ≥ 3. Consequently, P̃ (σ) is an argyle
poset with k ≥ 3 minimal elements. Taking I = {1} and J = {k}, we see that they both cover
their joint ∅ in P̃•(σ). However, their meet is [1, k] which does not cover them due to the argyle
structure itself.

We are left with the cases σ = 1, 12, 21 or σ is simple. In such cases, denoting n = |σ|,
observe that all elements in P̃•(σ) are either ∅, [1, n], or cover the former while being covered
by the latter. Therefore, P̃•(σ) is modular, concluding the proof.

Finally, in [26, Theorem 3.11] it is shown that P̃•(σ) is distributive if and only if σ is 1 or 12
or 21. For this particular statement, decomposition trees do not allow for a proof substantially
different from [26], so we leave this property outside of the present work.
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7.3 Enumerative properties of interval posets

Proposition 7.1.3 allows us to identify interval posets with trees in a certain family. Specif-
ically, the following holds.

Corollary 7.3.1. Interval posets with n minimal elements are in bijection with trees of the
form sk(T ) for T a decomposition tree with n leaves.

This perspective on interval posets is very useful to derive enumeration results on interval
posets, using classical tools from tree enumeration.

7.3.1 The number of realizers of a given interval poset

Section 5 of [26] is interested in computing the number of realizers of a given interval poset.
The statement proved in [26] can be rephrased in terms of decomposition trees, and we state it
here for completeness. The proof is straightforward from the results of our Section 7.1, and this
is essentially how the statement is proved in [26] (although the language is a little bit different).
Therefore, the statement is given without proof here.

Theorem 7.3.2. ([26, Theorem 5.1]) Let P be an interval poset. Denote by rl(P ) the number
of realizers of P , that is to say the number of permutations σ such that P = P̃ (σ).

Let σ be one permutation such that P = P̃ (σ), and let T be the skeleton of the decomposition
tree of σ. Then

rl(P ) =
∏

v non-leaf vertex of T

rl(v)εv ,

where the rl(v) are given by

rl(v) =

{
2 if v is linear,

number of simple permutations of size k if v is prime with k children,

and the exponents εv are given by

εv =


1 if v is the root of T,

1 if v is prime,

1 if v is linear with a prime parent,

0 if v is linear with a linear parent.

Equivalently, εv is 0 if v is linear with a linear parent, 1 otherwise.

Note that the last case in the definition of εv echoes the fact that there are no edges between
two linear nodes with the same ⊕ or ⊖ labels in decomposition trees, leaving therefore no choice
for the label of a linear node whose parent is also linear.

7.3.2 Interval posets with exactly two realizers

In Question 7.2 of [26], B. Tenner asked the following: how many interval posets have exactly
two realizers? We solve this question, and give a precise description of these interval posets. To
state our results, we need some terminology.

A permutation is separable if it avoids the patterns 2413 and 3142. Separable permutations
enjoy several other characterizations, including some which are more adapted for our purpose.
Specifically, a permutation is separable if and only if it can be obtained from permutations of
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size 1 by repeated applications of the operations ⊕ and ⊖. This is essentially how separable
permutations where first considered in [6], by means of their “separating trees”. With the point
of view of substitution decomposition used throughout this paper, the characterization of [6] is
then equivalent to saying that a permutation is separable if and only if its decomposition tree
contains only ⊕ and ⊖ nodes.

Separable permutations made an appearance in [26], where Theorem 6.2 states that an
interval poset P (σ) is binary if and only if σ is separable (an interval poset being by definition
binary when it does not contain any dual claw with more than two minimal elements). Since
separable permutations are stable by taking the inverse, it follows from Proposition 7.0.3 that
also P̃ (σ) is binary if and only if σ is separable.

The answer to Question 7.2 of [26] actually also involves separable permutations.

Theorem 7.3.3. An interval poset P = P̃ (σ) is such that P has exactly two realizers if and
only if σ is a separable permutation of size at least 2, or σ = 2413 or 3142.

As a consequence, the number an of interval posets with exactly two realizers is given by the
sequence a1 = 0, a2 = s2 = 1, a3 = s3 = 3, a4 = s4 + 1 = 12 and an = sn for all n ≥ 5, with sn
the n-th little Schröder number (see [22, sequence A001003]).

Proof. Consider an interval poset P = P̃ (σ). We also denote by T the decomposition tree of σ.
Of course, if σ = 1, then 1 is the only realizer of P .
Since there are more than two simple permutations of any size at least 5, if T contains a

prime node with at least 5 children, then P has more than two realizers.
If T contains a prime node v with 4 children, then we have two choices for the simple

permutation labeling v, namely 2413 and 3142. This shows that P has two realizers when
σ = 2413 or 3142. However, if T contains some other internal node u ̸= v, then we can also
choose (among at least two possibilities) the label of u (may u be prime or linear). Therefore,
in such cases, P has more than two realizers.

We are left with the case where σ ̸= 1 is separable, corresponding to T ̸= • containing only
linear nodes. The skeleton of T together with the ⊕ or ⊖ label of the root determines T (and
hence σ) completely, because ⊕ and ⊖ labels are required to alternate in decomposition trees.
Therefore P has exactly two realizers: σ and the permutation whose decomposition tree is T
with all ⊕ changed into ⊖ and conversely (which is none other than the complement of π – see
the proof of Corollary 7.1.4, third item).

We now turn to the proof of the second part of our statement. The fact that a1 = 0 follows
from the particular case of σ = 1 above. Otherwise, except when n = 4, an is half the number
of separable permutations of size n. The number of separable permutations of size n is the
n-th large Schröder number, whose half is called little Schröder number. In the particular case
n = 4, we need to add 1 to sn, to account for the dual claw poset with 4 minimal elements,
whose two realizers are 2413 and 3142.

7.3.3 Counting interval posets

Although the question of counting interval posets with n minimal elements was neither
studied nor posed in [26], we believe it is natural. We answer this question completely in this
subsection.

Let P be the family of rooted plane trees, where internal nodes carry a type which is either
prime or linear, in which the size is defined as the number of leaves, and in which the number
of children of any linear (resp. prime) node is at least 2 (resp. at least 4). Let Pn be the set of
trees of size n in P. Clearly, Pn is the set of skeletons of decomposition trees of permutations
of size n, and from Corollary 7.3.1 we can identify Pn with the set of interval posets with n
minimal elements.
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We now use the approach of symbolic combinatorics (see [15, Part A] for example) to obtain
the enumeration of trees in P, or equivalently of interval posets.

By definition of P, it follows that P satisfies the following combinatorial specification, where
• denotes a leaf, ⊎ is the disjoint union, and Seq≥k is the sequence operator restricted to
sequences of at least k components:

P = • ⊎ Seq≥2(P) ⊎ Seq≥4(P).

Indeed, the first term corresponds to the tree consisting of a single leaf, the second to trees with
a linear root, and the third to trees with a prime root.

Denoting pn the cardinality of Pn, we let P (z) =
∑

n≥0 pnz
n be the ordinary generating

function of P. The combinatorial specification above indicates that P (z) satisfies the following
equation:

P (z) = z +
P (z)2

1− P (z)
+

P (z)4

1− P (z)
. (7.1)

Equivalently, this can be rewritten as

P (z) = zϕ(P (z)) with ϕ(u) =
1

1− u
(
1+u2

1−u

) . (7.2)

From there, the Lagrange inversion formula (see, e.g. [15, Theorem A.2]) can be applied to
obtain an explicit formula for pn.

Theorem 7.3.4. The number pn of interval posets with n minimal elements is

pn =


1 if n = 1,

1

n

n−1∑
i=1

min{i,n−i−1
2

}∑
k=0

(
n+ i− 1

i

)(
i

k

)(
n− 2k − 2

i− 1

)
if n > 1.

The first terms of this sequence (starting from p1) are 1, 1, 3, 12, 52, 240, 1160, 5795, 29681.
We contributed this sequence to the OEIS [22], where it is now sequence A348479.

Proof. Applying the Lagrange inversion theorem to Eq. (7.2), we have pn = 1
n [u

n−1]ϕ(u)n. In
our computation of ϕ(u)n, we make use of the following identity, valid for any n ≥ 1:(

1

1− z

)n

=
∑
i≥0

(
n+ i− 1

i

)
zi. (7.3)

We derive

ϕ(u)n =

 1

1− u
(
1+u2

1−u

)
n

=
∑
i≥0

(
n+ i− 1

i

)
ui
(
1 + u2

1− u

)i

=
∑
i≥0

(
n+ i− 1

i

)
ui(1 + u2)i

(
1

1− u

)i

=
∑
i≥0

(
n+ i− 1

i

)
ui

i∑
k=0

(
i

k

)
u2k

(
1

1− u

)i

= 1 +
∑
i>0

(
n+ i− 1

i

)
ui

i∑
k=0

(
i

k

)
u2k

∑
j≥0

(
i+ j − 1

j

)
uj (7.4)

= 1 +
∑
i>0

i∑
k=0

∑
j≥0

(
n+ i− 1

i

)(
i

k

)(
i+ j − 1

j

)
ui+2k+j . (7.5)
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The reason why we isolate the term for i = 0 in Eq. (7.4) is in order to apply Eq. (7.3) with
a positive power of 1

1−u .

We now want to compute [un−1]ϕ(u)n. Since p1 = 1 is obvious, we can assume n > 1. The
exponent of u in Eq. (7.5) is i+ 2k + j, so we want n− 1 = i+ 2k + j, i.e., j = n− i− 2k − 1.
Since j ≥ 0, i cannot be greater than n − 1, while k cannot be greater than n−i−1

2 . Since k is
also at most i, we have k ≤ min{i, n−i−1

2 }. Therefore

pn =
1

n
[un−1]ϕ(u)n =

1

n

n−1∑
i=1

min{i,n−i−1
2

}∑
k=0

(
n+ i− 1

i

)(
i

k

)(
n− 2k − 2

n− i− 2k − 1

)
.

To conclude the proof we just note that
(

n−2k−2
n−i−2k−1

)
=
(
n−2k−2

i−1

)
.

From Eq. (7.1), applying the methods of analytic combinatorics (see [15, Part B]), we can
also derive the asymptotic behavior of pn.

Theorem 7.3.5. Let Λ be the function defined by Λ(u) = u2+u4

1−u .
The radius of convergence ρ of the generating function P (z) of interval posets is given by

ρ = τ − Λ(τ), where τ is the unique solution of Λ′(u) = 1 such that τ ∈ (0, 1).
The behavior of P (z) near ρ is given by

P (z) = τ −

√
2ρ

Λ′′(τ)

√
1− z

ρ
+O

(
1− z

ρ

)
.

Numerically, we have τ ≈ 0.2708, ρ ≈ 0.1629,
√

2ρ
Λ′′(τ) ≈ 0.2206.

As a consequence, the number pn of interval posets with n minimal elements satisfies, as
n→ ∞,

pn ∼
√

ρ

2πΛ′′(τ)

ρ−n

n3/2
.

Numerically, we have
√

ρ
2πΛ′′(τ) ≈ 0.0622, ρ−1 ≈ 6.1403.

Proof. To prove this theorem we just need to prove that Λ satisfies the hypothesis of [8, Theorem
1], which is an adaptation of [15, Proposition IV.5 and Theorem VI.6] to the setting where trees
are counted by the number of leaves (as opposed to the more classical counting by the number
of nodes). Specifically, we can immediately see from their definitions that Λ is analytic at 0, has
non-negative Taylor coefficients, and has radius of convergence 1, and that P (z) is aperiodic.
Finally, since limu→1 Λ

′(u) = +∞ > 1, the result follows immediately from [8, Theorem 1].

We note that the classical theorems [15, Proposition IV.5 and Theorem VI.6] could also
have been applied to obtain Theorem 7.3.5, starting from Eq. (7.2) instead of Eq. (7.1). (And
we can check that both approaches indeed yield the same results.)

Remark 7.3.6. Remember from Definition 7.0.1 that interval posets are defined as plane em-
beddings of some posets. It would also make sense to consider non-plane versions of these
posets, defining a non-plane interval poset with n minimal elements simply as the poset of the
non-empty intervals of a permutation of size n. Following the same approach to put in corre-
spondence interval posets with trees, it follows that the family Q of non-plane interval posets
satisfies the following combinatorial specification, where MSet≥k is the multi-set operator re-
stricted to multi-sets of at least k components:

Q = • ⊎MSet≥2(Q) ⊎MSet≥4(Q).
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While this specification can be translated on generating functions, the resulting equation involves
Pólya operators, making its resolution much harder, even if just numerically. Nevertheless,
from this equation, it can be proved that the sequence (qn) enumerating non-plane interval
posets behaves asymptotically like αn−3/2βn, following the approach of [15, Section VII.5] or
[19]. Iterating the equation for the generating function, we computed the first 400 terms of the
sequence (qn), which allowed to find loose numerical estimates for α and β as α̃ = 0.1964 and
β̃ = 3.7545.

7.3.4 Counting tree interval posets

A tree interval poset is an interval poset which is a tree. Of course, this definition applies
to interval posets P (σ) (or P̃ (σ)) since intervals posets P•(σ) (or P̃•(σ)) are never trees.

Put in our language, [26, Theorem 6.1] characterizes the tree interval posets as the P̃ (σ)
such that the substitution decomposition of σ does not involve any ⊕ or ⊖ with at least three
components. This result can be recovered from the procedure described in Section 7.1, where
we can see that an interval poset P̃ (σ) is a tree if and only if the decomposition tree of σ has no
linear node with more than two children. Indeed, every internal node of the tree is substituted
with a dual claw or an argyle poset, and the resulting poset is a tree if and only if the substituted
posets are themselves trees. Now, among the posets which can be substituted, the only ones
that are not trees are the argyle posets with more that two minimal elements. Consequently,
for P̃ (σ) to be a tree, the decomposition tree of σ must be free of linear nodes with more than
two children.

In [26, Question 7.1], B. Tenner also asks how many tree interval posets have n minimal
elements. We solve this question using the same techniques as the previous subsection, giving a
closed formula for the number of tree interval posets with nminimal elements and its asymptotic
behavior.

Let T be the family of rooted plane trees, where internal nodes carry a type which is either
prime or linear, in which the size is defined as the number of leaves, and in which the number
of children of any linear node is exactly 2, while the number of children of any prime node
is at least 4. Let Tn be the set of trees of size n in T . Clearly, Tn is the set of skeletons of
decomposition trees of permutations of size n whose interval poset is a tree, and we can identify
Tn with the set of tree interval posets with n minimal elements.

We now enumerate trees in T using the approach of symbolic combinatorics in the same
fashion as we did to enumerate trees in P.

Like in the previous subsection, we derive that T satisfies the following combinatorial spec-
ification, where • denotes a leaf, ⊎ is the disjoint union, × is the Cartesian product, and Seq≥k

is the sequence operator restricted to sequences of at least k components:

T = • ⊎ (T × T ) ⊎ Seq≥4(T ).

Denoting tn the cardinality of Tn, we let T (z) =
∑

n≥0 tnz
n be the ordinary generating

function of T . The combinatorial specification above indicates that T (z) satisfies the following
equation:

T (z) = z + T (z)2 +
T (z)4

1− T (z)
. (7.6)

Equivalently, this can be rewritten as

T (z) = zψ(T (z)) with ψ(u) =
1

1− u
(
1 + u2

1−u

) . (7.7)
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From there, we apply again the Lagrange inversion formula to obtain an explicit formula for
tn.

Theorem 7.3.7. The number tn of tree interval posets with n minimal elements is

tn =


1 if n = 1,

1

n

n−3∑
i=1

min{i,n−i−1
2

}∑
k=1

(
n+ i− 1

i

)(
i

k

)(
n− i− k − 2

k − 1

)
+

(
2n− 2

n− 1

) if n > 1.

The first terms of this sequence (starting from t1) are 1, 1, 2, 6, 21, 78, 301, 1198, 4888. This
is sequence A054515 in the OEIS [22].

Proof. The proof follows the same steps as that of Theorem 7.3.4. Applying the Lagrange
inversion theorem to Eq. (7.7), we have tn = 1

n [u
n−1]ψ(u)n. In our computation of ψ(u)n, we

make use again of the identity expressed in Eq. (7.3), valid for any n ≥ 1.
We derive

ψ(u)n =

 1

1− u
(
1 + u2

1−u

)
n

=
∑
i≥0

(
n+ i− 1

i

)
ui
(
1 +

u2

1− u

)i

=
∑
i≥0

(
n+ i− 1

i

)
ui

(
1 +

i∑
k=1

(
i

k

)(
u2

1− u

)k
)

(7.8)

=
∑
i≥0

(
n+ i− 1

i

)
ui

1 +

i∑
k=1

(
i

k

)
u2k

∑
j≥0

(
k + j − 1

j

)
uj


=
∑
i≥1

i∑
k=1

∑
j≥0

(
n+ i− 1

i

)(
i

k

)(
k + j − 1

j

)
ui+2k+j +

∑
i≥0

(
n+ i− 1

i

)
ui. (7.9)

Note that we isolated the term for k = 0 in Eq. (7.8), in order to apply Eq. (7.3) with a
positive power of 1

1−u .

We now want to compute [un−1]ψ(u)n. Since t1 = 1 is obvious, we can assume n > 1. The
exponent of u in the first term of Eq. (7.9) is i + 2k + j, so we want n − 1 = i + 2k + j, i.e.,
j = n − i − 2k − 1. Since j ≥ 0 and k ≥ 1, i cannot be greater than n − 3, while k cannot be
greater than n−i−1

2 . Since k is also at most i, we have k ≤ min{i, n−i−1
2 }. On the other hand,

the coefficient of un−1 is the second term of Eq. (7.9) is
(
2n−2
n−1

)
. Therefore tn = 1

n [u
n−1]ψ(u)n

gives

tn =
1

n

n−3∑
i=1

min{i,n−i−1
2

}∑
k=1

(
n+ i− 1

i

)(
i

k

)(
n− i− k − 2

n− i− 2k − 1

)
+

(
2n− 2

n− 1

) .
To conclude the proof we just note that

(
n−i−k−2
n−i−2k−1

)
=
(
n−i−k−2

k−1

)
.

As in the previous subsection, we can obtain the asymptotic behavior of tn using analytic
combinatorics, either from Eq. (7.6) (which is the version we present) or from Eq. (7.7). The
following can be proved exactly like Theorem 7.3.5.

Theorem 7.3.8. Let Λ be the function defined by Λ(u) = u2 + u4

1−u .
The radius of convergence ρ of the generating function T (z) of tree interval posets is given

by ρ = τ − Λ(τ), where τ is the unique solution of Λ′(u) = 1 such that τ ∈ (0, 1).
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The behavior of T (z) near ρ is given by

T (z) = τ −

√
2ρ

Λ′′(τ)

√
1− z

ρ
+O

(
1− z

ρ

)
.

Numerically, we have τ ≈ 0.3501, ρ ≈ 0.2044,
√

2ρ
Λ′′(τ) ≈ 0.2808.

As a consequence, the number tn of tree interval posets with n minimal elements satisfies,
as n→ ∞,

tn ∼
√

ρ

2πΛ′′(τ)

ρ−n

n3/2
.

Numerically, we have
√

ρ
2πΛ′′(τ) ≈ 0.0792, ρ−1 ≈ 4.8920.

Remark 7.3.9. Like in Remark 7.3.6, we can find an equation for the generating function
of non-plane interval posets which are trees. And similarly, we can deduce from this equation
that the asymptotic behavior of the sequence enumerating these objects is of the form αn−3/2βn.
Here, the loose numerical estimates for α and β which we obtain in the same fashion as in
Remark 7.3.6 are α̃ = 0.2597 and β̃ = 2.9784.

7.4 The Möbius function on interval posets

In this section we will calculate the Möbius function on interval posets P̃•(σ). We first recall
some basic concepts. We refer the reader to [25] or [18] for details.

Definition 7.4.1. Let (P,≤) be a partially ordered set. If P has a maximum element M , then
the elements covered by M are called coatoms.

Definition 7.4.2. Let (P,≤) be a partially ordered set and let a, b ∈ P . The interval [a, b] of
P is the set [a, b] = {x ∈ P | a ≤ x ≤ b}. If every interval of P is finite, then P is said to be
locally finite.

In this paper we use the term interval to denote both the intervals of a permutation and the
intervals of a poset. To avoid ambiguity, we will specify every time that we refer to the interval
of a poset P by writing interval of P .

Definition 7.4.3. Let (P,≤) be a partially ordered set which is locally finite, and let a, b ∈ P .
The Möbius function between a and b is recursively defined as

µP (a, b) =


1 if a = b,

−
∑

x:a<x≤b

µP (x, b) if a < b,

0 otherwise.

Whenever P is clear from the context, we write just µ instead of µP .
Here we used the “top-down” definition of the Möbius function, but we point out that

the classical definition is the (obviously equivalent) “bottom-up” definition, given by µ(a, b) =
−
∑

x:a≤x<b µ(a, x), for a < b. For our purpose, the top-down definition is more convenient,

because in P̃•(σ) it is simpler to start from the top and recursively compute the Möbius function
with the elements below.

The following lemma is an immediate consequence of [18, Lemma 10.4], and describes a
simple case where the Möbius function is 0. This special case arises often in P̃•(σ). We also
present a brief, self-contained proof of the lemma.
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Lemma 7.4.4 ([18]). Let [a, b] be an interval of P . If there exists an element x ∈ [a, b], x ̸= a, b,
which is comparable with every element in the interval [a, b] of P , then µ(a, b) = 0.

Proof. Let x ∈ [a, b] be an element satisfying the properties of the statement. By definition of
the Möbius function, we have

∑
y:x≤y≤b µ(y, b) = 0. Consider an element c covered by x. Since x

is comparable with every element of [a, b], there is no other element of [a, b] which covers c. This
implies that µ(c, b) = −

∑
y:c<y≤b µ(y, b) = −

∑
y:x≤y≤b µ(y, b) = 0. Reasoning by induction, we

can see that for every element z ̸= x in the interval [a, x] of P it holds that µ(z, b) = 0. Indeed,

µ(z, b) =
∑

y:z<y<x

µ(y, b) +
∑

y:x≤y≤b

µ(y, b) =
∑

y:z<y<x

0 + 0 = 0.

In particular, µ(a, b) = 0.

Theorem 7.4.5. Let σ be a permutation of size n whose substitution decomposition is π[α1, ..., αk].
For any I ∈ P̃•(σ), it holds that

µ(I, [1, n]) =



1 if I = [1, n],

−1 if I is covered by [1, n] ( i.e., I is a coatom),

k − 1 if I = ∅ and π is either simple or 12 or 21,

1 if π is 12 . . . k or k . . . 21 for some k ≥ 3

and I is covered by the two coatoms of P̃•(σ),

0 otherwise.

Proof. If I = [1, n] then µ(I, [1, n]) = 1, while if I is a coatom then µ(I, [1, n]) = −1, by
definition. Suppose now that I is neither [1, n] nor a coatom.

We now distinguish cases according to the substitution decomposition π[α1, . . . , αk] of σ.

If π is simple, then P̃•(σ) is obtained by identifying the k minimal elements of the dual claw
poset P̃ (π) with the maxima of P̃ (αi), for 1 ≤ i ≤ k, and adding the minimum ∅. This is also
true when π = 12 or 21, because the argyle poset with two minimal elements is equal to the dual
claw poset with two minimal elements. Consider an element I of P̃•(σ) such that I is neither ∅,
nor a coatom, nor [1, n]. Let i be the index such that P̃ (αi) contains I. Note that I is not the
maximum of P̃ (αi), since it is not a coatom. Then, µ(I, [1, n]) = 0 by Lemma 7.4.4, where the
element x of the lemma is the maximum of P̃ (αi). Finally, we consider the case I = ∅. From
the above results and the definition of µ, we have

µ(∅, [1, n]) =−
∑

J∈P̃ (σ)

µ(J, [1, n]) = −µ([1, n], [1, n])−
∑

J coatom

µ(J, [1, n])

=− 1−
∑

J coatom

(−1) = −1 + k.

We are left with the case where π is 12 . . . k or k . . . 21 for some k ≥ 3. In this case, P̃•(σ)
is obtained by identifying the k minimal elements of the argyle poset P̃ (π) with the maxima of
P̃ (αi), for 1 ≤ i ≤ k, and adding the minimum ∅. We can easily compute the Möbius function
for every element I ∈ P̃ (π). We have seen that µ(I, [1, n]) = 1 (resp. −1) if I is [1, n] (resp. a
coatom). It follows that µ(I, [1, n]) = 1 if I is the element covered by both coatoms, and that
µ(I, [1, n]) = 0 for all the others I ∈ P̃ (π) – see Fig. 7.4.

We now consider an element I ∈ P̃ (αi) for some i. If I is the maximum of P̃ (αi), then it is
also a minimal element of P̃ (π), and hence µ(I, [1, n]) = 0 as we have seen. Otherwise, we apply
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Figure 7.4: The Möbius function between the maximum and any element in an argyle poset.

again Lemma 7.4.4 (with x the maximum of P̃ (αi)), and we obtain µ(I, [1, n]) = 0. Finally, if
I = ∅, then we have

µ(∅, [1, n]) =−
∑

J∈P̃ (σ)

µ(J, [1, n]) = −µ([1, n], [1, n])−
∑

J coatom

µ(J, [1, n])− µ(Ī , [1, n]) =

=− 1 + 2− 1 = 0,

concluding the proof of the theorem.

It may seem that Theorem 7.4.5 only allows to compute the Möbius function on intervals
of P̃•(σ) whose largest element is the maximum of P̃•(σ). The following remark shows that
Theorem 7.4.5 is actually easily extended to all intervals of P̃•(σ).

Remark 7.4.6. Let σ be a permutation and J be an element of P̃•(σ). Define j = |J |. Let J
be the subposet of P̃•(σ) consisting of the elements in the interval [∅, J ] of P̃•(σ). There exists
a permutation τ (of size j) such that P̃•(τ) is isomorphic to J .

Proof. Let τ̂ be the subsequence of σ composed by the elements of J . Note that the values
occurring in τ̂ form an interval of integers (J being an interval of σ). We then define τ as the
permutation obtained by rescaling τ̂ to the set {1, . . . , j}. Since the relative order among the
elements remains unchanged, the intervals of τ correspond to the subsets of J that are intervals
of σ. Therefore the poset P̃•(τ) is isomorphic to the poset J .

As a consequence, for any I, J ∈ P̃•(σ), we can compute µP̃•(σ)
(I, J) using the Möbius

function on P̃•(τ). More precisely, letting I ′ be the interval obtained rescaling I by the same
value that we used to rescale J into [1, j], we have µP̃•(σ)

(I, J) = µP̃•(τ)
(I ′, [1, j]).

For example, let σ = 456793128, whose interval poset P̃•(σ) is represented in Fig. 7.1, right.
If we want to calculate µP̃•(σ)

({5}, [4, 7]), we consider τ = 1234 (corresponding to τ ′ = 4567

rescaled by 3) and compute µP̃•(σ)
({5}, [4, 7]) = µP̃•(τ)

({2}, [1, 4]) = 0.
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Chapter 8

Further work

In this chapter we briefly discuss some possible improvements and future work related to
the results of this thesis.

In Chapter 4 we extensively studied the preimage tree of Bubblesort, finding results on
the shape of the tree, ways to generate it, and other properties. It would be interesting to do
the same for Queuesort and Cons, as it would also give some insight on the iterates of the two
algorithms. For a given permutation π, what can be said about the preimage tree of π under
Queuesort? Is it possible to find the average height of the tree, maybe even just for the identity
permutation? What about the preimage tree of π under Cons?

In Chapter 5 we introduced the algorithms Cons and Min, and studied the preimages of
Cons. What can be said about the preimages of Min? Notice that, although our explicit focus
was on the preimages of a single permutation, the results of Section 5.2 can be seen from the
perspective of permutation classes. Recall that the permutations sorted by one iteration of Cons
(or Min) are those avoiding the patterns 321 and 2413. Therefore a permutation is sorted by two
iterations of Cons (or Min) if and only if it belongs to the preimage of the class Av(321, 2413).
Thus, Section 5.2 describes the preimages of Av(321, 2413) under Cons and Min. What are the
preimages of the class Av(B) under Cons or Min, for a given set of patterns B? We believe that,
when B contains a single pattern ρ, then the approach used by Magnusson [21] on Queuesort

can be replicated for Cons with little effort. The algorithm Min might reveal to be more difficult
to study, though. Finally, other algorithms can be defined, as suggested by Vince Vatter. Let
d be a positive integer. Then we impose that the popqueue must be increasing and may never
contain adjacent entries that differ by more than d. In this way, Cons and Min corresponds to
d = 1 and d = ∞, respectively. What can we say about other values of d?

Bubblesort can be seen as a modification of Queuesort, where the queue has maximum
capacity 1 (that is, it can contain at most one element at any time). Consider a queue with
maximum capacity k, and call k-Queuesort the algorithm that sorts using that queue. What
can we say about k-Queuesort and its preimages? If we consider a popqueue instead of a
queue, can we describe an optimal sorting algorithm? The tools developed in this thesis could
be helpful for tackling such problems. Specifically, the way in which a sorting algorithm behaves
on the left-to-right maxima of an input permutation can be obtained using the same approach
used for Queuesort, Bubblesort and Cons.
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fortuna con il tuo dottorato, amore.

Ringrazio Tommaso, perché s̀ı.
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