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Spline Quasi-Interpolation (QI) of even degree 2R on general partitions is introduced, 
where derivative information up to order R ≥ 1 at the spline breakpoints is required and 
maximal convergence order can be proved. Relying on the B-spline basis with possible 
multiple inner knots, a family of quasi-interpolating splines with smoothness of order R is 
associated with each R ≥ 1, since there is the possibility of using different local sequences 
of breakpoints to define each QI spline coefficient. By using suitable finite differences 
approximations of the necessary discrete derivative information, each QI spline in this 
family can be associated also with a twin approximant belonging to the same spline space, 
but requiring just function information at the breakpoints.
Among possible different applications of the introduced QI scheme, a smooth continuous 
extension of the numerical solution of Gauss-Lobatto and Gauss-Legendre Runge-Kutta 
methods is here considered. When R > 1, such extension is based on the use of the variant 
of the QI scheme with derivative approximation which preserves the approximation power 
of the original Runge-Kutta scheme.
© 2023 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

In this paper the continuous extension approach presented in [16] in connection with multiderivative Hermite-Obreshkov 
schemes is generalized, deriving a new family of Hermite-Birkhoff Quasi-Interpolation (QI) schemes requiring multi-
derivative information at the spline breakpoints which can have general distribution. The convergence behavior of such 
class of QI methods is analyzed, together with that of the twin class with suitably approximated derivatives. Furthermore, 
its combination with some Runge-Kutta (RK) schemes, Gauss-Legendre and Gauss-Lobatto ones, is introduced, with the aim 
to efficiently obtain a spline approximant preserving the convergence order of the RK numerical solution at the mesh points.

Observe that the application here proposed of the presented family of QI schemes is significant since, when either 
initial or boundary value ordinary differential equations are considered, one important task to be addressed consists in 
the computation of a suitable continuous extension or dense output (see Chapter 6 in [8]) of the discrete approximation 
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produced at the mesh points by the numerical scheme. This means that, once a numerical solution ui , i = 1, . . . , N + 1 is 
obtained, with ui approximating at the mesh point xi the solution y of an initial or boundary value (vector) problem (IVP, 
BVP),

y′(x) = f(x,y(x)), a ≤ x ≤ b (1)

(plus initial or boundary conditions), the interest is in the efficient computation of a (vector) function s such that s(x) ≈
y(x), ∀x ∈ [a , b].

Note that the terminology “dense output” is often adopted in the ODE setting [8,19] as a synonym of continuous exten-
sion.

Now the computation of the numerical solution, and consequently of an associated continuous extension is necessarily 
different for IVPs and BVPs. For IVPs a possibility is the usage of one-step methods which adopt a forward procedure. In 
such case, referring without loss of generality to the scalar case, it is reasonable to construct the continuous extension 
with the same kind of procedure and usually it is done by defining in the current interval [xn, xn+1] a local polynomial 
pn that accurately approximates y in such area. Thus, the produced continuous extension is globally a spline with just C0

or C1 smoothness which however not necessarily shares the convergence order with the discrete numerical solution. One 
important use of continuous extensions in this case is to facilitate the variation of the step size, but they are also important 
for event detection.

Conversely numerical methods for BVPs, e.g. Boundary Value Methods (BVMs), i.e. linear multistep methods with addi-
tional boundary conditions, compute all the ui, i = 1, . . . , N + 1 simultaneously. For example the BS-class [17,18] of BVMs 
is derived collocating the differential equation by using the B-spline basis for splines with simple knots at the mesh points. 
Note that the peculiarity of the k-step BS method within the BVM family, consists exactly in having naturally associated 
a continuous spline extension s ∈ Ck[a , b] sharing the convergence order with the numerical solution. Considering how s
was defined for BS methods, later on in [15] it has been possible to do a generalization analogous to that presented in this 
paper, deriving an Hermite QI (QIBSH) with maximal smoothness which requires in input only functional and first deriva-
tive information at the mesh points which are also the spline breakpoints. The code TOM [4,13] uses the QIBSH spline as 
continuous extension for all the included classes of BVMs.

Note that the QIBSH spline construction is similar to the procedure here proposed to compute the new QI spline, since, 
if N is the number of the spline polynomial segments, in both cases O (N) local linear systems have to be solved when a 
non uniform distribution of the spline breakpoints is adopted. There are however significant differences. First of all, now we 
are capable of deriving a more flexible QI approach, since an additional input integer parameter is used to define different 
quasi-interpolating splines for the same set of input information. Furthermore, thanks to the usage of multi-derivative 
information and to the non maximal smoothness required for the spline at its breakpoints, the main difference descends, 
which consists in obtaining a more local QI scheme. Note that the less locality of QIBSHs implies for example that a forward 
implementation procedure could be done for the computation of successive spline segments only accepting a significant 
delay in the construction with respect to the computation of the occurrences of the discrete solution. Conversely, for the 
computation of s|[xn,xn+1] with the approach here introduced, just the computation of un+1 is necessary. As shown in the 
application to Gauss-Lobatto and Gauss-Legendre schemes, the derivative-free variant of the proposed scheme can preserve 
the locality of its basic formulation, clearly provided that additional suitable (approximated) functional or derivative values 
are available at points interior to each sub-interval [xn, xn+1]. This is exactly what happens for the developed application 
of the new QI operator to collocation methods, selecting in this case the spline breakpoints at the mid-points of successive 
mesh points. Observe also that the approach here proposed is not only a more local alternative to QIBSHs but it is also an 
alternative to superconvergent interpolants for Gaussian collocation methods proposed in the literature [1,7].

The paper is structured as follows. In Section 2 some preliminary material is briefly revised. In Section 3 the new class of 
quasi-interpolants is presented and in the following section its convergence properties are analyzed, giving also numerical 
evidence of the introduced theoretical results. In Section 5 the application of our QI operator to produce dense-output for 
some Runge-Kutta collocation schemes is shown together with some results for both, initial and boundary value problems. 
Finally, Section 6 reports some conclusions.

2. Preliminary related material

In this section the main results introduced in [16] are summarized, since they can be considered the starting point of 
the research presented in this paper. In such a paper a family of multiderivative methods for initial value problems (IVPs) 
was studied, the so called one-step symmetric Hermite-Obreshkov (HO) methods firstly introduced in [8]. As a first goal, in 
[16] their behavior when applied to the numerical solution of Hamiltonian problems was analyzed. Then it was shown that 
they admit a continuous spline extension with breakpoints at the mesh points, sharing the approximation order with the 
numerical solution.
Referring for simplicity to the scalar case and denoting with y0 the given initial condition to be combined for any IVP to 
the ODE in (1) and with a = t0 < · · · < tN = b a partition of the integration interval, the R-th method of such family can be 
written as follows,
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⎧⎪⎨
⎪⎩

u0 = y0

un+1 = un +
R∑

j=1

h j
nβ

(R)
j (u( j)

n − (−1) ju( j)
n+1), n = 0, . . . , N − 1,

(2)

where

β
(R)
j = 1

j!
R(R − 1) . . . (R − j + 1)

2R(2R − 1) . . . (2R − j + 1)
, j = 1, . . . , R , (3)

with hn := tn+1 − tn, un denoting as usual a discrete approximation of y(tn) and u( j)
n , for j ≥ 1, the ( j −1)-th total derivative 

of f with respect to t computed at (tn, un), which is clearly an approximation of y( j)(tn).
The spline extension s associated with the numerical solution produced by the R-th HO method has degree 2R , break-

points at ti, i = 0, . . . , N , smoothness C R in the integration interval and it collocates the differential equation at the mesh 
points with multiplicity R . In [16] an efficient forward approach for its computation suited for IVPs is introduced, expressing 
each spline coefficient in the B-spline basis as a linear combination of two successive values of the numerical solution and 
of the corresponding approximations of the derivatives of y up to order R which are involved in the R-th HO method. 
Furthermore, under the requirement of a smoothly varying mesh and of a sufficiently smooth f , it is proved that such a 
spline s approximates y with an O (h2R) error, where h := max

n
hn , being 2R also the order of the associated HO method. 

For any further detail on what summarized in this section, we refer to [16]. Even if not observed in such a reference, we 
will show here that the method proposed in [16] to construct such a spline can be interpreted as a QI scheme when the 
input multi-derivative information it requires at the mesh points are taken from an underlying function to be approximated. 
Indeed, in the next section we introduce a more general method which allows us to associate with the same set of infor-
mation, different quasi-interpolating splines sharing the same knot vector, the same degree and smoothness and including 
the above mentioned one. Besides analyzing their differences, a derivative free variant of such general QI approach will be 
also introduced.

3. The generalized QI spline scheme

As it is always the case in the QI setting, we are here interested in obtaining with a local approach approximants belong-
ing to a finite dimensional functional space of an underlying function y defined in [a , b]. In particular we are interested in 
deriving spline approximants requiring as input just values of y at the spline breakpoints a = t0 < . . . < tN = b together with 
corresponding derivative values up to a given order (which can be anyway suitably approximated to derive a derivative-free 
variant of this QI approach). Taken a positive integer R ≥ 1, chosen according to the smoothness of the function y to be 
approximated, let us consider the following spline space of dimension D + 2R + 1 with D := (N − 1)R ,

S R := 〈B−2R , · · · , B D〉,
where Bi denotes the i-th element of the C R [a , b] B-spline basis of degree 2R with breakpoints belonging to T := {ti, i =
0, . . . , N} and whose associated extended knot vector � is derived from T setting the multiplicity of each inner breakpoint 
to R and adopting coincident auxiliary knots. Regardless from R , each local spline spaces S(n)

loc , n = 0, . . . , N − 1, spanned 
by those B-splines which do not vanish in the interval In := [tn , tn+1], coincides with �2R and so its dimension is 2R + 1. 
Then for each j ranging between 0 and R and each n ranging between 0 and N − 1 we can introduce the local matrix A(n)

j
which collocates at tn and tn+1 the j-th derivative of all the B-splines active in In . Setting for brevity �n := R(n − 2), such 
local matrix can be written as follows,

A(n)
j :=

[
B( j)

�n
(tn), . . . , B( j)

�n+2R(tn)

B( j)
�n

(tn+1), . . . , B( j)
�n+2R(tn+1)

]
2×(2R+1)

. (4)

After this stage, the definition of a QI spline s ∈ S R which approximates y can be written as,

s(·) = Q (H B)
R (y) =

D∑
i=−2R

μi(y)Bi(·). (5)

The functionals μi appearing in the above formula are linear and local, as usual in the QI setting. In order to explain how 
they are defined in our approach, let us introduce another local matrix W (n) which is block defined as follows,

W (n) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

A(n)
0 0

hn A(n)
1 −e

h2
n A(n)

2 0
...

...

hR A(n) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6)
n R (2R+2)×(2R+2)
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where e and 0 denote two column vectors both belonging to R2, with unit and zero entries, respectively. In our approach, 
in order to compute all the spline coefficients, for each n = 0, . . . , N − 1, the following local linear system has to be solved,

W (n)

(
ĉ(n)

τ (n)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(0)
n

y(0)
n+1

hn y(1)
n

hn y(1)
n+1
...

hR
n y(R)

n

hR
n y(R)

n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where ĉ(n) ∈R2R+1, τ (n) ∈R and with y( j)
i denoting the value at ti of the j-th derivative of the function y to be approxi-

mated. Note that the vector ĉ(n) collects the set of coefficients used to define a local polynomial approximation of y in In . 
Such local approximation interpolates y and its derivatives up to order R at both tn and tn+1, except for the first derivative. 
Moreover,

ĉ(n)
i =

R∑
j=0

h j
n(y( j)

n γ ( j)
1,n,i + y( j)

n+1 γ ( j)
2,n,i) , 1 ≤ i ≤ 2R + 1 , (8)

τ (n) =
R∑

j=0

h j
n(y( j)

n γ ( j)
1,n,2R+2 + y( j)

n+1 γ ( j)
2,n,2R+2) , (9)

where the row vectors γ ( j)
n,i := (γ ( j)

1,n,i, γ
( j)
2,n,i), for j = 0, . . . , R can be simultaneously obtained by determining the i-th 

column of the inverse of the transpose of the local matrix W (n) . In particular,

(γ n,i)
�W (n) = (γ (0)

n,i ,γ
(1)
n,i , . . . ,γ

(R)
n,i )W (n) = e�

i ,

where ei denotes the i-th column of the identity matrix, from expression (7) it follows that,

e�
i

(
ĉ(n)

τ (n)

)
= (γ n,i)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(0)
n

y(0)
n+1

hn y(1)
n

hn y(1)
n+1
...

hR
n y(R)

n

hR
n y(R)

n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which (8) can be easily derived. Observe that in the ODE setting, the expression in (9) is exactly that of the local 
truncation error of the R-th HO method, see [16]. Indeed, the coefficients are respectively given as γ ( j)

1,n,2R+2 = βR
j and 

γ ( j)
2,n,2R+2 = −(−1) jβR

j , where the βR
j are defined in (3).

The preliminary determination of the vectors γ n,i and the definition of the coefficients ĉ(n)
i with formula (8) can be 

of interest for example if more than one function has to be approximated with the proposed QI approach. Furthermore, 
when the adopted partition of [a , b] is uniform, the preliminary computation of the necessary vectors γ i = γ n,i, 0 ≤ n ≤
N − 1, 1 ≤ i ≤ 2R + 1 can be done, in order to use (8) for defining the spline coefficients, so avoiding the solution of any 
local linear system during the QI approximation procedure. Different global spline approximants s are obtained by selecting 
an additional integer number σ , with 0 ≤ σ ≤ R + 1, which is used to select which set of R successive coefficients of s is 
defined by using the solution of (7). In fact, using again the index �n = R(n − 2), the following setting is adopted,⎧⎪⎨

⎪⎩
μ�n+σ+i := ĉ(n)

1+σ+i , i = 0, . . . , R − 1 n = 1, . . . , N − 2 ,

μ�0+i := ĉ(0)
1+i , i = 0, . . . , σ + R − 1

μ�N−1+σ+i := ĉ(N−1)
1+σ+i , i = 0, . . . ,2R − σ ,

(10)

where clearly each coefficient μi depends on the function y to be approximated. We observe that when the maximal value 
for σ is used, that is σ = R + 1, the restriction of s to [a , tn+1] can be constructed just using information at the breakpoints 
included in such interval and so the procedure is suited for applications to IVPs. On the other hand, dealing with BVPs, 
considering that the numerical solution is simultaneously available at all the mesh points tn, n = 0, . . . , N , setting σ = � R+1 

2
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is suggested, since the construction is more symmetric. Concerning the computational cost for the spline construction, first 
of all we can observe that it does not depend on σ because the same set of N local linear systems of the same size has to 
be solved independently from σ . Furthermore it is linear in N .

4. Convergence properties

In this Section, some theoretical properties regarding the approximation power of the derived QI scheme and of the 
variant which uses approximated derivatives are described.

Proposition 1. If y ∈ S R then τ (n) in (9) vanishes. Furthermore, if y ∈ C (2R+1)[a , b], then τ (n) ∈ O (h2R+1
n ).

Proof. If y is a spline in S R , then y|In is a polynomial of degree 2R . In such case the unique solution of (7) is (ĉ(n)T , 0)T , 
where ĉ(n)T is the vector collecting the coefficients of such polynomial expressed in the local basis of B-splines in S R which 
are active in In . As remarked in Section 2, the order of the R-th HO is O (h2R ), hence the local truncation error has order 
O (h2R+1

n ). This completes the proof. �
Corollary 1. The quasi-interpolation operator Q (H B)

R is a projector on the spline space S R .

Proof. The proof follows immediately from the previous proposition, considered the adopted strategy. �
The following Lemma is necessary to prove the main theoretical results regarding the convergence order of the intro-

duced QI spline.

Lemma 1. The restriction s|In of the quasi-interpolant defined in (5) by using (10) depends on the data y( j)
i for j = 0, . . . , R and 

i = n1(σ ), . . . , n2(σ ) with n1(σ ) = n1 = max{n − 1 − σ̄ , 0}, n2(σ ) = n2 = min{n + 2 − σ̄ , N}, with

σ̄ =
⎧⎨
⎩

0 if σ = 0
1 if 0 < σ < R + 1
2 if σ = R + 1.

Proof. For the proof we need to separately consider the cases n = 0, n = N − 1 and the intermediate ones. By (10) we can 
find that,

• For the first interval I0 = [t0, t1], the index �n = �0 = −2R , hence, there are 2R + 1 active splines defined in 
{θ�0 , . . . , θ�0+4R+1}:
– If σ = 0,

s|I0 =
R−1∑
i=0

(
ĉ(0)

1+i B�0+i(·) + ĉ(1)
1+i B�0+R+i(·)

)
+ ĉ(2)

1 B�0+2R(·)

=
R−1∑
i=0

(
μ�0+i B�0+i(·) + μ�1+i B�1+i(·)

) + μ�2 B�2(·)

– If σ = R + 1,

s|I0 =
2R∑
i=0

ĉ(0)
1+i B�0+i(·)

=
2R∑
i=0

μ�0+i B�0+i(·)

– If 0 < σ < R + 1

s|I0 =
σ+R−1∑

i=0

ĉ(0)
1+i B�0+i(·) +

R−σ∑
i=0

ĉ(1)
1+σ+i B�0+R+σ+i(·)

=
σ+R−1∑

μ�0+i B�0+i(·) +
R−σ∑

μ�1+σ+i B�1+R+σ+i
i=0 i=0
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• For the last interval [tN−1, tN ], the index �n = �N−1 = R(N − 3), there are exactly 2R + 1 splines active in 
{θ�(N−1)

, . . . , θ�(N−1)+2R+1 }.
– If σ = 0

s|IN−1 =
2R∑
i=0

ĉ(N−1)
1+i B�N−1+i(·)

=
2R∑
i=0

μ�N−1+i B�N−1+i(·)

– If σ = R + 1,

s|IN−1 =
R−1∑
i=0

(
ĉ(N−1)

1+i B�N−1+i(·) + ĉ(N−2)
1+i B�(N−1)−R+i(·)

)
+ ĉ(N−3)

1 B�(N−1)−2R(·)

=
R−1∑
i=0

(μ�N−1+i B�N−1+i(·) + μ�(N−2)+i B�(N−2)+i(·)) + μ�(N−3)
B�(N−3)

(·)

– If 0 < σ < R + 1

s|IN−1 =
2R−σ∑

i=0

ĉ(N−1)
1+i+σ B�N−1+i+σ (·) +

R−σ∑
i=0

ĉ(N−2)
1+σ+i B�N−1−R+σ+i(·)

=
2R−σ∑

i=0

μ�N−1+i+σ B�N−1+i+σ (·) +
R−σ∑
i=0

μ�N−1+σ+i B�N−1−R+σ+i(·)

• For the intermediate intervals In with n = 1, . . . , N − 2, and 0 ≤ σ ≤ R + 1,

s|In =
R−1∑
i=0

(
ĉ(n1)

1+σ+i B�n+σ+i(·) + ĉ(n1+1)
1+σ+i B�n+R+σ+i(·)

)
+ ĉ(n2−1)

1+σ B�n+2R+σ (·)

=
R−1∑
i=0

(μ�n+σ+i B�n+σ+i(·) + μ�n+R+σ+i B�n+R+σ+i(·)) + μ�n+2R+σ B�n+2R+σ (·). �

Lemma 2. If there exist two positive constants η1, η2 with η1 ≤ 1 ≤ η2 such that,

η1 ≤ hn

hn+1
≤ η2, n = 1, . . . , N − 1,

then there exist positive constants 
( j) depending only on η1, η2 and on the integer R such that

‖γ ( j)
n,i ‖∞ ≤ 
( j), 0 ≤ n ≤ N − 1, 1 ≤ i ≤ 2R + 1, 0 ≤ j ≤ R.

Proof. The proof is analogous to the proof of Lemma 3 in [16]. We reformulate the same steps according to the new 
notation for multiple inner knots. The entries of each block matrix A(n)

j in (4) depend on the successive ratios hn/hn+1 and, 

as it is proven in Proposition 1 in [16], the matrix W (n) in (6) is non singular. Therefore, the vectors γ ( j)
n,i continuously 

depend on the ratios between successive mesh sizes. Hence, since ‖γ ( j)
n,i ‖∞ is a continuous function of all the involved 

ratios that are all bounded, the thesis of the Lemma holds true. �
Corollary 2. Let g ∈ C R [a, b]. Then, for 0 ≤ n ≤ N − 1 and for 0 ≤ r ≤ R there holds

‖
(

Q (H B)
R (g)

)(r) ‖∞,In ≤ Cr,T

ĥr
n

R∑
j=0

ĥ j
n

(

( j)‖g( j)‖∞,[tn1 ,tn2 ]

)
,

where ĥn := max
n1≤n≤n2

hn; n1, n2 are defined in Lemma 1, and Cr,T is a suitable positive constant depending on r and on the ratios 

between consecutive mesh sizes, with C0,T = 1.
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Proof. From Lemma 1, the coefficients of the restriction to every subinterval depend on three neighboring intervals, iden-
tified by n1 and n2. For r = 0 the proof can be easily derived from (8). For r > 0, it can be derived by using the recursive 
derivative formulas for the B-spline basis [6]. �
Theorem 1. Let us assume the hypotheses in Lemma 2 for the distribution of the breakpoints. If y ∈ C2R+1[a, b], then the r-th derivative 
of the approximation error of the quasi-interpolant Q (H B)

R (y) satisfies the following inequality,

‖
(

y − Q (H B)
R (y)

)(r) ‖∞ ≤ L h2R+1−r ‖y(2R+1)‖∞ , r = 0, . . . , R, (11)

where L is a suitable positive constant depending on R, r and on the positive quantities η1 and η2 introduced in Lemma 2.

Proof. The following proof is a generalization of the proof of Theorem 2 in [15] in the case of multiple inner knots.
Let us consider the r-th derivative of the error in the interval [tn, tn+1], with 0 ≤ n ≤ N − 1 and for the sake of brevity 

let us use the notation ‖ · ‖n := ‖ · ‖∞,[tn,tn+1] . We have that, if p belongs to the space �2R of all polynomials with degree 
less than or equal to 2R , then the following bounds can be derived:

‖
(

y − Q (H B)
R (y)

)(r) ‖n = ‖(y − p)(r) − (Q (H B)
R (y) − p)(r)‖n

≤ ‖(y − p)(r)‖n + ‖(Q (H B)
R (y) − p)(r)‖n

= ‖(y − p)(r)‖n + ‖
(

Q (H B)
R (y − p)

)(r) ‖n.

Then from Corollary 2 we get the following inequality,

‖
(

Q (H B)
R (y − p)

)(r) ‖n ≤ Cr,T

ĥr
n

R∑
j=0

ĥ j
n

(

( j)‖(y − p)( j)‖∞,[tn1 ,tn2 ]

)
.

Let p be the Taylor expansion of order 2R of y|[tn,tn+1] about the point tn , then

‖(y − p)(r)‖n ≤ h2R+1−r
n ρ2R,r‖y(2R+1)‖n,

where ρ2R,r is a positive constant depending only on R and r, with r = 0, . . . , R .
Using the above bound, the following local error estimate can be computed,

‖(y − Q (H B)
R (y))(r)‖n ≤ ĥ2R+1−r

n

⎡
⎣ρ2R,r + Cr,T

R∑
j=0

ρ2R, j

( j)

⎤
⎦‖y(2R+1)‖∞,[tn1 ,tn2 ].

Setting

L := ρ2R,r + Cr,T

R∑
j=0

ρ2R, j

( j),

the thesis descends. �
Chosen an integer d ranging between R and 2R , the required derivative values can be approximated with finite differ-

ences formulas as follows

ŷ( j)
n = y( j)

n + O (hd+1− j), j = 0, . . . , R.

The quasi-interpolant Q̂ (H B)
R (y) computed using ŷ( j)

n instead of y( j)
n satisfies the following Proposition that can be easily 

derived from Theorem 1.

Proposition 2. Let y ∈ Cd+1[a, b], with R ≤ d ≤ 2R. Then, under the assumptions of Lemma 2, it holds

‖
(

Q̂ (H B)
R (y) − y

)(r) ‖ ≤ Lrhd+1−r‖y(d+1)‖ r = 0, . . . , R.

Remark 1. When σ = R +1 and the required function and derivatives input data are obtained from the R-th HO method the 
spline s defined via (10) is exactly the collocating spline introduced in [16]. In such case, we observe that its convergence 
order reduces to O (h2R) since approximated input data are used.

In the next Subsection, some numerical experiments are presented to give evidence of the results proved in Theorem 1. 
While, other tests with approximated derivatives are introduced in Section 5 that give experimental evidence for Proposi-
tion 2.
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Table 1
Test 1: Approximation error and convergence order for R = 2. The values of σ are chosen as R +1, 
0, M := �(R + 1)/2
 and M + 1.

N σ = 3 ord σ = 0 ord σ = 1 ord σ = 2 ord

16 4.4 × 10−02 * 4.7 × 10−02 * 1.9 × 10−02 * 1.9 × 10−02 *
32 9.5 × 10−04 5.5 9.5 × 10−04 5.6 5.0 × 10−04 5.2 5.0 × 10−04 5.2
64 2.0 × 10−05 5.6 2.0 × 10−05 5.6 1.5 × 10−05 5.0 1.5 × 10−05 5.0
128 4.8 × 10−07 5.4 5.3 × 10−07 5.3 4.7 × 10−07 5.0 4.7 × 10−07 5.0
256 1.5 × 10−08 5.0 1.5 × 10−08 5.1 1.5 × 10−08 5.0 1.5 × 10−08 5.0
512 4.0 × 10−10 5.2 4.0 × 10−10 5.3 3.8 × 10−10 5.3 3.8 × 10−10 5.3

Table 2
Test 1: Approximation error and convergence order for R = 3. The values of σ are chosen as R +1, 
0, M := �(R + 1)/2
 and M + 1.

N σ = 4 ord σ = 0 ord σ = 2 ord σ = 3 ord

16 1.2 × 10−03 * 1.3 × 10−03 * 4.8 × 10−04 * 5.7 × 10−04 *
32 6.8 × 10−06 7.4 6.5 × 10−06 7.7 3.6 × 10−06 7.0 4.0 × 10−06 7.2
64 3.6 × 10−08 7.6 3.6 × 10−08 7.5 2.8 × 10−08 7.0 2.9 × 10−08 7.1
128 2.4 × 10−10 7.3 2.4 × 10−10 7.2 2.2 × 10−10 7.0 2.3 × 10−10 7.0
256 1.8 × 10−12 7.0 1.9 × 10−12 7.0 1.8 × 10−12 6.9 1.8 × 10−12 7.0
512 1.5 × 10−14 7.0 1.4 × 10−14 7.0 1.4 × 10−14 7.0 1.4 × 10−14 7.0

Table 3
Test 2: Approximation error and convergence order for R = 2. The values of σ are chosen as R +1, 
0, M := �(R + 1)/2
 and M + 1.

N σ = 3 ord σ = 0 ord σ = 1 ord σ = 2 ord

16 4.6 × 10−03 * 4.2 × 10−03 * 3.3 × 10−03 * 3.3 × 10−03 *
32 1.8 × 10−04 4.7 1.8 × 10−04 4.5 1.5 × 10−04 4.5 1.5 × 10−04 4.5
64 5.8 × 10−06 4.9 6.1 × 10−06 4.9 5.3 × 10−06 4.8 5.3 × 10−06 4.8
128 1.8 × 10−07 5.0 1.9 × 10−07 5.0 1.8 × 10−07 4.9 1.8 × 10−07 4.9
256 5.8 × 10−09 5.0 6.0 × 10−09 5.0 5.7 × 10−09 5.0 5.7 × 10−09 5.0
512 1.2 × 10−10 5.6 1.2 × 10−10 5.7 1.1 × 10−10 5.8 1.1 × 10−10 5.8

4.1. Numerical experiments with exact data

To show the behavior of the Hermite-Birkhoff quasi-interpolant the following two functions will be approximated by the 
constructed operator Q (H B)

R :
Test 1:

y(t) = e−t sin(5πt) , t ∈ [−1 , 1]
Test 2:

y(t) = e−t/
√

ε − e(t−2)/
√

ε

1 − e−2/
√

ε
, t ∈ [0 , 1] , ε = 10−3

The numerical experiments have been performed by running the routine implemented in Matlab R2021b on a MacBook 
pro, 2,9 GHz Intel Core i7 quad-core. To show the convergence behavior, uniform step-size has been used and the maximum 
absolute error has been computed. The results for different values of σ and R are shown in Tables 1, 2 for Test 1 and in 
Tables 3, 4 for Test 2. The compared values of σ are σ = 0, σ = R + 1 and fixing M = �(R + 1)/2
, σ = M, σ = M + 1. The 
Tables show that the best results are obtained using σ = M for both the examples. This is justified by the fact that when 
the whole interval is considered, then it is better to symmetrically split the additional conditions.

5. Application to dense output for Runge Kutta collocation schemes

Let us consider the solution of problem (1) using one-step schemes. Given un , an approximation of y at xn , then an 
approximation un+1 of y at xn+1 is computed. Referring for simplicity to the scalar case, usually a continuous extension of 
the discrete solution is a piecewise polynomial p(x) that accurately approximates y(x) in all the sub-intervals [xn, xn+1].

For the solution of BVPs implicit methods are used and since there is no preferred direction, symmetric formulas are 
the most suited. The class of two-points BVPs specifies a solution by means of known values of its components at the two 
ends of the interval. Therefore, the formula must be evaluated at all mesh points simultaneously, i.e., a large system of 
nonlinear equations needs to be solved. In the nonlinear cases, the solution requires a suitable iterative procedure and if an 
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Table 4
Test 2: Approximation error and convergence order for R = 3. The values of σ are chosen as R +1, 
0, M := �(R + 1)/2
 and M + 1.

N σ = 4 ord σ = 0 ord σ = 2 ord σ = 3 ord

16 1.3 × 10−04 * 1.2 × 10−04 * 9.0 × 10−05 * 1.0 × 10−06 *
32 1.3 × 10−06 6.6 1.4 × 10−06 6.5 1.1 × 10−06 6.4 1.2 × 10−06 6.4
64 1.2 × 10−08 6.9 1.2 × 10−08 6.8 1.0 × 10−08 6.7 1.1 × 10−08 6.7
128 9.6 × 10−11 6.9 9.7 × 10−11 7.0 8.9 × 10−11 6.9 9.2 × 10−11 6.9
256 7.6 × 10−13 7.0 7.7 × 10−13 7.0 7.3 × 10−13 6.9 7.4 × 10−13 7.0
512 3.7 × 10−15 7.7 3.7 × 10−15 7.7 3.7 × 10−15 7.7 3.7 × 10−15 7.7

approximation to y(x) is not satisfactory, the mesh is refined and a larger system of algebraic equations is solved. In this 
case, a continuous extension is fundamental as it is used to generate starting guesses for the iterative procedure.

For the solutions of BVPs and for the solution of conservative problems, some of the most used collocation Runge-Kutta 
schemes are the symmetric Gauss-Lobatto or Gauss-Legendre formulas.

Note that a collocation scheme finds the solution in the subinterval [xn, xn+1] by defining a set of collocation points 
xn + cih, i = 1, . . . , k, where k denotes the number of stages of the scheme. The collocation polynomial pn(x), restriction of 
p to [xn, xn+1], satisfies pn(xn) = un and the collocation equations:

p′
n(xn + cih) = f (xn + cih, pn(xn + cih)), i = 1, . . . ,k. (12)

If we are solving an initial value problem the new approximation at xn+1 is given by un+1 = pn(xn+1).
Note that, it has been proven that a collocation method is equivalent to a Runge-Kutta scheme [2,8].
For superconvergent methods, like Gauss-Lobatto and Gauss-Legendre, the collocation piecewise polynomial has a smaller 

order of convergence than the numerical solution at the mesh points xn, n = 0, . . . , N + 1, see [8]. Therefore, for these 
schemes, it is of interest to look for a different continuous extension sharing with the numerical solution the convergence 
order.

Observe that superconvergent interpolants for collocation solution of BVPs have been analyzed for example in [1,7]. 
These interpolants are based on the construction of Continuous RK Formulas or Continuous Parameterized Implicit RK, 
adding additional stages. Here a quasi-interpolation superconvergence scheme with a totally different approach, based on 
the approximation of the derivatives, has been considered.

5.1. Gauss-Lobatto

In this subsection the new quasi-interpolant Q̂ (H O )
R is applied to construct a continuous extension for the Gauss-

Lobatto schemes. The resulting continuous spline has the same order of convergence of the numerical scheme but it 
quasi-interpolates the values at the mesh points.

The collocation nodes of the Gauss-Lobatto methods are derived by choosing ci as the zeros of the Lobatto polynomial 
and include both the endpoints. The Matlab codes bvp4c and bvp5c use Gauss-Lobatto methods [11,12].

In particular, the order 6 Gauss-Lobatto formula is considered with k = 4, and the collocation points are both the end-
points of the step and the points xn + h(5 − √

5)/10, xn + h(5 + √
5)/10. Also this scheme is implemented in the code

bvp5c.
Although the order of the RK formula is 6, the associated collocation piecewise polynomial p which has degree 4 and is 

C1 smooth, is just uniformly of order 5.
In order to obtain a Q̂ (H O )

3 quasi-interpolation scheme of order 6, it is necessary to choose the spline breakpoint tn

different from xn , for n = 0, . . . , N , and specifically tn = (xn + xn+1)/2 is set. Then, suitable approximations of y( j)(tn), for 
j = 0, . . . , 3 at least of order 6 − j are needed. Indeed, this is facilitated from having already available in a neighborhood
of tn the polynomial approximation pn . At each step of the Runge-Kutta scheme, the values of pn and of its derivatives 
at the four collocation points in each In are available. Since the collocation points are symmetric with respect to tn , an 
approximation ŷ′′

n of order 4 of y′′(tn) and ŷiv
n of order 2 of yiv (tn) can be computed.

Since the available approximations of y at the mesh points are of order 6, due to superconvergence, by using Taylor 
expansion, it can be derived that:

ŷn = (un + un+1)

2
− h2

22 · 2! ŷ′′
n − h4

24 · 4! ŷiv
n

is an approximation of order 6 of y(tn) and ŷ′
n = f (tn, ŷn) is an approximation of order 6 of y′(tn). Using ŷ′

n and the values 
of f at the four collocation points, an order 4 approximation ŷ′′′

n , the third derivative of y(tn), can be also computed.
Thereafter, the values ŷn = y(tn) + O (h6), ŷ′

n = y′(tn) + O (h6), ŷ′′
n = y′′(tn) + O (h4), ŷ′′′

n = y′′′(tn) + O (h4) are available. 
Finally, the Q̂ (H O )

R quasi-interpolant spline satisfying Lemma 2, i.e., with order of convergence 6, can be constructed.
Observe that, with respect to the interpolant used in the code bvp5c, this quasi-interpolant requires one more function 

evaluation at tn . However, this value is necessary in the code for computing the residual, so its usage does not imply any 
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additional cost. The first and last intervals, [x0, t0] and [tN , xN+1], need a different way to compute the continuous extension. 
One way to work with these two intervals is to compute the Taylor polynomial backward and forward, respectively about 
t0 and tN . To have the correct order of convergence, the polynomial needs the computation of an approximation of the fifth 
derivative of at least order 1. An order 2 approximation of yv(tn) is hence computed by using a five point central difference 
by using the already available function evaluations.

5.2. Gauss-Legendre

The collocation nodes of the Gauss-Legendre are derived by choosing ci as the zeros of the Legendre polynomial and 
do not include the endpoints of the step. Observe that the Gauss-Legendre formula with k stages is of order 2k, but the 
collocation polynomial has just uniform order k + 1.

The codes colsys/colnew/colmod use Gauss-Legendre formulas of high order [2,5]. Also the code bvpsuite [3] is 
based on collocation and it is possible to choose as collocation points the zeros of the Legendre polynomial. In all the cited 
codes the adopted continuous extension is the collocation piecewise polynomial p which in this case is just C0 smooth.

In this subsection we consider the order 4 and 6 of the Gauss-Legendre formula with k = 2, 3 collocation points.
As for the Gauss-Lobatto scheme, the spline breakpoints are chosen as the mid-points of each subintervals tn .
The order 4 method which has two stages symmetric with respect to the midpoints xn + (1/2 − √

3/6)hn, xn + (1/2 +√
3/6)hn , is combined with our QI scheme with R = 2. Then, suitable approximations of y( j)(tn), for j = 0, . . . , 2 at least of 

order 4 − j are needed.
The value of the collocation polynomial computed at the mid-point is of order 4, therefore, the value of f (tn, y(tn)) is 

of order 4 as well. For the second derivative, an approximation of the first derivative of f using central differences is of 
order 2. So, with one additional function evaluation, a C1 spline approximation of the continuous solution can be obtained 
by applying the Q̂ (H O )

2 operator to breakpoints, approximated as explained.
For the order 6 method, R = 3 is adopted. In this case, there are three internal stages and the piecewise collocation 

polynomial is of degree 3. The internal stages are: xn + hnc1; xn + hnc2; xn + hnc3 with c1 = (1/2 − √
15/10); c2 = 1/2; c3 =

(1/2 + √
15/10). The order of the available approximation of the function and of its first derivative at the collocation 

points is just 4. Thus, better approximations are required at the mid point, which in this case is also a collocation point. 
The following procedure is adopted: two additional function evaluations at the points bn− = xn + hn(1/2 − √

5/10); bn+ =
xn + hn(1/2 + √

5/10) are needed. These are two special points since it can be proven that the collocation polynomial has 
superconvergence order 5.

At this step, the information available at the collocation points and at these 2 additional points, allows us to use a five 
points central finite differences with variable stepsize to compute an approximation ŷ′′

n of order 4 of the second derivative 
and analogously an approximation of order 2 of ŷ′′′

n and ŷiv
n .

As for the Gauss-Lobatto scheme we have:

ŷn = (un + un+1)

2
− h2

22 · 2! ŷ′′
n − h4

24 · 4! ŷiv
n .

This approximation is now of order 6 and the value of f (tn, ŷn) is of order 6 as well. To compute and approximation of 
order 4 of the third derivative ỹ′′′

n , a better approximation ŷn1, ŷn3 at the internal stages xn + hc1, xn + hnc3 is necessary. 
This can be done by using a Taylor expansion about tn , since at these points the values of the needed derivatives to compute 
an order 4 approximation are known,

ŷni = ŷn + hn(ci − 1/2) f (tn, ŷn) + h2
n(ci − 1/2)2

2
ŷ′′

n+
h3

n(ci − 1/2)3

3! ỹ′′′
n + h4

n(ci − 1/2)4

4! ŷiv
n

The next step is to compute an approximation of order 4 of y′′′(tn) using 5 points finite differences with the values of 
f (tn, ŷn), f (bn−, pn(bn−)), f (bn+, pn(bn+)), f (xn + hc1, ŷn1), f (xn + hc3, ŷn3). We call this approximation ŷ′′′

n .

Now we have available all the derivatives of correct order to compute an order 6 Q̂ (H O )
3 spline quasi-interpolant: the 

values ŷn = y(tn) + O (h6), ŷ′
n = y′(tn) + O (h6), ŷ′′

n = y′′(tn) + O (h4), ŷ′′′
n = y′′′(tn) + O (h4).

This continuous extension requires 5 more function evaluations on each mesh interval. It is important to note that in 
the non-linear case, they are computed once and this does not increase the computational cost required to the convergence 
of the nonlinear iteration procedure. For the extreme intervals [t0, x0], [tN , xN+1] we adopt the same procedure previously 
described.

5.3. Numerical experiments for boundary value problems

In this subsection we report some numerical experiments related to boundary value problems to show the behavior of 
the spline QI operator for both the Gauss-Lobatto and the Gauss-Legendre Runge-Kutta schemes. We use as test case the 
linear boundary value problem bvpT1:
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Fig. 1. Numerical Results for bvpT1 with Runge-Kutta collocation schemes: absolute errors of the Q̂ (H O )
R (blue solid line) and of piecewise collocation 

polynomial (red dotted lines) in the interval [0, 1]; absolute error values at the RK mesh points (yellow diamonds) and at the mid-points of every subinterval 
(purple squares). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

εy′′ = y,

y(0) = 1, y(1) = 0,

with exact solution:

e−x/
√

ε − e(x−2)/
√

ε

1 − e−2/
√

ε
,

where in particular we show the results for ε = 0.1 and σ = M . The problem is rewritten as a first order system with two 
components (y, y′)T . This is one of the benchmark problems described in the web site “Testset for BVP solvers” [14].

Fig. 1 shows the absolute error of the continuous extension computed using as numerical scheme the Gauss-Lobatto of 
order 6, the Gauss-Legendre of order 4 and 6, respectively, beside the error at the collocation points and the error at the 
mesh points.

The picture clearly shows that the absolute error of the quasi-interpolant (blue solid line) is smaller than the absolute 
error of the collocation piecewise polynomial (red dotted line) and it is comparable to the error at the mesh points (yellow 
diamonds).

Table 5 shows the error with different stepsizes h = 1/(N + 1) and the approximate order of convergence for both the 
quasi-interpolanting spline and the collocation piecewise polynomial, that clearly respects the theoretical properties. For the 
Gauss-Lobatto, the collocation piecewise polynomial given by the bvp5c code is used.

5.4. Numerical experiments for initial value problems

The BSHO schemes have been successfully used in [16] for the solution of Initial Value Hamiltonian problems. A class of 
methods that has nice properties for this kind of differential equation is the one of Gauss-Legendre scheme, that has been 
used in [9,10,16], to compare the behaviors of the proposed schemes. Here we report some numerical experiments using 
the classical Kepler problem describing the motion of two bodies subject to Newton’s law of gravitation. As it is well-known, 
the problem is a completely integrable Hamiltonian dynamical system with two degrees of freedom (see, for example, [10]). 
If the origin of the coordinates system is set on one of the two bodies, the motion of the other body is described by the 
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Table 5
Example bvpT1 solved with Gauss-Lobatto and Gauss-
Legendre RK. Errors for function and first derivative and es-
timated order of convergence of the spline quasi-interpolant 
(errs , ord) and of the collocation piecewise polynomial 
(errp , ord) with different stepsizes.

Gauss-Lobatto order 6

N+1 errs, σ = 2, R = 3 ord errp ord

8 6.3 × 10−08 * 6.2 × 10−07 *
16 1.1 × 10−09 5.8 2.1 × 10−08 4.9
32 1.9 × 10−11 5.9 6.8 × 10−10 4.9
64 3.0 × 10−13 5.9 2.2 × 10−11 5.0
128 4.9 × 10−15 6.0 6.8 × 10−13 5.0

Gauss-Legendre order 4

N+1 errs, σ = 1, R = 2 ord errp ord

8 4.7 × 10−05 * 4.3 × 10−04 *
16 3.4 × 10−06 3.8 5.8 × 10−05 2.9
32 2.3 × 10−07 3.9 7.5 × 10−06 2.9
64 1.5 × 10−08 3.9 9.5 × 10−07 3.0
128 9.5 × 10−10 4.0 1.2 × 10−07 3.0

Gauss-Legendre order 6

N+1 errs, σ = 2, R = 3 ord errp ord

8 6.3 × 10−08 * 1.0 × 10−05 *
16 1.1 × 10−09 5.8 7.2 × 10−07 3.9
32 1.9 × 10−11 5.9 4.7 × 10−08 3.9
64 3.0 × 10−13 5.9 3.0 × 10−09 4.0
128 4.9 × 10−15 6.0 1.9 × 10−10 4.0

Table 6
Absolute errors and estimated order of convergence for the Kepler problem solved with Gauss-
Legendre RK and constant stepsize h = T /(N + 1).

Q̂ (H O )
2 order 4 Q̂ (H O )

3 order 6

N + 1 errs ord errs′ ord errs ord errs′ ord

20 2.5 × 10−01 * 7.1 × 10−01 * 2.2 × 10−02 * 7.4 × 10−02 *
40 2.2 × 10−02 3.5 7.2 × 10−02 3.3 3.3 × 10−04 6.0 1.2 × 10−03 6.0
80 1.7 × 10−03 3.7 5.3 × 10−03 3.8 5.4 × 10−06 5.9 2.0 × 10−05 5.8
160 1.2 × 10−04 3.8 3.6 × 10−04 3.9 9.8 × 10−08 5.8 3.6 × 10−07 5.8
320 7.9 × 10−06 3.9 3.0 × 10−05 3.6 1.6 × 10−09 5.9 7.4 × 10−09 5.6
640 5.0 × 10−07 4.0 2.5 × 10−06 3.6 2.7 × 10−11 5.9 1.8 × 10−10 5.4

Hamiltonian function H(q1, q2, p1, p2) = (p2
1 + p2

2)/2 − (q2
1 + q2

2)
−1/2 which is an ellipse in the q1-q2 plane with eccentricity 

e and periodicity T = 2π .
Taking as initial conditions

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1 + e

1 − e
,

using y = (q1, q2, p1, p2)
T the following differential equation can be written

y′ = f(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−p1
−p2

−q1

(q2
1 + q2

2)

√
q2

1 + yq2
2−q2

(q2
1 + q2

2)

√
q2

1 + q2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The experiments are performed with e = 0.5 and constant stepsize h = T /(N + 1). The problem is integrated in four 
periods and the errors in the spline quasi-interpolants are computed by evaluating a more accurate solution with a finer 
mesh obtained with a constant stepsize h = T /(4(N +1)). The absolute error is computed by evaluating the quasi-interpolant 
at 1000 points in the interval [0, 8π ], see Table 6.
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6. Conclusions

In this paper a new class of spline quasi-interpolants generalizing the collocation spline of the Hermite-Obreshkov meth-
ods for ODEs has been presented. The introduced QI operator is defined by using the function values and its derivatives 
at the spline breakpoints, which are also the set of multiple knots. In order to have the maximal convergence behavior, 
the partition of the interval is not required to be strictly uniform, but it just has to be quasi-uniform. The associated class 
with approximated derivatives is also described which results to be interesting for the construction of dense output for 
superconvergent collocation methods for ODEs. Some numerical experiments for Gauss-Lobatto and Gauss-Legendre are 
then presented. Different schemes for the dense output based on interpolation are known in literature, e.g., [1,7] and some 
comparisons will be object of future work.
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